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Abstract— This paper jointly designs the distributed control
law and its communication architecture for large-scale intercon-
nected systems. The novelty is to consider both, the robustness
guaranty under topology uncertainty and the performance
improvement of the overall system. The proposed framework
consists of two steps. The first step aims at finding a set
of stabilizing distributed control laws providing H.. robust
performance under topology uncertainty. In the second step the
performance of the interconnected system is further improved
by searching for the optimal communication topology within
acquired set of distributed control laws. In this step, the design
of communication architecture is achieved by minimizing the H,
norm. Additionally, a trade-off between performance improve-
ment and communication cost is incorporated. Furthermore, to
reduce computational complexity, a strategy to manipulate the
existing communication links is proposed to deal with topology
variation in the interconnected systems. Finally, the developed
method is demonstrated via some examples.

I. INTRODUCTION

Many practical systems in engineering can be modeled as
large-scale interconnected systems such as power grids [1],
water distribution networks and transportation systems. The
design of control algorithms for such interconnected systems
has received considerable attention in recent years [2]-[5].

The individual subsystems in a large-scale interconnected
system are physically coupled; typically the overall system
has a certain sparsity structure. For such large-scale systems,
centralized or conventional control methods become infeasi-
ble since they assume that a single centralized controller has
instantaneous access to all measurements. In order to address
this problem, in early works decentralized control schemes
are developed, see e.g. [6] for an overview. The fundamental
idea is to utilize only locally available state information in
designing the control law, while the performance might be
significantly degraded compared to a centralized approach.
Advances in digital communication technologies allow for
communication between subsystems and, thereby, distributed
control schemes are facilitated. They provide a larger control
flexibility: instead of only local subsystem information, the
states of neighboring subsystems can be used for control as
well. As a result, a better performance is typically achieved
compared to decentralized approaches [7].

One of the challenges in designing distributed control
laws is the topology uncertainty due to the physical or
communication link failures. Such uncertainty may harm the
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stability and performance of the overall system. For example,
a transmission link failure in a power grid may result in a
cascading failure which can possibly lead to a large black-
out [8]. In addition, it is desirable that external disturbances,
for example load or renewable energy resource fluctuation
in a smart grid, diminish as they propagate through the
system [1]. The robustness to topology uncertainty and
disturbance rejection is crucial and in the focus of this paper.
In practical engineering, the controller is expected not to
only eliminate the disturbance, but also optimize a desired
control performance involved with certain worst-case distur-
bance. Since H, performance is very appealing for many
applications, H, optimization is widely applied in optimal
control problems, see e.g. [9]. Another issue relevant to inter-
connected systems is the communication cost for information
transmission. In particular, an appropriate trade-off between
performance improvement and the number of communication
links is desirable. Optimal sparse state feedback control laws
are developed in [3], [4], and for output feedback in [5].
However, no topology uncertainty is taken into account.
The main contribution of this paper is to design an optimal
distributed control law for large-scale interconnected systems
with topology uncertainty. The proposed strategy involves
two steps: The first step aims at identifying distributed
control gains subject to external disturbance and topology
uncertainty for which stability and a certain level of He.
performance can be guaranteed. This topology uncertainty
is characterized by introducing a local connectivity bound to
candidate structures. The feedback control gains are derived
from the solution of linear matrix inequalities (LMIs). In the
second step, the performance is further improved by extract-
ing the optimal communication topology from the family
of robust topologies characterized in the first step. This is
achieved by minimizing the H> norm from an external distur-
bance to the controlled output and simultaneously taking into
account the trade-off between performance improvement and
communication cost. The optimization problem is posed as
a mixed-integer semi-definite program (MISDP), which can
be solved using, for example, branch-and-bound algorithms.
The framework developed in this paper has following advan-
tages: 1) It is not required to redesign the control law when
the topology structure or size of system changes as long
as a local connectivity bound remains satisfied; 2) the local
connectivity constraint provides an explicit rule on regulating
the interconnected systems without harming the stability of
the overall system; 3) it also provides the controller sufficient
time to re-optimize its communication topology when the
topology changes without losing of stability, which will be



demonstrated later in the paper.

