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Abstract— In this work, we present the Klout
Score, an influence scoring system that assigns scores
to 750 million users across 9 different social networks
on a daily basis. We propose a hierarchical framework
for generating an influence score for each user, by
incorporating information for the user from multiple
networks and communities. Over 3600 features that
capture signals of influential interactions are aggre-
gated across multiple dimensions for each user. The
features are scalably generated by processing over
45 billion interactions from social networks every
day, as well as by incorporating factors that indicate
real world influence. Supervised models trained from
labeled data determine the weights for features, and
the final Klout Score is obtained by hierarchically
combining communities and networks. We validate
the correctness of the score by showing that users
with higher scores are able to spread information
more effectively in a network. Finally, we use sev-
eral comparisons to other ranking systems to show
that highly influential and recognizable users across
different domains have high Klout scores.

Keywords-influence scoring; online social networks;
large scale;

I. Introduction
It is estimated that there are now over a billion users

on online social networks, exceeding even the number
of websites on the internet. In the past decade, ranking
webpages based on importance of linked content, clicks
and impressions led to ubiquitous internet applications
such as search. Applying effective ranking techniques to
determine influential users on the internet has a similar
potential to lead to many new and useful applications as
well.

When a user posts a message on social media, other
users in the network who see the content may perform
certain actions in reaction to the original message. The
fact that the original message prompted certain reactions
from other users is an indication that the user influenced
them in some manner. For example, a user may post a
message on Facebook about her experience in a restau-
rant, with a link to the restaurant’s webpage. A user
who reads the original message may choose to react to
it in several ways such as: read the message, click on the
link to get more information, reshare the link with other
users in his own network, or actually visit the restaurant

for dinner. The type of reaction gives an indication of the
strength of influence the message had on the user.

There are, of course, many variables pertaining to
offline actions that cannot be directly measured, such
as the effect of seeing a billboard on a freeway. But in
the context of social media, a large set of user reactions
such as impressions, clicks, likes, comments, reshares
and purchase behavior is measurable. By observing the
quantity and quality of reactions that a user generates
among other users in the network, it is therefore possible
to get a measure of how influential he or she is.

Here we introduce the Klout Score as a metric for
measuring influence of users on online platforms such as
social networks and community forums. While the Klout
Score has been available since 2008, early versions of
the score included fewer signals, and were therefore less
effective as a metric of influence [1]. However, because
the system was built to be extensible and flexible, the
Klout score has evolved to incorporate many new sources
of information, growing more accurate over time. Today,
the Klout score is widely used for identifying influential
users for applications such as targeted search and influ-
encer marketing [2].

It is this extensible and flexible framework that we
present in this study, along with results that validate
the effectiveness of the score in measuring influence. Our
contributions in this paper are as below:

• Scalable Production System: We describe a
full production system that assigns Klout Scores
to 750 million public and registered user profiles
from 9 different networks, by processing 45 billion
interactions everyday.

• Feature Generation: We outline how features
that capture different aspects of influential actions
are generated. In our models we use over 3600 such
features.

• Hierarchical Scoring: We explain how networks
are scored individually, and are then combined into
a single score using a hierarchical approach.

• Validation: We present experiments and compar-
isons that show that the Klout score effectively
measures influence in a variety of contexts.
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II. Problem Setting
A. Related Work

Recently, a great deal of research work has emerged on
exploring the social influence measurement and applica-
tions. Tang et al. [3] analyzed topic-based social influence
on academic collaboration networks. The authors of [4],
[5] identified influencers on blogs and the Twitter social
network respectively. In comparison, here we consider
influence simultaneously on multiple networks.

Influence maximization [6], [7], [8] is the problem of
finding a subset of nodes that would maximize the spread
of information in a given graph. This problem differs
from that of assigning influence scores to every node
in the graph, since the former is a targeting or subset
selection problem, while the latter is a measurement or
ranking problem.

Several metrics have been used in previous work to
measure influence. Alexy et al. [9] used a PageRank-
like social interaction score and number of mentions over
time to measure user influence on Twitter. Behnam et al.
[10] modeled influence using metrics such as number of
followers and ratio of affection. Influence measurement
on social networks also has a temporal aspect to it,
since messages typically have short lifespans in terms of
recieving reactions [11]. This problem of understanding
time-sensitive influence is one that has remained rela-
tively under-explored in previous work. Here we present
a framework for feature engineering that allows granular
measurement across various dimensions and scales to
thousands of features.

