
CompSuite: A Dataset of Java Library Upgrade Incompatibility
Issues

Xiufeng Xu

xiufeng001@e.ntu.edu.sg

Nanyang Technological University

Singapore

Chenguang Zhu

cgzhu@utexas.edu

The University of Texas at Austin

USA

Yi Li

yi_li@ntu.edu.sg

Nanyang Technological University

Singapore

ABSTRACT

Modern software systems heavily rely on external libraries devel-

oped by third-parties to ensure efficient development. However, fre-

quent library upgrades can lead to compatibility issues between the

libraries and their client systems. In this paper, we introduce Comp-

Suite, a dataset that includes 123 real-world Java client-library

pairs where upgrading the library causes an incompatibility issue

in the corresponding client. Each incompatibility issue in Comp-

Suite is associated with a test case authored by the developers,

which can be used to reproduce the issue. The dataset also provides

a command-line interface that simplifies the execution and valida-

tion of each issue. With this infrastructure, users can perform an

inspection of any incompatibility issue with the push of a button,

or reproduce an issue step-by-step for a more detailed investigation.

We make CompSuite publicly available to promote open science.

We believe that various software analysis techniques, such as com-

patibility checking, debugging, and regression test selection, can

benefit from CompSuite.

KEYWORDS

Incompatibility issue, software libraries, dataset

1 INTRODUCTION

Modern software systems are becoming increasingly complex due to

the need for integrating various components developed by different

teams or organizations. These components are often subject to

continuous evolution, and as a result, ensuring that new upgrades

to third-party libraries do not cause any compatibility issues with

the existing software system is a challenging task. The complexity

of these systems and the number of dependencies involved make

it difficult to anticipate and identify incompatibilities that may

arise from updates to external components. Incompatibility issues

resulting from upgrades to external components can compromise

the reliability of software systems, potentially leading to significant

financial losses for the organizations that rely on these systems.

Many techniques have been proposed to address third-party

library compatibility issues, including regression testing [19, 20],

static analysis [3], dependency conflict detection [28], and client-

specific compatibility checking [21, 35]. These techniques address

library compatibility issues in different dimensions and have been

evaluated with their own isolated datasets.

An excellent dataset has the potential to serve as a valuable

reference for future research in this field. However, composing

the dataset requires intricate manual validation, e.g., confirming

whether the cause of a test failure is due to runtime exception, asser-

tion violation, or other reasons. Therefore, we propose CompSuite,

the first incompatibility issue dataset focusing on library behavioral

incompatibility with concrete reproducible test cases. Each test case

is isolated and validated, enabling the direct manifestation of the

incompatibilities.

CompSuite comprises 123 real-world Java client-library pairs

such that upgrading any library results in incompatibility issues for

the corresponding client. Every incompatibility issue in CompSuite

contains a test case created by developers, allowing for the repro-

duction of the issue. On top of this dataset, we also developed an

automated command-line interface, which streamlines all processes

of the reproduction, such as downloading and compiling a projects,

running target tests and re-runing the tests after a library upgrade.

With this infrastructure, users may reproduce an incompatibility

issue programmatically with minimal efforts.

Contribution.To summarize, wemake the following contributions

in this paper:

(1) We construct a dataset, CompSuite, including 123 reproducible,

real-world client-library pairs that manifest incompatibility

issues when upgrading the library. These data points originate

from 88 clients and 104 libraries.

(2) We created an automated command-line interface for the dataset.

With this interface, users are able to programmatically replicate

an incompatibility issue from the dataset with a single com-

mand. The interface also offers separate commands for each

step involved in the reproduction of incompatibility issues.

We envision that CompSuite to be used to evaluate various

program analysis techniques, including compatibility checking,

module-level regression testing selection, and debugging techniques.

More detailed information can be found in Section 4.

The dataset and tool are available at: https://github.com/compsuite-

team/compsuite.

2 DATASET CREATION

In this section, we outline the methodology and process employed

to create the CompSuite dataset.

