
Receding Horizon Temporal Logic Control
for Finite Deterministic Systems

Xuchu Ding, Mircea Lazar and Calin Belta

Abstract— This paper considers receding horizon control of
finite deterministic systems, which must satisfy a high level,
rich specification expressed as a linear temporal logic formula.
Under the assumption that time-varying rewards are associated
with states of the system and they can be observed in real-
time, the control objective is to maximize the collected reward
while satisfying the high level task specification. In order to
properly react to the changing rewards, a controller synthesis
framework inspired by model predictive control is proposed,
where the rewards are locally optimized at each time-step over
a finite horizon, and the immediate optimal control is applied.
By enforcing appropriate constraints, the infinite trajectory
produced by the controller is guaranteed to satisfy the desired
temporal logic formula. Simulation results demonstrate the
effectiveness of the approach.

I. INTRODUCTION

This paper considers the problem of controlling a de-
terministic discrete-time system with a finite state-space,
which is also referred to as a finite transition system. Such
systems can be effectively used to capture behaviors of more
complex dynamical systems, and as a result, greatly reduce
the complexity of control design.

A finite transition system can be constructed from a contin-
uous system via an “abstraction” process. For example, for an
autonomous robotic vehicle moving in an environment, the
motion of the vehicle can be abstracted to a finite system
through a partition of the environment. The set of states can
be seen as a set of labels for the regions in the partition,
and each transition corresponds to a controller driving the
vehicle between two adjacent regions. By partitioning the
environment into simplicial, rectangular or polyhedral re-
gions, continuous feedback controllers that drive a robotic
system from any point inside a region to a desired facet
of an adjacent region have been developed for linear [1],
multi-affine [2], piecewise-affine [3]–[5], and non-holonomic
(unicycle) [6], [7] dynamical models. By relating the initial
continuous dynamical system and the abstract discrete finite
system with simulation or bisimulation relations [8], the
abstraction process allows one to solve a control problem for
the more complex continuous system with the “equivalent”
abstract system.

It has been proposed by several authors [1], [5], [9]–
[11] to use temporal logics, such as linear temporal logic
(LTL) and computation tree logic (CTL) [12], as specification

X.C. Ding and C. Belta are with the Dept. of Mechanical En-
gineering at Boston University, Brookline, MA 02446, USA. Email:
{xcding,cbelta}@bu.edu. Mircea Lazar is with Dept. of Elec-
trical Engineering at Eindhoven University of Technology, Eindhoven,
The Netherlands. Email: m.lazar@tue.nl. This work is partially
supported by the ONR-MURI Award N00014-09-1051 at Boston University
and the STW Veni Grant 10230 at Eindhoven University of Technology.

languages for finite transition systems due to their well
defined syntax and semantics. These logics can be easily
used to specify complex behavior, and in particular with LTL,
persistent mission task such as “pick up items at the region
pickup, and then drop them off at the region dropoff,
infinitely often, while always avoiding unsafe regions”. The
applications of these temporal logics in computer science
in the area of model checking [12] and temporal logic
game [13] has resulted in off-the-shelf tools and algorithms
that can be readily adapted to synthesize provably correct
control strategies [1], [5], [9]–[11].

While the works mentioned above address the temporal
logic controller synthesis problem, several problems and
questions remain to be answered. In particular, the problem
of combining temporal logic controller synthesis with op-
timality with respect to a suitable cost function remains to
be solved. This problem becomes even more difficult if the
optimization problem depends on time-varying parameters,
e.g., dynamic events that occur during the operation of the
plant. For traditional control problems (without temporal
logic constraints) and dynamical systems, this problem can
be effectively addressed using a model predictive control
(MPC) approach (see e.g., [14]), which has reached a mature
level in both academia and industry, with many successful
implementations. The basic MPC set-up consists of the
following sequence of steps: at each time instant, a cost
function of the current state is optimized over a finite horizon,
only the first element of the optimal finite sequence of
controls is applied and the whole process is repeated at the
next time instant for the new measured state. Thus, MPC is
also referred to as receding horizon control. Since the finite
horizon optimization problem is solved repeatedly at each
time instant, real-time dynamical events can be effectively
managed.

