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Abstract

Detecting manipulated images and videos is an impor-
tant topic in digital media forensics. Most detection meth-
ods use binary classification to determine the probability of
a query being manipulated. Another important topic is lo-
cating manipulated regions (i.e., performing segmentation),
which are mostly created by three commonly used attacks:
removal, copy-move, and splicing. We have designed a con-
volutional neural network that uses the multi-task learning
approach to simultaneously detect manipulated images and
videos and locate the manipulated regions for each query.
Information gained by performing one task is shared with
the other task and thereby enhance the performance of both
tasks. A semi-supervised learning approach is used to im-
prove the network’s generability. The network includes an
encoder and a Y-shaped decoder. Activation of the encoded
features is used for the binary classification. The output of
one branch of the decoder is used for segmenting the ma-
nipulated regions while that of the other branch is used for
reconstructing the input, which helps improve overall per-
formance. Experiments using the FaceForensics and Face-
Forensics++ databases demonstrated the networks effec-
tiveness against facial reenactment attacks and face swap-
ping attacks as well as its ability to deal with the mismatch
condition for previously seen attacks. Moreover, fine-tuning
using just a small amount of data enables the network to
deal with unseen attacks.

1. Introduction

A major concern in digital image forensics is the deep-
fake phenomenon [1], a worrisome example of the societal
threat posed by computer-generated spoofing videos. Any-
one who shares video clips or pictures of him or herself on
the Internet may become a victim of a spoof-video attack.
Several available methods can be used to translate head and

Figure 1. Original video frame (top left), video frame modified us-
ing Face2Face method [30] (top right, smooth mask almost com-
pletely covers the skin area), using Deepfakes method [1] (bottom
left, rectangular mask), and using FaceSwap method [27] (bottom
right, polygon-like mask).

facial movements in real time [30, 14] or create videos from
photographs [4, 9]. Moreover, thanks to advances in speech
synthesis and voice conversion [19], an attacker can also
clone a person’s voice (only a few minutes of speech are
needed) and synchronize it with the visual component to
create an audiovisual spoof [29, 9]. These methods may be-
come widely available in the near future, enabling anyone
to produce deepfake material.

Several countermeasures have been proposed for the
visual domain. Most of them were evaluated using
only one or a few databases, including the CGvsPhoto
database [25], the Deepfakes databases [2, 16, 17], and the
FaceForensics/FaceForensics++ databases [26, 27]. Coz-
zolino et al. addressed the transferability problem of sev-
eral state-of-the-art spoofing detectors [11] and developed
an autoencoder-like architecture that supports generaliza-
tion and can be easily adapted to a new domain with simple
fine-tuning.

Another major concern in digital image forensics is lo-
cating manipulated regions. The shapes of the segmentation



masks for manipulated facial images and videos could re-
veal hints about the type of manipulation used, as illustrated
in Figure 1. Most existing forensic segmentation methods
focus on three commonly used means of tampering: re-
moval, copy-move, and splicing [6, 32, 7]. As in other
image segmentation tasks, these methods need to process
full-scale images. Rahmouni et al. [25] used a sliding win-
dow to deal with high-resolution images, as subsequently
used by Nguyen et al. [21] and Rossler et al. [26]. This
sliding window approach effectively segments manipulated
regions in spoofed images [26] created using the Face2Face
method [30]. However, these methods need to score many
overlapped windows by using a spoofing detection method,
which takes a lot of computation power.

We have developed a multi-task learning approach for
simultaneously performing classification and segmentation
of manipulated facial images. Our autoencoder comprises
an encoder and a Y-shaped decoder and is trained in a semi-
supervised manner. The activation of the encoded features
is used for classification. The output of one branch of the
decoder is used for segmentation, and the output of the other
branch is used to reconstruct the input data. The informa-
tion gained from these tasks (classification, segmentation,
and reconstruction) is shared among them, thereby improv-
ing the overall performance of the network.

