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ABSTRACT

We propose model with larger spatial size of feature maps and evaluate it on object
detection task. With the goal to choose the best feature extraction network for our
model we compare several popular lightweight networks. After that we conduct
a set of experiments with channels reduction algorithms in order to accelerate
execution. Our vehicle detection models are accurate, fast and therefore suit for
embedded visual applications. With only 1.5 GFLOPs our best model gives 93.39
AP on validation subset of challenging DETRAC dataset. The smallest of our
models is the first to achieve real-time inference speed on CPU with reasonable
accuracy drop to 91.43 AP.

1 INTRODUCTION

Object detection in general and vehicle detection specifically has many applications including
surveillance, autonomous driving, etc. Moreover, to be practical, object detector must operate on
embedded processors that have far less compute capabilities than powerful GPUs used for bench-
marking on typical computer vision datasets. Hence we focus on design of fast object detection
model, which still retains high quality. We perform our experiments for vehicle detection sub-task
on DETRAC dataset (Wen et al., 2015).

OUR MOTIVATION

To reduce number of operations it is natural to try aggressively decreasing spatial size of feature
maps. But from the other side, it is known that for tasks such as semantic segmentation or object de-
tection it is important to preserve spatial information. So we investigate possibility to train accurate
model with relatively large feature maps and still keep it fast.

Often network weights are initialized from a model, pretrained on classification of a large number
of classes, e.g. ImageNet with 1000 classes (Russakovsky et al., 2014). We hypothesize that for a
lot of practical tasks with few classes a considerable number of channels in convolution layers from
such models are redundant. So in order to achieve high processing speed we focus on reducing the
number of channels.

OUR CONTRIBUTION

• Our findings show that it is possible to get good quality and fast detection model by in-
creasing size of feature maps and decreasing number of channels.

• We demonstrate how to get lightweight model from a large one, by simply picking some
number of channels and after that fine-tuning the resulting model on the given task.

• Straightforward layer-by-layer architecture like ResNet is shown to give good quality on
par with more sophisticated architectures.

• We present the set of accurate models where the smallest one works in real-time on CPU at
34 fps.
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Table 1: Feature extraction network accuracy on
ImageNet (* - our implementation)

Model Top-1 Top-5 GFLOPs MParams

SqueezeNet1.0 57.50 80.30 0.859 1.2
SqueezeNet1.0 bn 57.67 81.29 0.859 1.2
ResNet10 63.87 85.16 0.893 5.4
MobileNet* 69.29 89.25 0.579 4.3
PVANet 72.34 91.16 0.616 100.9

Table 2: Detection models with different feature
extraction networks (on DETRAC validation split)

Model AP GFLOPs MParams

MobileNet SSD 86.92 1.7 5.2
PVANet SSD 88.24 1.8 5.4
SqueezeNet1.0 SSD 88.61 1.8 3.5
MobileNet light SSD 88.93 0.745 2.3
ResNet10 SSD 89.94 1.8 4.0

SqueezeNet1.0 bn SSD 91.10 1.8 3.5

2 RELATED WORK

Currently there are two popular approaches to object detection, namely: Faster R-CNN (Ren et al.,
2015) and SSD (Liu et al., 2015). As it was shown in Huang et al. (2016) SSD framework has the
best quality/speed trade-off, so we choose it for our experiments.

Besides detection framework it is important to use lightweight feature extraction network to pre-
serve reasonable number of computations. For this reason we compared several such networks:
ResNet10 (He et al., 2015), SqueezeNet (Iandola et al., 2016), MobileNet (Howard et al., 2017),
PVANet (Kim et al., 2016).

Dilation (i.e. input stride in convolution), which we use in our model, first was proposed for seg-
mentation task in Chen et al. (2016). They also sub-sampled two last fully connected layers in VGG
network (Simonyan & Zisserman, 2014) in order to reduce computations. In SSD framework the
same reduced VGG model was used. We extend this idea to sub-sampling all layers in feature
extraction network.

Concurrent with our work, authors in Yu et al. (2017) applied dilations with similar purpose to clas-
sification and segmentation tasks. In comparison with their approach, after removing pooling op-
erations, we additionally sample channels in convolution layers and thus preserve small number of
computations.

In addition to good quality, real-time performance is required for most practical applications. There
are a lot of methods dealing with high computation demand of neural networks. Roughly they can
be divided into two groups, based on dependency on hardware support.

