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Minimum Complexity Pursuit

Shirin Jalali and Arian Maleki

Abstract— The fast growing field of compressed sensing is
founded on the fact that if a signal is simple and has some
‘structure’, then it can be reconstructed accurately with far
fewer samples than its ambient dimension. Many different
plausible structures have been explored in this field, rangig
from sparsity to low-rankness and to finite rate of innovation.
However, there are important abstract questions that are ye
to be answered. For instance, what are the general abstract
meanings of structure and simplicity? Does there exist uniersal
algorithms for recovering such simple structured objects fom
fewer samples than their ambient dimension? In this paper, &
aim to address these two questions. Using algorithmic infona-
tion theory tools such as Kolmogorov complexity, we providea
unified method of describing simplicity and structure. We then
explore the performance of an algorithm motivated by Ocams
Razor (called MCP for minimum complexity pursuit) and show
that it requires O(klogn) number of samples to recover a
signal, where k and n represent its complexity and ambient
dimension, respectively. Finally, we discuss more generalasses
of signals and provide guarantees on the performance of MCP.

I. INTRODUCTION

Compressed sensing (CS) refers to a body of techniquesin the context of algorithmic

other structures introduced in the literature such as the
class of block-sparse signals [7]-[10].

iv. Rate of innovation: [11] defines the rate of innovation of
a signal as its “degrees of freedom”. Several important
classes of functions such as the piecewise polynomial
functions and sparse signals have clearly finite rate
innovation. [11] suggests sampling schemes for several
classes that recover the signal frab(k) number of
measurements, whefeis the rate of innovation.

The above results seem to provide pieces of a bigger
picture. Recently, [12] introduced the class of simple
functions and atomic norm as a framework that unifies
some of the above observations and extends them to some
other signal classes. However, there is still an intergstin
conceptual question that needs to be addressed, i.e., what
is the abstract meaning of ‘structure’ that allows fewer
measurements than the ambient dimension of the signal?
Given a simple signal, which scheme recovers the signal
from an undersampled random linear set of measurements?

information theory,

that undersample high-dimensional signals, and yet recov@olomonoff [13] and Kolmogorov [14] suggested a

them accurately by exploiting their intrinsic ‘structurdd],

universal notion of complexity for binary sequences, known

[2]. This permits more efficient sensing systems that aras the Kolmogorov complexity. Given a binary sequence
proved to be valuable in many applications including magits Kolmogorov complexityK (z) is defined as the length
netic resonance imaging (MRI) [3] and radar [4], to name af the shortest computer program that prints In this
few. Some of the ‘structures’ that have been considered jmaper, we extend the concept of Kolmogorov complexity

the literature are as follows.

i. Sparsity: A vectorr € R" is called k-sparse if and
only if [[z]o £ 3", I, 20y < k. Roughly speaking,
according to compressed sensingc-&parse signak
can be recovered fromi = O(klogn) random linear
measurementg = Ax.

ii. Low rankness: IfX € R™*" is a low rank matrix with
rank(X) < k, thend = O(r(m + n)log(mn)) random
linear measurements are sufficient for recoverikig

to the real signals. Such extensions are straightforwadd an
have been explored before [15]. Based on this notion of
complexity, called Kolmogorov complexity of real signals,
we show that Occams razor [16], i.e., finding the ‘simplest’
solution of the linear equations, correctly recovers tigaai
with much fewer measurements than the ambient dimension
of the signal. Roughly speaking, we prove that the number
of linear measurements required for recovering the correct
solution is proportional to the complexity rather than the

from its measurements accurately with high probabilit@mbient dimension of the signal. We postpone the accurate

[5].

exposition of our results to Section IV. We will further

iii. Model-based compressed sensing: [6] considers mogliscuss the issue of model mismatch in the signal classes

structured signal models by assuming that frqg)
subspaces of-sparse signals onlyn, of them may
occur. It is then proved tha®(log(my)) random linear

and will prove that the approach motivated by Occams razor
is stable with respect to such non-idealities in the system.

