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ABSTRACT
With current technology, a number of entities have access

to user mobility traces at different levels of spatio-temporal
granularity. At the same time, users frequently reveal their
location through different means, including geo-tagged so-
cial media posts and mobile app usage. Such leaks are often
bound to a pseudonym or a fake identity in an attempt to pre-
serve one’s privacy. In this work, we investigate how large-
scale mobility traces can de-anonymize anonymous location
leaks. By mining the country-wide mobility traces of tens of
millions of users, we aim to understand how many location
leaks are required to uniquely match a trace, how spatio-
temporal obfuscation decreases the matching quality, and
how the location popularity and time of the leak influence
de-anonymization. We also study the mobility characteris-
tics of those individuals whose anonymous leaks are more
prone to identification. Finally, by extending our matching
methodology to full traces, we show how large-scale human
mobility is highly unique. Our quantitative results have im-
plications for the privacy of users’ traces, and may serve as a
guideline for future policies regarding the management and
publication of mobility data.

1. INTRODUCTION
With the proliferation of mobile devices and the

wide deployment of sensing infrastructures, an increas-
ing number of entities have access to the mobility pat-
terns of their customers. Mobile OS developers, such as
Google or Apple, collect mobility data to improve their
services or to enhance their revenues. Similarly, mobile
apps such as fitness trackers might collect location in-
formation and even share it with third-party libraries
(e.g., advertisers). Mobile connectivity providers need
to maintain the location of their subscribers to route
calls/data and to aid emergency response services. Fur-
thermore, insurance companies harvest location data
from on-board units available on vehicles to tailor their
policies. Finally, some governments have deployed
sensing infrastructure that can record mobility traces
(e.g., road-side cameras to monitor and regulate vehi-

cles). These are just some examples of entities that can
passively collect location information with different lev-
els of spatio-temporal granularity.

At the same time, users often reveal information
about their whereabouts, either voluntarily or without
even realizing it. Location-based online social networks
such as Foursquare allow users to check-in at various
places and publicize this information for other users to
see. Online review systems like TripAdvisor let users
review services or facilities at precise locations. Main-
stream social networks such as Facebook and Twitter
allow users to geo-tag their posts. Moreover, large
amounts of photos are uploaded daily that either con-
tain location meta-data or depict landmarks that can
be easily associated to a given location. Finally, users
might involuntary leak coarse-grained location informa-
tion to advertisement networks and service providers
each time they visit a web page in the form of an IP
address that can be geo-localised with an error of a few
tens of kilometers.

The difference between “active” location leaks and
passively-collected location data is mainly three-fold.
First, they can differ in temporal resolution. Active
leaks are normally sporadic, as they happen when, for
instance, the user posts geo-tagged content on a social
network. Passive data collection can happen at a much
higher temporal resolution, depending on the sampling
rate of each entity (e.g., mobile network provider, fit-
ness tracker, OS, mobile app). Second, they can differ
in spatial granularity. Active leaks from IP geo-location
services provide granularity down to city level (i.e., tens
of kilometers), whereas GPS-tagged posts can go down
to a few meters. Similarly, passively collected data is
highly dependent on the means of the data collection
technology. Third, they can differ in the identity asso-
ciated with the data. Passively-collected location data
is usually associated to the real user identity for, e.g.,
billing purposes. Active location leaks can be bound
to pseudonyms that users adopt in order to achieve
some degree of anonymity [7, 10, 18]. In such a sce-
nario, users expect that the published content (and lo-
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cation) cannot be traced back to their real identity nor
to the other places they have visited. While such pri-
vacy guarantees may hold on a single platform, it is un-
clear what could happen if two or more platforms cross
their datasets in order to identify a user. We argue that
de-anonymization of anonymous location leaks is a real
threat given the number of entities that keep identified
location traces of their customers or users.

To assess the magnitude of this threat, we leverage an
unprecedented scale, country-wide dataset of network
events from an European mobile operator, and use it as
a mobility oracle. We opt not to use a second dataset
of anonymized location leaks but rather emulate them.
The motivation behind this choice is two-fold. On the
one hand, matching an identified set of traces against a
set of anonymous leaks may lead to false positives when
the real owner of the leak is not included in the dataset
(i.e., a user of another mobile operator). On the other
hand, we cannot attempt to recover the real identity
of the author of an anonymous post, as this may lead
to ethical issues and would require explicit user con-
sent. We therefore use only the mobility dataset and
reason about (1) the likelihood of correctly matching
an anonymized location leak to one of the traces of the
dataset, (2) what makes a user more identifiable than
others, and (3) the overall uniqueness of large-scale mo-
bility traces.

Our measurement study demonstrates that just 3–
4 anonymous location leaks within the time frame of
one day are sufficient to uniquely identify one’s mobil-
ity trace among tens of millions. As we examine why
some users are more identifiable than others, we observe
that exposing less popular locations eases the perfor-
mance of matching, and that revealing one’s location
during a day’s working hours contributes more to the
identification probability. Moreover, we find that highly
mobile users are more prone to identification. Our re-
sults show how spatio-temporal obfuscation applied to
mobility traces can decrease the possibility of such iden-
tification. In fact, we show that a 12× decrease in the
temporal granularity, or a 25× decrease in the spatial
dimension brings up to 4× reduction in the probability
of matching one’s identity. While these results can po-
tentially be used as guidelines for the privacy-respecting
storage and publication of such traces, we argue that
spatio-temporal obfuscation alone is not sufficient to
prevent the privacy threat represented by the unique-
ness of large-scale mobility traces.

The rest of the paper is organized as follows. Sec-
tion 2 surveys related work and points out the differ-
ences with ours. Section 3 introduces basic notation
and the methodology we use to analyze mobility traces,
while Section 4 presents our dataset. We provide quan-
titative experimental results in Section 5 and discuss

their implications in Section 6. Finally, Section 7 pro-
vides some concluding remarks.