The organization of this paper is as follows: after formu-
lating the problem in Section II, the control design for He.
performance is proposed in Section III. In Section IV, based
on the previous results, an optimal communication topology
is identified. Furthermore, a heuristic manipulation algorithm
of communication links is presented. Finally, the proposed
strategies are evaluated via numerical examples in Section V.
Notation. Let R be the set of real numbers; diag(a,b) repre-
sents the diagonal matrix [g (b)] , where a,b € R; 1 (0) denotes
the N x 1 column vector of all ones (zeros), and Iy (0y) is the
N-dimensional identity (zero) matrix (for simplicity / and 0
if no confusion arises). Moreover, let {0,1}y be the set of
all N-dimensional 0 — 1 matrix. tr(-) represents the trace
function and the operator o is the Hadamard product.

II. PROBLEM FORMULATION

Consider an interconnected system of N linear time in-
variant (LTI) subsystems with dynamics described by the
following differential equations

N
X =Axi+ ZUiinjxj+B1,iWi+BZ,iui7 )
Jj=1

zi = Cix;, i=1,2,....N

where x; € R", u; € R™ are the state of subsystem i and the
control input to subsystem i, and matrices A;, A;j, By, By
and C; are real and of compatible dimensions. For notational
convenience, we consider the dimension for all subsystems
equal but that the approach straightforwardly extends to
different dimensions. The performance output z; € R"= rep-
resents an error signal, and the exogenous signal w; € R™
denotes all external inputs, including sensor noise, distur-
bance, and commands. The term Z?’:] UijA;jx; represents
the physical coupling with neighboring subsystems, where
matrix A;; and scalar U;; € {0,1} are the coupling strength
and index between subsystem i and j, respectively. The
index U;; is equal to 1 when there is a physical connection
between subsystem i and j (j # i); otherwise 0. Furthermore,
when j =i, we have U;; =0. In many practical situations,
the physical interconnection between any two subsystems
may not always be available or fixed due to failure of
physical devices, geographical limitation or environment
variation. Motivated by recent technological advances on
communication topologies, remote non-local information can
be used to implement the local control law given by
N
ui:K,‘x,‘JrZVin,-jxj, Vi=1,...,N, 2)
j=1

where the feedback gain K;; and the interconnection index V;;
have an analogous interpretation as their counterparts in
the physical layer. The interconnected system (1) with its
distributed control law (2) is illustrated in Fig.1.

The physical interconnection among the subsystems
incorporated ~ with  the distributed  control, i.e.
communication topology, are represented by the joint
graph G = (S,&y U&v), where S = {s1,...,sy} denotes the
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set of subsystems, &y and &y are the set of edges in the
physical and the communication topology. Note that for
&y = &, the control law reduces to a decentralized one.
To facilitate the following analysis, we only confine our
attention to undirected graphs, i.e. U;; = Uj; and V;; = V).

Remark 2.1: The decomposition into coupling terms A;;
in the system dynamics and K;; on the control level and
the interconnection topology represented by the adjacency
matrices U = [Ujj]nxn, V = [Vijlnxn is introduced to repre-
sent topological uncertainties in a convenient fashion. The
adjacency matrices U and V represent the interconnection
between subsystems, i.e. cluster of states. Also note that the
undirected graph assumption U =U " and V =V does not
imply that the system dynamics/control law is symmetric;
i.e. A;; and Aj; are not necessarily equal.

In order to represent topology uncertainty we will use the
notion of a degree of a vertex. The degree d; of subsys-
tem i is defined as the number of neighboring subsystems
within the joint graph &;(G) = X)_; (1 — (1= U;)(1 = V;).
We assume that the joint graph is connected and there
is no isolated subsystem in the interconnected system (1),
ie. di>1Vie{l,...,N}. In practical interconnected sys-
tems, this assumption does not represent any restriction
for our analysis because a subsystem without any inter-
connection makes no contribution to the performance of
overall system. A local connectivity bound d is introduced to
characterize the structural properties of the admissible system
topologies within an uncertainty set, where 1 <d <N —1.
Associated with connectivity bound, we define a set of graphs