2.1 Subjects Selection

To ensure the representativeness and reproducibility of the Comp-

Suite dataset, we focus on including high-quality and popular

client projects and libraries. The selection of client projects was

sourced from GitHub [4], a widely recognized online community

for hosting open-source codebases. To ensure the inclusion of the

most popular projects, we systematically sorted all the available

projects in descending order based on their number of stars on

GitHub and selected the target clients from the top of the list. The

selection of libraries was sourced from Maven Central [17], which

hosts 33.5M of Java libraries and their associated binaries, making

it a widely used repository of libraries for Java API and library

1

ar
X

iv
:2

30
5.

08
67

1v
1

 [
cs

.S
E

]
 1

5
M

ay
 2

02
3

https://github.com/compsuite-team/compsuite
https://github.com/compsuite-team/compsuite

Xiufeng Xu, Chenguang Zhu, and Yi Li

Table 1: Details of clients and libraries included in CompSuite.

Client #LoC #Star Library #Maven Usage

retrofit 29.7K 41.5K org.slf4j:slf4j-api 62.5K

apollo 61.3K 28K com.google.guava:guava 34.4K

druid 441.9K 26.8K org.scala-lang:scala-library 34K

webmagic 17.4K 10.8K com.fasterxml.jackson.core:jackson-databind 25.8K

languagetool 171.2K 8.5K ch.qos.logback:logback-classic 25.5K

Other 83 clients (mean) 371.6K 1.3K Other 99 libraries (mean) 3.2K

All clients (mean) 358.7K 2.5K All libraries (mean) 4.8K

research [13, 22, 24, 32]. We include a library in the dataset only if

it has more than 100 usages (i.e., clients) on Maven Central. Our se-

lection criteria aimed to ensure the inclusion of popular and widely

used client projects and libraries in the dataset, thereby maximizing

its relevance and usefulness to the research community.

Among the highly-rated client projects, our selection criteria fo-

cused on those that use Maven [16] as their build systems, given its

widespread adoption and maturity. Maven provides a standardized

approach to managing Java projects and their dependencies, where

each library dependency in a Maven client project is represented

as an item in a pom.xml file, making it easy to identify and edit

library versions programmatically. Furthermore, Maven offers built-

in functionality for running unit tests and generating test reports,

which simplifies the identification and diagnosis of incompatibility

issues arising from test executions. Since Maven projects typically

rely on Maven Central as their centralized repository for hosting

and downloading libraries, the process of obtaining and managing

libraries in our dataset is simplified.

Table 1 presents the top 5 client projects and libraries in the

CompSuite dataset, ranked by popularity. For each client project,

we provide information on its lines of code (LoC) and the number

of stars it has received on GitHub, while for each library, we include

its number of usages by other projects from Maven Central.

In total, CompSuite comprises 123 incompatible client-library

pairs. These pairs encompass 88 distinct clients and 104 libraries al-

together. On average, the affected clients have 2.5K stars on GitHub

and 358.7K lines of code, while incompatible libraries have 4.8K

usages on Maven Central. Thus, we believe that the incompatibility

issues present in the CompSuite dataset have a significant impact

on a large number of codebases and can affect many users of the

libraries, either directly or indirectly.

To ensure that all client projects in the dataset are executable and

the runs are reproducible, we performed a series of checks on each

project. First, we checked out the project to the version (SHA) at the

time of the dataset creation, which we refer to as the base version.
Next, we ran the standard Maven project compilation command

to verify if the project compiles successfully. If the project fails to

compile, we excluded it from the dataset. Subsequently, we ran the

standard Maven test command to execute all the tests in the project,

ensuring that all tests pass on the base version. We excluded any

project that fails to pass tests at this stage. Finally, we only included

the client projects that successfully compile and pass all tests on

the base version, thereby ensuring that the dataset is only consist

of projects which can be executed and whose executions can be

reproduced.