2. RELATED WORK
A number of research studies have demonstrated how

the inherent nature of location data, as well as the pat-
terns hidden in it, can harm user privacy. For example,
Golle and Partridge [9] use census data to demonstrate
the uniqueness of home/work location pairs across a
fraction of the US population. De Montjoye et al. [3]
use the Call Detail Records (CDRs) of 1.5 M users over
a 15-month period and perform a measurement study to
understand the uniqueness of human mobility, as well as
its relation to the spatial and temporal resolution of the
traces. Zang and Bolot [25] use anonymized CDRs and
examine the uniqueness of the “top N” locations, with
the rationale that an adversary may have available iden-
tified data regarding the top N locations of a population
(i.e., census data) and could use it to de-anonymize the
CDRs. Rossi et al. [21] use the GPS trajectories of taxis
(536 vehicles) and mobile phone users (182 individuals)
to show that mobility features like speed, direction, and
travel distance can be exploited to map trajectories to
identities.

Another parallel line of work is focused on exploiting
the characteristics of human mobility in order to link
users across different data sources and de-anonymize
them. Srivatsa et al. [22] de-anonymize mobility traces
using social networks as a side-channel. They show how
encounters in mobility traces can be mapped to rela-
tionships in a social network graph for three datasets of
less than 100 users each. Freudiger et al. [7] study the
dynamics of anonymous location leaks that can erode
user privacy. They use two datasets (143 users over a
year, and 200 users over two years, respectively) and try
to profile users by identifying points of interest such as
work and home locations. De Mulder et al. [4] propose
statistical techniques to first create mobility profiles of
users of GSM networks, and subsequently match those
profiles against anonymized location data. The tech-
niques they employ are evaluated with a dataset that
spans 100 users “followed” across nine months. Ma et
al. [13] use various estimators to calculate the similarity
between mobility traces of roughly 7 k cabs and buses,
aiming to de-anonymize users, while Gambs et al. [8]
show that mobility traces can be exploited as a signa-
ture to identify an individual in a set of anonymized
traces. They leverage a number of datasets, ranging
from one with 5 researchers to another with 500 taxi
drivers.

Along the same line, Cao et al. [2] demonstrate how
to match mobility traces derived from different data
sources to the same identity. Their dataset includes
roughly 32 k users and spans across seven months. Sim-
ilarly, Riederer et al. [20] propose a self-tunable algo-



rithm that determines the most likely matching between
users of two location-based datasets, validating it on
datasets of a few thousand users. Naini et al. [14] intro-
duce techniques for matching users between GPS tra-
jectory datasets which exploit their mobility histograms
as fingerprints. Kondor et al. [11] study the problem
of matching mobility datasets on the scale of an ur-
ban setting and propose an efficient spatio-temporal
search algorithm for that. They evaluate their algo-
rithm by matching a mobile communication dataset of
2.8 M users with a transportation one of 3.3 M users,
both corresponding to the city of Singapore. However,
due to the absence of ground truth, their results only
capture an estimate of matchability between the two
datasets.

More recently, Wang et al. [24] use mobility pat-
tern mining to link user identifiers across an HTTP
dataset obtained by an internet service provider and
three external datasets capturing instant messaging,
electronic commerce, and social networking transac-
tions of a subset of the users. In a follow up work [23],
they evaluate the performance of various mobility tra-
jectory de-anonymization algorithms. They experiment
on a large-scale dataset containing the mobility trajec-
tories of 2.1 M users of a Chinese mobile network, and
two external datasets corresponding to a subset of the
same user population as obtained from a social network
(Weibo) and a check-in service (Dianping). The re-
sults demonstrate that existing methods under-estimate
spatio-temporal mismatches as well as the noise in the
data generated from various sources, and the authors
propose novel algorithms to account for both.

Compared to the works mentioned above, our study
differs in the nature and size of the dataset, as well
as in the research questions it answers. First, we con-
centrate on one day-worth of data, and show that user
anonymity can be easily infringed with a comprehensive
dataset of such a short time-span. Second, our dataset
accounts for tens of millions of customers. Therefore, it
features at least an order of magnitude more users com-
pared to the datasets used in prior studies. Third, mo-
bility traces are generated from mobile network events.
While these might have a coarser spatio-temporal gran-
ularity than, for instance, GPS traces, they scale well to
country-level regions and population. Importantly, mo-
bile network events have a much finer granularity com-
pared to trajectories derived by, for instance, CDRs,
which can feature more than two orders of magnitude
less events. Fourth, the size of the country we moni-
tor differs from the one monitored in previous works.
With the exception of Zang et al. [25], which consider
the entire US, our study leverages mobility traces from
a much larger geographical region than existing works
(i.e., it features the diversity of mobility at various geo-
graphical scales). Finally, while our study evaluates the

uniqueness of mobility traces, we also investigate the
characteristics that make them prone to identification
by examining, among others, location popularity, time
of day, and user mobility characteristics.

3. METHODOLOGY

3.1 Notation
We consider a set of users U = {ui} that move among

a set of locations S = {si} during the time instances
of a set T = {ti}. Each location1 s = (x, y) is rep-
resented by a pair of grid coordinates x and y whose
spatial granularity is controlled by the parameter ∆xy.
For instance, if ∆xy = 100 m, then each s covers an area
of 100×100=10,000 m2. The set T represents the time
frame in which locations are reported, and its granular-
ity is controlled by the parameter ∆t. For instance, if
∆t = 1 h, then |T | = 24 h for the time frame of a single
day. The sets S and T are dependent on the discretiza-
tion applied to the continuous spatial and temporal di-
mensions, respectively.

The mobility trace of a user is computed from the set
of events that she generates. An event is a triplet of the
form (u, s, t), which indicates that user u is in location
s, at time t. Note that, depending on the temporal
granularity ∆t, a user might generate multiple events
at a specific time t. Next, we define a mobility trace
of a user u as a set of tuples Mu = {(si, tj)}, where
si ∈ S and tj ∈ T . Similarly, we define an anonymous
spatio-temporal leak of some unknown user as the set
of tuples L = {(si, tj)}, si ∈ S and tj ∈ T . We use k
to denote the number of events (tuples) in L, that is,
k = |L|. Finally, we denote a dataset of user mobility
traces as D = {Mui

}, where ui ∈ U .