The Klout score has been applied to various marketing
applications [2], and has been used in studies about
social behavior [12]. The field of studying influence is
still in its early stages, and this work aims at advancing
such influence measurement systems.

B. Problem Statement
While influence is a broad and subjective concept,

we can quantitatively describe it in terms of observable
reactions to stimuli. If an entity performed an observ-
able reaction in response to a stimulus originating from
another, then we can say that the latter influenced
the former in some manner. Thus we can consider the
influence of an entity to be the ability to induce reactions
in other entities.

More specifically, in the context of social networks,
we can define the influence of a user to be the ability
to induce reactions in other users. Thus an influence
score determines how effectively a user may be able to
influence other users via his or her actions.

Let G represent a network or community of users,
who interact with each other via a set of actions A. An
influence score can then be defined as:

Definition 1: Influence Score: For each user u in a
network G, let Gu be the subset of the network containing
the users who may directly or indirectly interact with
u, via a set of reactions R ⊆ A. Then an influence
score I(u, T ) is a measure of the degree and quantity of
reactions that u can induce in Gu over a specified time
period T .
The score thus determined can be used to relatively

compare influential users in the network. Below we
describe a few of the factos that an influence scoring
system needs to take into account.

C. Considerations
There are several aspects that an influence scoring

system must incorporate in order to be effective:
User Scalability: An effective influence scoring sys-

tem must be able to process information from the com-
plete network graph, which may include hundreds of
millions of users. Some previously suggested approaches
rely on loading the entire graph in-memory to perform
such computation, but these approaches have limitations
when dealing with web-scale datasets. We solve this
problem by leveraging batch processing frameworks that
aggregate and generate features for each user separately
in multiple passes, before combining them hierarchically.

Network Scalability: A user’s online persona typ-
ically spans multiple social and professional networks.
An influence scoring system must therefore be able
to scale across these different networks, to unify the
available information for a user. It should also be able
to handle the distinct sets of interactions and user
behavior patterns associated with each network. Further,
the influence scoring system must also determine the
relative importance of networks when they are combined
together. We discuss these aspects of influence scoring in
the following sections.

Interaction Graph: As shown in [6] influence mea-
surement strategies that relies solely on structural prop-
erties of the graph such as degree and centrality heuris-
tics do not perform well, and it is essential to consider in-
formation dynamics in the network. Thus in addition to
properties such as in-degree and centrality of nodes in a
graph, an influence measurement strategy must identify
and capture variables that indicate dynamic information
flows. Furthermore, the manner of interaction indicates
the strength of influence, and some interactions may
indicate a greater degree of influence than others. This
relative importance of interactions may be determined
by constructing granular features that can be weighted
individually.

Temporal factors: The variables that capture influ-
ence may be broadly categorized as those that capture
long-lasting influence, versus those that capture dynamic
and changing influence. Since the importance of dynamic



variables fade over time [11], an influence measurement
system must be sensitive to time decay of influential
interactions. In our system, we choose a time window
of 90 days to consider dynamic interaction behavior, in
addition to signals that capture long-lasting influence
outside this time window.

Offline factors: It is plain that signals on social
networks are only a partial representation of a user’s
overall influence, and can only provide limited accu-
racy for influence measurement. It is therefore crucial
to incorporate proxy sources that signify a user’s real
world influence. Here we use Wikipedia and news articles
to extract signals that may indicate the user’s offline
influence.

Reach and Strength of Influence: The size of Gu may
vary widely for different users in the network, and an
influence scoring system must determine the importance
of the user’s reach with respect to the number of reac-
tions. Further, the manner and frequency of reactions
may determine how strongly a user influences another.
Thus a user who induces a total of 100 reactions among
10 other users may or may not have the same influence
score as a user who induces 100 reactions among 50
users, depending on the strategy chosen for scoring. An
influence scoring system may choose to score the latter
higher, since she reaches a larger set of people; while
another may score the former higher, since he is able
to more strongly influence a smaller set of users. The
chosen strategy may depend on the application.

