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Abstract— Previous work showed that theX network with M

transmitters, N receivers has MN

M+N−1
degrees of freedom. In this

work we study the degrees of freedom of theX network with
secrecy constraints, i.e. theX network where some/all messages
are confidential. We consider theM × N network where all
messages are secured and show thatN(M−1)

M+N−1
degrees of freedom

can be achieved. Secondly, we show that if messages from only
M − 1 transmitters are confidential, then MN

M+N−1
degrees of

freedom can be achieved meaning that there is no loss of degrees
of freedom because of secrecy constraints. We also considerthe
achievable secure degrees of freedom under a more conservative
secrecy constraint. We require that messages from any subset
of transmitters are secure even if other transmitters are com-
promised, i.e., messages from the compromised transmitterare
revealed to the unintended receivers. We also study the achievable
secure degrees of freedom of theK user Gaussian interference
channel under two different secrecy constraints where1

2
secure

degrees of freedom per message can be achieved. The achievable
scheme in all cases is based on random binning combined with
interference alignment.

I. I NTRODUCTION

Security is an important issue if the transmitted informa-
tion is confidential. Researchers have studied the information
theoretic secrecy for different channel models. In [1], Wyner
first proposed the wiretap channel model to characterize single
user secure communication problem, i.e., a sender transmits
a confidential message to its receiver while keeping a wire-
tapper totally ignorant of the message. The secrecy level is
measured by the equivocation rate, i.e., the entropy rate of
the confidential message conditioned on the received signal
at the wire-tapper. More recent information-theoretic research
on secure communication focuses on multi-user scenarios. In
[2], the authors study the compound wire-tap channel where
the sender multicasts its messages to multiple receivers while
ensuring the confidentiality of the messages at multiple wire-
tappers. Multiple access channel with confidential messages
has been studied in [3]–[5]. Broadcast channel with confiden-
tial messages has been studied in [6], [7]. The two user discrete
memoryless interference channel with confidential messages is
studied in [7].

It is well known that the secrecy capacity of the Gaussian
wiretap channel is the difference between the capacities of
the main and the wiretap channels [8]. In other words, there
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is a rate penalty for ensuring the secrecy. From the degrees
of freedom perspective, this is pessimistic since the channel
loses all its degrees of freedom. Further, even the two user
Gaussian interference channel loses all its degrees of freedom
if we have to ensure that messages from both transmitters are
confidential, i.e., a message should remain secure from the
undesired receiver. The results of the Gaussian wiretap channel
and the2 user Gaussian interference channel prompt one to ask
whether it is possible for a network to have positive number of
degrees of freedom if the messages in the network are secure.
The answer to this question lies in the study of theK user
Gaussian interference channel with secure messages [9] which
indeed has positive number of degrees of freedom ifK > 2.
It is shown that the network hasK(K−2)

2K−2 secure degrees of
freedom. The key to increase the secure degrees of freedom is
interference alignment. Interference signals associatedwith the
messages needed to be secured are aligned to occupy smaller
dimension so that the secrecy penalty rate is minimized. At
the same time, the degrees of the freedom for the legitimate
channel is maximized by interference alignment. Thus, the
tool of interference alignment serves the dual purpose of
minimizing the secrecy penalty rate and maximizing the rate
of the legitimate messages, thus improving the secure degrees
of freedom of the network.

In this paper, we generalize the result of [9] to theX
network. We study the achievable secure degrees of freedom
of theM×N user wirelessX network, i.e., a network withM
transmitters andN receivers where independent confidential
messages need to be conveyed from each transmitter to each
receiver.X networks are interesting since they encompasses
different communication scenarios. For example, each trans-
mitter is associated with a broadcast channel, each receiver is
associated with a multiple access channel and every pair of
transmitters and receivers comprises an interference channel.
In other words, broadcast channel, multiple access channel
and interference channel are special cases ofX networks.
In addition, interference alignment is also feasible onX net-
works. In [11], interference alignment schemes are constructed
to achieve 1

M+N−1 degrees of freedom per frequency/time
slot for each message without secrecy constraint. In this
paper, we exploit alignment of interference to assist secrecy
in the network. We study the achievable secure degrees of
freedom under four different secrecy constraints. We show
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that if the set of all unintended messages is secured at each
receiver, then each message can achieveM−1

M
1

M+N−1 secure

degrees of freedom for a total ofN(M−1)
M+N−1 secure degrees

of freedom. In other words, only a fraction1
M

degrees of
freedom is lost under this secrecy constraint. Interestingly,
if we only secure the set of unintended messages from any
M − 1 transmitters at each receiver, then each message can
achieve 1

M+N−1 secure degrees of freedom which is the same
as what one can achieve without secrecy constraint. This
corresponds to a scenario where one transmitter’s messages
need not be secure, perhaps because their confidentiality is
ensured cryptographically, by some higher layer. In this case,
the other messages increase their degrees of freedom by
exploiting this. Next, we consider a more conservative secrecy
constraint. Transmitters do not trust each other, so we require
that even if any subset of transmittersS is compromised, i.e.,
the messages from the compromised transmitter are revealed
to the unintended receivers (through a genie), the remaining
transmitters’ messages are still secure. For this case, we show
that if the set of all unintended messages is secured then
N(M−|S|−1)

M+N−1 secure degrees of freedom can be achieved for
the remaining(M −|S|)×N users. If we only need to secure
the set of unintended messages fromM−|S|−1 transmitters,
then 1

M+N−1 secure degrees of freedom can be achieved for
each message. The achievable scheme for all cases is based
on random binning combined with interference alignment.