measurements are sufficient for the accurate recoveryHere is the organization of our paper. Section Il defines the
of such Signa's_ This class is a Superset of some of tﬁptation used throughout the paper. Senction Il defines Kol

mogorov complexity of a real-valued signal. Section IV out-
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complexity of several classes that are popular in compdesse
sensing and clarifies the statements of our theorems on these
classes. Section VI compares our work with other results in
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the literature. Sections VIl and VIII are devoted to the gsoo  Proposition 1: Let { X}, ud Ul0,1]. Then,
of our main theorems. 1
Il. DEFINITIONS m (X Xy X)) =
Calligraphic letters such agl and B denote sets. For in probability.
a setA, |A| and A° denote its size and its complement, Proof: If X; = 777 (X;);277, where (X;); €
respectively. For a sample spaeand event sefd C 2, I 4 {0,1}, then {(X;);} iid Bern(1/2). Theorem 14.5.3 in

L ) j=1
denotes the indicator function of the evedt [17] states that the normalized Kolmogorov's complexity

Let {0,1}* denote the set of all finite-length binary se- _ , , , n

quencés, i.}e.{(), 1}* AL UnZl{O, 1}n. For a vectorr € R”, Of ([Xl]m, ey [Xn]m) - {((Xz)la (Xz)2, ceey (Xl)m)}zzla

the £, norm of z is defined ag|z||, = (3;_, |2:|?)Y/?. The

{+, norm of z is denoted by|z||o £ max; |;]. KE{(X)1, (Xi)a, o, (Xi)m}ity[mn) @
For a real number: € [0,1], let [z],, denote them- mn ’

bit approximation ofx that results from taking the first in probability. On the other hand,

m bits in the binary expansion of. In other words, if

"

x = Y 27(x);, where (z); € {0,1} denotes theit K ({(Xi)1, (Xi)2, .., (Xi)m }ily|mn)
bit in the binary expansion of, then < K{(Xi)1, (Xi)2, oo, (Xi)m}iy)
R < K({(Xi)1, (Xi)2, - - -, (Xi)m}tiziImn) + log™ (mn) + c,
@l 2> 27 ;. €) )
=1
- n n . wherec is a constant [17]. Hence, combing (4) and (5) proves
Similarly, for a vectorz™ € [0, 1], define the desired result. -

[2"]m £ ([Z1]ms - - s [Tn]m)- (2

For an integem € N, let

IV. OUR CONTRIBUTION

Consider the problem of reconstructing a vectgre R"™
log* n £ [log, n] + 2log, max([log, n], 1). from d random linear measuremengs= Az with d < n.
We say a recovery algorithm is successful ifragrows the

{s-error betweenr, and its reconstructiot, goes to zero,
The Kolmogorov complexity of a finite-length sequence.e., we want

x with respect to auniversal computet{ is defined as the
minimum length over all programs that printand halt! For P ([la7 = 25]5 > €) =0,
a universal computet/ and any computerd, there exists
a constantc4 such thatKy(x) < Ka(z) + ca, for all
stringsz € {0,1}* [17]. Hence, as suggested in [17], we
drop the subscript/, and letK (x) denote the Kolmogorov

IIl. KOLMOGOROV COMPLEXITY

for anye > 0. Assuming that the signal is ‘structured’ in the
sense that will be clarified later, we follow Ocam’s Razor
and seek the simplest solution gpf= Az, i.e.,

complexity of the binary string:. arg min K[-]m(xl, o Tn)

Similarly, the Kolmogorov complexity of an integer € ot Az™ =y (6)
IN, K(n), is defined as the Kolmogorov complexity of its ©
binary representation. It can be proved that We call this algorithm minimum complexity pursuit or MCP.

The choice ofm will be clarified later as well. Suppose that

K(n) <log"n +c, A € R, where A;; are iid A(0,1/d), and assume that

wherec is a constant independent of Yy = Az, Let 27 = 27 (y", A) denote the output of (6) to
Forz = (z1,22,...,2,) € [0,1]", define the Kolmogorov the inputsy; and A.
complexity ofz at resolutionm as Theorem 1:Assume thate, = (2,1, %0,2,...) € [0,1]>
is such that
Km () = K([21]m, [22]m, - - - [Tn]m)- ©)
. K[V]m(xo,la Lo,2y+ -+, xo,n)
Lemma 1:For (z1, xs, ..., 2,) € [0,1]", lim sup - <K, (7)
n—oo
lim sup Kl (@, @, @) <n. wherem = m,, = [logn]. Letd = d,, = [klogn]. Then,
m—» o0 m
The proof is vzry simple and is skipped. forany e >0
Definition 1: The signalx = (x1,x2,...,2,) is called P (|la? — 272 > €) = 0, (8)
incompressible if and only if
(] asn grows without bound.
lim & (@1, 22, ., %) _ n. This theorem indicates that when the Kolmogorov com-
m—eo m plexity of the signal is less thar, then O(xlogn) linear

lRefer to Chapter 14 of [17] for the exact definition of a unbar Measurements are sufficient for the successful recovesy, Al
computer, and more details on the definition of the Kolmogawmplexity. it provides an evidence for the success of Ocam’s Razor.