3.2 Matching Spatio-Temporal Leaks
The main purpose of this study is to estimate the

number of events required to uniquely identify a user
and her entire mobility trace. To this end, we follow a
matching approach that estimates the probability of an
anonymous spatio-temporal leak L leading to a unique
trace in the dataset D. Given L and a user mobility
trace Mu, we define a match between them if all the
tuples in L can also be found in Mu. That is

µ (L,Mu) = δ (|L ∩Mu| , |L|) , (1)

where δ is the Kronecker delta function2 and ∩ denotes
tuple set intersection3. We denote the total number of
matches for the anonymous spatio-temporal leak L in

1We drop the subindices where there is no ambiguity.
2For two variables i and j, δ(i, j) = 1 if i = j, 0 otherwise.
3A tuple is considered to be equal to another if all elements
are respectively equal: (a, b) = (c, d) if a = c and b = d.



the set D as

ν (L,D) =
∑

Mu∈D
µ (L,Mu) . (2)

A unique match occurs when a single mobility trace Mu

in the entire set D matches the spatio-temporal leak L.
We depict this by

ξ (L,D) = δ (ν (L,D) , 1) . (3)

To estimate the probability of an anonymous spatio-
temporal leak L (with k events) identifying a unique
trace, we sample from D a set of spatio-temporal leaks
Z = {Lu}, u ∈ U . We do so by selecting a user
u and choosing k events from her mobility trace Mu

(user selection and event choices are performed uni-
formly at random without replacement). Finally, we
perform matching for all the leaks Lu ∈ Z, and we es-
timate the probability that a leak with k events yields
a unique match as

ρk (Z,D) =
1

|Z|
∑

Lu∈Z
ξ (Lu, D) . (4)

3.3 Spatial Bounding Box
To speed up the calculation of Eq. 2 and reduce the

number of comparisons that we perform when we match
a spatio-temporal leak to a set of mobility traces, we em-
ploy the concept of spatial bounding box. The bounding
box of a mobility trace is a spatial box that captures the
geographic area in which the trace owner is moving. It
is defined by the minimum and maximum coordinates
computed on all the locations of the trace. More pre-
cisely, for a mobility trace Mu, we define its bounding
box bu as a tuple such that ∀ s = (x, y) ∈Mu,

bu = (xmin, ymin, xmax + ∆xy, ymax + ∆xy) ,

where xmin and xmax respectively correspond to the
minimum and maximum values of the x coordinate con-
tained in the trace (and analogously for y coordinate).
Note: we can also define a bounding box bL for an
anonymous spatio-temporal leak L.

Given two bounding boxes bL and bu, we can compute
their overlap, which corresponds to their normalized in-
tersection:

o (bL, bu) =
α(ι(bL, bu))

min (α(bL), α(bu))
,

where ι denotes the spatial intersection of two bounding
boxes (which is another bounding box) and α indicates
the area of a bounding box. It is then safe to skip the
computation of Eq. 2 for L and Mu when o(bL, bu) = 0
(that is, when the bounding box of a spatio-temporal
leak does not intersect with that of a mobility trace).

3.4 Matching Mobility Traces
Thus far, our methodology focused on estimating the

probability that an anonymous spatio-temporal leak L

Feature Average (Std. Dev.)

Spatial coverage Whole country

Users More than 30 M

Sectors More than 150 k

Unique locations More than 40 k

Users per location per day More than 3 k

Events per user per day 279 (506)

Unique locations per user 15 (23)

Table 1: Description of the dataset used. Note: the
exact numbers cannot be shown at the request of the
mobile operator.

uniquely identifies a mobility trace Mu (where |L| <<
|Mu|). We now extend it to account for matching whole
mobility traces between themselves, as one of our ob-
jectives is to also study their uniqueness. To do so,
we follow the same matching approach as before (Sec-
tion 3.2), but now compare samples of mobility traces
Mu to all the other traces Mu′ ∈ D. For that we use
Eqs. 1–4 to estimate the probability of a mobility trace
yielding a unique match in the set D. To speed up the
calculation of Eq. 2, we here also employ the concept
of bounding boxes explained above, and we compare
two traces Mu and Mu′ when their normalized bound-
ing box intersection exceeds a threshold r, that is, if
o(bu, bu′) > r.

We note however that the current approach to match-
ing is very strict when dealing with whole traces. Due to
Eq. 1, two mobility traces Mu and Mu′ will only match
if their owners u and u′ visited exactly the same loca-
tions at each instance of time frame T . Therefore, we
shall consider the previous approach as an upper bound
on the uniqueness of a trace.

To contrast this upper bound, we also relax the con-
ditions on which two traces match, aiming to also es-
timate a lower bound on the probability of uniqueness.
For that, we take into account characteristics of mobil-
ity traces that arise due to their temporal granularity
∆t. On the one hand, when ∆t is small, we observe
that mobility traces can be very sparse, as users might
not generate events at a time t ∈ T . On the other hand,
when ∆t is large, we observe that mobility traces can be
dense, as users might visit a number of locations within
a time instance. To favor matches in these situations,
we define that two traces Mu and Mu′ match at a given
t ∈ T if (1) they intersect at least in one location or
(2) one of them does not contain events for that time
t. Then µ(Mu,Mu′) = 1 if they match ∀ t ∈ T , and 0
otherwise.

4. DATASET DESCRIPTION
Our dataset consists of anonymous traces collected

from a large European cellular network provider that
is serving tens of millions of mobile subscribers. Each
trace is a time series of mobile events as defined below.



When compared to traces based on CDRs, ours provide
significantly finer sampling of the mobility trace. In
particular, we observe that calls and SMS correspond
to around 1% of the number network events generated
by users on a daily basis.

