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Minimum Complexity Pursuit

Shirin Jalali and Arian Maleki

Abstract— The fast growing field of compressed sensing is
founded on the fact that if a signal is simple and has some
‘structure’, then it can be reconstructed accurately with far
fewer samples than its ambient dimension. Many different
plausible structures have been explored in this field, ranging
from sparsity to low-rankness and to finite rate of innovation.
However, there are important abstract questions that are yet
to be answered. For instance, what are the general abstract
meanings of structure and simplicity? Does there exist universal
algorithms for recovering such simple structured objects from
fewer samples than their ambient dimension? In this paper, we
aim to address these two questions. Using algorithmic informa-
tion theory tools such as Kolmogorov complexity, we providea
unified method of describing simplicity and structure. We then
explore the performance of an algorithm motivated by Ocams
Razor (called MCP for minimum complexity pursuit) and show
that it requires O(k log n) number of samples to recover a
signal, where k and n represent its complexity and ambient
dimension, respectively. Finally, we discuss more generalclasses
of signals and provide guarantees on the performance of MCP.

I. I NTRODUCTION

Compressed sensing (CS) refers to a body of techniques
that undersample high-dimensional signals, and yet recover
them accurately by exploiting their intrinsic ‘structure’[1],
[2]. This permits more efficient sensing systems that are
proved to be valuable in many applications including mag-
netic resonance imaging (MRI) [3] and radar [4], to name a
few. Some of the ‘structures’ that have been considered in
the literature are as follows.

i. Sparsity: A vectorx ∈ R
n is called k-sparse if and

only if ‖x‖0 ,
∑n

i=1 I{xi 6=0} ≤ k. Roughly speaking,
according to compressed sensing ak-sparse signalx
can be recovered fromd = O(k logn) random linear
measurementsy = Ax.

ii. Low rankness: IfX ∈ R
m×n is a low rank matrix with

rank(X) ≤ k, thend = O(r(m+n) log(mn)) random
linear measurements are sufficient for recoveringX
from its measurements accurately with high probability
[5].

iii. Model-based compressed sensing: [6] considers more
structured signal models by assuming that from

(

n
k

)

subspaces ofk-sparse signals onlymk of them may
occur. It is then proved thatO(log(mK)) random linear
measurements are sufficient for the accurate recovery
of such signals. This class is a superset of some of the
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other structures introduced in the literature such as the
class of block-sparse signals [7]–[10].

iv. Rate of innovation: [11] defines the rate of innovation of
a signal as its “degrees of freedom”. Several important
classes of functions such as the piecewise polynomial
functions and sparse signals have clearly finite rate
innovation. [11] suggests sampling schemes for several
classes that recover the signal fromO(k) number of
measurements, wherek is the rate of innovation.

The above results seem to provide pieces of a bigger
picture. Recently, [12] introduced the class of simple
functions and atomic norm as a framework that unifies
some of the above observations and extends them to some
other signal classes. However, there is still an interesting
conceptual question that needs to be addressed, i.e., what
is the abstract meaning of ‘structure’ that allows fewer
measurements than the ambient dimension of the signal?
Given a simple signal, which scheme recovers the signal
from an undersampled random linear set of measurements?

In the context of algorithmic information theory,
Solomonoff [13] and Kolmogorov [14] suggested a
universal notion of complexity for binary sequences, known
as the Kolmogorov complexity. Given a binary sequencex,
its Kolmogorov complexityK(x) is defined as the length
of the shortest computer program that printsx. In this
paper, we extend the concept of Kolmogorov complexity
to the real signals. Such extensions are straightforward and
have been explored before [15]. Based on this notion of
complexity, called Kolmogorov complexity of real signals,
we show that Occams razor [16], i.e., finding the ‘simplest’
solution of the linear equations, correctly recovers the signal
with much fewer measurements than the ambient dimension
of the signal. Roughly speaking, we prove that the number
of linear measurements required for recovering the correct
solution is proportional to the complexity rather than the
ambient dimension of the signal. We postpone the accurate
exposition of our results to Section IV. We will further
discuss the issue of model mismatch in the signal classes
and will prove that the approach motivated by Occams razor
is stable with respect to such non-idealities in the system.