II. SYSTEM MODEL AND SECRECY CONSTRAINTS

A. System Model

TheM×N userX network is comprised ofM transmitters
andN receivers. Each transmitter has an independent message
for each receiver. The channel output at thejth receiver over
the f th frequency slot and thetth time slot is described as
follows:

Yj(f, t) =
M
∑

i=1

Hji(f)Xi(f, t) + Zj(f, t), j = 1, 2, . . . , N

whereXi(f, t) is the input signal at Transmitteri, Hji(f) is
the channel coefficient from Transmitteri to Receiverj and
Zj(f, t) represents the additive white Gaussian noise (AWGN)
at Receiverj. We assume the channel coefficients vary across
frequency slots but remain constant in time and are drawn from
a continuous distribution. We assume all channel coefficients
are known to all transmitters and receivers. Using the symbol
extension channel in [11], the input-output relationship is
characterized as follows:

Ȳj(t) =

M
∑

i=1

H̄jiX̄i(t) + Z̄j(t) (1)

whereX̄i(t) is theF × 1 column vector representing theF
symbol extension of the transmitted symbolXi, i.e., X̄i(t) =
[Xi(1, t) Xi(2, t) · · · Xi(F, t)]

T . Similarly, Ȳj(t) andZ̄j(t)
represent the symbol extension ofYj andZj , respectively.̄Hji

is theF ×F diagonal matrix representing the extension of the
channel, i.e.,

H̄ji =











Hji(1) 0 · · · 0
0 Hji(2) · · · 0
...

...
. . .

...
0 0 · · · Hji(F )











Transmitter i has messageWji ∈ {1, 2, . . . ,Mji} for
Receiverj, for eachi ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , N},
resulting in a total of MN independent messages. An
(M11, . . . ,MNM , n, F, Pe) code for theX channel consists
of the following:

• MN independent message sets:Wji = {1, 2, . . . ,Mji}
• M encoding functions,fi: W1i × W2i × · · · × WNi →

X̄
n
i , whereX̄n

i = [X̄i(1) X̄i(2) · · · X̄i(n)], which map
the message tuple(w1i, w2i, · · · , wNi) ∈ W1i × W2i ×
· · · × WNi to transmitted symbols. Each transmitter has
a power constraint, i.e.

1

nF

F
∑

f=1

n
∑

t=1

|Xi(t, f)|
2 ≤ P, i ∈ {1, 2, . . . ,M}.

• N decoding functions,gj : Ȳ
n
j → Wj1 × Wj2 × · · · ×

WjM , whereȲn
j = [Ȳj(1) Ȳj(2) · · · Ȳj(n)], which

map the received sequencēYn
j to the decoded message

tuple (ŵj1, ŵj2, · · · , ŵjM ) ∈ Wj1 ×Wj2 × · · · ×WjM .

The maximal average probability of errorPe for an
(M11, . . . ,MNM , n, F, Pe) code is defined as

Pe , max{Pe,11, Pe,21, · · · , Pe,NM}

where

Pe,ji =
1

Mji

∑

wji∈Wji

P{g(Ȳn
j ) 6= wji|wji sent}

We use the equivocation rate1
nF

H(W |Ȳn
j ) as the secrecy

measure.
A rate tuple(R11, R21, . . . , RNM ) is said to be achievable

for the M × N userX network with confidential messages
if for any ǫ > 0, there exists an(M11, . . . ,MNM , n, F, Pe)
code such that

1

nF
log2(Mji) ≥ Rji

and the reliability requirement

Pe ≤ ǫ

and the security constraints which will be defined shortly are
satisfied. The secure degrees of freedom tuple(η11, . . . , ηNM )
is achievable if the rate tuple(R11, . . . , RNM ) is achievable
and

ηji = lim
P→∞

Rji(P )

log(P )
∀(j, i) ∈ J × I,

I = {1, 2, . . . ,M}, J = {1, 2, . . . , N}



B. Secrecy Constraints

We will define four different secrecy constraints as follows:
1) Secrecy Constraint 1: The secrecy constraint is defined

as

1

nF
H(W(J−j)×I |Ȳ

n
j ) ≥

∑

(r,i)∈(J−j)×I

Rri − ǫ

where

W(J−j)×I , {Wri : ∀(r, i) ∈ (J − j)× I}

This ensures the perfect secrecy of the set of all unintended
messages at each receiver. Moreover, it can be shown that
perfect secrecy for a set of messages guarantees perfect secrecy
for any subset of that message set, i.e.,

