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Abstract--Application development with hardware description 
languages (HDLs) such as VHDL or Verilog involves numerous 
productivity challenges, limiting the potential impact of 
reconfigurable computing (RC) with FPGAs in high-
performance computing. Major challenges with HDL design 
include steep learning curves, large and complex codes, long 
compilation times, and lack of development standards across 
platforms. A relative newcomer to RC, the Open Computing 
Language (OpenCL) reduces productivity hurdles by providing a 
platform-independent, C-based programming language. In this 
study, we conduct a performance and productivity comparison 
between three image-processing kernels (Canny edge detector, 
Sobel filter, and SURF feature-extractor) developed using 
Altera’s SDK for OpenCL and traditional VHDL. Our results 
show that VHDL designs achieved a more efficient use of 
resources (59% to 70% less logic), however, both OpenCL and 
VHDL designs resulted in similar timing constraints (255MHz < 
fmax < 325MHz). Furthermore, we observed a 6× increase in 
productivity when using OpenCL development tools, as well as 
the ability to efficiently port the same OpenCL designs without 
change to three different RC platforms, with similar 
performance in terms of frequency and resource utilization. 

Keywords—Altera SDK for OpenCL; FPGA; Application 
Development; High-Level Synthesis     

I. INTRODUCTION 
 RC architectures developed using traditional HDL design 
methods can efficiently exploit both the intrinsic wide and 
deep parallelism of many applications [1]. Custom RC 
architectures have been used to process high frame rates for 
high-definition (HD) images, and have enabled efficient real-
time processing [1], while maintaining a lower power budget 
in comparison to competing GPU and CPU solutions. 
However, the adoption of RC platforms for general-purpose 
and high-performance computing has been limited by 
numerous productivity challenges faced by developers when 
using HDL. These challenges include the requirement of 
specialized training for the design/verification of large and 
complex RTL code and long compilation times. In addition, 
there is a lack of development standards across different RC 
platforms, further complicating the design process. As a result, 
these development challenges have often caused designers to 
adopt traditional fixed-architecture devices over RC platforms.   

The Open Computing Language (OpenCL) is a parallel 
programming standard that enables developers to create their 
parallel applications using a C-based language and target a 
variety of heterogeneous platforms including CPUs, GPUs, 
DSPs, and most recently FPGAs. In the case of FPGAs, 
OpenCL acts as a high-level synthesis tool for HDL 
development. Using OpenCL, a designer can work with an RC 
platform while avoiding RTL code as well as platform-
specific tools and libraries. The first commercial framework 
for OpenCL on FPGAs is the Altera SDK for OpenCL. The 
Altera Offline Compiler (AOC) exploits an application’s wide 
parallelism by using SIMD data types and simple compiler 
pragmas. The tool further optimizes hardware design by 
pipelining the datapath to harness deep parallelism available in 
the application. All of these features help alleviate the 
specialized and complex training previously needed for 
hardware design. 

In this study, we map three image-processing kernels from 
the OpenCV library to an Altera Stratix-V FPGA on a variety 
of RC platforms. The Sobel [2] and Canny [3] kernels are used 
for edge detection, while the Speeded-Up Robust Features 
(SURF) [4] kernel is used for feature extraction. These 
information-extraction kernels represent the initial stage of 
many image-processing applications. Object-recognition, 
tracking, and unsupervised-navigation applications all require 
scale- and rotation-invariant interest points. This suite of 
image-processing kernels is developed using both traditional 
HDL design flow and the Altera SDK for OpenCL.  

The organization of the paper proceeds by first presenting 
background information on the selected kernels in Section II. 
Section III compares the kernel design flows using HDL and 
OpenCL. We present a productivity and performance 
comparison between HDL and OpenCL in Section IV, and 
draw final conclusions from this work in Section V. 

II. IMAGE-PROCESSING KERNELS 
Edge detection is used to extract the important structural 

properties in the form of connected curves that represent 
objects contours. Feature extraction is a technique used to 
quantize the input image to a relatively small set of interest 
points. The features extracted help describe the unique 
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intrinsic characteristics of objects, and have been successfully 
used to label objects at different scales and from different 
angles [4]. The most frequently used image-processing kernels 
for edge detection are the Canny and Sobel filters, while the 
SURF feature-extractor has been efficiently used to locate 
interest points that are scale- and rotation-invariant.  