Here is the organization of our paper. Section II defines the
notation used throughout the paper. Senction III defines Kol-
mogorov complexity of a real-valued signal. Section IV out-
lines our contribution. Section V calculates the Kolmogorov
complexity of several classes that are popular in compressed
sensing and clarifies the statements of our theorems on these
classes. Section VI compares our work with other results in
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the literature. Sections VII and VIII are devoted to the proofs
of our main theorems.

II. D EFINITIONS

Calligraphic letters such asA and B denote sets. For
a setA, |A| and Ac denote its size and its complement,
respectively. For a sample spaceΩ and event setA ⊆ Ω, IA
denotes the indicator function of the eventA.

Let {0, 1}∗ denote the set of all finite-length binary se-
quences, i.e.,{0, 1}∗ , ∪n≥1{0, 1}n. For a vectorx ∈ R

n,
the ℓp norm ofx is defined as‖x‖p , (

∑n
i=1 |xi|p)1/p. The

ℓ∞ norm of x is denoted by‖x‖∞ , maxi |xi|.
For a real numberx ∈ [0, 1], let [x]m denote them-

bit approximation ofx that results from taking the first
m bits in the binary expansion ofx. In other words, if
x =

∑∞
i=1 2

−i(x)i, where (x)i ∈ {0, 1} denotes theith

bit in the binary expansion ofx, then

[x]m ,

m
∑

i=1

2−ixi. (1)

Similarly, for a vectorxn ∈ [0, 1]n, define

[xn]m , ([x1]m, . . . , [xn]m). (2)

For an integern ∈ N, let

log∗ n , ⌈log2 n⌉+ 2 log2 max(⌈log2 n⌉, 1).
III. K OLMOGOROV COMPLEXITY

The Kolmogorov complexity of a finite-length sequence
x with respect to auniversal computerU is defined as the
minimum length over all programs that printx and halt.1 For
a universal computerU and any computerA, there exists
a constantcA such thatKU(x) ≤ KA(x) + cA, for all
stringsx ∈ {0, 1}∗ [17]. Hence, as suggested in [17], we
drop the subscriptU , and letK(x) denote the Kolmogorov
complexity of the binary stringx.

Similarly, the Kolmogorov complexity of an integern ∈
N, K(n), is defined as the Kolmogorov complexity of its
binary representation. It can be proved that

K(n) ≤ log∗ n+ c,

wherec is a constant independent ofn.
For x = (x1, x2, . . . , xn) ∈ [0, 1]n, define the Kolmogorov
complexity ofx at resolutionm as

K [·]m(x) = K([x1]m, [x2]m, . . . , [xn]m). (3)

Lemma 1:For (x1, x2, . . . , xn) ∈ [0, 1]n,

lim sup
m→∞

K [·]m(x1, x2, . . . , xn)

m
≤ n.

The proof is very simple and is skipped.
Definition 1: The signalx = (x1, x2, . . . , xn) is called

incompressible if and only if

lim
m→∞

K [·]m(x1, x2, . . . , xn)

m
= n.

1Refer to Chapter 14 of [17] for the exact definition of a universal
computer, and more details on the definition of the Kolmogorov complexity.

