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Abstract— Reinforcement Learning (RL) has become a criti-
cal tool for optimization challenges within automation, leading
to significant advancements in several areas. This review article
examines the current landscape of RL within automation,
with a particular focus on its roles in manufacturing, energy
systems, and robotics. It discusses state-of-the-art methods,
major challenges, and upcoming avenues of research within each
sector, highlighting RL’s capacity to solve intricate optimization
challenges. The paper reviews the advantages and constraints of
RL-driven optimization methods in automation. It points out
prevalent challenges encountered in RL optimization, includ-
ing issues related to sample efficiency and scalability; safety
and robustness; interpretability and trustworthiness; transfer
learning and meta-learning; and real-world deployment and
integration. It further explores prospective strategies and future
research pathways to navigate these challenges. Additionally, the
survey includes a comprehensive list of relevant research papers,
making it an indispensable guide for scholars and practitioners
keen on exploring this domain.

Index terms: Reinforcement Learning, Automation,
Manufacturing, Energy Systems, Robotics

I. INTRODUCTION
A. Motivation

Reinforcement learning (RL) has emerged as a effec-
tive framework for sequential decision-making problems,
enabling agents to learn optimal policies through interaction
with the environment [1], [2] In recent years, RL has
achieved remarkable success in various domains, including
manufacturing [3], energy systems [4], and robotics [5]. The
key advantage of RL lies in its ability to learn from trial-
and-error experience without requiring explicit supervision
or a predefined model.

Simultaneously, optimization problems are ubiquitous in
automation, spanning diverse areas such as production
scheduling [6], process control [7], and inventory manage-
ment [8]. These problems often involve complex decision-
making under uncertainty, large-scale combinatorial search
spaces, and dynamic environments. Traditional optimiza-
tion approaches, such as mathematical programming and
metaheuristics, have been extensively studied and applied to
automation problems [9]. However, they often struggle with
scalability, adaptability, and the need for domain-specific
knowledge.

The intersection of RL and optimization in automation
presents a promising avenue for addressing these challenges.
By leveraging the power of RL to learn from experience and
adapt to changing conditions, we can develop more efficient,
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flexible, and robust optimization algorithms for automation
tasks [10], [11]. This has led to a growing body of research
on RL-based optimization in various automation domains,
which is the focus of this survey.

B. Scope and Contributions
This survey paper aims to provide a comprehensive

overview of RL techniques for optimization in automation.
We focus on three key application domains: manufacturing,
energy systems, and robotics. In each domain, we review
representative works that demonstrate the effectiveness of
RL in solving optimization problems and discuss the unique
challenges and opportunities.

The main contributions of this survey are as follows:
1. We provide a systematic categorization of RL-based

optimization approaches in automation, highlighting their
strengths and limitations.

2. We discuss the state-of-the-art RL algorithms used for
optimization in each application domain.

3. We identify common challenges faced by RL-based
optimization in automation, including sample efficiency and
scalability; safety and robustness; interpretability and trust-
worthiness; transfer learning and meta-learning; and real-
world deployment and integration, and discuss potential
solutions and future research directions.

4. We present a comprehensive bibliography of relevant re-
search papers, serving as a valuable resource for researchers
and practitioners interested in this field.

To the best of our knowledge, this is the first survey
paper that specifically focuses on RL for optimization in
automation, covering a wide range of application domains
and providing insights into the current state and future
prospects of this rapidly growing field.

C. Organization of the Paper
The remainder of this survey is organized as follows:

Section II focuses on the applications of RL-based opti-
mization in three major domains: manufacturing, energy
systems, and robotics. For each domain, we provide a com-
parative analysis of the selected papers, highlighting their key
findings, methodologies, and contributions. We also discuss
the domain-specific challenges and opportunities. Section
III discusses the common challenges faced by RL-based
optimization in automation. We present an overview of the
potential solutions and future research directions to address
these challenges. Finally, Section IV concludes the survey,
summarizing the key takeaways.

II. APPLICATION DOMAINS
Reinforcement Learning (RL) has revolutionized automa-

tion in Manufacturing, Energy Systems, and Robotics. Figure
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Fig. 1: Taxonomy of Application Domains of RL for Optimization in Automation

1 shows these major domains and their sub-domains that we
will discuss in this section.