The first group includes such methods as quantization (Gysel et al., 2016; Zhou et al., 2017) and
weight sparsifying (Han et al., 2015). But these approaches require delicate hardware customization
to get practical speedup. For example, quantization relies on hardware support of low-bit operations
and weights pruning leads to sparse computations.

Our target is to get fast model that does not depend on particular hardware, so we focus on the second
hardware independent group. Those methods decrease number of computations using standard DNN
building blocks. Different sorts of decompositions are used, e.g. searching for basis using PCA
decomposition (Wen et al., 2017). Another possible solution is pruning of channels. While weight-
level pruning requires sparse computation support, pruning also can be done on per-channel basis
by eliminating less important channels in convolution filters (Li et al., 2016).

3 ARCHITECTURE

3.1 FEATURE EXTRACTION NETWORK

We choose four networks for our experiments. Their accuracies on ImageNet classification task are
shown in Table 1. It was shown earlier, for example, for visual odometry (Agrawal et al., 2015),
that features trained on two different tasks with the same network architecture lead to different
quality on third task. The same may hold for fine-tuning from different architectures. So we can’t
choose feature extraction network for detection relying solely on classification accuracies. Below we
demonstrate that the best accuracy on classification task doesn’t necessarily lead to better accuracy
for object detection.
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Next we study influence of feature extraction network on detection accuracy. We modify chosen
networks to have similar FLOPs and number of parameters for fair comparison. Brief description of
the networks and our modifications is given below.

SquezeNet1.0 Network consists of ”fire” blocks, each block contains two stages: first convolution
layer makes ”bottleneck” by reducing number of channels. Next there are two parallel inception-like
(Szegedy et al., 2014) convolution layers with 1x1 and 3x3 kernels accordingly. We add two ”fire”
blocks at the end of network in the same way as it was done in SqueezeDet paper (Wu et al., 2016).

MobileNet In recently presented lightweight architecture authors replace convolution layer with
depthwise convolution applying a single 3x3 filter to each input channel, followed by conventional
convolution with 1x1 kernels. This network already contains required number of FLOPs and param-
eters, so we keep it as is.

PVANet PVANet is a relatively sophisticated architecture. It consists of CReLU layers
(Shang et al., 2016) at the beginning of the network, followed by inception blocks. At the end
there are two large fully connected classification layers with 4096 channels each, that’s why it has a
large amount of weights. To reduce number of weights we sample last fully connected layers in the
same way as it was done for VGG model in DeepLab and SSD frameworks:1

• 6x6 kernels are sampled to 3x3 and dilation 6 is added to the following layer in order
to preserve receptive field (to compensate kernel sampling and removing previous max
pooling).

• 4096 channels are sampled to 256. We use 256 instead of 1024 to be able to compare with
other models.

ResNet10 Often only large versions of ResNet architecture are used, e.g. with 50 layers and more,
but we show that small 10-layer model gives good quality as well. We use model with pre-activations
trained in Caffe (Jia et al., 2014) by Computer Vision Group Jena (Simon et al., 2016). We sample
last two layers to 256 channels for comparison with other models.

3.2 SSD MODIFICATIONS FOR DETRAC

Since ground truth bounding boxes for DETRAC test dataset are not publicly available, we prepare
our train/validation split. We select 10 videos (totally 15K frames) as validation and the rest 68K as
train trying to preserve ratio of night/day videos and keep similar locations in the same split.

To adapt SSD framework to DETRAC dataset we make the following changes:

• We keep three prior box scale levels based on the bounding box sizes on the dataset. We
use the same parameters, except for the first ”small” scale, for which we decrease range to
15/50.

• Our experiments show that down-sampling images to 320x256 resolution gives good qual-
ity/speed trade-off.

Results of this configuration with four feature extraction networks are shown in Table 2. One can
see that ResNet10 provides the best accuracy, so we choose it for further experiments.

In the third version of this paper we fix issue with proper handling ignore regions during evaluation
on DETRAC validation split. All conclusions remain the same, the only change is that metrics
become around 2 AP lower.

In Section 3.6 we get the best result with MobileNet feature extraction network, so we conduct
additional experiment with it. We sample channels to 256 for all layers with large number of chan-
nels. This model shows better accuracy comparing to original MobileNet and has smaller number
of parameters, see Table 2.