G(d) ={G|di(G) <d,¥i=1,...,N, and G is connected},

which corresponds to our definition of topology uncertainty
in this paper. Note that d > 1 is derived from that graph G is
connected, and for d = N —1 the set G(d) includes arbitrary
topologies for the given number of vertices. Smaller d re-
duces the cardinality of the set and puts a stronger restriction
on the admissible topologies in this set. It is interesting
to note, that a violation of the connectivity bound can be
decided locally, i.e. each node can decide whether it satisfies
the degree bound without the need of global information.
For further derivations we denote the aggregated state
vector for the overall system as x = [x?, . ,x;] " The closed
loop dynamics of the overall system can then be written as

x=(A+ByK)x+Bw, z=Cx, (3)



where 7z = [z?,...,z;]T, B, = diag(Bi,1,...,Bin),
32 =Adiag(3271,...,Bz’N), C = diag(Ch...,CN)
and A = Ajpg + U 0Ajp;, where Ajpg = diag(Ay,...,Ay) and
0 Ap Ay
Ay O Ay
A= . : ) :
Ayt A2 -+ 0

The controller is analogously decomposed into a local control
term and a coupling control term , see also (2), by

K = Kind +V o Kiy, “)

where V = [Vij]nxn is adjacency matrix of the commu-
nication topology. Additionally, we assume that (A,B,) is
stabilizable and (A,C) is detectable.

Now we formally state the problem being investigated in
this paper. The goal is to design the distributed feedback
gains together with the communication topology in (4) such
that: 1) stability is preserved under topology uncertainty
and 2) the control performance is guaranteed within a de-
sired level. In order to deal with disturbances and topology
uncertainty, we first identify a set of distributed control
laws which ensures a certain H. performance level for all
graphs G € G(d). Next, by the flexibility of allocating the
communication links within the set G(d), the performance
is further improved by solving an H, optimal problem while
reducing the communication cost.

III. CONTROL DESIGN FOR TOPOLOGY-ROBUST H..
PERFORMANCE

Denote T,, as the transfer function matrix from the
disturbance w to the controlled output z of the interconnected
system (3), i.e. z = T,,,w. The classical H. problem can
be stated as following: given a desired scalar y > 0, find
an appropriate control protocol K, such that the system is
stable, while [|T,y|/ < 7. When there are no constraints
on the structure of K, by the Kalman-Yakubovich-Popov
lemma [10], satisfying the H. norm ||T,,|l. < v implies
that there exists a matrix P > 0 such that Riccati inequal-
ity (A+BR)P+P(A+B:K)" +BiB] +LPC'CP <0
holds. In order to simplify the analysis and to render
the problem computationally tractable, we assume that
the P are restricted to diagonal form P = diag(P,...,Py),
where P >0 for i = 1,...,N. This diagonal design
on P introduces some conservatism, i.e. the feasible H..
performance will present an upper bound only within the
uncertainty set G(d) of admissible topologies.

To obtain the desired form of K, a new variable 0= RP
is introduced and presented in the form

O = QOindg +V 0 Qjpy = diag (Qilnda SRR Q{:’ld)

0 Vi - Viy 0 le ... QIII‘Il\I/
Vor 0 Von th 0o - ol
+ | . . . . |©° . . -
Vwi Vva - 0 th Q{\Iff . 0

where Qind = K;P; and Q
can then be rewritten as

= K;;P;. The Riccati inequality

int

N " 1
AP+PA" +B,0+Q"B) +BB] + ?PCTCP <0. (5

Under the restriction on P, the i, j block of (5) is given by

fori= ] A P ‘i‘PAT +BZ Ide + ( md)TB;,i +BlaiBIi
+:5PC/ P,
fori# j: UyjAiP;+UjiPAT +ViiBaiQil +Vii(Qh ) TB] ;.
In the following analysis, a distributed control law is de-
rived which guarantees that the interconnected system has a
robust H.. performance for any graph G € G(d).

Before stating the main theorem in this paper, we recall
the following Lemma.

Lemma 3.1: [11] Let a Hermitian matrix A be partitioned
into blocks A;j, where i, j=1,...,N. Suppose the number of
nonzero off-diagonal blocks in ith row of A is m;. Without
loss of generality, there exist at least one nonzero off-
diagonal block in each row. If

1
m i Aij

=0 (6)
Aji A

holds for all i,j=1,...,N, i # j, then A > 0.