Although Theorem 1 is an asymptotic theorem, its proofate of innovation frameworks explained in Section I. It is
provides information on the performance of MCP on finitestraightforward to extend the results to the other classes w

length sequences as well.
Corollary 1: Assume thatz, = (2,1, %02, - -
[0,1]™ is such that

S Ton) €

K[']m (xo,laxo,Qa e a‘ro,n)

<k, Vm.
m

Let m = m,, = [alogn| andd = d,, = [2axlogn]|. Then,
with probability 1 — n—%
1On1/27oc

n_ g, < .
g =25l <

Now consider the following more general setting, wher
the original signak:} to be recovered is not low-complexity,

but is close to a low-complexity signal’, i.e., ||z —2" |2 <

en With €, = o(1). Again, lety” = Az”, and consider the

following reconstruction algorithm for finding?* from its
linear measurementg):

min
s.t.

K[.]M(Ila s 7:677.)
[Az™ — ygll2 < omaz(A)en.

Assume thatd € R¥" and 4;; are iid V'(0, 3). Let & =
Ty (g, A)-

Theorem 2:Assume that there exist§! such that|z” —
2|2 < e,, and
Klm (Z7)

lim sup
m—0o0

< Kn- (9)
Let m = m, = [logn] andd = d,, = [k, logn]. If €, =
o(dy/n), then for each > 0,

P ([lzg —a5l3 > €) =0, (10)

asn grows without bound.

In the next section we show that several popular classes

discussed in Section |.

A. Sparsity

Let the signalz, = (2o,1,%02,-.-,%0n) b€ k-Sparse.
Consider the following program for describig],,. First,
use a program of constant length to describe the structure
of the signal as ‘sparse’ and the ordering of the rest of
information. Then, spendog® n + ¢ bits to describe the
length of the signal. Next, code the sparsity le%elvith
log™ k bits, and spend:(log™ n + ¢) more bits to code the
locations of thek non-zero elements. Finally, ugen more

its to describe the quantized magnitudes of the non-zero
coefficients. Therefore, we have

K[']m (xo,laxo,Qa e 7xo,n)
m
§k+(k+1)(10g n+c) + log k—l—c. (1)
m

Plugging (11) into Theorem 1, we conclude thdRk +
1)logn] measurements are sufficient for the recovery of the
k-sparse signals.

B. Piecewise polynomial

Let (zo,1,%02,.--,%Ton) be samples of a piecewise
polynomial function f(z) defined on|0,1] at locations
(0,1/n,...,(n—1)/n). Further, assume that< f(z) <1,
for everyz. Let Poly% represent the class of such functions
which have at mosf) singularitie$ and N is the maximum
degree of each polynomial. Le{taf}fgo denote the set of
coefficients of the/t" polynomial, whereN, < N denotes
its degree. For the notational simplicity, we assume that th
coefficients of each polynomial belong to tfte 1] interval
and that>" " a! < 1 for every ¢, wheread! is the it

coefficient of the/*™™ polynomial. For a given length,

sequences studied in CS such as class of sparse signals and

samples of piecewise smooth functions can be consideredés

; : o - CO
special cases of the framework we introduced in this section
and that Theorems 1 and 2 provide useful information abou

them.

V. APPLICATIONS

It is well-known that the Kolmogorov complexity is not

we derive an upper bound on the Kolmogorov complexity.
nsider the following program for describing?],,. The
c%)de first specifies the model as ‘piecewise polynomial’
with parametergn, @, N). This requiredog” n + log" N +
log™ k+cy bits. Then, for each singularity point, the code first
determines the largest sampling paift that is smaller than

it. Since there are at mos} singularity points, describing
this information requires at mosp(log* n + c2) bits. The

computable. In fact, the only way to find the shortest program

that generates a sequence is to run all the short progra %xt step is to describe the coefficients of each polynomial.