The Canny, Sobel, and SURF kernels are based, at their 
core, on the fast gradient calculation of pixel intensity values. 
Local gradients are extracted using a 2D convolution with 
first- or second-order Gaussian derivative filters. The Sobel 
filters are used in both the Canny and Sobel kernels to sweep 
through the input image and extract gradients in the x and y 
directions. The SURF kernel uses a larger set of symmetric 
box filters (Fig.1) that represent second-order Gaussian 
derivatives along the vertical (y), horizontal (x) and diagonal 
(xy) directions. For optimal performance, the kernels are 
mapped to hardware using a sliding window approach. 

 
Fig. 1: Box filters used to approximate Gaussian derivatives 

A smart buffer (Fig. 2) composed of registers and block 
RAMs (BRAMs) is used to transfer image rows from external 
to on-chip FPGA memory. Once full, the smart buffer 
provides access to all pixel values required to complete the 
convolution operation. Furthermore, the datapaths designed 
for each kernel are fully pipelined and enable processing of a 
continuous input stream of pixels without ever stalling the 
pipeline. 

Fig. 3 displays the output of the Sobel and Canny kernels. 
The Canny edge detector requires two additional steps from 
the Sobel operator output. A non-maximum suppression is 
performed along the gradient direction to thin edges (ideally 
one pixel thin), and a connectivity analysis step that fills in 
edge discontinuities. Finally, the last kernel mapped to 
hardware is the SURF feature extractor. 

The SURF architecture is more complex, due to the 
requirement that interest points have to be rotation- and scale-
invariant. The SURF kernel therefore performs the 2D 
convolution with 24 box filters, spanning from a minimum of 
9×9 up to a maximum of 51×51 filter sizes. The same smart 
buffer used in previous Canny and Sobel kernels is also used 
as part of the SURF architecture. In addition, after the 
convolution step, the SURF kernel requires the Hessian 
determinant calculation [4] for each of the six scales, followed 
by a non-maximum-suppression that determines the dominant 
scale. The outputs of the SURF feature extractor are interest-
point locations (x, y coordinates). Fig. 4 shows the resulting 
output of the SURF kernel with features marked in red. 

 
Fig. 2:Block diagram of sliding-window smart buffer  

 
Fig. 3: a) Input image; b) Sobel and c) Canny kernel output 

 
Fig. 4: SURF kernel interest-point locations; a) Scale-invariant 

interest points; b) Rotation-invariant interest points  

III. DESIGN FLOW COMPARISON 
The two development methods (OpenCL and HDL) under 

study follow different design approaches. In this section, we 
draw a direct side-by-side comparison between stages of the 
two design flows that must be completed when mapping a 
kernel to hardware. 

A. VHDL design flow 

Application development using the VHDL language 
generally follows the design flowchart in Fig. 5. The designer 
begins by specifying the hardware architecture at the register-
transfer level (RTL) using the hardware description language. 
A test bench is developed and used to perform functional 
verification by checking each stage of the design using a 
cycle-accurate simulation. This functional simulation step 
verifies code syntax and ensures functional and behavioral 
correctness of the design. This part of the design process can 
easily span an extended amount of time due to the fine 
granularity (i.e., bit-level) of the simulation.  

 
Fig. 5: VHDL design flow 

xy y x xyy
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If a problem occurs, the VHDL developer is required to 
inspect the simulation at the level of individual bits. After 
verification, the synthesis stage analyzes the design and 
translates it to logic gates. This stage optimizes the resource 
utilization of the design. If the application requires more 
resources than are available, the designer has the option of 
selecting a different, larger device, or optimizing the VHDL 
code and the structure of the design to lower resource 
utilization. This design-tuning phase can vary in complexity, 
especially in the case when the required resources are 
unavailable and the design needs to be scaled back. Finally, 
when the VHDL developer has ensured the design will fit on 
the device, the design proceeds to place and route.  

In the place-and-route stage, the fitter maps the physical 
design to the device resources by matching logic functions to 
the optimal logic cell location. This operation is one of the 
most taxing parts of the VHDL compilation process, taking 
multiple hours and in some cases days to complete.  While 
performing place and route, the fitter tries to meet the power 
and timing constraints specified by the designer. If these 
constraints cannot be met, the fitter issues a compilation error 
messages. Again, the VHDL designer has the option of 
changing the device or returning to the initial step and 
restructuring the design (i.e., edit VHDL code).  

