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Abstract— This paper considers the optimal local leader se-
lection for a leader-first follower minimally persistent formation
system. The objective is to maximize the local convergence
rate of the followers to the unique equilibrium under small
perturbations. Except for the leader and the first follower,
every other agent in the system follows exactly two agents
called the local leaders and is responsible for maintaining a
pair of desired distances from two local leaders. The control
algorithm is the linearized form of the decentralized nonlinear
control law proposed in our previous work. When the agents are
distributed over a rectangular area, the selection of the optimal
local leader for each follower is discussed, and it is discovered
that the boundary optimality rule applies. The general case
when agents distributed over an arbitrary convex domain is
further considered based on the matrix perturbation theory.
Information of agents in its sensing range is enough for the
agent to pick up its optimal local leaders, which allows a
distributed implementation of the proposed algorithm.

I. INTRODUCTION

It is generally recognized that the underlying topology

(or the communication topology) of a formation system

is closely related to the stability as well as cooperative

performance of the system. In the absence of communication

cost, a dense network topology is always beneficial to the

convergence rate of the formation, as proved in [1]. Also the

design of the underlying topology should avoid containing

cyclic subgraph as it reduces the robustness of the system

[2]. A stiffness matrix and the worst case rigidity index were

proposed in [3] to measure the efforts required for the de-

formation of a rigid formation system. Following this work,

Kim et al. [4] further proposed an iterative algorithm, which

was a centralized one, that reconfigured the positions and the

connection topology so as to optimize the rigid graph. The

problem of single leader selection was discussed in [5] based

on the information each agent observed. Similar discussions

on topology optimization are seen in consensus algorithms

as well. In order to accelerate the convergence rate, Kar et.

al [6] proved that a special class of regular graphs, viz., the
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Ramanujan graphs, has the maximal algebraic connectivity.

In the highly complex small-world network, by rewriting

edges of Gk when G being a ring graph at probability p
between 0.01 and 1, the algebraic connectivity of the graph

increases dramatically, and hence the convergence rate, as

p approaches 1 [7]. Recently, leader selection for leader-

follower consensus algorithm was discussed in [8] from the

H2 norm perspective.

In this paper, we consider formation control over a min-

imally persistent graph. For each pair of agents adjacent to

one edge, only one of them is assigned to maintain a desired

distance. In order to generate the optimal underlying graph

autonomously and in a distributed way, we consider subse-

quential steps where at each step, only one unsettled agent,

i.e., agent whose outgoing edges are unknown, is considered.

Two local leaders to which this unsettled agent will follow

are picked up at each step without changing the existing

edges. Starting from an existing graph that is minimally

persistent, this sequential procedure guarantees the minimal

persistency of the new graph at each step [9]. Although there

are other ways to construct a minimally persistent graph as

discussed in [9], the procedure we consider is implemented

in a distributed way. The optimality is evaluated by the

local convergence rate of each agent, i.e., the rate of the

convergence of each agent towards its desired position. We

only consider systems subject to small perturbations such

as temporal communication delay, uneven surface or wind

gust. A large local convergence rate allows disturbed agents

to regain the assigned formation fast and thus is favorable to

the mission execution time.

In Section II, the linearized dynamics and the decentral-

ized control law are introduced. The situations with candidate

local leaders densely distributed over a rectangular area

and an arbitrary convex hull are discussed in Section III

and Section IV respectively. Finally Section V gives the

conclusion.

II. PROBLEM SETUP

Let R (R+) be the set of (positive) real numbers and

R
m×n be the set of real matrices of size m × n. With

n = 1, R
m×n = R

m. The set of eigenvalues of a matrix

M ∈ R
m×m is denoted by λ(M). The spectral abscissa

of M , denoted by α(M), is the largest real part of all the

eigenvalues. MT is the transpose of matrix M . The real inner

product of two real square matrices is:

〈A,B〉 = trATB =
∑

i,j

aijbij



For a complex vector u of dimension n × 1, its conjugate

transpose is u∗, and its real part and imaginary part are

denoted by Re(u) ∈ R
n and Im(u) ∈ R

n respectively.