2.2 Data Collection

We collected the data following the below procedures. Figure 1

visualizes the overall architecture of CompSuite. In the upper left

portion of Fig. 1, we illustrate the approach taken by CompSuite to

identify incompatibilities between a client project and its dependent

libraries. Specifically, for each client project on its base version, we

upgraded each of its dependent libraries and tested if the upgrade

caused any test failures. Our intuition behind this approach is that

since all the tests in the client passed on the base version, if up-

grading any library causes a test failure, that library upgrade must

have introduced incompatibility issues. We refer to the test that

flips from passing to failing as an incompatibility-revealing test.
To automatically upgrade the libraries and run the tests, we uti-

lized the Maven Versions Plugin [18]. For a given client project,

we scanned its dependency list using this plugin to identify all the

libraries that had newer versions available on Maven Central. If

a library had a newer version, we marked it as upgradable. Next,

for each upgradable library, we used the plugin to upgrade it by

updating the pom.xml file to the most recent version on Maven

Central. We then re-executed the test suite of the client. If any tests

failed during this run, we marked the client-library pair as having

an incompatibility issue and marked the test as an incompatibility-

revealing test of this issue. It is crucial to note that we only upgraded

one library at a time to isolate failures caused by different libraries.

To ensure the accuracy and dependability of the dataset, we carried

out a manual verification process for each identified incompati-

bility issue. In particular, we carefully examined the test failure

messages and reports to confirm that they were indeed caused by

the upgraded library. For each incompatible client-library pair, we

selected a single incompatibility-revealing test to be included in

the final dataset. In cases where a client-library pair had multi-

ple incompatibility issues, we chose the one that we deemed most

representative and easy to comprehend.

Finally, we persisted the metadata of all the selected incompat-

ibility issues in a collection of json files. Figure 2 presents the

metadata of an incompatibility issue in the CompSuite dataset. The

data schema includes the ID of the issue, client project name, SHA of

the client base version, URL of the client project, library name, ver-

sions of the old and new libraries, the name of the incompatibility-

revealing test, the submodule containing the incompatibility-revealing

test, and the command to run the test. The majority of the infor-

mation is self-explanatory. However, it is worth noting that the old

version of the library is the one utilized at the base version of the

client, while the new version is the most recent version found on

Maven Central that triggers the incompatibility when upgrading,

as described in Section 2.2.

2

CompSuite: A Dataset of Java Library Upgrade Incompatibility Issues

Metadata

lib lib’

Library upgrade

test success test fail

……

……

Original Repositories

fork

V!"#$
Tag: org.restlet.jse--org.restlet-2.2.1; com.alibaba--fastjson-1.1.41
Test: ControllerStarterTest#testDelete

TestSourceKafkaClusterValidationManager#testValidation

V2%&'()*
Tag: com.alibaba--fastjson-1.2.62
Test: TestSourceKafkaClusterValidationManager#testValidation

V1%&'()*
Tag: org.restlet.jse--org.restlet-3.0-M1
Test: ControllerStarterTest#testDelete

CompRunner

Filter & validate

Incompatibities

Read Reproduce Incompatibilities

Repository Structure of uReplicator

Json File

Dataset Creation Process Dataset Overview

Branch: org.restlet.jse--org.restlet

Branch: com.alibaba--fastjson

Figure 1: The architecture of CompSuite.

1 {
2 "id": "i-49",
3 "client": "wasabi",
4 "sha": "9f2aa5f92e49c3844d787320e2d22e15317aa8e2",
5 "url": "https://github.com/intuit/wasabi",
6 "lib": "org.apache.httpcomponents:httpclient",
7 "old": "4.5.1",
8 "new": "4.5.10",
9 "test":

"DefaultRestEndPointTest#testGetRestEndPointURI",↩→

10 "submodule": "modules/export",
11 "test_cmd": "mvn

org.apache.maven.plugins:maven-surefire-plugin:2.20:test
-fn -Drat.ignoreErrors=true -DtrimStackTrace=false
-Dtest=DefaultRestEndPointTest#testGetRestEndPointURI"

↩→

↩→

↩→

12 }

Figure 2: The data schema of CompSuite

3 DATASET USAGE

In this section, we provide instructions on the usage of our dataset.