4.1 Mobile Events
We tap into the mobility management entity (MME)

of the network provider. The MME is a key component
in the cellular network, which is responsible for han-
dling “control plane” messages related to paging, radio
channel requests, and handovers, in order to route calls
and data to and from subscribers as they move from
one base station to another (BTS/NodeB/eNodeB, de-
pending on the technology). Compared to CDRs, where
location information is only collected when a subscriber
initiates/receives a call or an SMS, the MME maintains
a significantly richer view of the location of the sub-
scribers. In particular, a mobile event is generated every
time a mobile device:

• Activates/deactivates in the network (i.e., when
the user switches on and off her phone)

• Makes/receives a call or sends/receives an SMS
(i.e., what is included in CDRs)

• Moves from one location area code to another (i.e.,
the so-called handovers)

• Changes from one technology to another (i.e., be-
tween 2G, 3G, and 4G)

• Requests access to data (2G/3G) or requests a
high-speed data channel (4G)

• Is actively pinged by the network if no other event
is registered for 2 hours (i.e., a timeout to check if
the devise is still alive)

Overall, the MME handles several hundreds of events
per device per day, almost two orders of magnitude
higher than traditional CDRs. These events contain the
encrypted user identifier (rotated daily), a timestamp,
and the location of the associated base station used to
deliver service to the user. This implies that the exact
location of a subscriber is not known. The MME only
registers the location of the base station (i.e., antenna)
to which the device is connected. Base stations have
varied coverage, ranging from less than 150 meters to
tens of kilometers depending on the deployment density
and the radio propagation characteristics (such as ob-
stacles, hills, or mountains). Typically, short-range base
stations are used in densely populated areas (to share
the load), whereas long-range ones are used in rural ar-
eas. This means that the expected user displacement in
urban areas is smaller than that in rural areas, and can
reach as low as 70 meters [12].

Overall, there are more than 40 k distinct locations
in the country of study, with each location serving a
wide number of subscribers per day. For example, sites
that cover highly dynamic locations (highways, airports,
train stations) might serve hundreds of thousands of
users daily for small periods of time, whereas sites that
serve residential and rural areas might only provide
connectivity to a few thousand subscribers. On aver-
age, each location registers less than 10 k users over the
course of a whole day.

4.2 Dataset Pre-processing
Note that a location might be covered by multiple

base stations. For example, three directional (60 de-
gree) panels might be used to cover the area around
an antenna and, furthermore, there can be multiple in-
stallations per technology (2G/3G/4G). In this work,
we combine all the base stations in the same location
with a single identifier that is represented by its latitude
and longitude. Furthermore, to avoid any ping-pongs [5]
from nearby antennas that cover the same location (e.g.,
installations within a mall) we combine together events
that correspond to sites that are less than 150 m apart.
The result is a mobility trace that can be expressed as
a time series of events, represented by triplets of the
form (timestamp, latitude, longitude). In our dataset,
each trace contains an average of 279 events and each
user reports an average of 15 unique locations during
the day (Table 1).

4.3 Note on Customer Privacy
The dataset is anonymized by the provider and only

temporarily stored for operating purposes. Further-
more, the computing infrastructure does not allow us
to extract mobility traces for specific individuals, but
only high-level aggregates or results of algorithms that
combine together information from multiple users, like
we do in this study. Also note that, by request of
the provider, we cannot disclose full information on the
dataset such as the exact number of subscribers, num-
ber or location of antennas, etc. However, we provide
here the order of magnitude (Table 1).

5. EXPERIMENTAL RESULTS
With our measurement study, we aim to answer the

following research questions:

1. How many anonymous location leaks does it take
to identify their owner, using mobility traces only?

2. Which spatio-temporal granularity brings suffi-
cient obfuscation to those traces?

3. How does the probability of identification associate
with the popularity of the locations leaked?

4. How does the probability of identification associate
with the time of day the leaks happen?



5. How does the probability of identification associate
with the mobility characteristics of users?

6. How unique is a user’s mobility trace?

The first five questions motivate us to study the various
ways that the probability of de-anonymization of users
is associated with different factors such as user charac-
teristics, their mobility behavior through the day, the
characteristics of locations visited, etc. The final ques-
tion motivates us to study the uniqueness that users
have with respect to their mobility behavior in space
and time. In the next paragraphs, we first describe our
experimental setup, followed by results providing an-
swers for each of these questions.

5.1 Experimental Setup
Location Leaks. We generate a set of anonymous
location leaks per user by selecting uniformly at ran-
dom k points from her mobility trace. Therefore, k is
a parameter which represents the number of leaks that
users may have exposed by, e.g., geo-located social me-
dia posts. We experiment with k ∈ {1, 2, . . . 10}.
Exhaustive Search. All experiments performed re-
quire pairwise comparisons between users’ mobility
traces Mu in order to assess the probability of match-
ing and uniqueness of those traces. Due to high compu-
tation complexity, we cannot handle all pairwise com-
parisons (over 1015 comparisons). Instead, we select a
large random sample of traces and use those to generate
anonymous location leaks. The sample is large enough
to give us statistically significant results for the ques-
tions studied, and it is compared against all available
traces in D.

Spatio-Temporal Resolution. We study the effects
of temporal and spatial resolution on the probability
of de-anonymizing a user by pre-processing the events
contained in Mu using specific temporal and spatial
granularity for data aggregation, as explained in Sec-
tion 3. In particular, assuming that users’ mobility is
typically governed by the space dimension, we vary the
spatial granularity ∆xy ∈ {0.2, 1, 5, 25, 125} km. We
assume that such values represent typical scenarios of
user movement in the range of the same building block,
neighborhood, city, county, and country, respectively.
Under a similar premise, we vary the temporal reso-
lution ∆t ∈ {5, 15, 30, 60} minutes to represent such
movements assumed earlier.

Bounding Box Setting. As mentioned, our method
uses bounding boxes to describe mobility traces and
to reduce computation when comparing traces. For
matching leaks to mobility traces, we discard the leak-
user pairs that do not overlap, i.e., o(bL, bu) = 0 (Sec-
tion 3.3). However, in the particular case of matching
mobility traces, we provide bounds to the probability of
a unique match by setting a minimum overlap threshold
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Figure 1: Probability of uniquely matching a mobility
trace ρ vs. number of location leaks k. The experiment
was conducted with ∆t = 5 min and ∆xy = 0.2 km. The
shaded area denotes one standard deviation.

Figure 2: Square root of the normalized number of
matches,

√
ν, vs. number of leaks k (we take

√
ν for

ease of visualization). Experiment conducted with ∆t =
5 min and ∆xy = 0.2 km.

o(bL, bu) > r (Section 3.4). We tested different values
for r ∈ {0.001, 0.01, 0.1, 0.5, 0.9}, and found that with
r = 0.5, we reduce the comparisons by approximately
two orders of magnitude while still maintaining a good
performance of the matching algorithm.