1

nF
H(WS |Ȳ

n
j ) ≥

∑

(r,i)∈S

Rri − ǫ ∀S ⊆ (J − j)× I (2)

To see this, consider

H(W(J−j)×I |Ȳ
n
j ) = H(WS |Ȳ

n
j ) +H(WSc |WS , Ȳ

n
j )

(3)

≤ H(WS |Ȳ
n
j ) +H(WSc) (4)

whereSc denotes the complement ofS and (3) follows from
the chain rule and (4) follows from the fact that conditioning
reduces the entropy. If the message set satisfies the secrecy
constraint, i.e.,

H(W(J−j)×I |Ȳ
n
j ) ≥ H(WS) +H(WSc)− ǫ

then from (4) we have

H(WS |Ȳn
j ) +H(WSc) ≥ H(WS) +H(WSc)− ǫ

⇒ H(WS|Ȳn
j ) ≥ H(WS)− ǫ

Thus, the confidentiality of the subsetWS is preserved.
2) Secrecy Constraint 2: Instead of ensuring the confiden-

tiality of the set of unintended messages of all transmitters, we
only secure the set of unintended messages from anyM − 1
transmitters. Secrecy constraint 2 is defined as

1

nF
H(W(J−j)×(I−l)|Ȳ

n
j ) ≥

∑

(r,i)∈(J−j)×(I−l)

Rri−ǫ ∀l ∈ I

where

W(J−j)×(I−l) = {Wri : ∀(r, i) ∈ (J − j)× (I − l)}

Again, the perfect secrecy of a message set guarantees perfect
secrecy for any subset of that message set, i.e.,

1

nF
H(WSJ×SI

|Ȳn
j ) ≥

∑

(r,i)∈SJ×SI

Rri − ǫ,

∀SJ ⊆ J − j, ∀SI ⊆ I − l

Note that satisfying secrecy constraint 1 ensures satisfying
secrecy constraint 2.

3) Secrecy Constraint 3: Let us defineSI ⊂ I to be the set
of transmitters that are compromised, i.e., the messages from
the compromised transmitter are revealed to the unintended
receivers andSc

I to be the set of the remaining transmitters.
We define secrecy constraint 3 as

1

nF
H(W(J−j)×Sc

I
|Ȳn

j ,W(J−j)×SI
) ≥

∑

(r,i)∈(J−j)×Sc
I

Rri − ǫ

∀SI ⊂ I

This constraint ensures that secrecy of any subset of transmit-
ters even if all other transmitters are compromised. Also, this
secrecy constraint guarantees that

1

nF
H(WSJ×Sc

I
|Ȳn

j ,W(J−j)×SI
) ≥

∑

(r,i)∈SJ×Sc
I

Rri − ǫ

∀SI ⊂ I, ∀SJ ⊆ J − j

4) Secrecy Constraint 4: Even if any subset of transmitters
SI ⊂ I is compromised, we require secrecy of the set of
messages fromSc

I − l transmitters for anyl ∈ Sc
I . We define

secrecy constraint 4 as

1

nF
H(W(J−j)×(Sc

I
−l)|Ȳ

n
j ,W(J−j)×SI

)

≥
∑

(r,i)∈(J−j)×(Sc
I
−l)

Rri − ǫ ∀SI ⊂ I, ∀l ∈ Sc
I

III. T HE M ×N USERX NETWORK WITH CONFIDENTIAL

MESSAGES

In this section, we consider the achievable secure degrees
of freedom of theM × N userX channel under different
secrecy constraints. In order to satisfy the secrecy constraints,
we use the random binning coding scheme to generate the
codebook. This is a natural extension of the coding scheme
used in [7] to achieve the inner bound of the capacity region
of the two user discrete memoryless interference channel with
confidential messages. To maximize the achievable degrees of
freedom, we adopt the interference alignment scheme used
in [11]. The main results of this section are presented in the
following theorems:

Theorem 1: For theM × N userX network with single
antenna nodes, M−1

M(M+N−1) secure degrees of freedom can
be achieved for each messageWji, ∀j ∈ {1, . . . , N}, ∀i ∈

{1, . . . ,M} and hence a total ofN(M−1)
M+N−1 secure degrees of

freedom can be achieved under secrecy constraint 1.
Proof: We provide a detailed proof in the Appendix. A

sketch of the proof is provided here. Consider theF symbol
extension channel whereF = N(m+1)Γ+(M−1)mΓ, ∀m ∈
N andΓ = (N − 1)(M − 1). Over theF symbol extension
channel, messageWj1 is encoded at Transmitter 1 intom1 =
(m+1)Γ independent streamsXj1(t) which is an(m+1)Γ×1
vector and messageWji, i 6= 1 is encoded at Transmitter
i into mi = mΓ independent streamsXji(t) which is an
mΓ×1 vector based on random binning coding scheme. Note
that such coding scheme introduces randomness to ensure the
secrecy. Then transmitteri employs the interference alignment



scheme mappingXji(t) to Vji(t)Xji(t) whereVji is the
F × mi matrix. At last, Transmitteri sends signal̄Xi(t) =
∑N