Proposition 1: Let {Xi}ni=1
iid∼ U [0, 1]. Then,

1

m
K [·]m(X1, X2, . . . Xn) → n

in probability.
Proof: If Xi =

∑∞
j=1(Xi)j2

−j, where (Xi)j ∈
{0, 1}, then {(Xi)j}∞j=1

iid∼ Bern(1/2). Theorem 14.5.3 in
[17] states that the normalized Kolmogorov’s complexity
of ([X1]m, . . . , [Xn]m) = {((Xi)1, (Xi)2, . . . , (Xi)m)}ni=1,
i.e.,

K({(Xi)1, (Xi)2, . . . , (Xi)m}ni=1|mn)

mn
→ 1, (4)

in probability. On the other hand,

K({(Xi)1, (Xi)2, . . . , (Xi)m}ni=1|mn)

≤ K({(Xi)1, (Xi)2, . . . , (Xi)m}ni=1)

≤ K({(Xi)1, (Xi)2, . . . , (Xi)m}ni=1|mn) + log∗(mn) + c,
(5)

wherec is a constant [17]. Hence, combing (4) and (5) proves
the desired result.

IV. OUR CONTRIBUTION

Consider the problem of reconstructing a vectorxo ∈ R
n

from d random linear measurementsy = Ax with d < n.
We say a recovery algorithm is successful if asn grows the
ℓ2-error betweenxo and its reconstruction̂xo goes to zero,
i.e., we want

P
(

‖xn
o − x̂n

o ‖22 > ǫ
)

→ 0,

for anyǫ > 0. Assuming that the signal is ‘structured’ in the
sense that will be clarified later, we follow Ocam’s Razor
and seek the simplest solution ofy = Ax, i.e.,

argmin K [·]m(x1, . . . , xn)

s.t. Axn = yno . (6)

We call this algorithm minimum complexity pursuit or MCP.
The choice ofm will be clarified later as well. Suppose that
A ∈ R

d×n, whereAij are iid N (0, 1/d), and assume that
yno = Axn

o . Let x̂n
o = x̂n

o (y
n
o , A) denote the output of (6) to

the inputsyno andA.
Theorem 1:Assume thatxo = (xo,1, xo,2, . . .) ∈ [0, 1]∞

is such that

lim sup
n→∞

K [·]m(xo,1, xo,2, . . . , xo,n)

m
≤ κ, (7)

wherem = mn = ⌈logn⌉. Let d = dn = ⌈κ logn⌉. Then,
for any ǫ > 0

P
(

‖xn
o − x̂n

o ‖22 > ǫ
)

→ 0, (8)

asn grows without bound.
This theorem indicates that when the Kolmogorov com-

plexity of the signal is less thanκ, thenO(κ logn) linear
measurements are sufficient for the successful recovery. Also,
it provides an evidence for the success of Ocam’s Razor.



Although Theorem 1 is an asymptotic theorem, its proof
provides information on the performance of MCP on finite
length sequences as well.

Corollary 1: Assume thatxo = (xo,1, xo,2, . . . , xo,n) ∈
[0, 1]n is such that

K [·]m(xo,1, xo,2, . . . , xo,n)

m
≤ κ, ∀ m.

Let m = mn = ⌈α logn⌉ andd = dn = ⌈2ακ logn⌉. Then,
with probability1− n−ακ

‖xn
o − x̂n

o ‖2 ≤ 10n1/2−α

√
κ logn

.

Now consider the following more general setting, where
the original signalxn

o to be recovered is not low-complexity,
but is close to a low-complexity signalx̃n, i.e.,‖xn

o−x̃n‖2 ≤
ǫn with ǫn = o(1). Again, let yno = Axn

o , and consider the
following reconstruction algorithm for findingxn

o from its
linear measurementsyno :

min K [·]m(x1, . . . , xn)

s.t. ‖Axn − yno ‖2 ≤ σmax(A)ǫn.

Assume thatA ∈ R
d×n andAij are iidN (0, 1

d). Let x̂n
o =

x̂n
o (y

n
o , A).