5.2 How many leaks are needed?
Our first set of experiments aims to investigate how

many anonymous location leaks L from user u are suf-
ficient to match her to a mobility trace in our dataset
D. We use a randomly selected set of 30 k users, sam-
ple events from their traces to form L, and perform
matching across all other traces in D. Figure 1 plots
the average probability of uniquely matching a mobility
trace based on the number of location leaks k that are
exposed from the user when we set the temporal granu-
larity to 5 minutes and the spatial one to 0.2 km. While
the probability of matching a trace is negligible when
only one location is leaked, we observe that it increases
to 0.35 and 0.8 when k becomes 2 and 3, respectively.
Interestingly, we note that 4 location leaks are sufficient
to uniquely match 95% of the traces in our dataset, in-
dicating that large-scale collection of mobility data can
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(a) We keep constant ∆xy = 0.2 km.
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xy = 125 Km

(b) We keep constant ∆t = 5 minutes.

Figure 3: Probability of uniquely matching mobility trace ρ vs. number of leaks k using variable (a) temporal, (b)
spatial resolution.

seriously harm users’ privacy. As the number of leaks
increases further, the probability of matching a trace
reaches 1 and the majority of the leaks are uniquely
matched to traces (note how the standard deviation of
the matching probability decreases as k increases).

While Figure 1 displays the average probability of
uniquely matching a trace, it does not capture the
“anonymity set” of those leaks that cannot be uniquely
matched to a mobility trace. To this end, Figure 2
displays a scatter plot of the normalized number of
matches for variable number of leaks, following our pre-
vious experimental setting with ∆t = 5 min and ∆xy =
0.2 km. Surprisingly, when one location is leaked, we
observe that the normalized number of matches is al-
ready very small, with the median being approximately
10−5. This indicates that one leak is sufficient for our
matching algorithm to exclude a very large number of
traces. When two leaks from a mobility trace are ex-
posed, we note an approximate decrease of two orders
of magnitude in the number of matches, with a me-
dian around 10−7. As k increases, i.e., as more spatio-
temporal points are leaked, we see that more traces are
matched uniquely, and the median becomes 0. In fact,
with k ≥ 3, our matching algorithm can uniquely iden-
tify all users besides some exceptional outlier traces,
which is consistent with the probability of unique match
shown in Fig. 1.

Takeaways:

• Just 3 (resp. 4) anonymous location leaks are suffi-
cient to uniquely match 80% (resp. 95%) of users.

• Exposing 2 leaks instead of 1 decreases by 100×
the set of candidate matching traces.

5.3 Does spatio-temporal granularity matter?
Next, and using the same set of users selected ear-

lier, we study how the temporal and spatial obfuscation
of the events contained in a mobility trace affects the
performance of our matching algorithm.

Temporal Resolution. To observe the effect of tem-
poral granularity on matching anonymous location leaks

to mobility traces, we fix ∆xy = 0.2 km and vary ∆t.
Figure 3a displays the probability of uniquely matching
a trace when k leaks are revealed. Overall, we observe
that obfuscating leaks in the time dimension reduces the
probability of matching. For instance, while the prob-
ability of matching a mobility trace with k = 4 is 0.95
for ∆t = 5 min, it goes down to 0.67 when ∆t = 15, 0.5
when ∆t = 30, and 0.35 when ∆t = 60 min. Moreover,
we observe that as the temporal granularity decreases,
more leaks are required to match a trace, indicating
that such an obfuscation approach can bring some pri-
vacy protection to the traces. Nonetheless, we highlight
that 10 leaks with a temporal resolution of 1 h are still
sufficient to match 81% of traces, hinting to the high
uniqueness of large-scale human mobility and the in-
herent difficulty in obfuscating mobility traces.

Spatial Resolution. Figure 3b shows that obfuscat-
ing the spatial resolution of mobility events can also
reduce the effectiveness of matching. More precisely,
Figure 3b displays the probability of uniquely matching
a trace, when fixing ∆t to 5 min, and varying the num-
ber of leaks together with ∆xy. Overall, we observe that
higher spatial obfuscation decreases the probability of
matching, as expected. Interestingly, we observe that
setting ∆xy = 1 km does not provide sufficient protec-
tion for the traces, as the matching probability pattern
is very similar to the case where ∆xy = 0.2 km (see
also Figure 1). In fact, under this setting, 4 leaks are
still sufficient to identify 92% of the traces. However,
when ∆xy = 5 km, we note that the lower spatial resolu-
tion reduces the performance of matching, since 8 leaks
are required to match more than 90% of the traces. Fi-
nally, with 10 leaks, 64% of the traces are matched when
∆xy = 25 km and 25% when ∆xy = 125 km.

Simultaneous Spatio-Temporal Obfuscation. Our
previous set of experiments demonstrate how temporal
or spatial obfuscation of the events contained in mobil-
ity traces can reduce the performance of matching. We
now attempt to understand the effect of the simulta-
neous application of both obfuscation approaches. Fig-
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Figure 4: Probability of uniquely matching a mobility trace vs. number of leaks (k) with variable ∆t and ∆xy.

ure 4 displays four heat maps depicting the probabil-
ity of uniquely matching a trace for variable ∆t and
∆xy under different number of leaks k ∈ {2, 4, 7, 10}.
Building on the previous results, and examining the
corresponding axes of the heat maps, we observe that
both types of obfuscation can reduce the probability of
uniquely matching a trace, independently of k.

While comparing the colors of the heat maps at the
top left (highest temporal obfuscation) and the bottom
right (highest spatial obfuscation), we see that obfus-
cating the spatial dimension reduces the probability of
finding a unique match more than just obfuscating the
temporal one. This is not surprising, given that in our
experimental setting the range of spatial granularity
(from 0.2 to 125 km) is much higher than the tempo-
ral one (from 5 to 60 min). We also note that, as the
number of leaks increases, the probability of matching
also increases (the yellow area increases from k = 2 to
k = 10). For instance, when k = 4, ∆xy = 1 km, and
∆t = 15 min, the probability of match is 0.63, while
when k = 10 it goes up to 0.97 for the same spatio-
temporal granularity.