2. Related Work
2.1. Generating Manipulated Videos

Creating a photo-realistic digital actor is a dream of
many people working in computer graphics. One initial
success is the Digital Emily Project [3], in which sophis-
ticated devices were used to capture the appearance of an
actress and her motions to synthesize a digital version of
her. At that time, this ability was unavailable to attackers,
so it was impossible to create a digital version of a victim.
This changed in 2016 when Thies et al. demonstrated fa-
cial reenactment in real time [30]. Subsequent work led to
the ability to translate head poses [14] with simple require-
ments that are met by any normal person. The Xpression
mobile app1 providing the same function was subsequently
released. Instead of using RGB videos as was done in pre-
vious work [30, 14], Averbuch et al. and Chung et al. used
ID-type photos [4, 9], which are easily obtained on social
networks. Combining this capability with speech synthesis
or voice conversion techniques [19], attackers are now able
to make spoof videos with voices [29, 9], which are more
convincingly authentic.

2.2. Detecting Manipulated Images and Videos

Several countermeasures have been introduced for de-
tecting manipulated videos. A typical approach is to treat

1https://xpression.jp/

a video as a sequence of image frames and work on the
images as input. The noise-based method proposed by
Fridrich and Kodovsky [12] is considered one of the best
handcrafted detectors. Its improved version using a convo-
lutional neural network (CNN) [10] demonstrated the effec-
tiveness of using automatic feature extraction for detection.
Among deep learning approaches to detection, fine-tuning
and transfer learning take advantage of high-performing
pre-trained models [24, 26]. Using part of a pre-trained
CNN as the feature extractor is an effective way to improve
the performance of a CNN [21, 22]. Other approaches to de-
tection include using a constrained convolutional layer [8],
using a statistical pooling layer [25], using a two-stream
network [31], using a lightweight CNN network [2], and
using two cascaded convolutional layers at the bottom of a
CNN [23]. Cozzolino et al. created a benchmark for de-
termining the transferability of state-of-the-art detectors for
use in detecting unseen attacks [11]. They also proposed an
autoencoder-like architecture with which adaptation ability
was greatly increased. Li et al. proposed using a temporal
approach and developed a network for detecting eye blink-
ing, which is not well reproduced in fake videos [17]. Our
proposed method, besides performing classification, pro-
vides segmentation maps of manipulated areas. This addi-
tional information could be used as a reference for judging
the authenticity of images and videos, especially when the
classification task fails to detect spoofed inputs.

2.3. Locating Manipulated Regions in Images

There are two commonly used approaches to locating
manipulated regions in images: segmenting the entire in-
put image and repeatedly performing binary classification
using a sliding window. The segmentation approach is com-
monly used to detect removal, copy-move, and splicing at-
tacks [6, 7]. Semantic segmentation methods [18, 5] can
also be used for forgery segmentation [7]. A slightly differ-
ent segmentation approach is to return the boxes that rep-
resent the boundaries of the manipulated regions instead
of returning segmentation masks [32]. The sliding win-
dow approach is used more for detecting spoofing regions
generated by a computer to create spoof images or videos
from bona fide ones [25, 21, 26]. In this approach, binary
classifiers for classifying images as spoof or bona fide are
called at each position of the sliding window. The stride
of the sliding window may equal the length of the win-
dow (non-overlapped) [25] or be less than the length (over-
lapped) [21, 26]). Our proposed method takes the first ap-
proach but with one major difference: only the facial areas
are considered instead of the entire image. This overcomes
the computation expense problem when dealing with large
inputs.
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Figure 2. Overview of proposed network.

3. Proposed Method
3.1. Overview

Unlike other single-target methods [22, 11, 7], our pro-
posed method outputs both the probability of an input be-
ing spoofed and segmentation maps of the manipulated re-
gions in each frame of the input, as diagrammed in Figure 2.
Video inputs are treated as a set of frames. We focused on
facial images in this work, so the face areas are extracted in
the pre-processing phase. In theory, the proposed method
can deal with various sizes of input images. However, to
maintain simplicity in training, we resize cropped images to
256× 256 pixels before feeding them into the autoencoder.
The autoencoder outputs the reconstructed version of the in-
put image (which is used only in training), the probability of
the input image having been spoofed, and the segmentation
map corresponding to this input image. For video inputs,
we average the probabilities of all frames before drawing a
conclusion on the probability of the input being real or fake.