A directed graph G = (V,E) has |V | vertices and |E|
directed edges. For simplicity, a graph with N nodes is

usually denoted by GN . The underlying graph of a formation

system is determined in a way that if agent i is responsible

for keeping the distance from agent j, then agent j is the

local leader of agent i and there is a directed edge eij ∈ E
with the tail at agent i and the head at agent j. The group

leader in a formation system is the one with no outgoing

edges in the underlying graph and the first follower follows

only the group leader. For a formation system consists of

N agents, the group leader is marked agent N and the first

follower is marked agent N − 1.

A formation system with a minimally persistent graph is

called a minimally persistent formation system. If there is

only one group leader and one first follower in the graph, it

is further called a leader-first follower minimally persistent

(LFFMP) formation system. Decentralized nonlinear control

laws for the LFFMP system were proposed in our previous

work [10] that restored the desired formation in the presence

of small distortions from the nominal one. The system model

and the control law in [10] are borrowed in this paper and

thus are restated below.

Assume the displacements brought by the small perturba-

tions are small enough to allow first order approximation.

In particular the position of agent i, denoted by pi(t) =
[xi(t) yi(t)]

T , can be represented at all times by pi(t) =
δpi(t) + p̄i, where p̄i = [x̄i ȳi]

T corresponds to agent i’s
position for which all desired local distance constraints are

met at time instance t, and δpi(t) = [δxi(t) δyi(t)]
T is

small, see Fig. 1. Then the linearized dynamics of follower

i ∈ [1, N − 2] that has two outgoing edges are

[

δẋi

δẏi

]

= Ki

[

−δx̄i,j −δȳi,j
−δx̄i,k −δȳi,k

]−1

R(ij,ik)
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, KiR
−1
ei

R(ij,ik)

[

δpi δpj δpk
]T

(1)

with

R(ij,ik) =

[

δx̄i,j δȳi,j −δx̄i,j −δȳi,j 0 0
δx̄i,k δȳi,k 0 0 −δx̄i,k −δȳi,k

]

and δx̄i,j = x̄i − x̄j , δȳi,j = ȳi − ȳj . Matrix Ki is the feed

forward control gain to be designed.

Due to the fact that the first follower moves solely along a

line directed to the leader, the dynamics for the first follower

agent N − 1 are
[

δẋN−1

δẏN−1

]

=

[

−kN−1δxN−1

0

]

(2)

and for the group leader, we assume it does not move (in

this paper it is assumed that each agent knows the velocity

of the leader such that the stillness of the leader holds). In

pi(t)

pm(t)
pn(t)

pi

pi(t)

din
dim

d*im d*in

Fig. 1: Illustration of position adjustment for point agent i
at pi with respect to agent m at pm and agent n at pn. The

desired position is at p̄i

the light of the above discussion, the overall dynamics of the

LFFMP formation system is

δ ˙̂p(t) = K̂R̂e

−1
R̂δp̂(t) :, Acδp̂(t) (3)

where K̂ = diag[K1,K2, . . . ,KN−2, kN−1],
R̂e = diag[Re1 , . . . , ReN−2

, δx̄N,N−1] and δp̂ =

[δp1, . . . , δpN−2, δxN−1]. R̂ is obtained by removing

the last three columns from the rigidity matrix R of the

minimally persistent graph.

Lemma 2.1: There exists a diagonal matrix Λ ∈
R

(2N−3)×(2N−3) such that ΛR̂ has all eigenvalues in the

open left half plane and by choosing

K̂ = ΛR̂e (4)

the formation system with the feedforward controller K̂ is

stable on its equilibrium.

This is a corollary of Theorem 3.2 and Theorem 4.1 in [10].

