
Comparative Analysis of OpenCL vs. HDL with
Image-Processing Kernels on Stratix-V FPGA

NSF Center for High-Performance Reconfigurable Computing
ECE Dept., University of Florida, Gainesville FL, USA

e-mail: {hill, craciun, george, lam}@chrec.org

Abstract--Application development with hardware description
languages (HDLs) such as VHDL or Verilog involves numerous
productivity challenges, limiting the potential impact of
reconfigurable computing (RC) with FPGAs in high-
performance computing. Major challenges with HDL design
include steep learning curves, large and complex codes, long
compilation times, and lack of development standards across
platforms. A relative newcomer to RC, the Open Computing
Language (OpenCL) reduces productivity hurdles by providing a
platform-independent, C-based programming language. In this
study, we conduct a performance and productivity comparison
between three image-processing kernels (Canny edge detector,
Sobel filter, and SURF feature-extractor) developed using
Altera’s SDK for OpenCL and traditional VHDL. Our results
show that VHDL designs achieved a more efficient use of
resources (59% to 70% less logic), however, both OpenCL and
VHDL designs resulted in similar timing constraints (255MHz <
fmax < 325MHz). Furthermore, we observed a 6× increase in
productivity when using OpenCL development tools, as well as
the ability to efficiently port the same OpenCL designs without
change to three different RC platforms, with similar
performance in terms of frequency and resource utilization.

Keywords—Altera SDK for OpenCL; FPGA; Application
Development; High-Level Synthesis

I. INTRODUCTION
 RC architectures developed using traditional HDL design
methods can efficiently exploit both the intrinsic wide and
deep parallelism of many applications [1]. Custom RC
architectures have been used to process high frame rates for
high-definition (HD) images, and have enabled efficient real-
time processing [1], while maintaining a lower power budget
in comparison to competing GPU and CPU solutions.
However, the adoption of RC platforms for general-purpose
and high-performance computing has been limited by
numerous productivity challenges faced by developers when
using HDL. These challenges include the requirement of
specialized training for the design/verification of large and
complex RTL code and long compilation times. In addition,
there is a lack of development standards across different RC
platforms, further complicating the design process. As a result,
these development challenges have often caused designers to
adopt traditional fixed-architecture devices over RC platforms.

The Open Computing Language (OpenCL) is a parallel
programming standard that enables developers to create their
parallel applications using a C-based language and target a
variety of heterogeneous platforms including CPUs, GPUs,
DSPs, and most recently FPGAs. In the case of FPGAs,
OpenCL acts as a high-level synthesis tool for HDL
development. Using OpenCL, a designer can work with an RC
platform while avoiding RTL code as well as platform-
specific tools and libraries. The first commercial framework
for OpenCL on FPGAs is the Altera SDK for OpenCL. The
Altera Offline Compiler (AOC) exploits an application’s wide
parallelism by using SIMD data types and simple compiler
pragmas. The tool further optimizes hardware design by
pipelining the datapath to harness deep parallelism available in
the application. All of these features help alleviate the
specialized and complex training previously needed for
hardware design.

In this study, we map three image-processing kernels from
the OpenCV library to an Altera Stratix-V FPGA on a variety
of RC platforms. The Sobel [2] and Canny [3] kernels are used
for edge detection, while the Speeded-Up Robust Features
(SURF) [4] kernel is used for feature extraction. These
information-extraction kernels represent the initial stage of
many image-processing applications. Object-recognition,
tracking, and unsupervised-navigation applications all require
scale- and rotation-invariant interest points. This suite of
image-processing kernels is developed using both traditional
HDL design flow and the Altera SDK for OpenCL.

The organization of the paper proceeds by first presenting
background information on the selected kernels in Section II.
Section III compares the kernel design flows using HDL and
OpenCL. We present a productivity and performance
comparison between HDL and OpenCL in Section IV, and
draw final conclusions from this work in Section V.