However, it is not yet well-understood how to combine a
receding horizon control approach with a provably correct
control strategy satisfying a temporal logic formula. The
aim of this paper is to address this issue for a specific
system set-up (deterministic systems on a finite state-space)
and problem formulation (dynamic optimization of rewards).
More specifically, the role of the receding horizon controller
is to maximize over a finite horizon the accumulated rewards
associated with states of the system, under the assumption
that the rewards change dynamically with time and they can
only be observed in real-time. The rewards model dynamical
events that can be triggered in real-time, which is an often
used model in coverage control literature [15].

The key challenge in this controller synthesis framework
is to ensure correctness of the produced infinite trajectory

ar
X

iv
:1

20
3.

28
60

v1
 [

m
at

h.
O

C
]

 1
3

M
ar

 2
01

2

and recursive feasibility of the optimization problem solved
at each time-step. For a constrained MPC optimization prob-
lem, which is solved recursively on-line, feasible at all times
or recursively feasible means that if the optimization problem
is feasible (has a solution) for the initial state at initial time,
then it remains feasible for all future time instants, when
it will be solved with a different initial condition resulting
from the generated closed-loop trajectory. A proof that the
proposed receding horizon control framework satisfies both
properties is provided. Similar to standard MPC, where cer-
tain terminal constraints must be enforced in the optimization
problem in order to guarantee certain properties for the
system (e.g., stability), the correctness of produced trajectory
and recursive feasibility are also ensured via a set of suitable
constraints.

This work can be seen as an extension and generalization
of the set-up presented in [16], where a similar control
objective was tackled. In [16] an optimization based con-
troller was designed, which consists of repeatedly solving
a finite horizon optimal control problem every N steps and
implementing the complete sequence of control actions. This
procedure is more close to finite-horizon optimal control
than true receding horizon control and its main drawback
comes from the inability of reacting to dynamical events
(i.e., rewards) triggered or varying during the execution of
the finite trajectory. This paper removes this limitation by
attaining a truly receding horizon controller for deterministic
systems on a finite state-space. Another related work is [5],
where a provably correct control strategy was obtained for
large scale systems by dividing the control synthesis problem
into smaller sub-problems in a receding horizon like manner.
However, in [5] dynamical events were addressed differently
and the specification language was restricted to a fragment of
LTL, whereas in this paper full LTL expressivity is allowed.

II. PROBLEM FORMULATION AND APPROACH

In this paper, we consider a discrete-time system with
a finite state space, i.e., the system evolves on a graph.
Each vertex of the graph produces an output, which is a
set of observations. Such a system can be described by a
finite deterministic transition system, which can be formally
defined as follows.
Definition II.1 (Finite Deterministic Transition System). A
finite (weighted) deterministic transition system (DTS) is a
tuple T = (Q, q0,∆, ω,Π, h), where
• Q is a finite set of states;
• q0 ∈ Q is the initial state;
• ∆ ⊆ Q×Q is the set of transitions;
• ω : ∆→ R+ is a weight function that assigns positive

values to all transitions;
• Π is a set of observations; and
• h : Q→ 2Π is the observation map.

For convenience of notation, we denote q →T q′ if (q, q′) ∈
∆. We assume T to be non-blocking, i.e., for each q ∈ Q,
there exists q′ ∈ Q such that q →T q′ (such a system is
also called a Kripke structure [17]). A trajectory of a DTS
is an infinite sequence q = q0q1... where qk →T qk+1 for

all k ≥ 0. A trajectory q generates an output trajectory
o = o0o1..., where ok = h(qk) for all k ≥ 0.

Note the absence of the control inputs in the definition of
T . This is because T is deterministic, and one can choose an
available transitions at a state. In other words, each transition
(q, q′) corresponds to a unique control input at state q. This
also implies that a trajectory q = q0q1 . . . can be used as
a control strategy for T , by simply applying the transitions
(q0, q1), (q1, q2), and so on. An example of a DTS is shown
in Fig. 1.