3.1 Exploring an Incompatibility Issue

To ensure the reproducibility of incompatibility issues and to facili-

tate the demonstration of such issues, we have annotated check-

points in the version histories of the client projects and provided

tags that guide users to explore any incompatibility issues present

in the CompSuite dataset.

As illustrated on the right-hand side of Fig. 1, our approach

to handling incompatible client-library pairs involved creating a

fork [5] of the original client project for each identified pair, while

preserving all code and version history information. To mark the

base version of the project, we utilized the git tag [6] command,

designating it as 𝑉𝑏𝑎𝑠𝑒 . Subsequently, we developed a patch to up-

grade the library from its old version to its new version, a simple

process that can be accomplished with a single line change in the

pom.xml file for Maven projects. This patch was then applied to

the 𝑉𝑏𝑎𝑠𝑒 version, resulting in a new version that we identified as

𝑉𝑖𝑛𝑐𝑜𝑚𝑝 . Notably, the only difference between 𝑉𝑏𝑎𝑠𝑒 and 𝑉𝑖𝑛𝑐𝑜𝑚𝑝

lies in the library version used: the old (compatible) version is uti-

lized on 𝑉𝑏𝑎𝑠𝑒 while the new (incompatible) version is utilized on

𝑉𝑖𝑛𝑐𝑜𝑚𝑝 . For instance, in Fig. 1, the client project employs version

2.2.1 of the org.restlet.jse-org.restlet library on its 𝑉𝑏𝑎𝑠𝑒
and version 3.0-M1 on its𝑉𝑖𝑛𝑐𝑜𝑚𝑝 . In cases where multiple libraries

exhibit incompatibility issues in the client project, we not only

create different branches for each library with its name, but also

generate a 𝑉𝑖𝑛𝑐𝑜𝑚𝑝 version tag for each, with accompanying anno-

tations that denote the corresponding library name and version, as

depicted in Fig. 1.

The 𝑉𝑖𝑛𝑐𝑜𝑚𝑝 tag for each client-library pair also specifies the

specific test that can reveal the incompatibility issue during its

run. Following Maven’s convention, the test name is formatted

as TestClassName#testMethodName. By simply copying the text

from the tag, users can easily run the incompatibility-revealing

test on the 𝑉𝑖𝑛𝑐𝑜𝑚𝑝 version and observe the incompatibility issue.

On the 𝑉𝑏𝑎𝑠𝑒 version, all tests should pass. This design aims to

simplify the usage of CompSuite and make it more accessible and

user-friendly.

Using the forked client repositories and version tags provided

in the CompSuite dataset, users can easily reproduce any incom-

patibility issue by checking out to 𝑉𝑖𝑛𝑐𝑜𝑚𝑝 and running the corre-

sponding incompatibility-revealing test. To compare the behaviors

of the client with compatible and incompatible library versions,

users can run the incompatibility-revealing test on both 𝑉𝑏𝑎𝑠𝑒 and

𝑉𝑖𝑛𝑐𝑜𝑚𝑝 and compare the test outcomes. This allows for a clear

understanding of the impact of the library upgrade on the client

behaviors.

3.2 CompRunner: An Automated Tool for

Reproducing Incompatibility Issues

We further developed an automated tool, named CompRunner,

which is a part of CompSuite. With CompRunner, users can easily

reproduce and investigate any incompatibility issue in a one-click

manner by providing the issue ID as input.

We offer an option which enables users to reproduce an incom-

patibility issue end-to-end with a single command as is shown

3

Xiufeng Xu, Chenguang Zhu, and Yi Li

below. The command outputs and saves all intermediate results

and logs for future reference.

1 python main.py --incompat i-56

When CompRunner runs, it clones the client project from our

forked code repository and saves it in the output directory (which is

configurable). Then, it checks out to the base version, compiles the

code, and runs the incompatibility-revealing test. Next, it upgrades

the library to the new version, reruns the incompatibility-revealing

test, and reports any failure information to the user.

We also provide a set of commands that break down the entire

cycle of incompatibility exploration into separate steps:

1 python main.py --download i-56
2 python main.py --compile i-56
3 python main.py --testold i-56
4 python main.py --testnew i-56

We provide several other CompRunner commands for users

to inspect different aspects of the incompatibility issues from the

CompSuite dataset. A complete list of these commands can be

found on CompSuite’s website at https://github.com/compsuite-

team/compsuite.