A. Manufacturing
RL is revolutionizing manufacturing through advance-

ments in production scheduling, inventory management,
maintenance planning, and process control, showcasing its
potential to tackle complex optimization challenges within
this sector. In production scheduling, RL methods surpass
traditional models by adeptly handling uncertainties, thereby
enhancing profitability and customer service [6], [12]–[15].
For inventory management, RL techniques, particularly Deep
Reinforcement Learning (DRL) and Multi-agent Reinforce-
ment Learning (MARL), offer innovative solutions for man-
aging stochastic demands and complex supply chains, lead-
ing to improved sales and reduced wastage [8], [16]–[19].
Maintenance planning benefits from RL’s dynamic optimiza-
tion capabilities, utilizing real-time data for maintenance
schedules, thus improving system reliability and reducing
downtimes [20]–[24]. In process control, RL’s adaptabil-
ity ensures product quality and operational efficiency, with
methodologies like Explainable RL and DRL enhancing
process understanding and control strategies [7], [25]–[28].
Future directions point towards developing risk-sensitive for-
mulations, leveraging real-world data, and integrating smart
systems to further enhance manufacturing efficiency. Table
I encapsulates these insights by outlining key objectives,
challenges addressed, RL approaches, outcomes, and future
directions, alongside representative studies that underscore
RL’s transformative impact on manufacturing.

B. Energy Systems
RL and DRL are transforming energy systems, offering

innovative solutions across demand response, microgrid man-
agement, renewable energy integration, and Heating, Ventila-
tion, and Air Conditioning (HVAC) control to optimize and
enhance grid stability, sustainability, and energy efficiency.
Demand response strategies benefit from DRL and MARL to
dynamically adjust energy usage in response to utility signals,
achieving up to 22% energy savings and more efficient

electricity management [29]–[34]. In microgrid management,
DRL and MARL approaches enhance grid resilience by
optimizing energy distribution and usage, resulting in im-
proved cost efficiency and increased system reliability [35]–
[40]. For renewable energy integration, RL’s capability to
handle the variability of renewable sources leads to more
effective energy dispatch strategies, ensuring grid stability
and maximizing the use of renewable resources [4], [31],
[41]–[44]. HVAC systems, as major energy consumers, see
optimizations through DRL and batch RL methods, achieving
significant reductions in energy consumption while main-
taining occupant comfort [29], [45]–[49]. Looking ahead,
the future promises advancements in adaptive strategies
and bridging the simulation-experiment gap for demand re-
sponse, enhanced learning efficiency for microgrid manage-
ment, scalability and adaptability improvements in renewable
energy integration, and wider applicability of pre-trained
models for HVAC control. This narrative is encapsulated in
the Table II, which outlines the key objectives, challenges
addressed, RL methodologies, and outcomes for each subdo-
main, alongside future research directions and representative
studies illustrating RL’s significant role in advancing energy
systems.

C. Robotics
RL is revolutionizing robotics, making significant strides

across motion planning, grasping and manipulation, multi-
robot coordination, and human-robot collaboration, thereby
addressing intricate challenges inherent in the field. In motion
planning, RL, particularly DRL and innovative methodolo-
gies like curriculum learning, empowers robots to adeptly
navigate and execute tasks in dynamic environments, en-
hancing adaptability and task performance [50]–[52], [63].
Grasping and manipulation benefit from DRL’s ability to
process complex sensor inputs, enabling robots to interact
with diverse objects and environments with unprecedented
flexibility and efficiency [53], [54], [64]–[66]. Multi-robot
coordination leverages DRL and MARL to facilitate so-
phisticated collaborative strategies among robots, optimizing
collective actions to achieve common goals in complex and



Feature/Criteria Production Scheduling Inventory Management Maintenance Planning Process Control

Key Objectives Optimize allocation of
tasks to resources over time

Balance supply with
demand, minimize costs,
and ensure timely product

availability

Minimize downtime,
extend asset life, ensure

safety

Ensure product quality,
operational efficiency, and

safety

Challenges Addressed
Handling complexities and
uncertainties in scheduling

tasks

Stochastic demand,
perishable goods,

multi-echelon supply
chains

Dynamic maintenance
planning under system

degradation

Controlling complex
manufacturing processes

RL Approaches DQN [6], Distributional RL
[15], DRL [13], A2C [12]