III. System Overview

A. Methodology
Here we propose a hierarchical approach to compute

influence scores. We build an interaction graph by cap-
turing reactions generated in response to social media
posts. The reaction types chosen are those that are
strong indicators of influential information flows between
nodes. In addition we derive information from the rela-
tively slow-changing graph structure as well. To factor
in temporal effects and time decay, a trailing window
of activity over 90 days is used. More recent actions
have a greater significance compared to older actions,
all other variables remaining the same. Features such as
PageRank derived from Wikipedia and number of news
article mentions provide indicators of real world or offline
influence.

Features derived from such information are used to
create feature vectors for each user, for each network
or community. Supervised machine learning models are
built using ground truth labels generated for each net-
work. The model weights applied to the network feature
vector for a user gives a network score. The overall
score for a user is computed by combining the scores

Figure 1: Scoring Pipeline Overview

from all networks and communities where the user has
a presence, in a hierarchical manner.

While no measurement system can claim to com-
prehensively capture all signals of influence, we design
our system such that it is flexible enough to easily
incorporate new information, as and when it becomes
available.

B. Pipeline
Klout scores are computed for 750 million users from

9 major networks including Twitter (TW), Facebook
(FB), LinkedIn (LI), Google+ (GP), Foursquare (FS),
Instagram (IG), YouTube (YT) and Lithium Communi-
ties (LT), in addition to Wikipedia (WK). When a user
registers on Klout.com he associates his identities on
different social networks with his Klout profile. For Twit-
ter, public data is collected via the Mention Stream1;
anonymized data for opted-in Lithium Communities2

comes from in-house datastores; and data for other social
networks is collected via REST APIs on the user’s be-
half, based on the granted permissions. All collected data
is parsed and normalized to protocol buffers that encode
user interactions, graph, and profile information. Data is
collected continuously from interactions in a trailing win-
dow of 90 days using the Play Framework. The collected
data is written out to a distributed file system, where
batched parsing and processing is done using Hadoop
MapReduce and Hive. The batch processing pipeline
derives features for each user, normalized against the
global population. Feature weights from offline models
built using the ground truth data are then applied to
generate Klout scores. The pipeline overview is shown
in Figure 1. Over 45 billion interactions are processed
in each pipeline run, with 0.5 billion new interactions
added each day. The daily footprint of the pipeline is

1https://gnip.com/sources/twitter/
2http://www.lithium.com/



196.14CPU days, with 18.46TB of reads and 9.53TB
writes.

C. Features
In order to build a supervised model for influence

scores, we generate a set of quantitative features for each
user who is represented by a node in the graph. In some
cases such as LinkedIn Job Titles or Community Badges,
the categorical variables are converted to quantitative
values based on the ordered list of the categories. Thus
all features are designed to be directly proportional to
influence.

The features may be broadly divided into two types -
long-lasting and dynamic. Long-lasting features include
those that change gradually or infrequently. Education
history and Wikipedia PageRank are examples of such
features. The types of long-lasting variables are summa-
rized in Table I, although this is not an exhaustive list.
Over 60 such long-lasting features are considered as part
of the Klout score.

Table I: Types of Long-lasting features
Feature
Type

Features Networks

Node
Degree

Followers, Friends, Fans, Sub-
scribers, In-links

TW, FB,
IG, GP,
WK, YT

Graph
Properties

PageRank, Inlink to Outlink ra-
tio

WK

Categories Job Title, Education Level, En-
dorsements, Recommendations,
Awards, Community Badges

LI, LT

Table II: Common Dimensions for Dynamic Features
Audience
(Who)

Time
(When)

Network
(Where)

Type
(What)

Action
(How)

All,
Higher,
Peers

3, 7, 14,
21, 30,
60, 90

TW, FB,
LI, GP,
FS, IG,
LT, YT

Message,
Photo,
Video

Comment,
Reply, Like
(Upvote),
Mention
(Tag),
Reshare
(Retweet,
via), View
(Impression)

The dynamic features, on the other hand, capture
information flowing through edges in the graph between
users. As described in previous sections, the primary
signal of an influential interaction is when an action
from a user leads to reactions among other users. Each
of these reactions indicates a unit of information flow.
A reaction can be represented by a tuple of dimensions
(Who, When, Where, What, How) as below:

• Who: The characteristics of the audience who re-
acted to the original post from the user.

• When: The difference between the current time
and the time at which the reaction occured.

• Where: The social network on which the reaction
was performed.

• What: The unit of original content or action on
which the reaction was performed.