j=1 Vji(t)Xji(t) into the channel. Note that the precoding
matricesVji(t) are chosen as given in [11] so that at each
receiver, the desired signal vectors span a signal space which
is disjoint with the space spanned by the interference vectors.
Therefore, each receiver can decode its desired data streams
by zero forcing the interference. Note that at Receiverj, the
signal vectors associated withM desired messagesWji, ∀i =
1, . . . ,M span a(m+1)Γ+(M−1)mΓ dimensional subspace
in the F = N(m + 1)Γ + (M − 1)mΓ dimensional signal
space. Thus, to get an interference-free signal subspace, the
dimension of the subspace spanned by all interference vectors
has to be less than or equal to(N−1)(m+1)Γ. Notice that the
interference vectors from Transmitter 1 span a(N−1)(m+1)Γ

dimensional subspace. Therefore, we can align the interference
vectors from all other transmitters within this subspace so
that each receiver can decode its desired data streams by zero
forcing the interference in this subspace. Next, it can be shown
that the following secrecy rate is achievable:

Rji =
1

F
I(Xji; Ȳj)

−
1

F

1

M(N − 1)
max
k∈J

I(X(J−k)×I ; Ȳk|Xk×I)

∀(j, i) ∈ J × I (5)

From [11], we have

I(Xji; Ȳj) = (m+ 1)Γ log(P ) + o(log(P )) i = 1

and

I(Xji; Ȳj) = mΓ log(P ) + o(log(P )) i = 2, . . . ,M

Next, consider the termI(X(J−k)×I ; Ȳk|Xk×I) which de-
notes the secrecy penalty. Notice that all the interferencevec-
tors are aligned within the space spanned by(N−1)(m+1)Γ

interference vectors from Transmitter 1. Therefore, the secrecy
penalty is

I(X(J−k)×I ; Ȳk|Xk×I)

= (N − 1)(m+ 1)Γ log(P ) + o(log(P )) ∀k ∈ J

Hence, (5) can be written as

Rji =
1

F
(m+ 1)Γ(1−

1

M
) log(P ) + o(log(P )) i = 1

and

Rji =
1

F
(mΓ−

(m+ 1)Γ

M
) log(P )+o(log(P )) i = 2, . . . ,M

As m → ∞, we have

Rji =
M − 1

M(M +N − 1)
log(P )+o(log(P )) ∀(j, i) ∈ J ×I

As a result, each message can achieveηji = M−1
M(M+N−1)

secure degrees of freedom for a total of(M−1)N
M+N−1 secure

degrees of freedom.

Note that in [11], it is shown that 1
M+N+1 degrees of free-

dom can be achieved for each messageWji without secrecy
constraint. Theorem 1 shows that only a fraction1

M
degrees

of freedom is lost under secrecy constraint 1. However, it is
interesting that if we relax the secrecy constraint a little, i.e.,
only ensure the confidentiality of the set of messages from
anyM − 1 out of M transmitters at each receiver, there will
be no loss of degrees of freedom. We present the result in the
following theorem:

Theorem 2: For theM × N userX network with single
antenna nodes, each message can achieve1

M+N−1 secure
degrees of freedom for a total of MN

M+N−1 secure degrees of
freedom under secrecy constraint 2.

Proof: The proof is similar to the proof of Theorem 1.
We only provide a sketch of proof here. It can be shown that
the following secrecy rate is achievable:

Rji =
1

F
I(Xji; Ȳj)

−
1

F

1

(M − 1)(N − 1)
max

k∈J ,l∈I
I(X(J−k)×(I−l); Ȳk|Xk×I)

∀(j, i) ∈ J × I ∀l ∈ I (6)

whereF = N(m+1)Γ+(M−1)mΓ andΓ = (M−1)(N−1).
Through interference alignment, it can be shown that

I(Xji; Ȳj) = η log(P ) + o(log(P ))

where η = (m + 1)Γ when i = 1 and η = mΓ when
i = 2, 3, . . . ,M . Then consider the secrecy penalty term
I(X(J−k)×(I−l); Ȳk|Xk×I). At each receiver, the interfer-
ence vectors from Transmitter2, 3 . . . ,M are aligned perfectly
with the interference vectors from Transmitter 1, i.e. every in-
terference signal vector from Transmitter2, 3 . . . ,M is aligned
along the same dimension with one interference signal vector
from Transmitter 1. Note that there are(m+1)Γ interference
vectors for each message from Transmitter 1, but there are only
mΓ interference vectors for each message from Transmitter
2, 3 . . . ,M . If l = 1, I(X(J−k)×(I−1); Ȳk|Xk×I) denotes the
mutual information between the channel output at Receiver
k and channel inputs from Transmitter2, . . . ,M . Since all
vectors from Transmitter2, 3 . . . ,M are aligned perfectly with
interference vectors from Transmitter 1, it has zero degrees of
freedom, i.e.,I(X(J−k)×(I−1); Ȳk|Xk×I) = o(log(P )). For
∀l 6= 1, the interference vectors from Transmitterl occupy a
(N − 1)mΓ dimensional subspace. Therefore, the remaining
transmitters can get a(N − 1)((m+ 1)Γ −mΓ) dimensional
space without interference vectors from Transmitterl. There-
fore, we have

max
k∈J , l∈I

I(X(J−k)×(I−l); Ȳk|Xk×I)