3.2. Y-shaped Autoencoder

The partitioning of the latent features (motivated by Coz-
zolino et al.’s work [11]) and the Y-shaped design of the
decoder enables the autoencoder to share valuable infor-
mation between the classification, segmentation, and recon-
struction tasks and thereby improve overall performance by
reducing loss. There are three types of loss: activation loss
Lact, segmentation loss Lseg , and reconstruction loss Lrec.

Given label yi ∈ {0, 1}, activation loss measures the ac-
curacy of partitioning in the latent space on the basis of the
activation of the two halves of the encoded features:

Lact =
1

N

∑
i

|ai,1 − yi|+ |ai,0 − (1− yi)|, (1)

where N is the number of samples, ai,0 and ai,1 are the
activation values and defined as the L1 norms of the corre-
sponding halves of the latent features, hi,0 and hi,1 (given
K is the number of features of {hi,0|hi,1}):

ai,c =
1

2K
‖hi,c‖1, c ∈ {0, 1}. (2)

This ensures that, given an input xi of class c, the corre-
sponding half of the latent features hi,c is activated (ai,c >
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Figure 3. Proposed autoencoder with Y-shaped decoder for detect-
ing and segmenting manipulated facial images.

0). The other half, hi,1−c, remains quiesced (ai,1−c = 0).
To force the two decoders, Dseg andDrec, to learn the right
decoding schemes, we set the off-class part to zero before
feeding it to the decoders (ai,1−c := 0).



We utilize cross-entropy loss as the segmentation loss
to measure the agreement between the segmentation mask
(si = Dseg({hi,0|hi,1})) and the ground-truth mask (mi)
corresponding to input xi:

Lseg =
1

N

∑
i

‖mi log(si)+ (1−mi) log(1− si)‖1. (3)

The reconstruction loss uses the L2 distance to mea-
sure the difference between the reconstructed image (x̂ =
Drec({hi,0|hi,1})) and the original one (xi). For N sam-
ples, the reconstruction loss is

Lrec =
1

N

∑
i

‖xi − x̂i‖2. (4)

The total loss is the weighted sum of the three activation
losses:

L = γactLact + γsegLseg + γrecLrec. (5)

Unlike Cozzolino et al. [11], we set the three weights equal
to each other (equal to 1). This is because the classification
task and the segmentation task are equally important, and
the reconstruction task plays an important role in the seg-
mentation task. We experimentally compared the effects of
the different settings (described below).

3.3. Implementation

The Y-shaped autoencoder was implemented as shown in
Figure 3. It is a fully connected CNN using 3× 3 convolu-
tional windows (for the encoder) and 3× 3 deconvolutional
windows (for the decoder) with a stride of 1 interspersed
with a stride of 2. Following each convolutional layer is
a batch normalization layer [13] and a rectified linear unit
(ReLU) [20]. The selection block allows only the true half
of the latent features (hi,yi

) to pass by and zeros out the
other half (hi,1−yi

). Therefore, the decoders (Dseg,Drec)
are forced to decode only the true half of the latent fea-
tures. The dimension of the embedding is 128, which has
been shown to be optimal [11]. For the segmentation branch
(Dseg), a softmax activation function at the end is used to
output segmentation maps. For the reconstruction branch
(Drec), a hyperbolic tangent function (tanh) is used to shape
the output into the range [−1, 1]. For simplicity, we directly
feed normalized images into the autoencoder without con-
verting them into residual images [11]. Further work will
focus on investigating the benefits of using residual images
in the classification and segmentation tasks.