1We reduce learning rate for detection model training two times, because it diverges with original value.
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Table 3: Comparing original ResNet10 feature extraction network with our detection model

ResNet10 SSDR 1.5 0.75 0.47

name type spatial dim. channels type spatial dim. channels

conv1 7x7/2 128x160 64 7x7/2 128x160 64 49 41
pool1 3x3 64x80 64 3x3 64x80 64 49 41
res block 3x3 64x80 64 3x3 64x80 64 49 41
res block 3x3/2 32x40 128 3x3/2 32x40 64 49 41
res block 3x3/2 16x20 256 3x3 dil 1,2 32x40 128 76 49
res block 3x3/2 8x10 512 3x3 dil 2,4 32x40 128 76 49
conv16 det 3x3/2 16x20 128 76 49
conv32 det 3x3/2 8x10 128 76 49

After submission to the conference we did the same with SqueezeNet1.0 bn network
(SqueezeNet1.0 with batch normalizations). Since it achieves the best quality we expect that our
approach applied to it would lead to even better results.

3.3 MODEL

In this section we study possibility of getting accurate and fast detection model by increasing size
of feature maps and decreasing number of channels, we propose the following model. To keep size
of feature maps we remove two last spatial reductions, that reduce image resolution by 16 and 32
times. In order to preserve receptive field of following convolution layers we add dilations 2 and 4 to
them accordingly. We also sample channels in most convolution layers to retain reasonable number
of FLOPs.2 Resulting architecture is shown in Table 3, model SSDR 1.5.

3.4 STUDYING EVEN LIGHTER MODELS

In order to accelerate existing model further and achieve real-time performance on CPU, we con-
tinue experiments with methods for eliminating channels, see Table 3, models SSDR 0.75 and
SSDR 0.47.

One-shot random sampling First, we take our best SSDR 1.5 model, decrease number of chan-
nels following random sampling strategy and fine-tune it. Resulting 473 MFLOPs model gives 91.09
AP on DETRAC validation split.

One-shot pruning Pruning scheme, proposed in Li et al. (2016) appears to be straightforward
improvement of the random sampling approach:

1. For each convolution layer in network, except for the layers in detection part:

(a) For each filter calculate L1 metric to measure usefulness.

(b) Prune specified percentage of filters with the smallest metrics. Percentage of filters to
prune is chosen empirically to be 5% and 10% for the first and the last half respec-
tively.

2. Fine-tune the whole network on the training dataset with smaller learning rate.

Iterative pruning The above algorithm can be repeated until desired quality/speed trade-off is
achieved leading to iterative pruning as an opposite to one-shot approach.

Contrary to Li et al. (2016), for pruning of pre-elementwise sum convolutions we find that using 3x3
filters to calculate metric instead of shortcut convolutions gives better result.

PCA decomposition Another approach we employ was proposed in Wen et al. (2017) and consists
of applying PCA to filters in order to determine basis for each convolution and then decompose layer
into two consecutive convolutions.

2We experiment with sampling channels by L1 metric (see Section 3.4), but it doesn’t improve results.
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Table 4: Comparison of detection models (on
DETRAC validation split)

Model AP GFLOPs MParams

ResNet10 Clustered 89.07 1.7 3.9
ResNet10 SSD 89.94 1.8 4.0
ResNet10 FPN 91.50 1.4 2.8
SSDR 1.5 (ours) 93.39 1.5 1.1
SSDR 0.75 (ours) 92.49 0.75 0.47
SSDR 0.47 (ours) 91.43 0.47 0.24

Figure 1: Comparison of channel reduction
techniques on DETRAC validation split. Real-time
performance on CPU is labeled with vertical line.
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Table 5: Comparison of our model with the best models from leader-board (on DETRAC test split)

Model full set easy set medium set hard set cloudy set night set rainy set sunny set

RTN 74.15% 91.52% 79.16% 61.73% 77.02% 77.20% 65.27% 84.14%
EB 67.96% 89.65% 73.12% 53.64% 72.42% 73.93% 53.40% 83.73%
NANO 63.01% 80.33% 68.04% 50.73% 67.00% 62.20% 55.89% 73.89%
SSDR 0.75 (ours) 59.07% 77.84% 64.41% 45.98% 62.79% 60.88% 48.55% 74.32%
SSDR 1.5 (ours) 58.68% 79.55% 63.74% 44.93% 61.59% 62.19% 47.47% 74.42%
FasterRCNN2 58.45% 82.75% 63.05% 44.25% 66.29% 69.85% 45.16% 62.34%
YOLO2 57.72% 83.28% 62.25% 42.44% 57.97% 64.53% 47.84% 69.75%
SSDR 0.47 (ours) 57.07% 76.67% 62.22% 43.89% 62.41% 58.48% 45.26% 72.55%

Comparison of aforementioned techniques applied to ours best model is shown in Figure 1. Iterative
pruning strategy gives the best 91.43 AP for 473 MFLOPs model and 92.49 AP for 752 MFLOPs
model. But the results we get with other methods are close to the best one.