= (N − 1)((m+ 1)Γ −mΓ) log(P ) + o(log(P ))

∀(j, i) ∈ J × I



Thus, (6) can be written as

Rji =
(M − 1)η − ((m+ 1)Γ −mΓ)

F (M − 1)
log(P ) + o(log(P ))

∀i = 1, 2, . . . ,M

Whenm → ∞, we have

ηji = lim
m→∞

(M − 1)η − ((m+ 1)Γ −mΓ)

F (M − 1)
=

1

M +N − 1

Therefore, each message can achieve1
M+N−1 secure degrees

of freedom for a total of MN
M+N−1 secure degrees of freedom.

Next, we consider the achievable secure degrees of freedom
under the more conservative secrecy constraints to ensure
secrecy of any subset of transmitters even if all other transmit-
ters are compromised. We present the result in the following
theorem.

Theorem 3: For theM × N userX network with single
antenna nodes, even if any subset of transmitters,S ⊂
{1, . . . ,M} is compromised, the remaining(M − |S|) × N

users can still achieve a total ofN(M−|S|−1)
M+N−1 secure degrees

of freedom under secrecy constraint 3 andN(M−|S|)
M+N−1 secure

degrees of freedom under secrecy constraint 4, as long as
|S| ≤ M − 2 .

Proof: To satisfy secrecy constraint 3, we design an
achievable scheme to satisfy the following secrecy constraint:

1

nF
H(W(J−j)×Sc |Ȳn

j ,X
n
(J−j)×S) ≥

∑

(r,i)∈(J−j)×Sc

Rri − ǫ

∀S ⊂ I

where

X
n
(J−j)×S = {Xn

ji : ∀(j, i) ∈ (J − j)× S}

X
n
ji denotes the codeword for messageWji.

Note that this secrecy constraint is stronger than
1
nF

H(W(J−j)×Sc |Ȳn
j ,W(J−j)×S). Because

H(W(J−j)×Sc |Ȳn
j ,W(J−j)×S)

≥ H(W(J−j)×Sc |Ȳn
j ,W(J−j)×S ,X

n
(J−j)×S)

= H(W(J−j)×Sc |Ȳn
j ,X

n
(J−j)×S)

In other words, we want to ensure secrecy of any subset of
transmitters even if all other transmitters’ codewords rather
than messages are revealed to the unintended receivers. This
is possible because the achievability scheme encodes the
messages separately and each message has its codewords. The
coding scheme is similar to that used in Theorem 1. Then it
can be shown that the following secrecy rate is achievable:

Rji =
1

F
I(Xji; Ȳj)−

1

F

1

(M − |S|)(N − 1)
×

max
k∈J ,S⊂I

I(X(J−k)×Sc ; Ȳk|Xk×Sc ,XJ×S)

∀(j, i) ∈ J × Sc

Consider the termI(X(J−k)×Sc ; Ȳk|Xk×Sc ,XJ×S). Fol-
lowing similar analysis in Theorem 1, if|S| ≤ M − 2, it
can be shown that

max
k∈J ,S⊂I

I(X(J−k)×Sc ; Ȳk|Xk×Sc ,XJ×S)

= (N − 1)(m+ 1)Γ log(P ) + o(log(P ))

Therefore,

Rji =
1

F
(η −

(m+ 1)Γ

M − |S|
) log(P ) + o(log(P ))

∀(j, i) ∈ J × Sc

whereη = (m + 1)Γ when i = 1 and η = mΓ when i =
2, 3, . . . ,M . As m → ∞,

Rji =
1

M +N − 1
(1−

1

M − |S|
) log(P ) + o(log(P ))

∀(j, i) ∈ J × Sc

Therefore, each message can achieve1
M+N−1 (1 − 1

M−|S| )

secure degrees of freedom for a total ofN(M−|S|−1)
M+N−1 secure

degrees of freedom under secrecy constraint 3.
Similarly, to satisfy secrecy constraint 4, we design an

achievable scheme to satisfy the following constraint:

1

nF
H(W(J−j)×(Sc−l)|Ȳ

n
j ,X

n
(J−j)×S)

≥
∑

(r,i)∈(J−j)×(Sc−l)

Rri − ǫ ∀S ⊂ I, ∀l ∈ Sc
I

Then it can be shown that the following secure rate is
achievable:

Rji =
1

F
I(Xji; Ȳj)−

1

F

1

(M − |S| − 1)(N − 1)
×

max
k∈J ,l∈Sc,S⊂I

I(X(J−k)×(Sc−l); Ȳk|Xk×Sc ,XJ×S)