4 APPLICATION SCENARIOS

We anticipate that both researchers and practitioners can benefit

from CompSuite to facilitate their investigations and research on

errors and test failures induced by library upgrades. CompSuite

supports the evaluation of various program analysis techniques,

such as software upgrade compatibility checking, debugging, and

module-level regression test selection techniques.

As an overview, authors of compatibility checkers and detectors

may use CompSuite as a benchmark to evaluate the performance

of their techniques against other baseline approaches. Furthermore,

authors of debugging techniques can utilize CompSuite as a dataset

of compatibility bugs, where each bug corresponds to a test case

that verifies the existence or absence of the bug. Finally, authors

of module-level regression test selection techniques can use Comp-

Suite to assess the safety of their approaches. A safe module-level

RTS technique should select all the corresponding incompatibility-

revealing test cases when the library changes.

We detail the three usage scenarios as follows.

• Compatibility Checkers and Detectors. The existing tech-

niques for compatibility checking and detection in Java can be

categorized into three groups: i) Techniques for detecting API

incompatibility that focus on detecting API-breaking changes,

such as renaming of code entities and changes in parameter

types [9, 10, 15, 25, 30]. ii) Techniques for detecting behavioral

incompatibility that focus on identifying behavioral differences

that cause test failures when a library is upgraded in a client, such

as changes in program states [21, 37]. iii) Techniques for detect-

ing dependency conflicts [26–28], which aim to identify library

APIs that exhibit inconsistent semantics between libraries due

to class path shading. We believe that developers of techniques

in the first two categories can use CompSuite as a benchmark

to evaluate their tools’ performance, such as precision and re-

call. They can run their tools on the CompSuite dataset and

compare the results with the incompatibility issues present in

the dataset. On the other hand, developers of techniques for de-

tecting dependency conflicts can slightly modify CompSuite’s

dataset by placing both old and new libraries on the class path,

running library conflict detection, and checking if the issues can

be detected.

• Module-Level Regression Test Selection. Regression test se-

lection (RTS) is a technique that aims to reduce the cost of regres-

sion testing by selecting a subset of tests that may change the be-

havior due to code changes on each program version [7, 14, 34, 35].

Module-level RTS focuses on selecting the affected client tests

when a dependent library is updated [8]. The developers of

module-level RTS techniques can evaluate the safety of their

tools using CompSuite. For each client-library pair in Comp-

Suite, a module-level RTS tool should select all the correspond-

ing incompatibility-revealing tests when upgrading the library

from the old version to the new version.

• Debugging. The existing debugging techniques for Java, in-

clude symbolic execution [1], delta debugging [33], fault local-

ization [31], etc. These techniques aim to identify the root cause

of errors or failures in software. Developers of debugging tech-

niques can use CompSuite as a dataset of compatibility bugs,

where each compatibility bug corresponds to a test case that

checks the presence or absence of the bug. They can use Comp-

Suite to evaluate their techniques’ ability to perform root cause

analysis by trying to identify the corresponding library change

that caused the compatibility issue.

5 RELATEDWORK

To cater to the requirements of various research endeavors, numer-

ous outstanding datasets have been made available to date. Just

et al. [12] introduced Defects4J, a database supplies actual bugs,

fixed program versions, and corresponding test suites. Bui et al. [2]

introduced Vul4J focusing on Java vulnerabilities. Jezek et al. [11]

released their dataset of compatibility issues arising from program

evolution. There are also many datasets cater for other research

domains and ecosystems [23, 29, 36].

Distinct from the previously discussed datasets, CompSuite is

the first dataset emphasizes the incompatibility issues caused by

Java library behavior changes. This type of issues are prevalent

and difficult to detect. Additionally, Our developed automated tools

also have the capability to assist researchers in swiftly reproduc-

ing issues. We believe that a dataset targeting the library upgrade

incompatibility issue will contribute to the advancement of the

associated technologies.