DQN [17], PPO [19], A2C
[16], DRL [8], Cooperative

MARL [18]

Multi-Agent Actor Critic
[24], Deep Q-learning [22],

[23], Q-learning [21]
TRPO [26], DDPG [7],
Dynamic Q-table [25]

Methodology Highlights

Superiority over traditional
mixed integer linear

programming models,
competitive performance
against heuristic methods

Comprehensive roadmap
for DRL deployment, novel
frameworks for multi-agent

hierarchical inventory
management

Analysis of RL/DRL
applications, dynamic

maintenance policies using
Q-learning

Adaptation of RL for
Statistical Process Control

(SPC), integration of
domain expertise,

apprenticeship learning

Outcomes
Increased profitability,

reduced inventory levels,
improved customer service

Maximized sales,
minimized perishable

product wastage, optimized
supply chain needs

Reduced maintenance
activities, enhanced fleet

availability, adapted
maintenance policies

Enhanced SPC adaptability,
improved control policies,
handling nonlinearities in

manufacturing

Future Directions
Development of

risk-sensitive formulations,
leveraging real-world data

Advanced cooperative
strategies among agents,

leveraging custom
GPU-parallelized

environments

Integration with smart
factory systems, leveraging
condition monitoring data

Utilization of real-world
data for training, improving

RL training efficiency

Representative Studies

Hubbs et al. [12], Shi et al.
[13], Guo et al. [14], Esteso

et al. [6], Mowbray et al.
[15]

Boute et al. [8], Sultana et
al. [16], De Moor et al.

[17], Khirwar et al. [18],
Leluc et al. [19]

Ogunfowora and Najjaran
[20], Yousefi et al. [21],

Yousefi et al. [22], Andrade
et al. [23], Thomas et al.

[24]

Viharos and Jakab [25],
Nian, Liu, and Huang [7],

Kuhnle et al. [26],
Mowbray et al. [27], and

Li, Du, Jiang [28]

TABLE I: Comparison of RL Approaches for Optimization in Manufacturing

Feature/Criteria Demand Response Microgrid Management Renewable Energy
Integration HVAC Control

Key Objectives

Optimize energy usage and
cost in response to utility
signals, enhancing grid

stability

Enhance grid resilience and
efficiency, optimizing

energy distribution and
usage

Seamlessly integrate
renewable energy into

power systems, maximizing
utilization while ensuring

grid stability

Optimize HVAC systems
for energy efficiency

without compromising
occupant comfort

Challenges Addressed

Adapting to dynamic
pricing and demand,

improving energy
consumption efficiency

Managing diverse energy
sources, ensuring reliable

and efficient operation

Addressing variability and
unpredictability of
renewable sources

Balancing energy savings
with thermal comfort

requirements

RL Approaches

PPO [29], [30], MARL
[31], [34], DQN [32],

MADDPG [33]
DQN [39], PPO [37], A3C

[35],
MA-DRL [42], Q-learning

[31]

PPO [29], Batch
Constrained Munchausen

Deep Q-learning [47],
Q-learning [48], A3C [45]

Methodology Highlights

Meta-learning for
simulation-experiment gap,

multi-agent systems for
residential energy

management

Expert knowledge
integration, operational
flexibility with proximal

policy optimization

Analysis on RL’s role,
multi-task learning for

system-wide optimization

Architecture optimization
for demand response, safe

control strategies, and
energy consumption

reduction

Outcomes
Up to 22% energy savings,
efficient electricity usage

management

Improved energy
distribution and cost
efficiency, increased

resilience

Enhanced management of
complex energy flows,
significant performance

improvements

Reduction in HVAC energy
consumption, improved
operational efficiency

Future Directions
Advanced cooperative
strategies, bridging the

simulation-experiment gap

Enhanced learning
efficiency, integration with

smart grid technologies

Scalability and adaptability
of RL methods, robustness

against environmental
changes

Adaptability to diverse
buildings, pre-training

models, transfer learning
applications

Representative Studies

Azuatalam et al. [29], Jang
et al. [30], Ahrarinouri et

al. [31], Lu et al. [32], Lu et
al. [33], Zhang et al. [34]