Theorem 3.1: Consider the interconnected system (3) and
let the uncertainty set G(d) of admissible topologies be
parameterized by a degree upper bound 1 <d < N—-1. If
P >0, Q{nd, th (i,j=1,...,N) are the solutions of the
following linear matrix 1nequahties:

UCIJCU ij
YZ

AT pT AT P'JC;C’JP

AzJPz]+Pz]A +B1]Qlj+QljB +B Bij"‘T

AijBj+PjAj +Bij0i;+ OBl + BB + <0

<0 (1)
B;CiCijB;

AijPyj+ BjAT + B 0i; + OB} + Bij BT+]T' <0

with the performance level ¥ > 0 and

- [A: 0 _ A dA: . B, 0
el ) weli, ) el
L0 Al T dAy A, "TLo By
~ [P0 ~ i 4ol By, 0
P = 14 :l Q — ind -int B — |: R :|
! -0 Pj N ant and X 0 Bzv]
(c; 0] A i 0
Cl” — l :| Qi‘ — 1nd :| ,
J _0 Cj J I 0 and
then the distributed control law (2) with K; = indP !

and K;; = er];tPj’l stabilizes the system (3) and guarantees
|7zl < 7, for all G € G(d).

Proof: 1If the three matrix inequalities in the Theo-
rem 3.1 are satisfied for all i, j =1,...,N, then it implies that

1 T
lo,  Blo;
d =l k Y] _<O’
[/31?91‘1‘ glchj]

k=1,2,3 (8)
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ol B3= . = N
0

4 PCICP,
D; = AP, + PA] +B2,iQlna+ (Qlna) ' B +Bi B + %

We denote a vector H;; = [U;j, Uji, Vij, Vji]T. According to

Lemma 3.1 and using structure properties d; < d within un-
certainty set G(d), if the following linear matrix inequalities

L. TO..
7P H;0;

T 1 <0,
H;0ji 9,

i#J, (©))

holds for all i,j = 1,...,N, then the inequality (5) is
achieved. To verify inequality (9), all possible combined
structures of topologies are investigated as follows:

1).U,'j=Uj,'=V,'j=Vj,'=1; 2),U,'j=Uj,'=V,'j=Vj,‘:0;
3) U,'j = Uj,' = l,V,'j = le' :0; 4) U,'j = Uji = O,Vl’j :Vj,‘ =1.

The case 1) and 2) can be easily confirmed by inequality (8)
with B;. The inequalities (8) with 8, and B3 can be used to
verify the case 3) and 4), respectively. Hence, the inequal-
ity (9) holds for all i # j . Finally, the interconnected system
is stable, while ||T;,|| < v for all graph topologies G € G(d).
This completes the proof. [ ]
For convenience, we denote a set V C {0,1}y to embody
all candidate adjacency matrix of N subsystems and whose
size is 2V(V=1)/2 " A constrained subset V C V given by

V={VeV|GeG)}.

It is worth mentioning that the outcome of Theorem 3.1 is
a set of control laws K, which can be represented by

K = {K|K is defined in (4), with Kinq, Kin
derived from Theorem 3.1, ¥V € V}

In the next section, we determine the best V from set V
in the sense of a H, criterion. Furthermore, the results in
Theorem 3.1 offer some interesting insight into the manip-
ulation of the large-scale interconnected systems. Without
violating the local degree constraints, we are allowed to
flexibly add or remove communication links. The link gains
can be independently calculated in a distributed manner from
the LMIs (7). This is very appealing for practical systems,
where variations in the topology and also the number of
subsystem occur, while privacy and complexity concerns
prevent the centralized computation of the control law. One
has to pay for these advantages with a certain conservatism
in the control design.

IV. COMMUNICATION TOPOLOGY DESIGN

This section is devoted to derive the optimal communi-
cation architecture for the interconnected system within the
range of the set V in terms of a H, performance criterion. In
addition, a manipulation strategy of communication topology
based on the existing communication links is proposed to
manage the failure or addition of links in physical networks.

A. Optimal Hy Communication Topology Design

Within the scope of optimal control design for the in-
terconnected systems, the identification of the favorable
interconnection structure under a given performance level
is desirable. In contrast to H., the H, norm control is
more appealing for control engineers to achieve a desired
control performance. An optimal H, performance with a
guaranteed worst case performance in an H. sense (as
derived in Section III) is considered here, which leads to
the a sub-optimal strategy of allocating the communication
links. Moreover, a trade-off between the performance im-
provement and communication cost is incorporated into the
topology design.