• How: The type of reaction.
The first step while generating features is to normalize

all the reactions based on the above dimensions as (ac-
tor, timestamp, network, original content type, action).
Features are generated by aggregating all reactions that
are represented by the same tuple. For example, all the
reactions of the kind "comments from a user’s peers
received on Facebook Photo posts in the last 7 days" are
aggregated into a single feature represented by the tuple
{Peers, 7 days, Facebook, Photo, Comment}.
This aggregation is achieved in a single pass through

the dataset, by employing User Defined Functions
(UDFs) such as conditional_emit and multiday_sketch,
applied within Hive queries that are executed as MapRe-
duce jobs. We have open sourced these UDFs in a project
named Brickhouse3.

This feature generation framework has several advan-
tages. Firstly, it allows a large set of dynamic features to
be generated for training. Table II provides the list of the
most commonly used dimensions for generating dynamic
features – 3 cohorts of users, 7 time windows, 8 networks
4, 3 common content types, and 6 common types of
reactions on content. Note that all the listed content
types and actions may not be present for every network,
nor are the dimensional values restricted to those in
Table II. Each network may have its own unique content
types and actions, leading to additional features. Overall
around 3550 dynamic features are generated by the
system, using various combinations of the dimensional
values.

Secondly, the framework allows easy extensibility in
any of the dimensions. Thus adding features for a new
action or a network becomes only a matter of identifying
the specific dimensional values needed.

Thirdly, this approach also provides granularity while
learning a supervised model that assigns weights to
features. By allowing weights to be assigned to specific
tuple combinations, the models can be made sensitive
to changes in each of the dimensions. For example, the
weights assigned to features that represent a reshare
action may carry a higher weight than a like action,
all other dimensions being the same. Similarly a reshare
action by a user whose is more influential than the user
himself may have a higher weight than the same action
from one of the user’s peers.

3https://github.com/klout/brickhouse
4Since Wikipedia is not a conventional social network, we ex-

clude it when generating dynamic features.
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Figure 2: Klout Score Structure Overview

Finally, aggregating interactions into such dimensions
can be done using multiple passes through the dataset,
which has a computation complexity of O(n). This
means that the entire graph need not be loaded in-
memory to perform the computation, and can instead be
performed efficiently on a distributed batch processing
framework such as MapReduce or Hive.

D. Hierarchical Scoring
This hierarchical architecture allows for extensibility

both in terms of depth (granularity of features) as well
as breadth (number of sources). This enables the scoring
mechanism to be sensitive to signals as well as scalable
in terms of networks.

Ground truth data is generated for individual net-
works and communities through tools designed to collect
labeled data. For generating this data, evaluators were
shown pairs of users who were known to them on the
network, and were asked to identify the more influential
one in each pair. Each pair of users was ranked by
multiple users to reduce bias. Close to 1 million such
evaluations were collected for all networks combined,
with the hundreds of thousands of labels for larger
networks such as Twitter and Facebook, and tens of
thousands for smaller networks. To handle ambiguity in
the labels, they were then pre-processed to only pick
pairs with a clear winner by a difference of at least 2
votes.

The features generated typically have a power law
distribution with a long tail. In order to make the fea-
ture values comparable, they are log normalized by the
global maximum value per feature. A feature vector with
elements as these normalized values is then generated for
each user. Models are then trained for ranked users in
the ground truth training set using supervised learning
methods to generate a weight associated with each fea-
ture. Specifically, Non-Negative Least Squares (NNLS)
regression is used for model building, since the features
are designed such that an increase in a feature value
corresponds to higher influence. The trained models have
an F1 score between 0.70 to 0.75 for most networks,

Network 1

Network 2

Network 3

Raw network score 
vector
Weighted network score 
vector
Combined score vector

Figure 3: Network Score Combiner (simplified to 3 net-
work dimensions)

which is relatively high given that human evaluators who
provide the ground truth labels do not always agree on
the ordering.