It is evident that the typical VHDL design flow can 
encounter several feedback loops that require the developer to 
go back to the initial stage of the design process. The steep 
learning curves associated with platform-specific tools delay 
VHDL developers from migrating their design to larger, 
faster, or more power-efficient FPGAs. These productivity 
challenges that characterize the VHDL design process have 
deterred application developers from targeting FPGAs. 

B. OpenCL design flow 

The Altera OpenCL SDK for FPGAs introduces the design 
flow shown in Fig. 6. This design flow alleviates many of the 
productivity bottlenecks of current VHDL tools by delaying 
the compilation to the last stage of the design process. 

During the initial development stage, the application is 
described using a C-like syntax for generating one or more 
OpenCL kernels. The Altera Offline Compiler (AOC) 
translates the OpenCL code directly to a RTL design that is 
portable across most RC platforms featuring supported Altera 
FPGAs. The tool further simplifies the design flow by 
automatically handling interactions between different memory 
objects (external memory, BRAMS and register arrays) and 
the pipelined datapath. These interactions include the control 
logic to stall the pipeline, and the ability to schedule new 
work-items. The designer is no longer required to work at the 
RTL level, enabling programmers to create custom hardware 
architectures without specialized training for the design and 
verification of large and complex RTL code. 

 
Fig. 6: OpenCL design flow 

In addition to generating an RTL design, the AOC builds a 
special executable file to use with the full-system emulator. 
The emulator included with the AOC verifies the kernel code 
based on the targeted FPGA platform. Unlike VHDL test 
benches where a designer verifies individual bits, the AOC 
emulator allows designers to debug the OpenCL code in a 
software environment with GNU debugger support. The 
designer is able to set software breakpoints and inspect data 
elements while emulating their hardware prototype on an x86-
based system. The familiarity of using tools like the GNU 
debugger reduces the learning curve required to use RC 
platforms. Another key advantage of the AOC emulator is that 
the host C/C++ code, which runs on the host CPU, is designed 
and verified along with the kernel code (in the FPGA) in an 
integrated manner. Traditionally, the host code for a VHDL 
project is designed and tested independently, after the kernel 
architecture is mapped to the FPGA, leaving timing, power, 
and resource utilization analysis to the post place-and-route 
design phase. 

C. OpenCL optimizations  

The goal of optimizing an AOC OpenCL kernel is to create 
a deep and wide pipelined architecture that does not stall 
during execution. A variety of strategies were used to optimize 
the selected image-processing kernels in this study. We 
describe one such example to demonstrate the effectiveness of 
Altera’s OpenCL tools for generating pipelined datapaths. 
Each of the three target kernels requires fast access to a 
window of neighboring pixels; therefore, a sliding-window 
architecture provides the optimal solution. Fig. 7 illustrates the 
simple syntax required to generate a sliding-window 
architecture in OpenCL. Fig. 7a describes a shift register using 
the #pragma unroll statement. The #pragma unroll instructs 
the compiler to perform each loop iteration in parallel if data 
dependencies permit it.  

The second stage of the kernel, illustrated in Fig. 7b, uses 
#pragma unroll to form a wide pipeline design. Fig. 7b is used 
to unroll the 2D convolution between two 3×3 filters with 
coefficients Gx, Gy and a 3×3 window of pixel values rows(i,j). 
Each loop iteration is parallelized and, as a result, all 18 
multiplications for the two convolutions are executed in 
parallel. Using both code snippets in Fig. 7, the OpenCL tool 
constructs a fully pipelined, 2D-convolution operator that 
produces a new result every clock cycle. 

 

191

Table of Contents
for this manuscript



#pragma unroll 
for(int i=MAX_VAL;i>0; --i) 
{     
     rows[i] =rows[i - 1]; 
} 
rows[0] = frame_in; 
 
 

 
a)     

int x = 0; 
int y = 0; 
#pragma unroll 
for(int i=0; i<3; ++i)  
{ 
  #pragma unroll 
  for (int j=0; j<3; ++j)  
  {         
    x+=rows(i,j)*Gx[i][j]; 
    y+=rows(i,j)*Gy[i][j]; 
    } 
} 

b) 
Fig.7: a) OpenCL example code that generates a register chain; b) 

OpenCL example code that generates a sliding window for 2D 
convolution  

 

IV. COMPARATIVE ANALYSIS: VHDL. vs. OPENCL 

This comparative study between OpenCL and VHDL has 
been performed using three image-processing kernels (Sobel, 
Canny, and SURF). We first describe the experimental setup, 
followed by performance and productivity results. 