∀(j, i) ∈ J × Sc

Following similar analysis in Theorem 2, if|S| ≤ M − 2, it
can be shown that

max
k∈J ,l∈Sc,S⊂I

I(X(J−k)×(Sc−l); Ȳk|Xk×Sc ,XJ×S)

= (N − 1)((m+ 1)Γ −mΓ) log(P ) + o(log(P ))

Therefore,

Rji =
(M − |S| − 1)η − ((m+ 1)Γ −mΓ)

F (M − |S| − 1)
log(P ) + o(log(P ))

∀(j, i) ∈ J × Sc

whereη = (m + 1)Γ when i = 1 and η = mΓ when i =
2, 3, . . . ,M . As m → ∞,

Rji =
1

M +N − 1
log(P ) + o(log(P )) ∀(j, i) ∈ J × Sc

Therefore, each message can achieve1
M+N−1 secure degrees

of freedom for a total ofN(M−|S|)
M+N−1 secure degrees of freedom.



IV. T HE K USERGAUSSIAN INTERFERENCE CHANNEL

WITH CONFIDENTIAL MESSAGES

In this section, we consider theK user Gaussian in-
terference channel with confidential messages. In [9], this
interference channel with confidential messages is considered
under secrecy constraint 1, i.e.,

1

nF
H(W(K−j)|Ȳ

n
j ) ≥

∑

i∈(K−j)

Ri − ǫ ∀j ∈ K = {1, 2, . . . ,K}

It is shown that each user can achieveK−2
2K−2 secure degrees

of freedom. However, we consider the same channel under
secrecy constraint 2, i.e.,

1

nF
H(W(K−j−m)|Ȳ

n
j ) ≥

∑

i∈(K−j−m)

Ri − ǫ

∀j,m ∈ K = {1, 2, . . . ,K}, j 6= m

and secrecy constraint 4, i.e.,

1

nF
H(W(Sc−j−m)|Ȳ

n
j ,WS) ≥

∑

i∈(Sc−j−m)

Ri − ǫ

∀m ∈ Sc, j 6= m, ∀S ⊂ K = {1, 2, . . . ,K}

whereS is the set of users that are compromised. Interestingly,
we show that for these two scenarios, each message can
achieve 1

2 secure degrees of freedom which is the same as
what one can achieve without secrecy constraint. We present
the results in the following theorems:

Theorem 4: For theK user Gaussian interference channel
with single antenna nodes, each user can achieve1

2 secure
degrees of freedom for a total ofK2 secure degrees of freedom
under secrecy constraint 2.

Proof: The proof is similar to the proof of Theorem 2
and is omitted here.

Theorem 5: For theK user Gaussian interference channel
with single antenna nodes, even if any subset of users,S ⊂
{1, 2, . . . ,K} is compromised, then the remainingK − |S|
users can still achieve12 secure degrees of freedom for each
message for a total ofK−|S|

2 secure degrees of freedom as
long as|S| < K − 2.

Proof: The proof is similar to the proof of Theorem 3
and is omitted here.

V. CONCLUSION

In this work, we obtain the achievable secure degrees of
freedom for theM×N userX network under different secrecy
constraints. We also obtain the achievable secure degrees
of freedom for theK user Gaussian interference channel
under two different secrecy constraints. We can see another
advantage of interference alignment, i.e., interference signals
are aligned along the same dimensions to assist secrecy in
wireless communications.

VI. A PPENDIX

A. Proof of Theorem 1

Proof: Let Γ = (N − 1)(M − 1) and F =
N(m + 1)Γ + (M − 1)mΓ, ∀m ∈ N. Over the F sym-
bol extension channel, for each messageWji, we generate

2nF (Rji+R1
ji+R2

ji+···+R
N−1
ji

+R
†
ji
) codewords each of length

nmi, wherem1 = (m + 1)Γ, mi = mΓ, ∀i = 2, 3, . . . ,M
. Each element of the codewords is i.i.d.∼ CN (0, P−ǫ

c
) such

that the power constraint is satisfied. We denote the codeword
as

X
n(wji, b

1
ji, b

2
ji, . . . , b

N−1
ji , b

†
ji) = [Xji(1) · · · Xji(n)].

wherewji ∈ {1, . . . , 2nFRji}, bkji ∈ {1, . . . , 2nFRk
ji}, ∀k =

1, · · · , N − 1, b
†
ji ∈ {1, . . . , 2nFR

†
ji} and Xji(t) is an

mi × 1 vector. This can be interpreted as the codebook is
first partitioned into2nFRji message bins and then each bin
is divided into 2nFR1

ji sub-bins which we refer to the first
layer of sub-bins. Each sub-bin in the first layer is further
divided into2nFR2

ji sub-bins which comprise the second layer.
Such partition is repeated until the(N − 1)th layer. Each

sub-bin in the last layer contains2nFR
†
ji codewords. Hence,

wji, b
1
ji, . . . , b

N−1
ji represent the message bin and the sub-bin

indexes of thekth, ∀k = 1, · · · , N − 1 layer respectively.