Theorem 2:Assume that there exists̃xn
o such that‖xn

o −
x̃n
o ‖2 ≤ ǫn, and

lim sup
m→∞

K [·]m(x̃n
o )

m
≤ κn. (9)

Let m = mn = ⌈logn⌉ andd = dn = ⌈κn logn⌉. If ǫn =
o(dn/n), then for eachǫ > 0,

P
(

‖xn
o − x̂n

o ‖22 > ǫ
)

→ 0, (10)

asn grows without bound.
In the next section we show that several popular classes of

sequences studied in CS such as class of sparse signals and
samples of piecewise smooth functions can be considered as
special cases of the framework we introduced in this section
and that Theorems 1 and 2 provide useful information about
them.

V. A PPLICATIONS

It is well-known that the Kolmogorov complexity is not
computable. In fact, the only way to find the shortest program
that generates a sequence is to run all the short programs
and see if they generate the sequence or not. However,
some short programs may not halt and there is no way to
figure out if the program will halt or not. Hence, there is
no effective way to calculate the Kolmogorov complexity.
However, it is usually possible to find upper bounds for
the Kolmogorov complexity. In this section, we consider
several popular examples and provide upper bounds for their
Kolmogorov complexity. Based on these upper bounds we
use Theorems 1 and 2 to calculate the number of random
linear measurements required by the MCP to recover these
functions. This demonstrates the connection between the
results of Section IV and the compressed sensing and finite

rate of innovation frameworks explained in Section I. It is
straightforward to extend the results to the other classes we
discussed in Section I.

A. Sparsity

Let the signalxo = (xo,1, xo,2, . . . , xo,n) be k-sparse.
Consider the following program for describing[xn

o ]m. First,
use a program of constant length to describe the structure
of the signal as ‘sparse’ and the ordering of the rest of
information. Then, spendlog∗ n + c bits to describe the
length of the signal. Next, code the sparsity levelk with
log∗ k bits, and spendk(log∗ n + c) more bits to code the
locations of thek non-zero elements. Finally, usekm more
bits to describe the quantized magnitudes of the non-zero
coefficients. Therefore, we have

K [·]m(xo,1, xo,2, . . . , xo,n)

m

≤ k +
(k + 1)(log∗ n+ c) + log∗ k + c

m
. (11)

Plugging (11) into Theorem 1, we conclude that⌈(2k +
1) logn⌉ measurements are sufficient for the recovery of the
k-sparse signals.

B. Piecewise polynomial

Let (xo,1, xo,2, . . . , xo,n) be samples of a piecewise
polynomial function f(x) defined on [0, 1] at locations
(0, 1/n, . . . , (n− 1)/n). Further, assume that0 ≤ f(x) ≤ 1,
for everyx. Let PolyQN represent the class of such functions
which have at mostQ singularities2 andN is the maximum
degree of each polynomial. Let{aℓi}Nℓ

i=0 denote the set of
coefficients of theℓth polynomial, whereNℓ ≤ N denotes
its degree. For the notational simplicity, we assume that the
coefficients of each polynomial belong to the[0, 1] interval
and that

∑Nℓ

i=0 a
ℓ
i < 1 for every ℓ, where aℓi is the ith

coefficient of theℓth polynomial. For a given lengthn,
we derive an upper bound on the Kolmogorov complexity.
Consider the following program for describing[xn

o ]m. The
code first specifies the model as ‘piecewise polynomial’
with parameters(n,Q,N). This requireslog∗ n+ log∗ N +
log∗ k+c1 bits. Then, for each singularity point, the code first
determines the largest sampling pointi/n that is smaller than
it. Since there are at mostQ singularity points, describing
this information requires at mostQ(log∗ n + c2) bits. The
next step is to describe the coefficients of each polynomial.
Using anm′-bit quantizer for each coefficient, the induced
error is bounded by

∣

∣

∣

∣

∣

Nℓ
∑

i=0

aℓit
n −

Nℓ
∑

i=0

[aℓi ]m′tn

∣

∣

∣

∣

∣

≤
Nℓ
∑

i=0

|aℓi − [aℓi ]m′ |

≤ (N + 1)2−m′

. (12)

To ensure that we are able to reconstruct them-bit resolution
of the samples from this description,(N + 1)2−m′

< 2−m.
Therefore, describing the polynomials’ coefficients we need

2A singularity is a point at which the function is not infinitely differen-
tiable.