Under control law (4), the formation system (3) is then

δ ˙̂p(t) = ΛR̂δp̂(t). (5)

Assume there are N +M agents in the desired formation

where all the desired interagent distances are satisfied. The

N agents, labeled from 1 to N , are connected over an

assigned and fixed minimally persistent graph GN without

any outgoing edges to the other M agents labeled from N+1
to N + M . The M agents are the unsettled agents with

unknown local leaders. Each of these agents has to choose

two local leaders to follow from their own sensing ranges

Si ∈ R
+. For example in Fig. 2, agent N + 1 to N + 4

are unsettled agents and the goal is to determine the pair of

local leaders for N+ i, i ∈ [1, 4] so that the convergence rate

of agent N + i to its equilibrium is maximized under small

perturbations.

The design of the optimal minimally persistent graph is

a combinatorial optimization problem. We break down the

problem into M subsequential steps. At step i, the two local

leaders for agent N+i are picked up from the set of candidate

local leaders (CLL), denoted by CN+i = {k|‖pk−pN+i‖ ≤
SN+i}, without changing the underling graph of the previous

N+i−1 agents. As long as GN+i−1 is minimally persistent,

the proposed sequential steps will consistently produce a

minimally persistent graph GN+i for the N + i agents [9].

Meanwhile, for the N + i − 1 agents over a minimally

persistent graph, by reordering the N + i − 1 agents, their
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Fig. 2: Adding an unsettled agent to the existing minimally

persistent graph. Agent 6 is the group leader and agent 5 is

the first follower.

linearized dynamics follow the one given in (3). When agent

N+i joins and takes agent m and agent n as its local leaders,

the system matrix of the N + i agents is then

Ãc =

[

Ac 0
QN+i KN+i

]

where Ac given in (3) is the dynamics of the N+i−1 agents

and according to (4), matrix KN+i is given by

KN+i =

[

k1 0
0 k2

] [

x̄N+i − x̄m ȳN+i − ȳm
x̄N+i − x̄n ȳN+i − ȳn

]

.

and

QN+i =
[

0 · · · Q
(m)
N+i · · · Q

(n)
N+i · · · 0

]

Q
(m)
N+i = k1

[

−x̄N+i + x̄m −ȳN+i + ȳm
0 0

]

Q
(n)
N+i = k2

[

0 0
−x̄N+i + x̄n −ȳN+i + ȳn

]

k1 and k2 are the scaling parameters. In this paper in order to

focus on the topology design issue, we only consider cases

when k1 = −1 and k2 = 1.

Problem 2.1: Consider a formation system consists of N
agents labeled from 1 to N over a fixed minimally persistent

graph and M unsettled agents labeled from N+1 to N+M .

According to the relative distances constraints, each agent

calculates its desired position. Find the optimal two local

leaders m and n for unsettled agent i such that

min
m,n

α(KN+i)

s.t. m,n ∈ CN+i,
Eigenvalues of a matrix are highly sensitive to perturba-

tions on the entries. In fact, they are non-Lipschitz. Although

the optimization of the spectral abscissa of a symmetric

matrix is convex, for the nonsymmetric case, it is nonconvex

and nonsmooth. Thus finding global optimum of the spectral

abscissa over a stable nonsymmetric matrix is hard. Burke et.

al [11] proposed a numerical method based on random gradi-

ent bundle method for the approximating local minimizers.

This optimization technique only applies to problems over

a continuous domain, and thus is not applicable directly to

Problem 2.1.

In this paper, we first solve the problem over a continuous

domain to obtain the optimal solutions. By referring to these

optimal solutions, the actual optimal pair of local leaders

is then selected from the discrete set CLLi based on the

gradient method and the matrix perturbation theory. Thus it

is assumed that

Assumption 2.1: All the agents are densely distributed

over an area such that for any optimal solutions obtained

on the continuous domain, there is always at least one pair

of agents located nearby, which allows at least one pair of

agents whose α(KN+i) is on the same convex surface as

that of the local minimizer.