Nakabi and Toivanen [35],
Hu and Kwasinski [36],

Zhang et al. [37], Zhang et
al. [38], Shojaeighadikolaei
et al. [39], Du and Li [40]

Yang et al. [41], Cao et al.
[42], Chen et al. ( [43],

Sivamayil et al. [44], Perera
and Kamalaruban [4],
Ahrarinouri et al. [31]

Azuatalam et al. [29],
Zhong et al. [45], Sierla et

al. [46], Liu et al. [47],
Yuan et al. [48], Biemann

et al. [49]

TABLE II: Comparison of RL Approaches for Optimization in Energy Systems



Feature/Criteria Motion Planning Manipulation Multi-robot Coordination Human-robot Collab

Key Objectives
Enable robots to navigate

and perform tasks in
dynamic environments

Enhance robotic interaction
with objects and

environments

Optimize collaborative
actions of multiple robots

for a common goal

Facilitate effective
interaction and cooperation
between humans and robots

Challenges Addressed
Navigating complex and
dynamic environments,

learning from interaction

Adapting to diverse
objects, leveraging

complex sensor inputs

Resource competition,
obstacle avoidance in

cooperative tasks

Adaptation to human
behaviors, ensuring safety

and making intelligent
decisions

RL Approaches
PPO [50], Q-learning [51],

Soft Actor-Critic (SAC)
[52]

DDPG [53], Double DQN
[54]

Multi-Robot Coordination
with Deep Reinforcement

Learning (MRCDRL) [55],
Multi Agent Deep

Reinforcement Learning
[56]

DQN [57], [58], SAC [59],
[60], DDPG [61], Double

DQN [62]

Methodology Highlights
EfficientLPT [52] for space
robots, curriculum learning

for robotic arms

Visuo-motor feedback,
dexterous grasping in
sparse environments

MRCDRL [55] for
cooperative action, MARL

for pick-and-place
optimization

Human-centered DRL,
explainable RL for
interaction quality

enhancement

Outcomes
Improved planning

accuracy, learning from
human demonstrations

Significant outperformance
in grasping tasks,

adaptability to grippers

Effective resource
allocation and dynamic

obstacle avoidance,
applicability in smart

manufacturing

Enhanced coordination in
packaging tasks,

adaptability to user habits
during collaboration

Future Directions
Integration with sensory

feedback, real-time
adaptation

Incorporation of more
complex sensory

modalities, tactile feedback

Scalable coordination
strategies for larger teams,

integration with smart
environments

Personalized adaptation to
human habits, enhancing
safety and interpretability

Representative Studies

Wang et al. [63], Cao et al.
[52], Zhou et al. [50], Yu

and Chang [51]

Joshi et al. [54], Schuck et
al. [53], Han et al. [64],

Rivera et al. [65], Beigomi
and Zhu [66]

Wang and Deng [55], Lan
et al. [56], Yang [67], Lan

et al. [68], Sadhu and
Konar [69], Khamassi [70]

Ghadirzadeh et al. [57],
Iucci et al. [58], Shafti et
al. [59], Cai et al. [62],

Thumm et al. [60],
El-Shamouty et al. [61]

TABLE III: Comparison of RL Approaches for Optimization in Robotics

dynamic tasks [55], [56], [67]–[70]. Human-robot collabora-
tion (HRC) sees advancements through DRL’s capacity for
learning from interactions and adapting to human behaviors,
significantly improving cooperation in tasks ranging from
manufacturing to daily assistance [57]–[62]. Future research
directions emphasize the integration of sensory feedback for
real-time adaptation in motion planning, enhancing grasping
tasks with complex sensory and tactile feedback, developing
scalable coordination strategies for larger robot teams, and
personalizing HRC to adapt to human habits while enhancing
safety and interpretability. Table III succinctly encapsu-
lates these domains by detailing key objectives, challenges
addressed, RL approaches, methodology highlights, out-
comes, and future directions, alongside representative studies
demonstrating RL’s transformative impact on robotics.

III. CHALLENGES, STATE OF THE ART, AND FUTURE
DIRECTIONS

There has been a significant progress in the field of
RL for optimization in automation; however, there are still
challenges to be addressed. Table IV gives a comparison of
these challenges, along with the state of the art in the field
and future directions that we will discuss in this section.