(Q+1)(N+1)(m+⌈log2(N+1)⌉) extra bits. Hence, overall,
we conclude that

K [·]m(xo,1, xo,2, . . . , xo,n)

m
≤ (Q+ 1)(N + 1)

+
(Q + 1)(N + 1)⌈log2(N + 1)⌉

m

+
log∗ n+ log∗ N + log∗ k +Q log∗ n+ c1 + c2

m
. (13)

It is straightforward to plug (13) into Theorem 2 and prove
that, roughly speaking, for large values ofn, (QN + 2Q+
1) logn measurements are sufficient for the successful re-
covery of the piecewise polynomial functions.

So far we have considered examples of low-complexity
signals. However, in many applications the signals are not
of low complexity but are rather close to low complexity
signals. We present several examples here.

C. ℓp-constrained signals

While sparse signals have played an important role in the
theory of compressed sensing, it is well-known that they
do not occur in practice very often. More accurate models
assume that either the magnitude of the signal follows a
specific decay or the signal belongs to anℓp ball with p < 1,
i.e., ‖xo‖p ≤ 1 [1], [18]. For the signalxo ∈ R

n with
‖xo‖p ≤ 1, let (xo,(1), x(2), . . . , xo,(n)) denote the permuted
version of xo such thatxo,(1) ≥ xo,(2) ≥ . . . ≥ xo,(n).

It is easy to show thatxo,(i) ≤ i−
1

p . Therefore, if we
just keep thek largest coefficients of this signal and set
the rest to zero the resultingk-sparse vector̃xo satisfies,
‖xo−x̃o‖ ≤ k−

1

p
+ 1

2 . Setting the sparsityk to np/2, Theorem
2 proves thatdn = np/2 logn samples are sufficient for
asymptotically accurate recovery. It is interesting to note that
as p decreases, the decay rate increases and the number of
measurements required for the successful recovery decreases.

D. Smooth functions

Suppose thatx1, x2, . . . , xn are equispaced samples of a
smooth functionf : [0, 1] → R with 0 ≤ f(x) ≤ 1. Let the
function beβ + 1 times differentiable and‖f (β+1)‖∞ ≤ γ.
For the notational simplicity we assume that|f (m)(x)| ≤
1 for every m ≤ β + 1. This function is not necessarily
a low-complexity signal, but it can be well approximated
with a piecewise polynomial function. To show this, consider
partitioning the[0, 1] interval into subintervals of sizern, and
approximating the functionf with a polynomial of degreeβ
in each subinterval. Let̂fβ(x) denote the resulting piecewise
polynomial function. It is easy to prove that‖f − f̂β‖∞ ≤
γrβ+1

n . Hence, ifx andxo denote vectors consisting of the
equispaced samples of the original signal and its piecewise
polynomial approximation, respectively, it follows that‖x−
xo‖2 ≤ γ

√
nrβ+1

n .
On the other hand the complexity of the piecewise poly-

nomial signal is essentially proportional toβ/rn. Setting
rn = n

−2

2β , Theorem 2 proves thatdn = O(n1/β logn) is
enough for the accurate recovery of the samples of such
signals. Clearly, forβ < 1, this bound indicates that the

number of samples we need is at the same order as the
ambient dimension. However, asβ increases fewer number
of samples are required.

Similar results hold for the piecewise smooth functions,
which are very popular in image and signal processing.