A. RC platform and development tools 

The selected image-processing kernels were implemented 
on 28nm Altera Stratix-V FPGAs. The Gidel ProceV was one 
of three selected platforms for this study. Development tools 
provided by Gidel included the PROCDeveloper’s Kit for 

VHDL design and the OpenCL Board Support Package. In 
addition to the ProceV, the kernels were ported to Nallatech’s 
PCIe385-D5 and Bittware’s S5PH-Q boards using the same 
OpenCL code developed for the ProceV platform. The 
Nallatech PCIe385-D5 features a Stratix-V D5 FPGA, while 
the Bittware S5PH-Q uses the same Stratix-V D8 FPGA as the 
ProceV board. 

B. RC architecture for selected kernels 

The OpenCL architecture for the three different kernels is 
based on the same approach used for the VHDL design. Each 
kernel forms a fully pipelined datapath capable of processing 
one pixel every clock cycle. The OpenCL __global memory 
type manages data movement between the FPGA and external 
memory (SDRAM or SODIMMs). Inside the FPGA, each 
image-processing kernel is partitioned into smaller modules 
that perform key operations on each pixel. Each of these 
modules is described as an independent OpenCL __kernel that 
is connected using cl_altera_channels OpenCL vendor 
extension. The cl_altera_channels extension acts as a simple 
FIFO between modules, extending the depth of the datapath. 
Inside each module is a window buffer in addition to the 
primary logic performed on the input stream. The last module 
in the pipeline is connected to the __global output stream.  

C. Performance comparison 

The resource utilization and performance for the three 
selected kernels are shown in Table 1. The top three sections 
of the table present the Altera OpenCL results on three 
different platforms (Nallatech PCIe385, Gidel ProceV, and 

Bittware S5PH-Q). The fourth section shows the results of the 
VHDL design on the ProceV platform. The general trend 
apparent in Table 1 is that VHDL kernel designs use fewer 
resources while maintaining a similar clock frequency to 
OpenCL. In the best case, the VHDL design uses 30% of the 
logic needed by OpenCL design (HD720 Sobel filter on 
ProceV). On average, VHDL designs require 35% of the logic 
and 66% of the memory bits used by the OpenCL kernels 
(ProceV). The average percent difference in clock frequency 
across all kernels at every resolution is 4.09% (ProceV). An 
important performance measure in image processing is frames 
per second (FPS). The percentage difference in FPS is 
between 2% and 10%. In, summary, it can be observed that 
the OpenCL kernels in this study achieve similar performance 
to their VHDL counterparts at the cost of additional resources. 

Table 1: Logic resources and performance results for image-
processing kernels on all RC platforms 

Method Board Resolution Kernel Logic Util DSP Mem bits Freq (MHz) FPS

Sobel 42378 25% 18 2152400 309.40 935

Canny 49055 28% 63 2458064 309.40 821

SURF 60765 35% 27 6366608 290.44 776

Sobel 42389 25% 18 2201552 317.96 322

Canny 49103 28% 63 2818512 304.32 308

SURF 60864 35% 27 9610640 277.23 273

Sobel 44310 17% 18 2109472 291.46 814

Canny 50762 19% 63 2414880 293.34 769

SURF 63271 24% 27 6324832 259.00 720

Sobel 44329 17% 18 2158624 285.23 295

Canny 50796 19% 63 2775328 279.88 285

SURF 63369 24% 27 9568864 265.25 258

Sobel 41602 15% 18 2087008 305.52 896

Canny 48332 18% 63 2392672 311.13 861

SURF 59937 22% 27 6301088 272.18 765

Sobel 41592 15% 18 2136160 296.82 312

Canny 48305 18% 63 2753120 322.78 319

SURF 60018 22% 27 9545120 277.85 274

Sobel 13523 5% 12 1753264 283.13 795

Canny 16268 6% 13 1815728 296.30 807

SURF 26164 10% 32 2745520 279.80 778

Sobel 13526 5% 12 1769648 278.87 302

Canny 16473 6% 13 2052272 293.34 293

SURF 26320 10% 32 3754160 281.53 284
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One of the most important advantages of OpenCL designs 

is code portability across different platforms. The results in 
Table 1 illustrate how portable the OpenCL kernels were 
across all three platforms, featuring similar resource utilization 
and timing performance. The OpenCL kernel frequency 
ranged from 259-323 MHz with an average difference of 
3.55% between the PCIe385 and S5PH-Q platforms. 