Now, to send a messagewji, Transmitteri looks into the
message binwji and randomly selects a sub-binb1ji in the
first layer, sub-binb2ji in the second layer and so on according
to the uniform distribution. In the sub-bin of the last layer
a codewordb†ji is chosen uniformly over{1, . . . , 2nFR

†
ji}.

Here, it obtains a codewordXn(wji, b
1
ji, · · · , b

N−1
ji , b

†
ji) =

[Xji(1), · · · ,Xji(n)]. For each time slott ∈ {1, . . . , n},
Transmitter i employs the interference alignment scheme
mapping Xji(t) to Vji(t)Xji(t) where Vji is the F ×
mi matrix. At last, Transmitteri sends signalX̄i(t) =
∑N

j=1 Vji(t)Xji(t) into the channel. Note that the pre-coding
matricesVji(t) are chosen as given in [11].

Without loss of generality, we assume

I(X(J−1)×I ; Ȳ1|X1×I) < I(X(J−2)×I ; Ȳ2|X2×I)

< · · · < I(X(J−N)×I ; ȲN |XN×I)

where X(J−j)×I = {Xri : ∀(r, i) ∈ (J − j) ×
I} and Xr×I = {Xri : ∀i ∈ I}. We choose rates
Rji, R

1
ji, · · · , R

N−1
ji , R

†
ji as follows

Rji =
1
F
I(Xji; Ȳj)−

1
F

1
M(N−1)I(X(J−N)×I ; ȲN |XN×I)

R1
ji =

1
F

1
M(N−1) [I(X(J−N)×I ; ȲN |XN×I)

−I(X(J−N+1)×I ; ȲN−1|X(N−1)×I)]

...



Rk
ji =

1
F

1
M(N−1) ×

[I(X(J−N+k−1)×I ; ȲN−k+1|X(N−k+1)×I)

−I(X(J−N+k)×I ; ȲN−k|X(N−k)×I)] (7)
...

RN−1
ji = 1

F
1

M(N−1) [I(X(J−2)×I ; Ȳ2|X2×I)

−I(X(J−1)×I ; Ȳ1|X1×I)] (8)

R
†
ji =

1
F

1
M(N−1)I(X(J−1)×I ; Ȳ1|X1×I))− ǫ (9)

Note thatRji+R1
ji+ · · ·+R

†
ji =

1
F
I(Xji; Ȳj)− ǫ. Next, we

will show this scheme satisfies both the reliability requirement
and the secrecy constraint.

Since Rji + R1
ji + · · · + R

†
ji = 1

F
I(Xji; Ȳj) − ǫ <

1
F
I(Xji; Ȳj), each user can decode its desired streams re-

liably.
To ensure the secrecy constraint 1, we need to show

H(W(J−j)×I |Ȳ
n
j ) ≥

∑

(r,i)∈(J−j)×I

Rri − ǫ

J = {1, . . . , N}, I = {1, . . . ,M}

We consider the following equivocation lower bound

H(W(J−j)×I |Ȳ
n
j ) ≥ H(W(J−j)×I |Ȳ

n
j ,X

n
j×I) (10)

where the inequality is due to the fact that conditioning reduces
entropy.

H(W(J−j)×I |Ȳ
n
j ,X

n
j×I)

= H(W(J−j)×I , Ȳ
n
j |X

n
j×I)−H(Ȳn

j |X
n
j×I) (11)

≥ H(W(J−j)×I , Ȳ
n
j |X

n
j×I ,B

j

(J−j)×I)−H(Ȳn
j |X

n
j×I)

(12)

whereBj

(J−j)×I = {B1
(J−j)×I ,B

2
(J−j)×I , · · · ,B

N−j

(J−j)×I}

and B
k
(J−j)×I = {Bk

ri : ∀(r, i) ∈ (J − j) × I}, ∀k =
1, · · · , N − 1 denotes the set of all the sub-bin indexes of the
kth layer for all codewordsXn

(J−j)×I . Bk
ri denotes the sub-

bin index in thekth layer for codewordXn
ji and is uniformly

distributed over{1, . . . , 2nFRk
ji}. Then, the first term of (12)

can be written as

H(W(J−j)×I , Ȳ
n
j |X

n
j×I ,B

j

(J−j)×I)

= H(W(J−j)×I , Ȳ
n
j ,X

n
(J−j)×I |X

n
j×I ,B

j

(J−j)×I)

−H(Xn
(J−j)×I |W(J−j)×I , Ȳ

n
j ,X

n
j×I ,B

j

(J−j)×I)

= H(W(J−j)×I ,X
n
(J−j)×I |X

n
j×I ,B

j

(J−j)×I)

+H(Ȳn
j |W(J−j)×I ,X

n
(J−j)×I ,X

n
j×I ,B

j

(J−j)×I)

−H(Xn
(J−j)×I |W(J−j)×I , Ȳ

n
j ,X

n
j×I ,B

j

(J−j)×I)

= H(W(J−j)×I ,X
n
(J−j)×I |B

j

(J−j)×I)

+H(Ȳn
j |X

n
(J−j)×I ,X

n
j×I)