A. Sample Efficiency and Scalability

Sample efficiency and scalability are vital in RL to min-
imize training data and ensure solutions scale with task
complexity. These challenges are particularly important in

real-world applications where data collection is expensive or
time-consuming [71], [72].

Current efforts to enhance sample efficiency and scalabil-
ity include making past samples more reflective of the current
model [71], [72], using evolution strategies and efficient
memory in experience replay [73], [74], incorporating offline
data for online learning [75], [76], and leveraging adaptive
learning techniques [77], [78].

Future research should aim at algorithms with adaptive
learning rates, domain-specific knowledge integration, effi-
cient computational resource use, and cross-domain transfer
learning to further improve sample efficiency and scalability
in RL applications.

B. Safety and Robustness
Ensuring safety and robustness in RL is crucial, especially

for applications in critical domains like autonomous driving
and healthcare. Safe RL algorithms aim to learn policies that
satisfy safety constraints during both training and deployment
[107].

Current strategies for ensuring safety include developing
concepts of safety robustness [79], frameworks for robust
policies [80], tackling observational adversarial attacks [81],
integrating robust-control-barrier-function layers [82], man-
aging safety requirements with robust action governor [83],
enforcing safety via robust Model Predictive Control (MPC)
[84], offering robustness guarantees [85], [86], improv-
ing policy robustness through falsification-based adversarial
learning [87], and inducing a safety curriculum [108].



Challenges Description RL Approaches State of the Art Future Directions Related Studies

Sample Efficiency
and Scalability

Reducing the data
needed for learning

and ensuring
scalability

PPO, SAC,
Model-based Policy

Optimization
(MBPO), Dreamer,

IMPALA, Acme

Model-based RL with
planning algorithms,
off-policy learning

with prioritized
experience replay, and
large-scale distributed

RL systems

Focus on algorithms
with adaptive learning

rates and
cross-domain transfer

learning

Tianyue Cao [71],
Florian E. Dorner

[72], Suri et al. [73]
Yang et al. [74], Ball

et al. [75] Li et al.
[76], Ly et al. [77],

Wang et al. [78]

Safety and
Robustness

Ensuring RL policies
perform safely under
uncertain conditions

Constrained Policy
Optimization (CPO),

Lyapunov-based
approaches,

State-wise Safe RL,
Probabilistic

constraint methods

Formal methods for
policy verification,
robust adversarial
training, and safe

exploration
techniques

Integrating formal
verification methods

and enhancing
human-RL interaction

Hao Xiong and
Xiumin Diao [79], Li
et al. [80], Liu et al.
[81], Emam et al.
[82], Li et al. [83],
[84], Queeney et al.

[85], Md Asifur
Rahman and Sarra M.
Alqahtani [86], Wang

et al. [87]

Interpretability and
Trustworthiness

Developing RL
models whose actions

are transparent and
understandable

MARL, Q-learning,
Deep RL, DQN, PPO,

TD3, SAC

Feature attribution,
policy distillation, and
interpretable models

like decision trees and
attention mechanisms

Improving the
foundation of

interpretable models
and applying

self-supervised
learning for
interpretable

representations

Glanois et al. [88],
Duo Xu and Faramarz
Fekri [89]), Mansour
et al. [90], Eckstein et
al. [91], Alharin et al.
[92], Shi et al. [93],

Dao et al. [94].

Transfer Learning
and Meta-learning

Enabling RL systems
to rapidly adapt to
new tasks using

knowledge from past
experiences

A3C, Meta-RL,
Meta-RL with

Context-conditioned
Action Translator

(MCAT), TD3

Context-based
meta-learning
frameworks,

multi-task learning
techniques, and

fine-tuning
pre-trained models

Developing
algorithms that

generalize across a
wider range of tasks
and enhance transfer
learning capabilities

Hospedales et al. [95],
Guo et al. [96],

Narvekar et al. [97],
Varma et al. [98],

Sasso et al. [99], Ren
et al. [100]

Real-world
Deployment and

Integration

Bridging the gap
between theoretical
advancements and

practical utility in RL
deployment

Behavior-Regularized
Model-ENsemble

(BREMEN),
Distributional

Maximum a Posteriori
Policy Optimization

(DMPO), Distributed
Distributional

Deterministic Policy
Gradient (D4PG)