) : . .
and see if they generate the sequence or not. Howev Sing anm bit quantizer for each coefficient, the induced
tor is bounded by

some short programs may not halt and there is no way g

figure out if the program will halt or not. Hence, there is Ne , Ne , Ne , ,
no effective way to calculate the Kolmogorov complexity. Zflﬂfn - Z[a’i]m'tn < Z |a; — [ag]n|
However, it is usually possible to find upper bounds for i=0 i=0 i=0

the Kolmogorov complexity. In this section, we consider < (N+1)2‘m/.
several popular examples and provide upper bounds for their bi .
Kolmogorov complexity. Based on these upper bounds w otinsure thlat V\]fe are;r?bl(ej o re_c?nstructl 2_|Enr/esol2u_t:gn
use Theorems 1 and 2 to calculate the number of rando%ll e samples from this descriptiofy + 1) < :

linear measurements required by the MCP to recover the gerefore, describing the polynomials’ coefficients wedee

functions. Thl§ demonstrates the connection _between. thQA singularity is a point at which the function is not infinigedifferen-
results of Section IV and the compressed sensing and finiieble.

(12)



(Q+1)(N+1)(m+logy(N+1)]) extra bits. Hence, overall, number of samples we need is at the same order as the

we conclude that ambient dimension. However, gsincreases fewer number
KU (201, %02, ... Tom) of samples are required.
o WOL L2 < (Q+1)(N+1) Similar results hold for the piecewise smooth functions,
. (Q + 1)(N + 1)[logy(N +1)] which are very popular in image and signal processing.

VI. RELATED WORK

(13) Our work is inspired by [19] and [20]. [19] considers the
well studied problem of estimation, where the goal is to
Itis straightforward_to plug (13) into Theorem 2 and provecover a vectod from its noisy observations = § + z,
that, roughly speaking, for large valuesof (QN +2Q +  where » represents the noise in the system. It then sug-
1)logn measurements are sufficient for the successful refests using theninimum Kolmogorov complexity estimation

covery of the piecewise _ponnomiaI functions. . (MKCE) approach and proves thatdf ud m, under several
So far we have considered examples of IOW'Complex'%cenarios for the signal and noise, the average marginal

S|fg|nals. HOV\/levgr, Itr)] many aprf)llcatllons thel signals al‘re,n(aﬁstribution of the estimate of MKCE tends to the actual
of low complexity but are rather close to low complexity,,qiarior distribution. On the other hand, [20] considers

signals. We present several examples here. the problem of compressed sensing over binary sequences.
C. {,-constrained signals Consider the set of all the binary sequences with Kolmogorov

. . . . .complexity less than or equal tq), i.e.,
While sparse signals have played an important role in the plexity qual o

m
N log" n +log" N +log™ k + Qlog™ n + c1 + co
- )

theory of compressed sensing, it is well-known that they S(ko) £ {x: K(x) < ko}.
do not occur in practice very often. More accurate models . ) .
assume that either the magnitude of the signal follows &€t denote alxn binary matrix,x, = (r1,z2,...,&s)",

specific decay or the signal belongs tofarball with p < 1, Yo :_Axo. Considgrth_e following algorithm for reconstruct-
ie., [|zoll, < 1 [1], [18]. For the signalz, € R™ with ing signalx, from its linear measurements,:

lzollp, < 1, let (x5 (1), 2(2), - - -, To,(ny) denote the permuted %(¥o, A) 2 argmin K (x). (14)
version of z, such thatz, ;) > To,(2) > 2 Ton)- Yo=Ax
It is easy to show thatr, ;) < i~ ». Therefore, if we [20] considers this scheme and proves tatandom linear
just keep thek largest coefficients of this signal and sethinary measurements are sufficient for recovering the ginar
the rest to zero the resulting-sparse vector, satisfies, sequences i§(ky) with, high probability. This result does
|wo—&,|| < k™ »"2. Setting the sparsity to n?/2, Theorem not provide any information on the successful recovery of
2 proves thatd, = nP/?logn samples are sufficient for real signals and it does not consider the non-idealitiehén t
asymptotically accurate recovery. It is interesting toertbiat ~ signals either. Our paper settles both questions.
asp decreases, the decay rate increases and the number oAs mentioned in Section | the problem we discuss in
measurements required for the successful recovery desieashis paper is a central problem in the field of compressed
sensing [1], [2]. Several papers have considered different
generalization of sparsity [5], [6], [11], [12]. As mentiec
Suppose thaty, z2, ..., z, are equispaced samples of apefore, all these models can be considered as subclasses of
smooth functionf : [0,1] — R with 0 < f(z) < 1. Let the the general model we consider here. However, it is worth
function bef + 1 times differentiable and f**V)|. <~.  noting that even though the recovery approach proposed in
For the notational simplicity we assume tHgt™ (x)| <  our paper is universal, since Kolmogorov complexity is not
1 for everym < B+ 1. This function is not necessarily computable, it is not useful for practical purposes.
a low-complexity signal, but it can be well approximated |n this paper, we considered deterministic models for
with a piecewise polynomial function. To show this, considethe signals. Similar extensions have been considered in the
partitioning the[0, 1] interval into subintervals of size,, and  random settings as well. For instance, [21] considers the
approximating the functiorf with a polynomial of degre@  problem of recovering a memoryless process from a linear
in each subinterval. Lefs(x) denote the resulting piecewise set of measurements and proves the connection between the
polynomial function. It is easy to prove thaf — fsllcc < number of measurements required and the Renyi entropy.
~yry 1. Hence, ifz andz, denote vectors consisting of the Also, our work is in the same spirit with the minimum
equispaced samples of the original signal and its piecewig@tropy decoder proposed by Csiszar in [22]. He suggests
polynomial approximation, respectively, it follows thiat —  a universal minimum entropy decoder, for reconstructing an
Zoll2 < yv/mrp Tt iid signal from its linear measurements at a rate determined
On the other hand the complexity of the piecewise polyby the entropy of the source.
nomial signal is essentially proportional 18/r,. Setting
rn = n?, Theorem 2 proves that, = O(n'/?logn) is VIl. PROOF OFTHEOREM 1
enough for the accurate recovery of the samples of suchThe following Lemma will be used in the proof of the
signals. Clearly, for < 1, this bound indicates that the main theorem.

D. Smooth functions



Lemma 2 (Chi-square concentrationffix 7 > 0 andz €  If for each sequencg” with Kllm(y") < 2(k + §)m + C,

R™. Assume that|z||? = 1. Let Z; = i Ay, i = Ay lmll2 > Tll[y"]ml2, for some fixedr > 0, then from
1,2,...,d. We then have, (29)
d oo — &5 ll2 = ll[z5]m + €5, = [25]m — €5l
72 —1< —1| <es(rtlos=m) (15 n n 0o
<Z =)= ( ) < H[xO]m_[‘To]m|‘2+|‘em_em||2
Proof: Note that{ Z;}¢_, are iid (0, 1/d). By Markov < 7 o max (A)Vn2-2m+1 4 \/p2—2mt1
inequality, for any\ > 0, we have < (7 Omax(A) + 1)V/n2-2m+1 (24)
d
; (n) (n)
P (Z 72 1< _T> —p (_ ZZZQ 1> T) Define the events;"’ and&, "’ as
= i EM 2 {Aaxn :
—AT A1-372) n n
< e R [0 Koy <2481+ G Ag"la <l
JESUY (E —va ) (25)
and

A\ 2
e ATHA (1 + ?> (16) gm & {Adm : Opan(A) — 1 — \/g < t} . (26)

We optimize over\ to obtain for somet > 0.
d Using these definitions plus the union bound, it follows
% T
A* = 0—7) (17)  that
n __ sn _ n o__ an (n) (n)
If we plug (17) into (16) we obtain (15). | P(llog —25ll2 > €) =P (on ol > 6 &7 N & )
Proof: [Proof of Theorem 1] Lete”, = a7 — [z7]., +P (||$n — iy > € (£ ﬁ52(71))c)

and ¢, = z' — [27],, denote the quantization errors of ’ ’

the original and the reconstructed signals, respecti@hce <P (H:cZ —ia> 6 M N 82("))

both Az” =y, and Az" = y,, it follows that

P (e ney)
Al + €)= A8 +€3,)