Let ni,j represent the jth network or community at
the ith level in the hierarchy, with i = 0 representing
the topmost level. For a user u on a given network ni,j ,
we denote the normalized feature vector as f(u, ni,j).
The weights associated with the learnt model for the
network ni,j are given by the weight vector w(ni,j). The
application of these weights applied to a feature vector
yields a score that is in the range of [0, 1]. Thus, for
the graph Gu corresponding to the network ni,j , and a
time period T over which the features are computed, the
influence score for the user in that network is given by:

Ii,j(u, T ) = s(u, ni,j)
= f(u, ni,j) ·w(ni,j)

The scores obtained for a user as a result of applying
the learnt weights to the network or community feature
vectors are further combined into a new vector for the
next level in the hierarchy. Let the network ni−1,K on the
level i− 1 have k different child networks corresponding
in the ith level. Then the feature vector for ni−1,K is
given by:

f(u, ni−1,K) = [s(u, ni,1), s(u, ni,2), ..., s(u,Ni,k)] (1)

The weight vector for this level can now be applied to
get a score for ni−1,K .

Thus, for networks with child communities, such as
Lithium, the community scores for a user form a feature
vector for the network level, which can be combined to
get a network score. The network level scores are further
combined at the root level to give a score that represents



the influence of the user combined across the different
networks where he is present.

At higher levels in the hierarchy, it is challenging to
get ground truth data that represent how networks or
communities may be combined together. In the absence
of such labeled data, it may not be possible to generate
weight vectors using supervised models. Instead, we
extract weight vectors for the higher levels based on
network or community graph properties. For instance,
weights that represent the potential audience that a user
on the network could influence may be derived from
heuristics such as overall graph size or average node
degree.

Further, unlike the features at the lower levels, the
features at these higher levels may be fairly uncorrelated.
This allows us to approximate the child networks as
different orthogonal axes to generate a vector space.
For such levels, the combined score may be computed
as the Euclidean or L2 norm of the vector obtained by
the component-wise product of the weight and network
feature vectors.

s(u, ni,j) = ‖f(u, ni,j) ∗w(ni,j)‖ (2)

where ∗ represents the operator for element-wise multi-
plication.

In particular, the raw Klout Score KSr(u), denoted
by the network notation n0,1 is given by the L2 norm of
the network scores in level i = 1:

KSr(u) = I0,1(u, T ) = s(u, n0,1)
= ‖f(u, n0,1) ∗w(n0,1)‖ (3)

This root level score is finally scaled to [0, 100], giving
the Klout score. Since the original features are log
normalized, the final score is also interpreted to be on
a logarithmic scale. Thus a user with a score of 60 may
be α times as influential as a user with a score of 50,
where α is the constant associated with the power law
distribution.

In the next section, we perform validation on the
Klout score via several comparisons.

IV. Validation
This section examines the Klout Score from four dif-

ferent aspects to illustrate its correctness and usefulness.

A. Spread of Information
To validate the effectiveness of the Klout Score, we

ran a year long experiment to measure the spread of
information with respect to the user scores. Users with
Klout Scores varying in the range of [10 − 80] were
targeted with perks, which could be claimed by the users.
The users were encouraged, but not mandated, to post
messages about their experience with the claimed perk.
The users’ audiences then reacted to these messages,

Figure 4: Analysis of average perk related content reac-
tion count as a function of authors’ average Klout score

with a higher number of reactions indicating a greater
spread of information. 87, 675 users posted messages
after claiming a perk, out of which 18, 308 posts recieved
a total of 394, 083 reactions.
The average number of reactions are plotted on a log

scale against the targeted users’ Klout scores in Figure
4. The curve shows a monotonically increasing curve,
where users with higher scores show a higher number
of reactions. We also observe an order of magnitude
difference in reactions recieved by users with a score of
60 compared to a score of 30, and similarly for users with
a score of 80 compared to 60. This validates that users
with higher Klout scores are able to spread information
more effectively in a network.
B. Comparisons with Other Systems

Table III: Comparison with ATP Tennis Player Ranking
and Forbes Most Powerful Women Ranking

Ranking ATP Klout Forbes Klout
1 Novak Djokovic 89.54 Hillary Clinton 93.23
2 Roger Federer 90.26 Melinda Gates 83.57
3 Andy Murray 89.50 Mary Barra 77.53
4 Stan Wawrinka 86.86 Christine Lagarde 83.89
5 Kei Nishikori 83.50 Dilma Rousseff 86.84
6 Tomas Berdych 66.69 Sheryl Sandberg 83.18
7 David Ferrer 65.98 Susan Wojcicki 80.04
8 Milos Raonic 82.28 Michelle Obama 87.30
9 Marin Cilic 58.93 Park Geun-hye 81.80
10 Rafael Nadal 82.37 Oprah Winfrey 91.08