Fig. 1. An example of a finite DTS T as defined in Def. II.1. In this
example, T has 100 states, which are at the vertices of a rectangular grid
with cell size 10. We define the weight function ω to be the Euclidean
distance between vertices, and there is a transition between two vertices if
the Euclidean distance between them is less than 15. The set of observations
is Π = {base, survey, recharge, unsafe}. States with no observation
are shown with smaller vertices.

The goal of this paper is to synthesize trajectories q of
T satisfying a behavioral specification, given as a linear
temporal logic formula over Π. An LTL formula over Π is
interpreted over an (infinite) sequence o = o0o1 . . ., where
ok ⊆ Π for all k ≥ 0. We say q satisfies an LTL formula φ
if it generates an output trajectory o satisfying φ. A detailed
description of the syntax and semantics of LTL is beyond the
scope of this paper and can be found in [12]. Roughly, an
LTL formula is build up from the observations in Π, Boolean
operators ¬ (negation), ∨ (disjunction), ∧ (conjunction), −→
(implication), and temporal operators X (next), U (until),
F (eventually), G (always). For example, the following task
command in natural language: “Reach a survey location in-
finitely often, and always avoid unsafe states” can be trans-
lated to the LTL formula: φ := GF survey ∧ G¬unsafe.

The system is assumed to operate in an environment with
dynamical events. In this paper, these events are modelled
by a reward process R : Q × N → R+, i.e., the reward
associated with state q ∈ Q at time k is R(q, k). Note that
rewards are associated with states in Q in a time varying
fashion. We do not make any assumptions on the dynamics
governing the rewards, but we make the natural assumption
that, at time k, the system can only observe the rewards in
a neighborhood N (q, k) ⊆ Q of the current state q. In this
paper, we assume that the reward process R is unknown and

reward values must be observed and acted upon in real-time.
The problem in the case when knowledge of R is given a-
priori is interesting, but will be addressed in future research.

The problem considered in this paper is formally stated
next.
Problem II.2. Given a transition system T and an LTL
formula φ over the set of observations of T , design a
controller that maximizes the collected reward locally, while
it ensures that the produced infinite trajectory satisfies φ.

Since the rewards are time-varying and can only be ob-
served around the current state, inspirations from the area of
MPC are drawn (see, e.g. [14]) with the aim of synthesizing a
controller such that the rewards are maximized in a receding
horizon fashion. At time k with state qk, the controller
generates a finite trajectory qk+1qk+2 . . . qk+N by solving
an on-line optimization problem maximizing the collected
rewards over a horizon N , and the system implements the
immediate control action (qk, qk+1). This process is then
repeated at time k + 1 and state qk+1.

In order to guarantee the satisfaction condition for the
LTL formula φ, the proposed approach is based on the
construction of an automaton that captures all satisfying
trajectories of T . This automaton also induces a Lyapunov-
like function that can be used to enforce that the trajectory
of the system satisfies the desired formula. These steps are
formally described in detail in Sec. III. The aforementioned
function will be utilized to guarantee recursive feasibility of
the developed receding horizon controller, which in turn will
yield that the synthesized infinite trajectory satisfies φ. The
controller synthesis method is presented in Sec. IV.

III. A TOOL FOR ENFORCING
THE BÜCHI ACCEPTANCE CONDITION

In this section, we review the definition of Büchi automata
and describe the construction of a function that enforces
the satisfaction of a Büchi acceptance condition for the
trajectories of a DTS.
Definition III.1 (Büchi Automaton). A (nondeterministic)
Büchi automaton is a tuple B = (SB, SB0,Σ, δ, FB), where

• SB is a finite set of states;
• SB0 ⊆ SB is the set of initial states;
• Σ is the input alphabet;
• δ : SB × Σ→ 2SB is the transition function;
• FB ⊆ S is the set of accepting states.

We denote s
σ→B s′ if s′ ∈ δ(s, σ). An infinite sequence

σ0σ1 . . . over Σ generates trajectories s0s1 . . . where s0 ∈
SB0 and sk

σk→B sk+1 for all k ≥ 0. B accepts an infinite
sequence over Σ if it generates at least one trajectory on B,
which intersects the set FB infinitely many times.