Following Cozzolino et al.’s work [11], we trained the
network using the ADAM optimizer [15] with a learning
rate of 0.001, a batch size of 64, betas of 0.9 and 0.999, and
epsilon equal to 10−8.

4. Experiments

4.1. Databases

We evaluated our proposed network using two databases:
FaceForensics [26] and FaceForensics++ [27]. The Face-
Forensics database contains 1004 real videos collected from
YouTube and their corresponding manipulated versions,
which are divided into two sub-datasets:

• Source-to-Target Reenactment dataset containing 1004
fake videos created using the Face2Face method [30];
in each input pair for reenactment, the source video
(the attacker) and the target video (the victim) are dif-
ferent.

• Self-Reenactment dataset containing another 1004
fake videos created again using the Face2Face method;
in each input pair for reenactment, the source and
target videos are the same. Although this dataset is
not meaningful from the attacker’s perspective, it does
present a more challenging benchmark than does the
Source-to-Target Reenactment dataset.

Each dataset was split into 704 videos for training, 150 for
validation, and 150 for testing. The database also provided
segmentation masks corresponding to manipulated videos.
Three levels of compression based on the H.264 codec2

were used: no compression, light compression (quantiza-
tion = 23), and strong compression (quantization = 40).

The FaceForensics++ database is an enhanced version
of the FaceForensics database and includes the Face2Face
dataset plus the FaceSwap3 dataset (graphics-based manip-
ulation) and the DeepFakes4 dataset (deep-learning-based
manipulation) [27]. It contains 1,000 real videos and 3,000
manipulated videos (1,000 in each dataset). Each dataset
was split into 720 videos for training, 140 for validation,
and 140 for testing. The same three levels of compression
based on the H.264 codec were used with the same quanti-
zation values.

For simplicity, we used only videos with light com-
pression (quantization = 23). Images were extracted from
videos using Cozzolino et al.’s settings [11]: 200 frames of
each training video were used for training, and 10 frames
of each validation and testing video were used for valida-
tion and testing, respectively. There is no detailed descrip-
tion of the rules for frame selection, so we selected the first
(200 or 10) frames of each video and cropped the facial
areas. For all databases, we applied normalization with
mean = (0.485, 0.456, 0.406) and standard deviation =
(0.229, 0.224, 0.225); these values have been widely used

2http://www.h264encoder.com/
3https://github.com/MarekKowalski/FaceSwap/
4https://github.com/deepfakes/faceswap/

http://www.h264encoder.com/
https://github.com/MarekKowalski/FaceSwap/
https://github.com/deepfakes/faceswap/


Table 1. Design of training and testing datasets.

Name Source dataset Description Manipulation
Method

Number
of Videos

Training
FaceForensics
Source-to-Target

Training set used for
all tests Face2Face 704 ×2

Test 1
FaceForensics
Source-to-Target

Match condition for
seen attack Face2Face 150 ×2

Test 2
FaceForensics
Self-Reenactment

Mismatch condition for
seen attack Face2Face 150 ×2

Test 3
FaceForensics++
Deepfakes

Unseen attack (deep-
learning-based) Deepfakes 140 ×2

Test 4
FaceForensics++
FaceSwap

Unseen attack (computer-
graphics-based) FaceSwap 140 ×2

Table 2. Settings for autoencoder.

No. Method Depth Seg.
weight

Rec.
weight

Rec.
loss Comments

1 FT Res Shallower 0.1 0.1 L1
Re-implementation of ForensicsTransfer [11] using
residual images as input

2 FT Shallower 0.1 0.1 L1
Re-implementation of ForensicsTransfer [11] using
normal images as input

3 Deeper FT Deeper 0.1 0.1 L1
Proposed deeper version of FT (Proposed Old
method without segmentation branch)

4 Proposed Old Deeper 0.1 0.1 L1
Proposed method using ForensicsTransfer
settings

5 No Recon Deeper 1 1 L2 Proposed method without reconstruction branch
6 Proposed New Deeper 1 1 L2 Complete proposed method with new settings

in the ImageNet Large Scale Visual Recognition Chal-
lenge [28]. We did not apply any data augmentation to the
trained datasets.