II. IMAGE-PROCESSING KERNELS
Edge detection is used to extract the important structural

properties in the form of connected curves that represent
objects contours. Feature extraction is a technique used to
quantize the input image to a relatively small set of interest
points. The features extracted help describe the unique

Kenneth Hill, Stefan Craciun, Alan George, Herman Lam

U.S. Government work not protected by U.S. copyright ASAP 2015189

Table of Contents
for this manuscript

intrinsic characteristics of objects, and have been successfully
used to label objects at different scales and from different
angles [4]. The most frequently used image-processing kernels
for edge detection are the Canny and Sobel filters, while the
SURF feature-extractor has been efficiently used to locate
interest points that are scale- and rotation-invariant.

The Canny, Sobel, and SURF kernels are based, at their
core, on the fast gradient calculation of pixel intensity values.
Local gradients are extracted using a 2D convolution with
first- or second-order Gaussian derivative filters. The Sobel
filters are used in both the Canny and Sobel kernels to sweep
through the input image and extract gradients in the x and y
directions. The SURF kernel uses a larger set of symmetric
box filters (Fig.1) that represent second-order Gaussian
derivatives along the vertical (y), horizontal (x) and diagonal
(xy) directions. For optimal performance, the kernels are
mapped to hardware using a sliding window approach.

Fig. 1: Box filters used to approximate Gaussian derivatives

A smart buffer (Fig. 2) composed of registers and block
RAMs (BRAMs) is used to transfer image rows from external
to on-chip FPGA memory. Once full, the smart buffer
provides access to all pixel values required to complete the
convolution operation. Furthermore, the datapaths designed
for each kernel are fully pipelined and enable processing of a
continuous input stream of pixels without ever stalling the
pipeline.

Fig. 3 displays the output of the Sobel and Canny kernels.
The Canny edge detector requires two additional steps from
the Sobel operator output. A non-maximum suppression is
performed along the gradient direction to thin edges (ideally
one pixel thin), and a connectivity analysis step that fills in
edge discontinuities. Finally, the last kernel mapped to
hardware is the SURF feature extractor.

The SURF architecture is more complex, due to the
requirement that interest points have to be rotation- and scale-
invariant. The SURF kernel therefore performs the 2D
convolution with 24 box filters, spanning from a minimum of
9×9 up to a maximum of 51×51 filter sizes. The same smart
buffer used in previous Canny and Sobel kernels is also used
as part of the SURF architecture. In addition, after the
convolution step, the SURF kernel requires the Hessian
determinant calculation [4] for each of the six scales, followed
by a non-maximum-suppression that determines the dominant
scale. The outputs of the SURF feature extractor are interest-
point locations (x, y coordinates). Fig. 4 shows the resulting
output of the SURF kernel with features marked in red.

Fig. 2:Block diagram of sliding-window smart buffer

Fig. 3: a) Input image; b) Sobel and c) Canny kernel output

Fig. 4: SURF kernel interest-point locations; a) Scale-invariant

interest points; b) Rotation-invariant interest points

III. DESIGN FLOW COMPARISON
The two development methods (OpenCL and HDL) under

study follow different design approaches. In this section, we
draw a direct side-by-side comparison between stages of the
two design flows that must be completed when mapping a
kernel to hardware.

A. VHDL design flow

Application development using the VHDL language
generally follows the design flowchart in Fig. 5. The designer
begins by specifying the hardware architecture at the register-
transfer level (RTL) using the hardware description language.
A test bench is developed and used to perform functional
verification by checking each stage of the design using a
cycle-accurate simulation. This functional simulation step
verifies code syntax and ensures functional and behavioral
correctness of the design. This part of the design process can
easily span an extended amount of time due to the fine
granularity (i.e., bit-level) of the simulation.