6 CONCLUSION

This paper presents CompSuite, a dataset containing 123 real-world

Java client-library pairs where library upgrades cause compatibility

issues in the corresponding clients. On top of it, we also developed

a command-line interface, CompRunner, which allows users to

quickly check incompatibility issues with a single command or

reproduce an incompability programmatically for in-depth analysis.

We believe that various program analysis techniques, such as library

compatibility checking, debugging, and regression test selection,

may benefit from our dataset.

4

https://github.com/compsuite-team/compsuite
https://github.com/compsuite-team/compsuite

CompSuite: A Dataset of Java Library Upgrade Incompatibility Issues

REFERENCES

[1] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and

Irene Finocchi. 2018. A survey of symbolic execution techniques. ACMComputing
Surveys (CSUR) 51, 3 (2018), 1–39.

[2] Quang-Cuong Bui, Riccardo Scandariato, and Nicolás E Díaz Ferreyra. 2022.

Vul4J: a dataset of reproducible Java vulnerabilities geared towards the study of

program repair techniques. In Proceedings of the 19th International Conference on
Mining Software Repositories. 464–468.

[3] Darius Foo, Hendy Chua, Jason Yeo, Ming Yi Ang, and Asankhaya Sharma. 2018.

Efficient static checking of library updates. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 791–796.

[4] Github. 2023. Github. https://github.com/.

[5] Github. 2023. Github Fork. https://docs.github.com/en/get-started/quickstart/

fork-a-repo.

[6] Github. 2023. Github Tag. https://docs.github.com/en/desktop/contributing-and-

collaborating-using-github-desktop/managing-commits/managing-tags.

[7] Milos Gligoric, Lamyaa Eloussi, andDarkoMarinov. 2015. Practical regression test

selection with dynamic file dependencies. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis. 211–222.

[8] Alex Gyori, Owolabi Legunsen, Farah Hariri, and Darko Marinov. 2018. Evaluat-

ing regression test selection opportunities in a very large open-source ecosystem.

In 2018 IEEE 29th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 112–122.

[9] Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue.

2018. Understanding and detecting evolution-induced compatibility issues in

android apps. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. 167–177.

[10] Huaxun Huang, Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2018. Under-

standing and detecting callback compatibility issues for android applications. In

Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. 532–542.

[11] Kamil Jezek and Jens Dietrich. 2017. API Evolution and Compatibility: A Data

Corpus and Tool Evaluation. J. Object Technol. 16, 4 (2017), 2–1.
[12] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-

isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 international symposium on software testing and analysis. 437–440.

[13] Raula Gaikovina Kula, Coen De Roover, Daniel German, Takashi Ishio, and

Katsuro Inoue. 2014. Visualizing the evolution of systems and their library

dependencies. In 2014 Second IEEE Working Conference on Software Visualization.
IEEE, 127–136.

[14] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and

Darko Marinov. 2016. An extensive study of static regression test selection

in modern software evolution. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 583–594.

[15] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. 2018. Cid:

Automating the detection of api-related compatibility issues in android apps.

In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 153–163.

[16] Maven. 2023. Apache Maven. https://maven.apache.org/.

[17] Maven. 2023. Maven Central Repositories. https://mvnrepository.com/.

[18] Maven. 2023. Maven Versions Plugin. https://maven.apache.org/plugins/index.

html.

[19] GianlucaMezzetti, Anders Møller, andMartin Toldam Torp. 2018. Type regression

testing to detect breaking changes inNode. js libraries. In 32nd european conference
on object-oriented programming (ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

[20] Anders Møller and Martin Toldam Torp. 2019. Model-based testing of breaking

changes in Node. js libraries. In Proceedings of the 2019 27th ACM joint meeting
on european software engineering conference and symposium on the foundations of
software engineering. 409–419.

[21] FedericoMora, Yi Li, Julia Rubin, andMarsha Chechik. 2018. Client-specific equiv-

alence checking. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. 441–451.

[22] Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. 2017. A study on behav-

ioral backward incompatibility bugs in Java software libraries. In 2017 IEEE/ACM
39th International Conference on Software Engineering Companion (ICSE-C). IEEE,
127–129.