III. CLLS DISTRIBUTED OVER A RECTANGLE DOMAIN IN

QUADRANT I

In this section, we consider a simple and special situation:

the candidate local leaders of agent N + i are densely

distributed over a rectangle such that

Assumption 3.1: By centering the reference frame at

p̄N+i, there is a minimal rectangle that covers the CLLs

and its sides are parallel to the x-axis and y-axis. Denote

the rectangle by (x, x̄, y, ȳ) where (x, y) and (x̄, ȳ) are the

coordinates of its bottom left corner and its upper right corner

respectively.

As will be showed later, a rectangle distribution allows

easy analysis on the optimal solution because of the invari-

ance of x or y along the edges. The more general case will

be discussed later in the nex section.

Based on the relative position of the rectangle and the

x−y axis, the positions of the rectangle in the new reference

frame have eight possible cases. For instance, the rectangle

could locate either in quadrant I or span over quadrant I and

quadrant IV. Note that the case when the rectangle covers

the origin is excluded because at the current stage, we only

consider new agents joining the group from outside.

Under Assumption 3.1, variables x̄m and x̄n are decoupled

from ȳm and ȳn respectively. As indicated in [11], the

optimal solution is obtained when the two eigenvalues of

KN+i are as coalesce to each other as possible, i.e.,

x̄2
m + ȳ2n + 2x̄mȳn − 4ȳmx̄n ≤ 0 (6)

is feasible, the optimal spectral abscissa is α(KN+i) =
1/2(x̄m − ȳn).

Theorem 3.1: Let the minimal rectangle in Assumption

3.1 be located in quadrant I. When ȳ > x, the optimal

solution over the continuous rectangle domain exhibits the

following boundary optimality:

1) The optimal solutions consist of points on the left edge

and the top edge respectively if

x̄ >
(x+ ȳ)2

4ȳ
(7)

and the optimal solutions are such that

4ȳmx̄n ≥ (x+ ȳ)2 (8)

with the optimal spectral abscissa α⋆(KN+i) = x− ȳ.
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Fig. 3: Optimal solutions when the rectangle is on quadrant

I. When x̄ decreases, the optimal pair of solutions appear in

different positions.

2) The only optimal solution consists of points on the

upper left corner and the right edge respectively if

(x+ y)2

4ȳ
< x̄ <

(x+ ȳ)2

4ȳ
(9)

and the optimal spectral abscissa α⋆(KN+i) = x− ȳ⋆n
with ȳ⋆n =

√
4ȳx̄− x.

3) The only optimal solution consists of points on the up-

per left corner and the lower right corner respectively

if

x̄ <
(x+ y)2

4ȳ
(10)

with the optimal spectral abscissa α⋆(KN+i) = x −
y +

√

(x+ y)2 − 4ȳx̄

Proof: The minimum of α(KN+i) = 1/2(x̄m − ȳn) is

when x̄m = x and ȳn = ȳ if there exist ȳm and x̄n such that

condition (6) is satisfied. Thus condition (7) is concluded.

Similar proofs apply to 2) and 3) as well. Fig. 3(a) further

gives an illustration of the three situations.

The three situations in Theorem 3.1 are distinguished by

the upper bound of x̄. When x̄ decreases, the positions of

the optimal solutions change accordingly, as in Fig. 3.

Remark 3.1: Let φ, β and θ be the angles defined in Fig.

3(a). φ and β restricted the area where the optimal solutions

appear. The optimal solutions to situation 1) are subject to

the angle constraints of

tanφ ≥ 1

2
tanβ(1 +

1

sin 2θ
)

As θ > π/4, the lower bound of tanφ is positive monotonic

to β.

Remark 3.2: Let γ, β and θ be the angles defined in Fig.