The training and testing datasets were designed as shown
in Table 1. For the Training, Test 1, and Test 2 datasets,
the Face2Face method [26] was used to create manipulated
videos. Images in Test 2 were harder to detect than those
in Test 1 since the source and target videos used for reen-
actment were the same, meaning that the reenacted video
frames had better quality. Therefore, we call Test 1 and
Test 2 the match and mismatch conditions for a seen at-
tack. Test 3 used the Deepfake attack method while Test 4
used the FaceSwap attack method, presented in the Face-
Forensics++ database [27]. These both attack methods
were not used to create the training set, therefore they were
considered as unseen attacks. For the classification task,
we calculated the accuracy and equal error rate (EER) of
each method. For the segmentation task, we used pixel-
wise accuracy between ground-truth masks and segmenta-
tion masks. The FT Res, FT, and Deeper FT method could
not perform the segmentation task. All the results were at
the image level.

4.2. Training Y-shaped Autoencoder

To evaluate the contributions of each component in
the Y-shaped autoencoder, we designed the settings as
shown in Table 2. The FT Res and FT methods are re-
implementations of Cozzolino et al.’s method with and
without using residual images [11]. They can also be un-
derstood as the Y-shaped autoencoder without the segmen-
tation branch. The Deeper FT method is a deeper version
of FT, which has the same depth as the proposed method.
The Proposed Old method is the proposed method using
weighting settings from Cozzolino et al.’s work [11], the
No Recon method is the version of the proposed method
without the reconstruction branch, and the Proposed New
method is the complete proposed method with the Y-shaped
autoencoder using equal losses for the three tasks and the
mean squared error for reconstruction loss.

Since shallower networks take longer to converge than
deeper ones, we trained the shallower ones with 100 epochs
and the deeper ones with 50 epochs. For each method, the
training stage with the highest accuracy for the classifica-
tion task and a reasonable segmentation loss (if available)
was used to perform all the tests described in this section.



4.3. Dealing with Seen Attacks

The results for the match and mismatch conditions for
seen attacks are respectively shown in Tables 3 (Test 1) and
4 (Test 2). The deeper networks (the last four) had substan-
tially better classification performance than the shallower
ones (the first two) proposed by Cozzolino et al. [11].
Among the four deeper networks, there were no substan-
tial differences in their performances on the classification
task. For the segmentation task, the No Recon and Pro-
posed New methods, which used the new weighting set-
tings, had higher accuracy than the Proposed Old method,
which used the old weighting settings.

Table 3. Results for Test 1 (image level).

Method Classification Segmentation
Acc (%) EER (%) Acc (%)

FT Res 82.30 14.53
FT 88.43 11.60
Deeper FT 93.63 7.20
Proposed Old 92.60 7.40 81.40
No Recon 93.40 7.07 89.21
Proposed New 92.77 8.18 90.27

Table 4. Results for Test 2 (image level).

Method Classification Segmentation
Acc (%) EER (%) Acc (%)

FT Res 82.33 15.07
FT 87.33 12.03
Deeper FT 92.70 7.80
Proposed Old 91.83 8.53 81.40
No Recon 92.83 8.29 89.10
Proposed New 92.50 8.07 90.20

The performances of all methods was slightly degraded
when dealing with the mismatch condition for seen attacks.
The FT Res and Proposed New methods had the best adap-
tation ability, as indicated by the lower degradation in their
scores. This indicates the importance of using residual im-
ages (for the FT Res method) and of using the reconstruc-
tion branch (for the Y-shaped autoencoder with new weight-
ing settings: Proposed New method). The reconstruction
branch also helped the Proposed New method achieve the
highest score on the segmentation task.