Fig. 5: VHDL design flow

xy y x xyy

190

Table of Contents
for this manuscript

If a problem occurs, the VHDL developer is required to
inspect the simulation at the level of individual bits. After
verification, the synthesis stage analyzes the design and
translates it to logic gates. This stage optimizes the resource
utilization of the design. If the application requires more
resources than are available, the designer has the option of
selecting a different, larger device, or optimizing the VHDL
code and the structure of the design to lower resource
utilization. This design-tuning phase can vary in complexity,
especially in the case when the required resources are
unavailable and the design needs to be scaled back. Finally,
when the VHDL developer has ensured the design will fit on
the device, the design proceeds to place and route.

In the place-and-route stage, the fitter maps the physical
design to the device resources by matching logic functions to
the optimal logic cell location. This operation is one of the
most taxing parts of the VHDL compilation process, taking
multiple hours and in some cases days to complete. While
performing place and route, the fitter tries to meet the power
and timing constraints specified by the designer. If these
constraints cannot be met, the fitter issues a compilation error
messages. Again, the VHDL designer has the option of
changing the device or returning to the initial step and
restructuring the design (i.e., edit VHDL code).

It is evident that the typical VHDL design flow can
encounter several feedback loops that require the developer to
go back to the initial stage of the design process. The steep
learning curves associated with platform-specific tools delay
VHDL developers from migrating their design to larger,
faster, or more power-efficient FPGAs. These productivity
challenges that characterize the VHDL design process have
deterred application developers from targeting FPGAs.

B. OpenCL design flow

The Altera OpenCL SDK for FPGAs introduces the design
flow shown in Fig. 6. This design flow alleviates many of the
productivity bottlenecks of current VHDL tools by delaying
the compilation to the last stage of the design process.

During the initial development stage, the application is
described using a C-like syntax for generating one or more
OpenCL kernels. The Altera Offline Compiler (AOC)
translates the OpenCL code directly to a RTL design that is
portable across most RC platforms featuring supported Altera
FPGAs. The tool further simplifies the design flow by
automatically handling interactions between different memory
objects (external memory, BRAMS and register arrays) and
the pipelined datapath. These interactions include the control
logic to stall the pipeline, and the ability to schedule new
work-items. The designer is no longer required to work at the
RTL level, enabling programmers to create custom hardware
architectures without specialized training for the design and
verification of large and complex RTL code.

Fig. 6: OpenCL design flow

In addition to generating an RTL design, the AOC builds a
special executable file to use with the full-system emulator.
The emulator included with the AOC verifies the kernel code
based on the targeted FPGA platform. Unlike VHDL test
benches where a designer verifies individual bits, the AOC
emulator allows designers to debug the OpenCL code in a
software environment with GNU debugger support. The
designer is able to set software breakpoints and inspect data
elements while emulating their hardware prototype on an x86-
based system. The familiarity of using tools like the GNU
debugger reduces the learning curve required to use RC
platforms. Another key advantage of the AOC emulator is that
the host C/C++ code, which runs on the host CPU, is designed
and verified along with the kernel code (in the FPGA) in an
integrated manner. Traditionally, the host code for a VHDL
project is designed and tested independently, after the kernel
architecture is mapped to the FPGA, leaving timing, power,
and resource utilization analysis to the post place-and-route
design phase.

C. OpenCL optimizations

The goal of optimizing an AOC OpenCL kernel is to create
a deep and wide pipelined architecture that does not stall
during execution. A variety of strategies were used to optimize
the selected image-processing kernels in this study. We
describe one such example to demonstrate the effectiveness of
Altera’s OpenCL tools for generating pipelined datapaths.
Each of the three target kernels requires fast access to a
window of neighboring pixels; therefore, a sliding-window
architecture provides the optimal solution. Fig. 7 illustrates the
simple syntax required to generate a sliding-window
architecture in OpenCL. Fig. 7a describes a shift register using
the #pragma unroll statement. The #pragma unroll instructs
the compiler to perform each loop iteration in parallel if data
dependencies permit it.