−H(Xn
(J−j)×I |W(J−j)×I , Ȳ

n
j ,X

n
j×I ,B

j

(J−j)×I)

(13)

where

H(W(J−j)×I ,X
n
(J−j)×I |X

n
j×I ,B

j

(J−j)×I)

= H(W(J−j)×I ,X
n
(J−j)×I |B

j

(J−j)×I)

sinceW(J−j)×I , Xn
(J−j)×I are independent ofXn

j×I , and

H(Ȳn
j |W(J−j)×I ,X

n
(J−j)×I ,X

n
j×I ,B

j

(J−j)×I)

= H(Ȳn
j |X

n
(J−j)×I ,X

n
j×I)

due to the Markov chain

(W(J−j)×I ,B
j

(J−j)×I) → (Xn
(J−j)×I ,X

n
j×I) → Ȳ

n
j

Hence, from (10), (12), (13), we obtain

H(W(J−j)×I |Ȳ
n
j )

≥ H(W(J−j)×I ,X
n
(J−j)×I |B

j

(J−j)×I)

+H(Ȳn
j |X

n
(J−j)×I ,X

n
j×I)−H(Ȳn

j |X
n
j×I)

−H(Xn
(J−j)×I |W(J−j)×I , Ȳ

n
j ,X

n
j×I ,B

j

(J−j)×I)

≥ H(Xn
(J−j)×I |B

j

(J−j)×I)− I(Xn
(J−j)×I , Ȳ

n
j |X

n
j×I)

−H(Xn
(J−j)×I |W(J−j)×I , Ȳ

n
j ,X

n
j×I),B

j

(J−j)×I)(14)

We now bound each term in (14). Consider the first term.
Note that given the first to(N − j)th layers’ sub-bin indexes,

X
n
(J−j)×I has 2

nF
∑

(r,i)∈{J−j}×I
(RN−j+1

ri
+···+R

N−1
ri

+R
†
ri
)

possible values with equal probability. Hence

H(Xn
(J−j)×I |B

j

(J−j)×I)

= nF
∑

(r,i)∈(J−j)×I

(Rri +R
N−j+1
ri + · · ·+RN−1

ri +R
†
ri)

= nF
∑

(r,i)∈(J−j)×I

Rri + nI(X(J−j)×I ; Ȳj |Xj×I)− ǫ1

(15)

where the last step follows from (7) and (9).ǫ1 → 0 asn →
∞. Second, we can bound

I(Xn
(J−j)×I , Ȳ

n
j |X

n
j×I) ≤ nI(X(J−j)×I , Ȳj |Xj×I) + nǫ2

(16)
where ǫ2 → 0 as n → ∞. Finally, the third term can be
bounded as follows

H(Xn
(J−j)×I |W(J−j)×I , Ȳ

n
j ,X

n
j×I ,B

j

(J−j)×I) ≤ nǫ3
(17)

where ǫ3 → 0 as n → ∞. This is because Receiverj can
decode the codewordXn

(J−j)×I given the message, the first
to (N − j)th layers’ sub-bin indexes and the observationȲ

n
j .

Then, Fano’s inequality implies (17).
From (15), (16) and (17) , we can write (14) as

1

nF
H(W(J−j)×I |Ȳ

n
j )

≥
∑

(r,i)∈(J−j)×I

Rri +
1

F
I(X(J−j)×I ; Ȳj |Xj×I)

−
1

F
I(X(J−j)×I ; Ȳj |Xj×I)− ǫ1 − ǫ2 − ǫ3



Hence, security condition is satisfied at Receiverj. Therefore,
the following secrecy rate is achievable:

Rji =
1

F
I(Xji; Ȳj)−

1

F

1

M(N − 1)
I(X(J−N)×I ; ȲN |XN×I)

From [11], we have

I(Xji; Ȳj) = η log(P ) + o(log(P ))

where η = (m + 1)Γ when i = 1 and η = mΓ when
i = 2, 3, . . . ,M . At each receiver, the interference vectors
from Transmitter2, 3 . . . ,M are aligned perfectly with the
interference from Transmitter 1. Then, we have

I(X(J−N)×I ; ȲN |XN×I) = (N−1)(m+1)Γ log(P )+o(log(P ))

Hence,

Rji =
1

F
I(Xji; Ȳj)−

1

F

1

M(N − 1)
I(X(J−N)×I ; ȲN |XN×I)

=
1

F
(m+ 1)Γ(1−

1

M
) log(P ) + o(log(P )) i = 1

and

Rji =
1

F
(mΓ−

(m+ 1)Γ

M
) log(P )+o(log(P )) i = 2, . . . ,M

As m → ∞, we have

Rji =
M − 1

M(M +N − 1)
log(P ) + o(log(P ))

∀(j, i) ∈ {1, . . . , N} × {1, 2, . . . ,M}

As a result, each message can achieveηji = M−1
M(M+N−1)

secure degrees of freedom. Therefore, for a total ofMN

messages, we can achieve a total ofN(M−1)
M+N−1 secure degrees

of freedom. The proof is complete.
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