Looking at the top right of the heat maps, we see
that performing simultaneous spatial and temporal ob-
fuscation always brings better privacy protection than
obfuscating just one of the dimensions (bottom right
for spatial and top left for temporal). For instance,
when 10 points are leaked from a trace, we observe
that highly obfuscating the temporal dimension alone
(∆t = 60 min) results to a matching probability of 0.8,
while only obfuscating the spatial one (∆xy = 125 km)
reduces it to 0.25. Alternatively, when obfuscating both
dimensions at the same time, the probability of find-
ing a unique match goes down to 0.01. Nonetheless,
we highlight the inherent trade-off between privacy and
utility, as such levels of obfuscation potentially prohibit
interesting applications on mobility data.

Takeaways:

• Lowering the temporal granularity from 5 to
60 min (12× decrease) reduces the matching prob-
ability by 3× (considering 4 leaks and ∆xy =
0.2 km).

• Lowering the spatial granularity from 0.2 or 1 km
to 25 km (25–125× decrease) reduces the matching

Figure 5: Normalized frequency of matches vs. popular
locations (in decreasing order), binned into 100 groups.
Experiment conducted with k = 3, ∆xy = 0.2 km, and
varying ∆t.

probability by 4× (considering 4 leaks and ∆t =
5 min).

• 10 leaks with a temporal resolution of 60 min are
sufficient to match 81% of users with ∆xy =
0.2 km.

• 10 leaks with a spatial resolution of 25 km are suf-
ficient to match 64% of users with ∆t = 5 min.

• Performing simultaneous spatial and temporal ob-
fuscation always brings better privacy protection
than obfuscating just one of the dimensions.

5.4 Does location popularity matter?
We now examine which locations contribute to the

unique matching of traces. To do so, we randomly sam-
ple k = 3 events from 500 k randomly selected traces
and perform matching while we set ∆xy = 0.2 km and
vary the temporal resolution. Next, we extract the
locations of those spatio-temporal leaks that uniquely
match a mobility trace and calculate their normalized
frequency in the experiment, i.e., which percentage of
times each location participated in a match.

Figure 5 displays the average normalized frequency
of locations in the dataset, sorted by decreasing popu-
larity (location’s number of daily events) and grouped
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Figure 6: Normalized frequency of daily time slots.
Experiment conducted with k = 3, ∆t = 5 min and
∆xy = 0.2 km.

in 100 bins. We clearly observe that the frequency of
matches increases as the leak corresponds to a less pop-
ular location. Therefore, this indicates that less visited
locations are those that contribute more to the match-
ing of a trace. This is expected as, intuitively, a trace of
a mobile user moving in less popular (or less crowded)
locations is harder to hide among the set of available
traces.

In Figure 5, we can also observe the effect of the tem-
poral resolution on the matching. When ∆t is fine-
grained, e.g., 5 min, the most popular locations highly
contribute to the identification of traces (0.7 avg. nor-
malized frequency), while when it is coarse-grained,
e.g., 60 min, the normalized frequency decreases sub-
stantially (0.15). This shows that even crowded loca-
tions can help matching when there is sufficient detail on
the temporal dimension. Alternatively, temporal gen-
eralization can mitigate this effect, as more users will
appear in a location over the enforced time bins. Fi-
nally, we highlight that, irrespectively of the temporal
resolution, the least popular locations (right part of the
plot) allow for easy matching as their normalized fre-
quency is very high.

Takeaways:

• Leaks from less popular locations are more likely
matched to unique traces.

• Leaks from popular locations can still be matched
to unique traces if the temporal resolution is fine-
grained.

5.5 Does time of day matter?
Next, we investigate how the time of a spatio-

temporal leak affects the performance of matching. We
use the same sample used earlier, but fix ∆t = 5 min
and vary ∆xy. Then, we extract the time slots of the
spatio-temporal leaks that uniquely match a mobility
trace and compute their normalized frequency. Figure 6
displays the corresponding results.

Probability of match 1.0 < 0.01

Number of events 47.9 (30.1) 29.9 (24.5)
Number of unique locations 16.7 (13.1) 5.5 (5.6)

Area of bounding box (km2) 550.5 (887.6) 86.5 (360.8)
Distance traveled/time slot (km) 1.0 (1.7) 0.2 (0.8)
Total distance traveled (km) 291.8 (490.1) 62.5 (252.7)

Temporal entropy 2.6 (1.1) 2.6 (1.1)
Spatial entropy 3.6 (0.7) 3.1 (0.9)

Table 2: Mobility characteristics of traces vs. proba-
bility of match. Experiment conducted with k = 3,
∆t = 15 min, and ∆xy = 1 km. Average (standard de-
viation) values are shown.

For fine-grained spatial resolution (0.2 km), we note a
clear diurnal behavior and a difference between day and
night time. In particular, the plot shows that the con-
tribution of time bins increases gradually in the early
morning hours during commute time to work. Dur-
ing working hours (8:00–18:00) we observe the highest
frequency, indicating that the high activity generated
during this time frame contributes more to the identifi-
cation of a trace. After being overall stable through the
day, it decreases again in the evening hours. Moreover,
it is clear that midnight hours (1:00–4:00) contribute
less to the matching of traces, as people are station-
ary at their homes, or potentially turn off their phones
during their sleep. Finally, we observe the effect of ap-
plying spatial generalization to the locations of leaks by
looking at the different lines of the plot. While the fre-
quency pattern is similar when ∆xy = 1 km, we note
how further spatial obfuscation decreases the variabil-
ity between time slots until, in the utmost case when
∆xy = 125 km, the different times of day do not affect
the matching performance.

Takeaways:

• Location leaks generated while commuting or
working contribute to de-anonymization more
than leaks generated during night hours.

• Spatial obfuscation reduces the effect of time in
the identification of a trace.

5.6 Do user mobility characteristics matter?
In this experiment, we investigate the mobility

characteristics of users whose traces can be uniquely
matched using a handful of location leaks. To do so
we use the previous sample, k = 3, ∆t = 15 min, and
∆xy = 1 km. With that we examine those traces that
are uniquely identified with probability 1. For com-
parison, we also show those traces that are matched
with probability less than 0.01. From the traces of each
case, we extract various statistics that capture general
mobility characteristics: (1) number of events |Mu|, (2)
number of unique locations in Mu, (3) area of bound-
ing box, (4) distance traveled by the user per time slot,
(5) total distance traveled by the user, and (6) tempo-



ral and spatial entropy. The corresponding results are
shown in Table 2.