[23] Sebastian Nielebock, Paul Blockhaus, Jacob Krüger, and Frank Ortmeier. 2021. An-

droidCompass: A Dataset of Android Compatibility Checks in Code Repositories.

In 2021 IEEE/ACM 18th International Conference on Mining Software Repositories
(MSR). IEEE, 535–539.

[24] Dong Qiu, Bixin Li, and Hareton Leung. 2016. Understanding the API usage in

Java. Information and software technology 73 (2016), 81–100.

[25] Simone Scalabrino, Gabriele Bavota, Mario Linares-Vásquez, Michele Lanza, and

Rocco Oliveto. 2019. Data-driven solutions to detect api compatibility issues in

android: an empirical study. In 2019 IEEE/ACM 16th International Conference on

Mining Software Repositories (MSR). IEEE, 288–298.
[26] Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang, Bo Yang, Hai Yu,

Zhiliang Zhu, and Shing-Chi Cheung. 2018. Do the dependency conflicts in my

project matter?. In Proceedings of the 2018 26th ACM joint meeting on european
software engineering conference and symposium on the foundations of software
engineering. 319–330.

[27] Ying Wang, Ming Wen, Rongxin Wu, Zhenwei Liu, Shin Hwei Tan, Zhiliang Zhu,

Hai Yu, and Shing-Chi Cheung. 2019. Could i have a stack trace to examine the

dependency conflict issue?. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 572–583.

[28] YingWang, RongxinWu, ChaoWang, MingWen, Yepang Liu, Shing-Chi Cheung,

Hai Yu, Chang Xu, and Zhiliang Zhu. 2021. Will Dependency Conflicts Affect

My Program’s Semantics? IEEE Transactions on Software Engineering 48, 7 (2021),

2295–2316.

[29] LiliWei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming android fragmentation:

Characterizing and detecting compatibility issues for android apps. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engineering.
226–237.

[30] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2019. Pivot: learning api-device

correlations to facilitate android compatibility issue detection. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 878–888.

[31] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A

survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740.

[32] Wei Wu, Foutse Khomh, Bram Adams, Yann-Gaël Guéhéneuc, and Giuliano

Antoniol. 2016. An exploratory study of api changes and usages based on apache

and eclipse ecosystems. Empirical Software Engineering 21 (2016), 2366–2412.

[33] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?

ACM SIGSOFT Software engineering notes 24, 6 (1999), 253–267.
[34] Lingming Zhang. 2018. Hybrid regression test selection. In Proceedings of the

40th International Conference on Software Engineering. 199–209.
[35] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A

framework for checking regression test selection tools. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 430–441.

[36] Chenguang Zhu, Yi Li, Julia Rubin, and Marsha Chechik. 2017. A dataset for

dynamic discovery of semantic changes in version controlled software histories.

In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR). IEEE, 523–526.

[37] Chenguang Zhu, Mengshi Zhang, Xiuheng Wu, Xiufeng Xu, and Yi Li. 2023.

Client-Specific Upgrade Compatibility Checking via Knowledge-Guided Discov-

ery. ACM Trans. Softw. Eng. Methodol. (feb 2023). https://doi.org/10.1145/3582569

Just Accepted.

5

https://github.com/
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/desktop/contributing-and-collaborating-using-github-desktop/managing-commits/managing-tags
https://docs.github.com/en/desktop/contributing-and-collaborating-using-github-desktop/managing-commits/managing-tags
https://maven.apache.org/
https://mvnrepository.com/
https://maven.apache.org/plugins/index.html
https://maven.apache.org/plugins/index.html
https://doi.org/10.1145/3582569

	Abstract
	1 Introduction
	2 Dataset Creation
	2.1 Subjects Selection
	2.2 Data Collection

	3 Dataset Usage
	3.1 Exploring an Incompatibility Issue
	3.2 CompRunner: An Automated Tool for Reproducing Incompatibility Issues

	4 Application Scenarios
	5 related work
	6 Conclusion
	References