VI. RELATED WORK

Our work is inspired by [19] and [20]. [19] considers the
well studied problem of estimation, where the goal is to
recover a vectorθ from its noisy observationss = θ + z,
where z represents the noise in the system. It then sug-
gests using theminimum Kolmogorov complexity estimation
(MKCE) approach and proves that ifθi

iid∼ π, under several
scenarios for the signal and noise, the average marginal
distribution of the estimate of MKCE tends to the actual
posterior distribution. On the other hand, [20] considers
the problem of compressed sensing over binary sequences.
Consider the set of all the binary sequences with Kolmogorov
complexity less than or equal tok0, i.e.,

S(k0) , {x : K(x) ≤ k0}.
Let A denote ad×n binary matrix,xo = (x1, x2, . . . , xn)

T ,
yo = Axo. Consider the following algorithm for reconstruct-
ing signalxo from its linear measurementsyo:

x̂(yo, A) , argmin
yo=Ax

K(x). (14)

[20] considers this scheme and proves that2k random linear
binary measurements are sufficient for recovering the binary
sequences inS(k0) with, high probability. This result does
not provide any information on the successful recovery of
real signals and it does not consider the non-idealities in the
signals either. Our paper settles both questions.

As mentioned in Section I the problem we discuss in
this paper is a central problem in the field of compressed
sensing [1], [2]. Several papers have considered different
generalization of sparsity [5], [6], [11], [12]. As mentioned
before, all these models can be considered as subclasses of
the general model we consider here. However, it is worth
noting that even though the recovery approach proposed in
our paper is universal, since Kolmogorov complexity is not
computable, it is not useful for practical purposes.

In this paper, we considered deterministic models for
the signals. Similar extensions have been considered in the
random settings as well. For instance, [21] considers the
problem of recovering a memoryless process from a linear
set of measurements and proves the connection between the
number of measurements required and the Renyi entropy.
Also, our work is in the same spirit with the minimum
entropy decoder proposed by Csiszar in [22]. He suggests
a universal minimum entropy decoder, for reconstructing an
iid signal from its linear measurements at a rate determined
by the entropy of the source.

VII. PROOF OFTHEOREM 1

The following Lemma will be used in the proof of the
main theorem.



Lemma 2 (Chi-square concentration):Fix τ > 0 andx ∈
R

n. Assume that‖x‖22 = 1 . Let Zi ,
∑n

j=1 Aijxj , i =
1, 2, . . . , d. We then have,

P

(

d
∑

i=1

Z2
i − 1 < −τ

)

≤ e
d
2
(τ+log(1−τ)). (15)

Proof: Note that{Zi}di=1 are iidN (0, 1/d). By Markov
inequality, for anyλ > 0, we have

P

(

d
∑

i=1

Z2
i − 1 < −τ

)

= P

(

−
∑

i

Z2
i + 1 > τ

)

≤ e−λτ E
[

eλ(1−
∑

Z2

i
)
]

= e−λτ+λ
(

E[e−λZ2

1 ]
)d

= e−λτ+λ

(

1 +
2λ

d

)−d/2

. (16)

We optimize overλ to obtain

λ∗ =
dτ

2(1− τ)
. (17)

If we plug (17) into (16) we obtain (15).
Proof: [Proof of Theorem 1] Letenm = xn

o − [xn
o ]m

and ênm = x̂n
o − [x̂n

o ]m denote the quantization errors of
the original and the reconstructed signals, respectively.Since
bothAxn

o = yo andAx̂n = yo, it follows that

A([xn
o ]m + enm) = A([x̂n

o ]m + ênm)

and

A([xn
o ]m − [x̂n

o ]m) = A(ênm − enm). (18)

On the other hand, since|y − [y]m| ≤ 2−m, for eachy ∈
[0, 1], we have

‖ênm − enm‖22 ≤ n2−2m+1.