3(b). The angle constrains for situation 2) is

tanβ =
2 tan θ sin 2γ

1 + sin 2γ

When x̄ decreases, ȳ⋆n decreases as well and the extreme

situation tends to be the one in Fig. 3(c). After the optimal

solution reaches the corners, it stays there irrespective of the

decrease of x̄.

As can be observed, the locations of the optimal solutions

are closely related to the shape and the position of the

rectangle.

Now we are ready to present the solution to Problem 2.1.

The control gain KN+i is an affine function

KN+i

= x̄m

[

1 0
0 0

]

+ ȳm

[

0 1
0 0

]

+ x̄n

[

0 0
−1 0

]

+ ȳn

[

0 0
0 −1

]

, x̄mK1 + ȳmK2 + x̄nK3 + ȳnK4 (11)

and it is well known [12] that when KN+i has a conjugate

pair of eigenvalues, its gradient is given by

(▽α(KN+i))k = Re(u)TKkRe(v) + Im(u)TKkIm(v)
(12)

where v and u are the right and left eigenvectors correspond-

ing to either of the complex eigenvalues (but the same one)

of KN+i and satisfy u∗v = 1.

Under small perturbations, the variation of α(KN+i) is

∆α(KN+i) = 〈▽(α(KN+i)),∆KN+i〉

Theorem 3.2: For the optimal solutions in situation 1) in

Theorem 3.1, the gradient on agent m is perpendicular to

the left side and the one on agent n is perpendicular to the

top side.

Proof: The equality of two complex numbers means

the equality of their real part and imaginary part respectively,

which yields,

MRe(v) = −Im(λ)Im(v) MT Im(u) = ImλIm(u) (13)

where M = KN+i − Re(λ)I .

Due to u∗v = 1, we have

Re(u)T Im(v) = Im(u)T Re(v) (14)

Substituting (14) into (13), we have

ReuTMRev + ImuTMImv = 0

It has been proved that Re(λ) = 1/2(x̄m − ȳn). Referring

to (12), this equation has the explicit form of

x̄m + ȳn
2

(▽φ1 + ▽φ4) + ȳm▽φ2 − x̄n▽φ3 = 0 (15)

where ▽φi = (▽α(KN+i))i and (▽α(KN+i))1 −
(▽α(KN+i))4 = Re(u)T Re(v) + Im(u)T Im(v)T =
1. According to the positiveness of the corresponding

variables, the necessary and sufficient condition for eq.

(15) is (▽α(KN+i))1 = −(▽α(KN+i))4) = 0.5 and

(▽α(KN+i))k = 0, k = 2, 3.

The optimal solution corresponds to two points in the

plane, and consequently the gradient could also be divided

into two vectors in the plane, i.e.,

v1 =

[

▽φ1

▽φ2

]

=

[

0.5
0

]

, v2 =

[

▽φ3

▽φ4

]

=

[

0
−0.5

]

which finishes the proof.

Remark 3.3: The perpendicularity of the gradient on the

optimal solutions only applies when small perturbations on

the matrix does not make the two complex eigenvalues jump

to two real ones.



The real inner product of matrices ▽(α(KN+i)) and

∆KN+i is calculated by

〈▽(α(KN+i)),∆KN+i〉 =
4

∑

k=1

(▽α(KN+i))k∆(KN+i)k

= 〈v1, δp̄m〉+ 〈v2, δp̄n〉 (16)

Thus the variation of α(KN+i) is determined by the orthog-

onal projections of vectors δp̄m and δp̄n on the directions

v1 and v2 respectively. Equation (16) implies that when

choosing the local leaders, we should focus on those agents

located near the boundaries where the optimal solutions lie,

such as those two bold lines in Fig. 3.