The cost function of H, optimal problem is given by

JV) =tr ( /°° BITe(A+32k(V))TZCTC6<A+321%<V))xBldt)
JO

where the adjacency matrix V €V is considered the only
decision variable in the cost function. The entries V;; in V are
implicitly dependent on connectivity degree d and physical
coupling index U;;. According to the Theorem 3.1, the
feedback controller u = Kx with K € K stabilizes the system,
i.e. the above integral is bounded and it can be evaluated by
solving the Lyapunov equation

(A+By(King +V 0Kina)) ' Q+ Q(A+ Ba(Kine

(10)
+VoKing)) = —C'C,

where matrix Q is the observability Gramian of the overall
system. As a result, the cost function can be rewritten here as

J(V)=tr (BITQ(V)Bl) .

With respect to the constraint on the number of communica-
tion links, a penalty term may also be explicitly incorporated
into the objective function as
J(V) =tr (BITQ(V)Bl) + ngvL (1)
where p weights the tradeoff of above two terms, with the
property that a larger p encourages less communication links.
It is worth mentioning that when p increases large, the dis-
tributed control law tends to the decentralized case. However,
such decentralization is at the expense of sacrificing the
system performance.
Based on above analysis, the network design can be
formulated as the following optimization problem:
min
V;j€{0,1}

s.t. V=[Viilnxn €V & Eq.(10).

tr (BTQ(V)&) +%1Tv1 "

where Q(V) is the solution of (10).

The H; optimal problem incorporated with communication
constraints in (12) results in a combinatorial problem. Albeit
the existence of nonconvex constraints, numerical software
can still be employed to achieve the locally optimal solution.



Since the undirected graph is taken into account here, the
degree constraints in set G(d) imply that

N
1< Y (1-(1-U)(1-Vy) <d, i,je{l,...,N}. (13)
j=1
Let the degree of each subsystem in physical and
communication topology respectively be dl-p = ZJY:l Uij
and df = ):1}/:1 Vij and the corresponding degree
matrix DP =diag(d},...,dy) and D¢ =diag(ds,....dy),
respectively. By denoting a matrix & with the
form £ =DP+D°—1o(UV), the inequality (13) can be
rewritten into a compacted matrix inequality as I < & < dI.
As a result, the topology design can be reformulated as the
following minimization problem.
Optimization Program. I:

. T P.T
min tr(B1 Q(v)31)+§1 V1 "

st. I<&E(V)=dl & Eq.(10)

By Theorem 3.1, if a distributed control law K € K, the H..
performance is preserved that implies the inverse matrix of
(A + ByK) exists. Right multiplying (A + B,K)~' at both
sides, the Lyapunov equation (10) becomes:

(A+BR)"QA+B:K) '+ 9=-C"C(A+B.K)™". (15)

Using the cyclic permutations of trace function, the following
equation can be obtained from (15)

tr(Q) = —%tr (CTc@d+Bak) ™).

In particular, we discuss the case when the weighted
matrix of disturbance B is identity matrix. Due to the prop-
erty A+B,K =0 VK € K and Schur complement, the Op-
timization Program. I transforms to the following MISDP,
which can be solved using a mature and efficient numerical
algorithm, for example, branch-and-bound method [12].

Optimization Program. II :
min tr(F)+p1'V1

o |F c’
T |C A+BR(V)

(16)
}<o & I<E=dl.

B. Topology Manipulation with Existing Links

In reality, the topology of the interconnected system
may change due to physical interconnection failures (e.g.
transmission line failures in power system) or some sub-
systems join in or are removed from the system. Using
the proposed approach in Section III, the stability of the
interconnected system is preserved under topology variation
provided that the new topology belongs to graph set G(d).
However, the performance level may be lost. Compared to
redesign the communication topology from Optimization
Program. I, the link manipulation based on existing links
is more desirable because of less expensive computation and
easier implementation. By solving a suboptimal H, problem,
we propose a manipulation algorithm based on the optimal
solution generated in (14) when the topologies change.

The goal is to reduce the degradation of performance and
keep computational complexity low by means of reallocating
several existing links. The proposed framework developed
in Section III ensures the stability of overall system to-
gether with certain worst-case performance, whereby, the
communication links can be re-allocated flexibly rather than
examining the system performance at each time step.