The second stage of the kernel, illustrated in Fig. 7b, uses
#pragma unroll to form a wide pipeline design. Fig. 7b is used
to unroll the 2D convolution between two 3×3 filters with
coefficients Gx, Gy and a 3×3 window of pixel values rows(i,j).
Each loop iteration is parallelized and, as a result, all 18
multiplications for the two convolutions are executed in
parallel. Using both code snippets in Fig. 7, the OpenCL tool
constructs a fully pipelined, 2D-convolution operator that
produces a new result every clock cycle.

191

Table of Contents
for this manuscript

#pragma unroll
for(int i=MAX_VAL;i>0; --i)
{
 rows[i] =rows[i - 1];
}
rows[0] = frame_in;

a)

int x = 0;
int y = 0;
#pragma unroll
for(int i=0; i<3; ++i)
{
 #pragma unroll
 for (int j=0; j<3; ++j)
 {
 x+=rows(i,j)*Gx[i][j];
 y+=rows(i,j)*Gy[i][j];
 }
}

b)
Fig.7: a) OpenCL example code that generates a register chain; b)

OpenCL example code that generates a sliding window for 2D
convolution

IV. COMPARATIVE ANALYSIS: VHDL. vs. OPENCL

This comparative study between OpenCL and VHDL has
been performed using three image-processing kernels (Sobel,
Canny, and SURF). We first describe the experimental setup,
followed by performance and productivity results.

A. RC platform and development tools

The selected image-processing kernels were implemented
on 28nm Altera Stratix-V FPGAs. The Gidel ProceV was one
of three selected platforms for this study. Development tools
provided by Gidel included the PROCDeveloper’s Kit for

VHDL design and the OpenCL Board Support Package. In
addition to the ProceV, the kernels were ported to Nallatech’s
PCIe385-D5 and Bittware’s S5PH-Q boards using the same
OpenCL code developed for the ProceV platform. The
Nallatech PCIe385-D5 features a Stratix-V D5 FPGA, while
the Bittware S5PH-Q uses the same Stratix-V D8 FPGA as the
ProceV board.

B. RC architecture for selected kernels

The OpenCL architecture for the three different kernels is
based on the same approach used for the VHDL design. Each
kernel forms a fully pipelined datapath capable of processing
one pixel every clock cycle. The OpenCL __global memory
type manages data movement between the FPGA and external
memory (SDRAM or SODIMMs). Inside the FPGA, each
image-processing kernel is partitioned into smaller modules
that perform key operations on each pixel. Each of these
modules is described as an independent OpenCL __kernel that
is connected using cl_altera_channels OpenCL vendor
extension. The cl_altera_channels extension acts as a simple
FIFO between modules, extending the depth of the datapath.
Inside each module is a window buffer in addition to the
primary logic performed on the input stream. The last module
in the pipeline is connected to the __global output stream.

C. Performance comparison

The resource utilization and performance for the three
selected kernels are shown in Table 1. The top three sections
of the table present the Altera OpenCL results on three
different platforms (Nallatech PCIe385, Gidel ProceV, and

Bittware S5PH-Q). The fourth section shows the results of the
VHDL design on the ProceV platform. The general trend
apparent in Table 1 is that VHDL kernel designs use fewer
resources while maintaining a similar clock frequency to
OpenCL. In the best case, the VHDL design uses 30% of the
logic needed by OpenCL design (HD720 Sobel filter on
ProceV). On average, VHDL designs require 35% of the logic
and 66% of the memory bits used by the OpenCL kernels
(ProceV). The average percent difference in clock frequency
across all kernels at every resolution is 4.09% (ProceV). An
important performance measure in image processing is frames
per second (FPS). The percentage difference in FPS is
between 2% and 10%. In, summary, it can be observed that
the OpenCL kernels in this study achieve similar performance
to their VHDL counterparts at the cost of additional resources.