Scalable RL
architectures, robust
policy deployment

strategies, and
open-source

benchmarks and
toolkits

Prioritizing
deployment efficiency,
enhancing human-RL

interaction, and
fostering

academia-industry
collaboration

Dulac-Arnold et al.
[101], Matsushima et
al. [102], Yahmed et

al. [103], Li et al.
[104], Garau-Luis et
al. [105], Kanso and

Patra [106]

TABLE IV: Current Challenges, State of the Art, and Future Directions for RL for Optimization in Automation

Future research directions should focus on developing
scalable safe RL algorithms for high-dimensional continuous
control tasks, integrating formal verification methods with
RL, and improving the adaptability of safe RL algorithms to
dynamic environments.

C. Interpretability and Trustworthiness
Ensuring RL models are interpretable and trustworthy is

essential for applications in healthcare, autonomous systems,
and finance, requiring transparent, understandable, and reli-
able decision-making processes.

Current research to improve interpretability includes dis-
tinguishing between interpretability and explainability [88],
integrating symbolic logic with deep RL for transparency
[89], achieving policy interpretability in structured environ-
ments [90], interpreting RL modeling in cognitive sciences
[91], discovering interpretable features in vision-based RL
[93], and introducing sparse evidence collection for human
interpretation [94].

Advancements will focus on foundational improvements
to make models intrinsically understandable, incorporating

human feedback, advancing feature discovery techniques, and
applying self-supervised learning for natural interpretability,
aiming for a deeper human understanding of RL behaviors.

D. Transfer Learning and Meta-learning
Transfer learning and meta-learning address the need for

RL systems to efficiently adapt to new tasks using knowledge
from past experiences, aiming to improve learning efficiency
and generalization across various environments.

Hospedales et al. [95] highlight meta-learning’s role in
adaptability across tasks. Guo et al. [96] develop an action
translator for meta-RL to enhance exploration and efficiency.
Narvekar et al. [97] present a curriculum learning framework
that uses task sequencing for improved learning in complex
scenarios. Varma et al. [98] demonstrate the benefits of using
pre-trained models like ResNet50 to boost RL performance.
Sasso et al. [99] and Ren et al. [100] investigate multi-source
transfer learning and meta-RL for fast adaptation based on
human preferences.

Future efforts will focus on algorithms that better gener-
alize across diverse tasks, with a push towards unsupervised



and self-supervised learning to advance transfer learning
capabilities. There’s also a growing interest in models that
autonomously leverage past knowledge.

E. Real-world Deployment and Integration
Real-world RL model deployment involves overcoming the

divide between theoretical research and practical application,
ensuring model robustness, and aligning simulated training
environments with real-world conditions.

Dulac-Arnold et al. [101] highlight real-world RL de-
ployment challenges, introducing benchmarks for complex-
ity. Matsushima et al. [102] focus on efficient deployment
with minimal data. Yahmed et al. [103] outline deployment
challenges and emphasize the need for solutions. Li et al.
[104] advocate for incorporating human feedback during
deployment for safety. Garau-Luis et al. [105] discuss DRL
deployment advancements, while Kanso and Patra [106]
discuss engineering solutions for RL scalability.

Future efforts will center on algorithms and frameworks
enhancing deployment efficiency and real-world relevance,
generalization from simulations to reality, improving human-
RL interactions, and robust, scalable deployment platforms.
Domain-specific challenges and academia-industry collabo-
ration are pivotal for RL’s real-world success.

IV. CONCLUSION
Reinforcement Learning (RL) has showcased its vast ca-

pabilities in sectors such as manufacturing, energy systems,
and robotics, driven by deep learning innovations that tackle
complex challenges. Despite these advancements, real-world
deployment introduces challenges requiring extensive re-
search for practical RL implementation. This review empha-
sizes the need for improved sample efficiency, model safety,
interpretability, and real-world integration strategies. To meet
these requirements, a comprehensive approach is necessary,
integrating algorithmic advancements, domain-specific in-
sights, robust benchmarks, and understanding the balance
between theory and practice. Moreover, integrating human
feedback and ethical considerations is crucial for the respon-
sible deployment of RL. Ultimately, RL’s transition from
theory to a key AI component marks significant progress,
with ongoing efforts expected to overcome current obstacles,
leveraging RL’s full potential in intelligent decision-making
and system optimization.
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