<P (ng —i"a > 6, ™ N g§">)
+P (58’)’0) +P (55"*0) @D

If Aee™ nel™, then from (19)

and

A([glm = [251m) = A(er, — er,)- (18)

On the other hand, sinceg — [y].,| < 27", for eachy €

[07 1], we have ng N 522”2 < (T_l(\/g‘i‘ 1 —l—t) 4 1) Vn2—2m+1,

1e5, — eml3 < n27m L

(28)
Hence, Since, by assumptionp = m,, = [logn] andd = d,, =
n “n n " klognl], if n large enough,
LA 2]l = A — )l elog . i farge enoug
< Omax(A)Vn272m+l (19) <7’_1(\/§ +14+1)+ 1> Vn2-2mtl < e (29)
Since, by assumption, (7) holds fat, for eachd > 0,  Hence, forn large enough
there existsVg, such that for any:. > Ng,
P (les - a2l > e, &M nel”) =0, (30)
K (2)
Sk+0 (20) On the other hand, by Lemma 2, for each sequetice
Sincez! is the solution of (6), R™, "
KUm @y < KU (gn), (21) P{]lAz"|3 < 7lla" |3} = P{HA” e I3 <%}
Moreover, < e (1mriH2logT) (31)

K (2% — [#7]m) < KUm(z7) + KUIm(37) + ¢, (22) Therefore,

(n),c) _
whereC' is a constant independent of all the other variablesl,) (51 ) o
in the problem [17]. Combining (20), (21) and (22) yields p {3 Yy K[.]m( "y < 2(k + §)m + C, | Ay"|12 < THy"H%}

K([22]m = [20]m) <2(k+d)m + C. (23) < Q2(std)m+Cy—g(1-77+2l0gT) (32)



If we set7 = 0.04 andd = [klogn] it is simple to see

that this probability goes to zero. Finally, we can use the
concentration of Lipschitz function of a Gaussian randongt

vector to prove [23]

P (55”’70) S (omam(A) —1- \/g > t)

< e /2, (33)
Settingt to a constant and = [xlogn] proves that this
probability also goes to zero. [ |

VIIl. PROOF OFTHEOREM?2

[25]m + em, T3

Let 27 =
[26]m + €,
Note that since||Az? — yZ||2

[#]m + €, and &7 =

[A@ES = 25)l2

IX. CONCLUSION

In this paper, we consider the problem of recovering
ructured signals from their linear measurements. Wehese t
Komogorov complexity of the quantized signal as a universal
measure of complexity that covers many different examples
explored in compressed sensing literature and related.area
We then show that, if we consider low-complexity signals,
the minimum complexity pursuit scheme inspired by the
Occam’s razor recovers the simplest solution of a set of
random linear measurements. In fact, we prove that the
number of measurements required is proportional to the
complexity and logarithmically to the ambient dimension of
the signal. We also consider more practical scenarios where
the signal is not ‘simple’ but is ‘close’ to a low complexity
signal. We show that even in such cases following minimum
complexity pursuit algorithm provides a good estimate ef th

Omaz(A)en, " is also a feasible solution. Therefore, sincesignal from much fewer samples than the ambient dimension

Zr andz’ are both feasible, by triangle inequality,

[Azg — AZg |2 = |AZG — yo — (AZ5 —yg)ll2
< 20max(A)en. (34)
Again, by triangle inequality,

[AzZg — Ayl

= [A([Z5]m + €5,) — A([Z]m + €|z

> ||A([:Z“Z]m - [ig]m)HZ - ||A([én]m - [én]m)HZ

> [A([Z5]m — [20]m)ll2 — omaz (A)[[E"]m — [€"]ml|2

> [|A([Z5]m — [#5]m)]l2 = Omaz(A)Vn272m+1. (35)

Combining (34) and (35), it follows

[AZD)m = [E0]m) |2 < Omaz(A)Vn272m4 4+ 20,0, (A)en.

(36)

Since bothz!? andz} are feasible, and is the optimizer
of (9), we have

K@) < KU (@) < m(kn +9), (37)
and therefore
KUm (@0 — 37 < m2(k, +0) + C, (38)

whereC' is a constant independent of andn.

of the signal.

As mentioned in the paper, Kolmogorov complexity of
a sequence is not computable. However, currently we are
working on deriving implementable schemes by replacing
Kolmogorov complexity by computable measures such as
miminimum description length [24].
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