4.4. Dealing with Unseen Attacks

4.4.1 Evaluation using pre-trained model

When encountering unseen attacks, all six methods had sub-
stantially lower accuracies and higher EERs, a shown in
Tables 5 (Test 3) and 6 (Test 4). In Test 3, the shallower
methods had better adaptation ability, especially the FT Res
method, which uses residual images. The deeper methods,

which had a greater chance of being over-fitted, had nearly
random classification results. In Test 4, although all meth-
ods suffered from nearly random classification accuracies,
their better EERs indicated that the decision thresholds had
been moved.

A particularly interesting finding was in the segmenta-
tion results. Although degraded, the segmentation accura-
cies were still high, especially in Test 4, in which FaceSwap
copied the facial area from the source faces to the target
ones using a computer-graphics method. When dealing with
unseen attacks, this segmentation information could thus be
an important clue in addition to the classification results for
judging the authenticity of the queried images and videos.

Table 5. Results for Test 3 (image level).

Method Classification Segmentation
Acc (%) EER (%) Acc (%)

FT Res 64.75 30.71
FT 62.61 37.43
Deeper FT 51.21 42.71
Proposed Old 53.75 42.00 70.18
No Recon 51.96 42.45 70.43
Proposed New 52.32 42.24 70.37

Table 6. Results for Test 4 without fine-tuning (image level).

Method Classification Segmentation
Acc (%) EER (%) Acc (%)

FT Res 53.50 43.10
FT 52.29 41.79
Deeper FT 53.39 37.00
Proposed Old 56.82 36.29 84.23
No Recon 54.86 35.86 84.86
Proposed New 54.07 34.04 84.67

4.4.2 Fine-tuning using small amount of data

We used the validation set (a small set normally used for
selecting hyper-parameters in training that differs from the
test set) of the FaceForensics++ - FaceSwap dataset [27] for
fine-tuning all the methods. To ensure that the amount of
data was small, we used only ten frames for each video. We
divided the dataset into two parts: 100 videos of each class
for training and 40 of each class for evaluation. We trained
them using 50 epochs and selected the best models on the
basis of their performance on the evaluation set.

The results after fine-tuning for Test 4 are shown in Ta-
ble 7. Their classification and segmentation accuracies in-
creased around 25% and 8%, respectively, which are re-
markable compared with the small amount of data used.
The one exception was the Proposed Old method – its seg-
mentation accuracy did not improve. The FT Res method



Table 7. Results for Test 4 after fine-tuning (image level).

Method Classification Segmentation
Acc (%) EER (%) Acc (%)

FT Res 80.04 (↑ 26.54) 17.57 (↓ 25.53)
FT 70.89 (↑ 18.60) 25.56 (↓ 16.23)
Deeper FT 82.00 (↑ 28.61) 17.33 (↓ 19.67)
Proposed Old 78.57 (↑ 21.75) 20.79 (↓ 15.50) 84.39 (↑ 0.16)
No Recon 82.93 (↑ 28.07) 16.93 (↓ 18.93) 92.60 (↑ 7.74)
Proposed New 83.71 (↑ 29.64) 15.07 (↓ 18.97) 93.01 (↑ 8.34)

had better adaptation than the FT one, which supports Coz-
zolino et al.’s claim [11]. The Proposed New method had
the highest transferability against unseen attacks as evi-
denced by the results in Table 7.

5. Conclusion
The proposed convolutional neural network with a Y-

shaped autoencoder demonstrated its effectiveness for both
classification and segmentation tasks without using a slid-
ing window, as is commonly used by classifiers. Informa-
tion sharing among the classification, segmentation, and re-
construction tasks improved the network’s overall perfor-
mance, especially for the mismatch condition for seen at-
tacks. Moreover, the autoencoder can quickly adapt to deal
with unseen attacks by using only a few samples for fine-
tuning. Future work will mainly focus on investigating the
effect of using residual images [11] on the autoencoder’s
performance, processing high-resolution images without re-
sizing, improving its ability to deal with unseen attacks, and
extending it to the audiovisual domain.
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