Table 1: Logic resources and performance results for image-
processing kernels on all RC platforms

Method Board Resolution Kernel Logic Util DSP Mem bits Freq (MHz) FPS

Sobel 42378 25% 18 2152400 309.40 935

Canny 49055 28% 63 2458064 309.40 821

SURF 60765 35% 27 6366608 290.44 776

Sobel 42389 25% 18 2201552 317.96 322

Canny 49103 28% 63 2818512 304.32 308

SURF 60864 35% 27 9610640 277.23 273

Sobel 44310 17% 18 2109472 291.46 814

Canny 50762 19% 63 2414880 293.34 769

SURF 63271 24% 27 6324832 259.00 720

Sobel 44329 17% 18 2158624 285.23 295

Canny 50796 19% 63 2775328 279.88 285

SURF 63369 24% 27 9568864 265.25 258

Sobel 41602 15% 18 2087008 305.52 896

Canny 48332 18% 63 2392672 311.13 861

SURF 59937 22% 27 6301088 272.18 765

Sobel 41592 15% 18 2136160 296.82 312

Canny 48305 18% 63 2753120 322.78 319

SURF 60018 22% 27 9545120 277.85 274

Sobel 13523 5% 12 1753264 283.13 795

Canny 16268 6% 13 1815728 296.30 807

SURF 26164 10% 32 2745520 279.80 778

Sobel 13526 5% 12 1769648 278.87 302

Canny 16473 6% 13 2052272 293.34 293

SURF 26320 10% 32 3754160 281.53 284

Bi
ttw

ar
e

S5
PH

-Q
_D

8

V
G

A
H

D
72

0

V
H

D
L

G
id

el
 P

ro
ce

V
_D

8 V
G

A
H

D
72

0

A
lte

ra
 O

pe
nC

L N
al

la
te

ch
 P

CI
e3

85
_D

5

V
G

A
H

D
72

0

G
id

el
 P

ro
ce

V
_D

8 V
G

A
H

D
72

0

One of the most important advantages of OpenCL designs

is code portability across different platforms. The results in
Table 1 illustrate how portable the OpenCL kernels were
across all three platforms, featuring similar resource utilization
and timing performance. The OpenCL kernel frequency
ranged from 259-323 MHz with an average difference of
3.55% between the PCIe385 and S5PH-Q platforms.

D. Productivity comparison

Fig. 8 shows the tasks that were completed to finalize the
RC design in VHDL and OpenCL. The percentage of overall
time dedicated to each individual task is also shown in the pie
charts of Fig. 8. The development time for the three image-
processing kernels, using VHDL tools, was completed in six
months (Fig. 8a). The majority of that time was dedicated to
ensuring correct functional simulation (40%) of the three
kernels. Each individual VHDL block was tested in simulation

192

Table of Contents
for this manuscript

using test benches. The meticulous VHDL approach gives
developers the ability to build and verify the design down to
individual bits. However, the same fine-grained approach
hinders a less detailed and quicker functional verification.

During the synthesis phase, the synthesis tools provided by
FPGA board vendors (e.g., Gidel’s ProcWizard) interface
VHDL code with board-specific resources such as memory
and control signals. The place-and-route stage of the design is
another VHDL design hurdle. In order to meet timing and
power constraints, the VHDL design must be physically
mapped and tested on the FPGA fabric, which is a well-
documented productivity bottleneck [5]. Finally, when all
design specifications are met, the bit file resulting from the
compilation is used to program the FPGA. The host code that
provides an interface between the FPGA board and the host
processor represents another productivity obstacle because it
lacks a common standard between different FPGA boards.

a) b)

Fig. 8: Project development time and completed tasks;
a) VHDL: 6 months; b) Altera OpenCL: 1 month

OpenCL tackles many of the VHDL productivity
bottlenecks mentioned above. The allocation of time spent on
different tasks for the OpenCL design flow is shown in Fig.
8b. The overall OpenCL project was developed over a span of
30 days. The largest portion of development time involved
identifying errors in the code using the full system emulator.
This debugging session was performed on an x86 host, with
compile times closer to software (seconds). The emulator
includes support for the GNU debugger and was launched in
the same debug session as the host executable. Software
breakpoints and memory inspections can be performed
between the host and FPGA kernel, allowing developers to
easily track data interactions between the RC platform and
host CPU. Code modifications needed to correct the errors
identified by the emulator comprised the second-most, time-
consuming task during OpenCL development. The time in this
section includes both modifications performed on the kernel
and host software. OpenCL concurrently verifies both kernel
and host code, saving development time.