For any LTL formula φ over Π, one can construct a Büchi
automaton with input alphabet Σ = 2Π accepting all and only
sequences over 2Π that satisfy φ [12]. We refer readers to
[18] for efficient algorithms and implementations to translate
an LTL formula over Π to a corresponding Büchi automaton
B.

Definition III.2 (Weighted Product Automaton). Given a
weighted DTS T = (Q, q0,∆, ω,Π, h) and a Büchi automa-
ton B = (SB, SB0, 2

Π, δB, FB), their product automaton, de-
noted by P = T ×B, is a tuple P = (SP , SP0,∆P , ωP , FP)
where
• SP = Q× SB;
• SP0 = {q0} × SB0;
• ∆P ⊆ SP × SP is the set of transitions, defined by:

((q, s), (q′, s′)) ∈ ∆P iff q →T q′ and s
h(q)−→B s′;

• ωP : ∆P → R+ is the weight function defined by:
ωP ((q, s), (q′, s′)) = ω ((q, q′))

• FP = Q× FB.
We denote (q, s) →P (q′, s′) if ((q, s), (q′, s′)) ∈ ∆P . A
trajectory p = (q0, s0)(q1, s1) . . . of P is an infinite sequence
such that (q0, s0) ∈ SP0 and (qk, sk) →P (qk+1, sk+1) for
all k ≥ 0. Trajectory p is called accepting if and only if it
intersects FP infinitely many times.

We define the projection γT of p onto T as simply
removing the automaton states, i.e.,

γT (p) = q = q0q1 . . . , if p = (q0, s0)(q1, s1) (1)

We also use the projection operator γT for finite trajectories
(subsequences of p). Note that a trajectory p on P is uniquely
projected to a trajectory γT (p) on T . By the construction of
P from T and B, p is accepted if and only if q = γT (p)
satisfies the LTL formula corresponding to B [12].

In [16], we introduced a real positive function V on the
states of the product automaton P that uses the weights
ωP to enforce the acceptance condition of the automaton.
Conceptually, this function resembles a Lyapunov, or energy
function. While in Lyapunov theory energy functions are
used to enforce that the trajectories of a dynamical system
converge to an equilibrium, this “energy” function enforces
that the trajectories of T satisfy the acceptance condition of
a Büchi automaton.

To define the energy function, we first denote a set A ⊆
SP to be self-reachable if and only if all states in A can
reach at least one state in A.
Definition III.3 (Energy function of a state in P). We define
F ?P to be the largest self-reachable subset of FP . The energy
function V (p), p ∈ SP is defined as the graph distance of
p to the set F ?P , i.e., the accumulated weight of the shortest
path from p to any states in F ?P .

Fig. 2 shows an example of T , B, and their product P , as
well as the induced energy function defined on states of P .
In [16], we showed the following properties for V .
Theorem III.4 (Properties of the energy function). V satis-
fies the following:

(i) If a trajectory p on P is accepting, then it cannot
contain a state p where V (p) =∞.

(ii) All accepting states in an accepting trajectory p are in
the set F ?P and have energy equal to 0; all accepting
states that are not in F ?P have energy equal to ∞.

(iii) For each state p ∈ SP , if V (p) > 0 and V (p) 6= ∞,
then there exists a state p′ where p →P p′ such that
V (p′) < V (p).

q0

q1

q2 q3

{a} {b}

{a, b}{a}2 4.5 4.5

0.1

6.1

4.5

(a)

s0 s1{a} {b} s2

{a, b}
1

{a, b}
{a, b} 1 11

{a}
s3{b}

{a, b}

1 := 2{a,b}

(b)

q0, s0 q0, s1 q0, s2 q0, s3

q1, s0 q1, s1 q1, s2 q1, s3

q2, s0 q2, s1 q2, s2 q2, s3

q3, s1q3, s0 q3, s2 q3, s3

0

0

0

00

0

0

0

12.56

8.99

10.57

4.51

1.99

4.50

4.51

8.99

(c)

Fig. 2. The construction of the product automaton and the energy function on its states. In this example, the set of observations is Π = {a, b}. The initial
states are indicated by incoming arrows. The accepting states are marked by double-strokes. (a): A weighted DTS T . The label atop each state indicates the
set of associated observations. (i.e., {a, b} means both a and b are observed). The labels on the transitions indicate the weights. (b): The Büchi automaton
B corresponds to LTL formula G (F (a ∧ F b)), translated by the tool LTL2BA [18]. (c): The product automaton P = T × B constructed with Def. III.2
(the weights are inherited from T and not shown). The number above a state p ∈ SP is the energy function V (p). Note that in this example, the set
F ?
P = FP , thus V (p) is the graph distance from p to any accepting states.