Hence,

‖A([xn
o ]m − [x̂n

o ]m)‖2 = ‖A(ênm − enm)‖2
≤ σmax(A)

√
n2−2m+1. (19)

Since, by assumption, (7) holds forxo, for eachδ > 0,
there existsNδ, such that for anyn > Nδ,

K [·]m(xn
o )

m
≤ κ+ δ (20)

Sincex̂n
o is the solution of (6),

K [·]m(x̂n
o ) ≤ K [·]m(xn

o ). (21)

Moreover,

K([xn
o ]m − [x̂n

o ]m) ≤ K [·]m(xn
o ) +K [·]m(x̂n

o ) + C, (22)

whereC is a constant independent of all the other variables
in the problem [17]. Combining (20), (21) and (22) yields

K([xn
o ]m − [x̂n

o ]m) ≤ 2(κ+ δ)m+ C. (23)

If for each sequenceyn with K [·]m(yn) ≤ 2(κ+ δ)m+ C,
‖A[yn]m‖2 ≥ τ‖[yn]m‖2, for some fixedτ > 0, then from
(19)

‖xn
o − x̂n

o‖2 = ‖[xn
o ]m + enm − [x̂n

o ]m − ênm‖2
≤ ‖[xn

o ]m − [x̂n
o ]m‖2 + ‖enm − ênm‖2

≤ τ−1σmax(A)
√
n2−2m+1 +

√
n2−2m+1

≤ (τ−1σmax(A) + 1)
√
n2−2m+1. (24)

Define the eventsE(n)
1 andE(n)

2 as

E(n)
1 , {Ad×n :

∄ yn;K [·]m(yn) ≤ 2(κ+ δ) + C, ‖Ayn‖2 < τ‖yn‖2},
(25)

and

E(n)
2 ,

{

Ad×n : σmax(A)− 1−
√

n

d
< t

}

, (26)

for somet > 0.
Using these definitions plus the union bound, it follows

that

P (‖xn
o − x̂n

o ‖2 > ǫ) =P
(

‖xn
o − x̂n

o ‖2 > ǫ, E(n)
1 ∩ E(n)

2

)

+ P
(

‖xn
o − x̂n

o ‖2 > ǫ, (E(n)
1 ∩ E(n)

2 )c
)

≤P
(

‖xn
o − x̂n

o ‖2 > ǫ, E(n)
1 ∩ E(n)

2

)

+ P
(

(E(n)
1 ∩ E(n)

2 )c
)

≤P
(

‖xn
o − x̂n

o ‖2 > ǫ, E(n)
1 ∩ E(n)

2

)

+ P
(

E(n),c
1

)

+ P
(

E(n),c
2

)

. (27)

If A ∈ E(n)
1 ∩ E(n)

2 , then from (19)

‖xn
o − x̂n

o ‖2 ≤
(

τ−1(

√

n

d
+ 1 + t) + 1

)√
n2−2m+1.

(28)

Since, by assumption,m = mn = ⌈logn⌉ and d = dn =
⌈κ logn⌉, if n large enough,

(

τ−1(

√

n

d
+ 1 + t) + 1

)√
n2−2m+1 < ǫ. (29)

Hence, forn large enough

P
(

‖xn
o − x̂n

o‖2 > ǫ, E(n)
1 ∩ E(n)

2

)

= 0. (30)

On the other hand, by Lemma 2, for each sequencexn ∈
R

n,

P{‖Axn‖22 ≤ τ‖xn‖22} = P{‖A xn

‖xn‖2
‖22 ≤ τ2}

≤ e
d
2
(1−τ2+2 log τ). (31)

Therefore,

P
(

E(n),c
1

)

=

P
{

∃ yn : K [·]m(yn) ≤ 2(κ+ δ)m+ C, ‖Ayn‖22 < τ‖yn‖22
}

≤ 22(κ+δ)m+Ce−
d

2
(1−τ2+2 log τ). (32)



If we set τ = 0.04 and d = ⌈κ logn⌉ it is simple to see
that this probability goes to zero. Finally, we can use the
concentration of Lipschitz function of a Gaussian random
vector to prove [23]

P
(

E(n),c
2

)

= P

(

σmax(A)− 1−
√

n

d
> t

)

≤ e−dt2/2. (33)

Setting t to a constant andd = ⌈κ logn⌉ proves that this
probability also goes to zero.