The majority of the optimizations required by OpenCL
kernels used #pragma unroll directives as discussed in Section
III, and the cl_altera_channels OpenCL vendor extension as
discussed in Subsection B above. Performing the hardware
compilations for the different kernels is the final task in the
OpenCL design flow. Compared to the VHDL design flow,

another important gain in productivity is the time saved on
VHDL compilations. Although Altera OpenCL still needs to
perform a full hardware compilation to generate the AOC
executable, this process can be delayed until after the design
has been fully verified. Overall, we observed a 6× increase in
productivity when using the OpenCL design methods.

V. CONCLUSIONS

In this study we compared traditional VHDL methods for
application-development with the OpenCL design flow for
three image-processing kernels (Sobel and Canny edge
detectors, and SURF feature-extractor). On average the kernel
design time using OpenCL was six times faster than
traditional VHDL methods. OpenCL provides a higher level
of abstraction to the programmer and includes development
tools that postpone costly hardware compilations until the end
of the design process. Our results showed that the productivity
advantage of OpenCL comes at the cost of increased resource
usage. VHDL designs achieved a more efficient use of
resources (59% to 70% less logic), while maintaining similar
timing constraints (255 MHz < fmax < 325 MHz). The percent
difference in performance (FPS) for the OpenCL and VHDL
kernels on a Stratix-V D8 FPGA is between 2% and 10%.
Furthermore, OpenCL development tools enabled seamless
portability of code between different FPGA boards. We
successfully executed all three OpenCL kernels on three RC
platforms with no code modifications. The resulting designs
on all FPGA platforms achieved similar performances in terms
of operational frequency and resource utilization.

ACKNOWLEDGEMENTS
This work was supported in part by the I/UCRC Program

of the National Science Foundation under Grant Nos. EEC-
0642422 and IIP-1161022. The authors gratefully
acknowledge equipment and tools provided by Altera, Gidel,
Nallatech, and Bittware.

 REFERENCES
[1] B. A. Draper, “Accelerated Image Processing on FPGAs,” in IEEE

Transactions on Image Processing, Vol. 12, No. 12, Dec. 2003, pp.
1543 – 1551.

[2] L. Mintzer, “Digital Filtering in FPGAs,” in Proc. of the 28th Asilomar
Conference on Signals, Systems and Computers, 31 Oct. – 2 Nov., 1994,
pp. 1373 – 1377.

[3] C. Gentsos, C. L. Soiropoulou, S. Nikolaidis, N. Vassiliadis, “Real-Time
Canny Edge Detection Parallel Implementation for FPGAs,” in Proc. of
the 17th IEEE International Conference on Electronics, Circuits, and
Systems (ICECS), 12 – 15 Dec., 2010, pp. 499 – 502.

[4] D. Lowe, “Object Recognition from Local Scale-Invariant Features,” in
Proc. of 7th International Conference on Computer Vision (ICCV), 20 –
27 Sept., 1999, pp. 1150 – 1157.

[5] S. Merchant, A. D. George, H. Lam, G. Stitt, “Strategic Challenges for
Application Development Productivity in Reconfigurable Computing,”
in IEEE Nat. Aerospace and Electronics Conference, 16 – 18 Jul., 2008,
pp. 209 – 218.

[6] T. S. Czajkowski, “From OpenCL to High-Performance Hardware on
FPGAs,” in Proc. of the 22nd International Conference on Field
Programmable Logic and Applications, 29 – 31 Aug., 2012, pp.531-534.

bbb

193

Table of Contents
for this manuscript