3.5 EXPERIMENTS

We compare our models with several recently proposed architectures, namely: base SSD with three
scale levels (Liu et al., 2015), SSD with clustered priors (Erhan et al., 2013; Wu et al., 2016) and
Feature Pyramid Networks (Lin et al., 2016). Our solution gives superior result comparing to all
aforementioned models either on accuracy or processing speed, see Table 4.

Clustered priors Following Erhan et al. (2013); Wu et al. (2016) we cluster DETRAC ground
truth bounding boxes to get dataset specific priors. First, all bounding boxes were clustered into 3
scale groups, and then each of them was clustered into 4 groups to achieve comparable number of
priors with the original SSD. While model with clustered priors does not show the best result (Table
4), clustering approach may provide valuable insight on choice of scale/aspect ratio parameters for
priors generated by other methods.

ACCURACY AND TIME

Table 5 compares accuracies of our models with other results on different subsets of DETRAC test
set. On time of submission our model is ranked 4th in official leader-board3 by quality and it is at
least an order of magnitude faster than all others. Noticeably, on the test set smaller SSDR 0.75
model gives even better accuracy than the base one.

We measure inference speed of our smallest SSDR 0.47 model on Intel R©CoreTMi7-6700K CPU @
4.00GHz x 8 using Intel R©MKL library and Caffe and get ∼34 fps.4

3
http://detrac-db.rit.albany.edu/DetRet

4Note that we merged batch normalization mean/variance in previous convolution weights to eliminate
redundant computations.
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Table 6: Detection models with different feature
extraction networks (on VOC 2007 test)

Model AP GFLOPs MParams

SqueezeNet1.0 SSD 38.45 2.8 7.0
ResNet10 SSD 64.83 2.3 6.7
SqueezeNet1.0 bn SSD 65.61 2.8 7.0
PVANet SSD 67.69 2.3 8.1
MobileNet SSD 70.04 2.6 8.8
SSDM 7.5 (ours) 73.08 7.5 10.1

Table 7: Comparison of ResNet10 based detection
models (on VOC 2007 test)

Model AP GFLOPs MParams

ResNet10 FPN 63.76 2.0 5.3
ResNet10 SSD 64.83 2.3 6.7
SSDR 5.5 (ours) 68.73 5.5 8.5

3.6 PASCAL VOC

In the previous sections we apply our approach to concrete vehicle detection task. In order to exten-
sively study capabilities of proposed techniques we conduct similar set of experiments on general
object detection PASCAL VOC dataset (Everingham et al., 2015). We don’t experiment with chan-
nel reduction for them and use the original SSD 300x300 configuration. The results obtained from
this study are provided in Tables 6 and 7. Since we get the best result for SSD with Mobilenet
feature extraction network, we make use of our modification with replacing two max pooling with
dilations to it as well, see Table 6, SSDM 7.5 model.

Interestingly, performance of detection models with different feature extraction networks on VOC
test set shares tendency in accuracies with Imagenet classification task (Table 1) contrary to what
we get for DETRAC dataset. We argue that this is because of the difference in the number of classes
between these datasets: only one class in DETRAC and 20/1000 in PASCAL VOC and Imagenet
accordingly. Original SqueezeNet1.0 SSD model shows poor result on this dataset, but works quite
well after we add batch normalizations to it, see Table 6, SqueezeNet1.0 bn SSD model.

4 CONCLUSION

We have presented a set of detection models, which are accurate, fast and therefore suit for real-
world applications. We keep high spatial resolution in feature extraction part, rather than losing
spatial structure information caused by progressively reducing the resolution of internal representa-
tions. Even though the proposed network is designed for vehicle detection, we believe our design
choices can be applicable to other practical tasks, particularly where detailed understanding of the
scene is important.

Our network design is independent of network compression and quantization, so those methods are
applicable to our network as well to further increase the actual performance in real tasks. We have
shown that relatively simple pruning technique can give real-time performance on CPU with less
than 2% AP loss on test set.
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