Overall, the table shows that mobility traces with
higher activity (e.g., because the user is moving a lot
and/or using the mobile phone very often) are more
likely to be matched using just very few spatio-temporal
leaks. This is corroborated by observing the number of
events in the traces, as traces that are uniquely matched
contain on average 47.9 events compared to 29.9 for
those which have a small chance of matching. Further-
more, we note that the uniquely matched traces move
among a bigger set of locations (16.7 on average) in com-
parison to those matched with small probability (5.5).
This indicates, once again, that high mobility eases user
identification, as the large set of locations might corre-
spond to users who are very active within cities (and
where the antenna network is dense) or travel between
cities using fast means of transport such as car and
train. This last observation is further supported by ex-
amining the area of the traces’ bounding box and the
distances traveled. Traces with high chance of matching
move within larger geographic areas (550 km2), travel
longer distances per time slot (1 km on avgerage) and
in total (291 km). We can compare this with those with
small chance of matching, who move within small areas
(86 km2) and small travel distances (0.2 km per time slot
and 62 km for the whole day). These results hint that
the latter type of users mostly perform local movements
within a city. Finally, while the temporal entropy does
not show any significant correlation with the probabil-
ity of matching a trace, the spatial one does. Traces
with small chance of being matched have smaller en-
tropy, indicating that users who move among smaller
sets of locations probably match many other users and
are difficult to uniquely identify.

Takeaway:

• Highly mobile users (either due to distance trav-
eled, area covered, or both) are 100× more prone
to identification.

5.7 How unique is a user’s mobility trace?
Thus far, our experiments demonstrated that a few

spatio-temporal leaks are sufficient to identify a mobil-
ity trace. Now we investigate how our results relate to
the uniqueness of full mobility traces. In other words,
we look at how unique the daily mobility pattern of a
user is. As discussed in our methodology (Section 3),
we follow our matching approach to estimate both the
upper and lower bounds on the probability of uniquely
matching a trace, employing both strict and more re-
laxed matching criteria. For this last experiment, we use
traces from a larger, randomly selected set of 1.2 M users
(again compared across all other users in our dataset)
to compute the upper and lower bounds of uniqueness.
We use the output of our matching algorithm to esti-
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Figure 7: Probability of uniquely matching a mobility
trace for variable ∆t and ∆xy. Solid and dashed lines
correspond to the estimated upper and lower bounds,
respectively.

mate the probability of obtaining a unique match in
both cases. We repeat our experiments for variable ∆t

and ∆xy to investigate the effect of the temporal and
spatial obfuscation on the uniqueness of mobility traces.

Figure 7 displays the probability of uniquely match-
ing a mobility trace with variable temporal and spatial
resolution in the upper and lower bound cases. When
we configure the criteria of our matching algorithm in a
strict manner, i.e., the upper bound case (solid lines),
we note that the probability of matching a trace is very
high. This is not surprising given our previous results,
which showed that a handful of spatio-temporal leaks
are sufficient to identify a trace. In particular, we high-
light that for a spatial resolution of up to 5 km, the
probability of obtaining a unique match is very large
(≥ 0.9), irrespectively of the temporal granularity. This
indicates that large-scale mobility trajectories are ex-
tremely unique. When we further obfuscate trajectories
in the space dimension, e.g., by setting ∆xy = 25 km,
we observe that traces become only slightly less distinct,
as we increase the temporal granularity. For example,
with ∆t = 5 min, 90% of traces are matched, compared
to 60% for ∆t = 60 min. Nonetheless, we remark that
mobility traces are still highly identifiable, as even in
the case of extreme obfuscation in both space and time,
i.e., with ∆t = 60 min and ∆xy = 125 km, the proba-
bility of obtaining a unique match reaches 0.32. This
observation suggests that spatio-temporal obfuscation
is not sufficient for the privacy protection of mobility
traces.

Next, we relax the criteria of our matching algorithm
in an attempt to estimate a lower bound on the prob-
ability of uniquely matching a trace. The dashed lines
of Figure 7 display the corresponding results for vari-
able temporal and spatial resolutions. While we now
observe that, overall, the probability of matching is re-
duced (compared to the upper bound), it is surprising
that it remains high for fine-grained temporal and spa-
tial resolutions. For instance, when ∆t = 5 min and
∆xy = 0.2 km, 70% of the traces remain unique de-



spite our loose matching criteria. Moreover, we remark
how spatio-temporal obfuscation reduces faster the ef-
fectiveness of matching when compared to the upper
bound case. With ∆t = 15 min and ∆xy = 0.2 km,
there is a 60% chance of uniquely matching a trajectory.
Furthermore, the probability goes down to 7% and to
1% when ∆xy = 25 km and 125 km, respectively. Note
how the same setting in the upper bound case achieves
smaller reduction (ranging from a probability of 1 down
to 0.75).

Generalizing trajectories in time also makes them less
identifiable, as we can realize by comparing the differ-
ent color lines of the lower part of the figure. As an
example, when ∆xy = 1 km, the probability of match-
ing a trace is 0.7 with ∆t = 5 min, while it goes down
to 0.3 when ∆t = 60 min. Finally, we remark how si-
multaneous temporal and spatial obfuscation reduces
significantly the probability of matching, e.g., in the
extreme case where ∆t = 60 min and ∆xy = 125 km,
it almost reaches zero. This hints that when spatio-
temporal obfuscation is combined with other techniques
like suppression (hiding events that uniquely identify a
user) and noise injection (introduce fake events to favor
matches) is more effective for the protection of mobility
traces.

Takeaways:

• For spatial resolution of up to 5 km, the matching
probability is very large (≥ 0.9), irrespectively of
the temporal granularity.

• Even with extreme obfuscation in both space and
time (∆t = 60 min, ∆xy = 125 km), the matching
probability remains considerably high (0.32).