D. Productivity comparison 

Fig. 8 shows the tasks that were completed to finalize the 
RC design in VHDL and OpenCL. The percentage of overall 
time dedicated to each individual task is also shown in the pie 
charts of Fig. 8. The development time for the three image-
processing kernels, using VHDL tools, was completed in six 
months (Fig. 8a). The majority of that time was dedicated to 
ensuring correct functional simulation (40%) of the three 
kernels. Each individual VHDL block was tested in simulation 
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using test benches. The meticulous VHDL approach gives 
developers the ability to build and verify the design down to 
individual bits. However, the same fine-grained approach 
hinders a less detailed and quicker functional verification. 

During the synthesis phase, the synthesis tools provided by 
FPGA board vendors (e.g., Gidel’s ProcWizard) interface 
VHDL code with board-specific resources such as memory 
and control signals. The place-and-route stage of the design is 
another VHDL design hurdle. In order to meet timing and 
power constraints, the VHDL design must be physically 
mapped and tested on the FPGA fabric, which is a well-
documented productivity bottleneck [5]. Finally, when all 
design specifications are met, the bit file resulting from the 
compilation is used to program the FPGA. The host code that 
provides an interface between the FPGA board and the host 
processor represents another productivity obstacle because it 
lacks a common standard between different FPGA boards. 

a) b) 

Fig. 8: Project  development  time and completed tasks; 
a) VHDL: 6 months; b) Altera OpenCL: 1 month  

OpenCL tackles many of the VHDL productivity 
bottlenecks mentioned above. The allocation of time spent on 
different tasks for the OpenCL design flow is shown in Fig. 
8b. The overall OpenCL project was developed over a span of 
30 days. The largest portion of development time involved 
identifying errors in the code using the full system emulator. 
This debugging session was performed on an x86 host, with 
compile times closer to software (seconds). The emulator 
includes support for the GNU debugger and was launched in 
the same debug session as the host executable. Software 
breakpoints and memory inspections can be performed 
between the host and FPGA kernel, allowing developers to 
easily track data interactions between the RC platform and 
host CPU. Code modifications needed to correct the errors 
identified by the emulator comprised the second-most, time-
consuming task during OpenCL development. The time in this 
section includes both modifications performed on the kernel 
and host software. OpenCL concurrently verifies both kernel 
and host code, saving development time. 

The majority of the optimizations required by OpenCL 
kernels used #pragma unroll directives as discussed in Section 
III, and the cl_altera_channels OpenCL vendor extension as 
discussed in Subsection B above. Performing the hardware 
compilations for the different kernels is the final task in the 
OpenCL design flow. Compared to the VHDL design flow, 

another important gain in productivity is the time saved on 
VHDL compilations. Although Altera OpenCL still needs to 
perform a full hardware compilation to generate the AOC 
executable, this process can be delayed until after the design 
has been fully verified. Overall, we observed a 6× increase in 
productivity when using the OpenCL design methods. 

V. CONCLUSIONS 

In this study we compared traditional VHDL methods for 
application-development with the OpenCL design flow for 
three image-processing kernels (Sobel and Canny edge 
detectors, and SURF feature-extractor). On average the kernel 
design time using OpenCL was six times faster than 
traditional VHDL methods. OpenCL provides a higher level 
of abstraction to the programmer and includes development 
tools that postpone costly hardware compilations until the end 
of the design process. Our results showed that the productivity 
advantage of OpenCL comes at the cost of increased resource 
usage. VHDL designs achieved a more efficient use of 
resources (59% to 70% less logic), while maintaining similar 
timing constraints (255 MHz < fmax < 325 MHz). The percent 
difference in performance (FPS) for the OpenCL and VHDL 
kernels on a Stratix-V D8 FPGA is between 2% and 10%. 
Furthermore, OpenCL development tools enabled seamless 
portability of code between different FPGA boards. We 
successfully executed all three OpenCL kernels on three RC 
platforms with no code modifications. The resulting designs 
on all FPGA platforms achieved similar performances in terms 
of operational frequency and resource utilization. 
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