IV. CLLS DENSELY DISTRIBUTED OVER AN ARBITRARY

CONVEX DOMAIN

For a group of arbitrary distributed agents, Assumption 3.1

may fail to be satisfied. Instead, if we consider the convex

hull for the set of CLLs, the boundary optimality may not

apply and the gradient inside the polygon is not as explicit

as those on the boundaries. Thus the following sequential

procedures are proposed to solve Problem 2.1:

i Solve the optimization problem over a continuous do-

main based on the gradient bundle method [11]

min
pm,pn

α(KN+i) (17)

s.t. pm, pn ∈ conv({pj |j ∈ CN+i}) (18)

where Conv(S) is the convex hull of the set S. Denote

the optimal solutions by p̃1 and p̃2, and the correspond-

ing cost value α(K⋆
N+i).

ii Find the optimal pair of local leaders

pm⋆ , pn⋆ ,m⋆, n⋆ ∈ CNi
from the discrete set of

the CLLs around the optimal solutions p̃1 and p̃2.

Note that here we do NOT bring any new reference frame

to the formation system, and we do not expect the convex

hull to be a rectangle. Meanwhile, the outgoing edges from

agent N + i is determined according to local information,

and the local optimality adds up to the overall optimality.

Thus the design of the minimally persistent graph for the

formation system is presented in an optimal and distributed

way under the constraints of (18).

In the following context, we will investigate rules that are

beneficial to the selection of local leaders around the optimal

points.

When α(KN+i) corresponds to a pair of coalesce eigen-

values, finding pm⋆ , pn⋆ is similar to the one in Section

III. When α(KN+i) corresponds to a simple eigenvalue, the

gradient of α(KN+i) at the optimal solutions p̃1 and p̃2 could

be estimated by the condition number of the eigenvalues.

When there are perturbations at the optimal solution p̃1
and p̃2, i.e., δp̃1 = (δx̃1, δỹ1) and δp̃2 = (δx̃2, δỹ2), matrix

KN+i is perturbed by

∆KN+i =

[

−δx̃1 −δỹ1
δx̃2 δỹ2

]

(19)

 ( x1, y1)

0 x

y

 ( x2, y2)

 (- y1, x1)

Fig. 4: Vectors under small perturbations

Lemma 4.1: Consider K⋆
N+i with the largest eigenvalue

λ̄(K⋆
N+i) being a simple one. Then

∆λ̄(K⋆
N+i) =

yT (∆KN+i)x

yTx
+O(‖∆KN+i‖22) (20)

and

|∆λ̄(K⋆
N+i)| ≤ cond(K⋆

N+i))‖∆KN+i‖2 +O(‖∆KN+i‖22)
(21)

where the individual condition number of K⋆
N+i is

cond(K⋆
N+i) =

‖x‖2‖y‖2
|yTx| (22)

where x and y are the right and left eigenvectors of λ̄(K⋆
N+i).

Proof: This is a straightforward extension of the result

given in [13], p. 183.

Instead of focusing on the variation of the spectra abscissa

which is difficult to track, we switch to its upper bound

(21). In other words, in order to find two local leaders

that minimize the spectral abscissa of KN+i+∆KN+i, one

need to find two candidate local leaders around the optimal

solutions such that the 2-norm of ∆KN+i is minimized.

Theorem 4.1: Assume the optimal solutions to Problem

(18) are p̃1 and p̃2. Let δp̃1 and δp̃2 be the variations on p̃1
and p̃2 respectively with the subtended angle η. Then it is

sufficient that the optimal local leaders in Problem 2.1 are

the two agents with small values on |δp̃1| and |δp̃2|, and with

η being close to 90 degree.