Let V* be the minimizer derived from Optimization
Program. I, which contains m. communication links. The
rearrangement of existing links under topology variation can
be formulated as following suboptimal problem.

Optimization Program 111 :

min tr (BITQ(V)Bl)
\%4

| (17)

st. Eq.(10) & I <& <dl & 51Tv1 = m,

Compared with the original optimal problem (14), the so-
lution in the above optimization can be achieved over a
set of maximal size ( N(N”f” /2) compared with solving the
original problem. It should be noted that this topology ma-
nipulation given by (17) reduces computational effort while
sacrifices partial performance rather than recomputing (14).
However, when the scale of systems get larger this design
is more appealing, especially, in many practical situations.
Furthermore, as stated in [13], the first added links lead to a
greater improvement on the performance of overall systems
than those added later. That is, the performance is enhanced
slightly by adding new links after a certain amount of com-
munication links and subsequently the resulting performance
loss is acceptable.

V. NUMERICAL EXAMPLE

We consider the system consisting of 5 scalar subsystems
with undirected physical interconnections depicted by the
black solid lines in Fig.2, and the dynamics are given
by By =1, B, =1/3, C = diag(1.6, 0.8, 2.4, 3.2, 1.6),
and Ajg = diag(—2,-2,—4,-3,-2)

o 1 1 2 1
05 0 1 15 05
Am=|1 1 0 15 05
15 1 15 0 05

1 05 1 05 O

In order to evaluate the H. performance, let y=0.5
in this case. The LMIs in (7) with degree
constraint d=2 can be solved by the YALMIP
toolbox [14] and SDPT3 toolbox [15] which result
in Kjyg = diag(—73.1,—35,—101.2,—145.4,—58.6) and

0 —09 —18 —37 —14
~18 0 -28 -39 —1.0
Km=|—-13 —10 0 —27 —08
~19 —-10 —20 0 -05
-1.7 -06 —14 —13 0

The control gain obtained from LMI leads to an upper
bound on the H.. performance of interconnected systems for



physical coupling

— — — = communication link

Fig. 2. synthesis interconnection with different communication penalty:
@). p=7x107; (b). p=5%x1073; (c). p=1x10"*

TABLE I
TRADE-OFF BETWEEN H, PERFORMANCE AND COMMUNICATION COST

p Communication Links || Hp norm
3% 107 (2,3), (3,4), (4,5) 0.3977
5% 1073 (2,3), (3,4) 0.3978
12x107% (3,4) 0.3979

any graph G € G(d). Next, the communication topology is
determined by solving the H, optimal problem presented
in (16) w.rt. penalty weight p =5 x 107>, As a result,
communication topology is shown by red dash lines in
Fig.2(a) and the corresponding H, norm equals to 0.3978.

In addition, the tradeoff between the achievable perfor-
mance and the required communication cost is investigated
whose results are summarized in Table I for different p
values. As shown in Table I, utilizing more communication
links results in a smaller H, performance but at the price of
higher communication cost. Fig.2. shows the corresponding
communication architectures.

Based on above result, the following two scenarios are fur-
ther considered to illustrate the manipulation algorithm: 1).
addition of a new physical link (1,5); 2). deletion of the
link (1,2). The solutions using algorithm (17) are explicitly
shown in Fig. 3. Compared with the results from solving
Optimization Program I for these two cases, which re-
spectively need an additional link (2,3) and link (4,5),
the performance degradation of topology manipulation is
0.05% and 0.03%. This loss rate of performance with lower
complexity may become appealing as the scale of the system
gets larger.

VI. CONCLUSIONS

Based on a two-step framework, this paper proposes a
robust distributed control design for interconnected system
under topology uncertainty. First, a set of distributed con-
trol laws is presented to ensure H. performance of sys-
tem subject to topology uncertainty. By introducing a pre-
specified connectivity bound, an uncertainty set of topologies
is characterized and the violation of stability condition can
be determined locally. By minimizing H> norm of intercon-
nected systems incorporating with communication penalty,
we identify the optimal communication architecture from the
admissible topology set. Additionally, an heuristic algorithm

physical coupling

— — — = communication link

Fig. 3.  manipulation of communication to deal with topology variations:
(a). physical link (1,5) added; (b). physical link (1,2) lost

to reallocate the existing communication under topology
variations is proposed by solving a suboptimal H, problem.
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