1) Real-World Rankings: We also compare the Klout
Score with other real world rankings that indicate influ-
ence. Table III shows the Klout scores compared with
ATP rankings for tennis players5, and Forbes’ list for
most powerful women6, as of June 2015.
To measure the ranking quality of Klout Score,

we adopt the normalized Discounted Cumulative Gain
(nDCG) metric, defined in Eq. 4. The Discounted Cu-
mulative Gain upto position p (DCGp) is calculated as
Eq.5, and the ideal DCG for p is denoted by IDCGp.

nDCGp = DCGp

IDCGp
(4)

5http://www.atpworldtour.com/en/rankings/singles
6http://www.forbes.com/power-women/



Figure 5: Comparison of Klout Score and Google Trends

DCGp =
p∑

i=1

2reli − 1
log2(i+ 1) (5)

We calculate the IDCGp by using the ATP or Forbes
rankings as the ideal ordering of users. We set the rele-
vance rel of a person as p/rankideal, where the rankideal

is her/his position in the ideal ranking. For example, for
p = 10 the relevance of Novak Djokovic is 10 because his
position is 1 in the ATP ranking. Thus his contribution
to the IDCGp measure is 210−1

log22 , whereas his contribution
to the DCGp measure for the Klout Score ranking is
210−1
log23 , since he appears in the 2nd position there. Setting
the relevance in this manner places stronger emphasis in
retrieving correct higher ranked documents.

With this setting, the nDCG10 measure for the Klout
score with respect to the ATP and Forbes ranking is
computed as 0.878 and 0.874, respectively. This demon-
strates that the Klout score is able to capture real world
influence to a high degree for these examples.
2) Google Trends: To observe temporal sensitivity,

we plot the Klout Score for a few entities along with
their Google trends for the last three years in Figure 5.
For both Starbucks and Airbnb, the Klout scores show
similar fluctuations compared to their Google Trends,
indicating a strong correlation between online influence
and search popularity. For Fitbit the Klout score catches
a few spikes that are not seen in Google Trends. This also
reveals that the Klout score is sensitive to short-term
variations, and tracks such changes very closely.

For the music artist Psy, we see that the Google Trend
drops significantly after 2013-06-01 while his Klout score
decreases more gradually. This is because while the
Google Trend reflects only the immediate short-term

popularity, the Klout score incorporates long-lasting
features as well.

C. Influencers By Topic
Since influence is typically contextual, we explore the

effectiveness of the Klout score across different topical
domains. Users in topical domains were identified using
the methodology described in [13], and ranked by their
Klout scores within their respective domains. Figure 6
shows the top 5 ranked influencers in selected topics. For
a topic such as politics, we see that the highest scored
users includes prominent politicians such as are Barack
Obama and David Cameron, as well as news and media
entites such as The Washington Post and Fox News,
all of whom are clearly very influential. These examples
clearly depict that Klout score can correctly identify the
influencers in a variety of domains.

V. Conclusion
In this work, we propose a hierarchical scoring system

called the Klout Score, that assigns influence scores to
750 million users across 9 different social networks, by
analyzing 45 billion interactions daily. The framework
scales to hundreds of millions of users by leveraging
distributed batch processing frameworks that aggregate
signals in linear time with respect to the nodes in the
graph.

To create the score, a feature generation framework
aggregates signals across several dimensions for each
user, creating a large feature set containing over two
thousand features. In addition to incoporating signals
from social network interactions, the features also incor-
porate factors such as Wikipedia that provide a proxy for
real world influence. Weights obtained from supervised



Figure 6: Top-5 Influencers by Topic

models are applied to these features to generate network
or community scores. These scores are then combined
hierarchically to get the final Klout Score.

Our experiments also validate that users with higher
Klout Scores are able to spread information wider in a
network. We further compare the performance of the
score against other ranking systems and also analyze
the dynamic nature of the score. We examine different
topical domains and find that highly influential users are
correctly identified within these domains by their high
scores.

The Klout Score presented here is, of course, only a
partial representation of the influence of a user. Nev-
ertheless, by building an extensible feature generation
framework and a hierarchical scoring structure, the sys-
tem is able to easily incorporate new sources of informa-
tion, and therefore grow more accurate over time. Several
applications may be potentially built using an influence
scoring system such as the Klout Score, and we hope this
work enables future work in this area.
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