Proof:

∆KT
N+i∆KN+i =

[

δx̃1 δx̃2

δỹ1 δỹ2

] [

δx̃1 δx̃2

δỹ1 δỹ2

]

=

[

δx̃2
1 + δx̃2

2 δx̃1δỹ1 + δx̃2δỹ2
δỹ1δx̃1 + δỹ2δx̃2 δỹ21 + δỹ22

]

(23)

If we denote δd21 = δx̃2
1 + δỹ21 and δd22 = δx̃2

2 + δỹ22 , then

λ̄(∆KT
N+i∆KN+i)

=
1

2
(δd21 + δd22 ±

√

(δd21 + δd22)
2 − 4(δx̃2δỹ1 − δx̃1δỹ2)2)

(24)

The expression δx̃1δỹ2 − δx̃2δỹ1 can be considered as

an inner product of two vectors (δx̃2, δỹ2) and δp̄⊥1 =
(−δỹ1, δx̃1) where “δp̄⊥1 ” is a vector that is obtained by

rotating vector δp̃1 = (δx̃1, δỹ1) 90 degrees counter clock-

wise, as shown in Fig. 4. Assume the angle between δp̄⊥1
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Fig. 5: Agent 6 and agent 9 is one pair of optimal local

leaders to agent N + i

and δp̃2 is ϕ, and the angle between δp̃1 and δp̃2 is η that

satisfy sin2 η = cos2 ϕ. Thus

(δx̃2δỹ1− δx̃1δỹ2)
2 = δd21δd

2
2 cos

2 ϕ = δd21δd
2
2 sin

2 η (25)

which further yields

‖∆KN+i‖22 =
1

2
(δd21+δd22+

√

(δd21 + δd22)
2 − 4δd21δd

2
2 sin

2 η)

(26)

According to (26), ‖∆KN+i‖2 is determined by the angle

η and by the distance between the CLLs and the optimal

positions. This indicates that when choosing the pairs of

CLLs, we should focus on those pairs of agents that both

locate close to p̃1, p̃2, i.e., have small δd1 and δd2, and form

an angle around 90 degree, i.e., sin η is as large as possible.

Remark 4.1: This theorem guides us to find the two local

leaders with the best chance of being the optimal pair. In

order to find its local leaders, agent i is required to generate

a convex hull according to the positions of agents within its

sensing area rather than the positions of all the other agents in

the formation system. Information in the system is distributed

in terms that each agent can make the best choice of its local

leaders autonomously using only local information without

modifying the existing communication topology.

We consider a special situation when most of the CLLs

are either on the circle centered at the optimal position p̃1 or

p̃2, as in Fig. 5. The two red triangles is the optimal solution

to (18). In such a case, δdm and δdn are fixed. As indicated

by (26), the optimal local leaders should appear pairwise

from those two circles, and thus η is the crucial variable to

‖∆KN+i‖2. In order to minimize its value, sin2 η should be

as large as possible, and thus η should be around 90 degrees.

The two red arrows in the figure are the ones that meet the

above demands. So node 9 and node 6 is the optimal pair of

local leaders to node N + i. On the contrary, if we choose

node 5 instead of node 6, it would yield sin η → 0, thus

‖∆KN+i‖22 would be larger than the case with node 9 and

node 6.

V. CONCLUSION

In this paper, the optimal local leader selection of a

LFFMP formation system is discussed. The generation of

the optimal minimally persistent graph is carried out in a

distributed and subsequential way. At each step, only one

unsettled agent is considered and is assigned with two opti-

mal local leaders using only information within its sensing

range. When the CLLs are densely distributed over a rectan-

gular area, the optimal solution exhibits boundary optimality.

Further more, when agents are uniformly distributed over an

arbitrary area, the optimal pair of local leaders are selected

based on the matrix perturbation theory.

From the overall system perspective, the convergence time

of agent i is determined by its local convergence rate towards

p̄i and the convergence rate of its two local leaders m and

n. Thus as long as agent m or agent n is moving, the

stable position of agent i is changing as well. Ideally, having

the M unsettled agents looking at the leader and the first

follower might be the best choice because they converge to

the final stable position much faster than the other followers.

However this is not applicable due to limited communication

range and the lack of robustness. For the future work, when

extending the current objective function concerning the local

convergence rate to the one corresponding to the global

convergence rate, it would be important to figure out how to

explicitly measure the local convergence rate and the priority

of the local leaders.
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