VIII. P ROOF OFTHEOREM 2

Let xn
o = [xn

o ]m + enm, x̃n
o = [x̃n

o ]m + ẽnm, and x̂n
o =

[x̂n
o ]m + ênm.
Note that since‖Ax̃n

o − yno ‖2 = ‖A(x̃n
o − xn

o )‖2 ≤
σmax(A)ǫn, x̃n

o is also a feasible solution. Therefore, since
x̃n
o and x̂n

o are both feasible, by triangle inequality,

‖Ax̃n
o −Ax̂n

o ‖2 = ‖Ax̃n
o − yno − (Ax̂n

o − yno )‖2
≤ 2σmax(A)ǫn. (34)

Again, by triangle inequality,

‖Ax̃n
o −Ax̂n

o ‖2
= ‖A([x̃n

o ]m + ẽnm)−A([x̂n
o ]m + ênm)‖2

≥ ‖A([x̃n
o ]m − [x̂n

o ]m)‖2 − ‖A([ẽn]m − [ên]m)‖2
≥ ‖A([x̃n

o ]m − [x̂n
o ]m)‖2 − σmax(A)‖[ẽn]m − [ên]m‖2

≥ ‖A([x̃n
o ]m − [x̂n

o ]m)‖2 − σmax(A)
√
n2−2m+1. (35)

Combining (34) and (35), it follows

‖A([x̃n
o ]m − [x̂n

o ]m)‖2 ≤ σmax(A)
√
n2−2m+1 + 2σmax(A)ǫn.

(36)

Since both̃xn
o andx̂n

o are feasible, and̂xn
o is the optimizer

of (9), we have

K [·]m(x̂n
o ) ≤ K [·]m(x̃n

o ) ≤ m(κn + δ), (37)

and therefore

K [·]m(x̂n
o − x̃n

o ) ≤ m2(κn + δ) + C, (38)

whereC is a constant independent ofm andn.
Consider defining the eventsE1 and E2 as done in (25)

and (26), in the proof of Theorem 1. Then, using the same
argument used in that proof,

P (‖xn
o − x̂n

o ‖2 > ǫ) ≤P
(

‖xn
o − x̂n

o ‖2 > ǫ, E(n)
1 ∩ E(n)

2

)

+ P
(

E(n),c
1

)

+ P
(

E(n),c
2

)

. (39)

However, our choice of parameters guarantees that for
large enoughn, P(‖xn

o − x̂n
o‖2 > ǫ, E(n)

1 ∩ E(n)
2 ) = 0, and

moreover,P(E(n),c
1 ) andP(E(n),c

1 ) both go to 0 asn grows
to infinity.

IX. CONCLUSION

In this paper, we consider the problem of recovering
structured signals from their linear measurements. We use the
Komogorov complexity of the quantized signal as a universal
measure of complexity that covers many different examples
explored in compressed sensing literature and related areas.
We then show that, if we consider low-complexity signals,
the minimum complexity pursuit scheme inspired by the
Occam’s razor recovers the simplest solution of a set of
random linear measurements. In fact, we prove that the
number of measurements required is proportional to the
complexity and logarithmically to the ambient dimension of
the signal. We also consider more practical scenarios where
the signal is not ‘simple’ but is ‘close’ to a low complexity
signal. We show that even in such cases following minimum
complexity pursuit algorithm provides a good estimate of the
signal from much fewer samples than the ambient dimension
of the signal.

As mentioned in the paper, Kolmogorov complexity of
a sequence is not computable. However, currently we are
working on deriving implementable schemes by replacing
Kolmogorov complexity by computable measures such as
miminimum description length [24].
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