6. DISCUSSION
To the best of our knowledge, this is the first study

on privacy and mobility that uses a really large (tens
of millions of users) and, at the same time, fine-grained
dataset (two orders of magnitude more location events
than CDRs).

6.1 Main findings
Our analysis shows that, even among tens of millions

of users, a handful of anonymous location leaks are suf-
ficient to identify a user, based on her stored mobil-
ity trace. In fact, only one leak is enough to exclude
99.999% of the candidate traces, and 3 (resp. 4) anony-
mous location leaks are sufficient to uniquely match 80%
(resp. 95%) of the traces.

In terms of why some users are more identifiable than
others, we observe that leaks from less popular loca-
tions and leaks during commuting and working hours
greatly harm users’ privacy. Unsurprisingly, highly mo-
bile users are 100× more prone to identification, espe-
cially users covering large geographic areas, traveling

long distances, and visiting a diverse set of locations
during their movements.

We also show that, in general, lowering the tempo-
ral and spatial granularity of leaks significantly impairs
identification. For example, obfuscating the temporal
(resp. spatial) dimension by 12× (resp. 25–125×), can
reduce the identifiability by 3× (resp. 4×). Perform-
ing simultaneous obfuscation in both dimensions brings
better privacy protection than applying one of the two
alone: reducing the two dimensions to the lowest con-
sidered granularity (∆t = 60 min and ∆xy = 125 km)
reduces the probability of matching by 100×. Finally,
while spatio-temporal obfuscation reduces the proba-
bility of matching whole mobility traces between them-
selves, it is not alone sufficient to mitigate the privacy
threat represented by the uniqueness of large-scale mo-
bility traces.

6.2 Limitations
Our measurement study only uses one day worth of

data. Extending the tracking period for weeks or even
months can only make users even more identifiable.
Furthermore, to protect the privacy of our users, we
did not attempt to de-anonymize them based on data
originating from different platforms. Instead, we only
sample events from our own logs, and create artificial
location leaks. As the main focus of our study is to test
the uniqueness of mobility patterns and the feasibility
of user re-identification, we did not address the issue of
having leaks that do not exist in the fine-grained logs.
Finally, our results are tailored to the mobility behav-
ior of the population of the considered country over a
working day. Replicating our results over weekends or
other seasons, or with a focus on countries with different
mobility behaviors is part of our future work.

6.3 Implications
While some organizations that manage data for op-

erational purposes (ISPs, governments, insurance com-
panies) are heavily regulated and are likely to respect
users’ privacy, many other companies are either unreg-
ulated or may choose to ignore privacy laws imposed on
a certain region (for instance the EU [1] and specifically
regarding the use of personal data and the GDPR [6]).
Such companies are typically Internet-based, and de-
pend on the availability and exploitation of data in or-
der to generate revenues. For example, they can be
involved in the aggregation of online users’ personal
data, including web preferences and locations, in or-
der to offer better, “free” services [15]. However, in ex-
change, and not explicitly communicated to the user,
they sell collected user data to interested third-parties.
This is typically the case within the real-time bidding
ad-ecosystem, where data such as location and user be-
havioral traits are sold for better ad-targeting [17].



Similarly, mobile app developers frequently collect
and share location information with third-party com-
panies, in order to perform better ad-targeting. Addi-
tionally, many online publishers host on their websites
third-party trackers that collect and cross-reference lo-
cation data (based on user IPs), for targeting or person-
alization purposes. In all these scenarios, typical mech-
anisms employed such as cookie synchronization have
already been shown to leak information like browsing
visits and location to tens of colluding parties, even if
the user employs virtual private networks and SSL ses-
sions to hide her location [16].

Our results show that it is possible for large or small
online entities to easily identify a user with a few lo-
cation leaks. But identification is only one part of the
story, as identities may be further linked to a myriad of
other types of information, and obviously the rest of the
places the user has been become exposed, with all the
implications that this may have. In summary, we show
that it is possible for various companies to identify a
user or her mobility trace across different sets of data
they have either bought from some data management
platform, or have been shared with them for better tar-
geting, or have been accidentally leaked by the user and
collected by some mobile app or website.

6.4 What can be done?
Our work demonstrates the need for location obfusca-

tion techniques by the entities that maintain large-scale
mobility logs. Our results should be taken into account
by service providers that desire to bring privacy protec-
tion to the mobility traces they store or publish. Using
similar settings as those in our experiments, a service
provider can estimate the amount of temporal and spa-
tial obfuscation required to achieve a sufficient protec-
tion as measured by probability of uniquely matching
a trace, given a certain number of leaks. Such obfusca-
tion can then be applied on the provider’s trace logs to
guarantee users’ privacy and compliance with privacy
laws.

Other mitigation measures include the addition of
noise in the storage of trace logs and the obfuscation
of the exact location of users while still maintaining the
utility of the data [19]. Moreover, location events could
be suppressed from a trace to make it less identifiable.
In fact, the service provider could perform storage and
retrieval of user location data in an adaptive manner
(i.e., by tuning the rate of event storage or retrieval) to
provide guarantees of user anonymity.

Finally, online platform providers such as Facebook,
Twitter, Google, or Foursquare, assuming they are se-
rious about supporting user privacy, they could proac-
tively warn users when their next post(s) or search(es)
would lead to possible re-identification by third-party
trackers, based on the users’ historical mobility trace.

As an active obfuscation measure from these platforms,
noise could be added by delaying the post to appear
on the online page or by providing a less accurate geo-
location.

7. CONCLUSION
In this work, we leverage an unprecedented scale,

country-wide dataset of network events from an Eu-
ropean mobile operator to study the extent to which
anonymous location leaks can be uniquely mapped to a
mobility trace and its corresponding identity. While our
results demonstrate that limited location information
within the time frame of a day is sufficient to uniquely
identify a mobility trace, we also expose the main con-
tributing factors to de-anonymization. Furthermore, we
show that while spatio-temporal obfuscation helps at
reducing the probability of de-anonymization, alone, it
is not sufficient to mitigate the privacy threat repre-
sented by the uniqueness of large-scale mobility traces.
Nonetheless, the insights gained from our measurement
study can be used as guidelines for the design of novel
privacy protection mechanisms or policies regarding the
storage and publication of mobility data.
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