We see from the above facts that V (p) resembles an
energy-like function, which justifies the name we use. We
refer to the value of V (p) at a state p ∈ SP as the “energy of
the state”. Note that satisfying the LTL formula is equivalent
to reaching states where V (p) = 0 for infinitely many times.
Therefore, for each state p ∈ SP , V (p) provides a measure of
progress towards satisfying the LTL formula. An algorithm
generating V (p) for an arbitrary product automaton can be
found in [16].

IV. MAIN RESULTS:
RECEDING HORIZON CONTROLLER DESIGN

In this section, we present a solution to Prob. II.2. The
central component of our control design is a state-feedback
controller operating on the product automaton that optimizes
finite trajectories over a pre-determined, fixed horizon N ,
subject to certain constraints. These constraints ensure that
the energy of states on the product automaton decreases in
finite time, thus guaranteeing that progress is made towards
the satisfaction of the LTL formula. Note that the proposed
controller does not enforce the energy to decrease at each
time-step, but rather that it eventually decreases. The finite
trajectory returned by the receding horizon controller is
projected onto T , the controller applies the first transition,
and this process is repeated again at the next time-step.

In this section, we first describe the receding horizon
controller and show that it is feasible (a solution exists)
at all time-steps k ∈ N. Then, we present the general
control algorithm and show that it always produces (infinite)
trajectories satisfying the given LTL formula.

A. Receding horizon controller

In order to explain the working principle of the controller,
we first define a finite predicted trajectory on P at time
k. Denote the current state at time k as pk. A predicted
trajectory of horizon N at time k is a finite sequence pk :=
p1|k . . . pN |k, where pi|k ∈ SP for all i = 1, . . . , N , pi|k →P
pi+1|k for all i = 1, . . . N−1 and pk →P p1|k. Here, pi|k is a

notation used frequently in MPC, which denotes the ith state
of the predicted trajectory at time k. Moreover, we denote the
set P(pk, N) as the set of all finite trajectories of horizon N
from a state pk ∈ SP . Note that the finite predicted trajectory
pk of P uniquely projects to a finite trajectory qk := γT (pk)
of T .

For the current state qk at time k, we denote the observed
reward at any state q ∈ Q as Rk(q), and we have that

Rk(q) =

{
R(q, k) if q ∈ N (qk, k)

0 otherwise.
(2)

Note that R(q, k) = 0 if q /∈ N (qk, k) because the rewards
outside of the neighbourhood cannot be observed. We can
now define the predicted reward associated with a predicted
trajectory pk ∈ P(pk, N) at time k. The predicted reward of
pk, denoted as <k(pk), is simply the amount of accumulated
rewards by γT (pk) of T :

<k(pk) =

N∑
i=1

Rk
(
γT (pi|k)

)
. (3)

The receding horizon controller executed at the initial state
at time k = 0 is described next. This is a special case because
the initial state of P is not unique, and as a result we can
pick any initial state of P from the set SP0 = {q0}×SB0. We
denote the controller executed at the initial state as RH0(SP0),
and we define it as follows

p?0 = RH0(SP0)

:= arg max
p0∈{P(p0,N) |V (p0)<∞}

<0(p0). (4)

The controller maximizes the predicted cumulative re-
wards over all possible projected trajectories over horizon N
initiated from a state p0 ∈ SP0 where the energy is finite, and
returns the optimal projected trajectory p?0. The requirement
that V (p0) <∞ is critical because otherwise, the trajectory
starting from p0 cannot be accepting. If there does not exist

p0 such that V (p0) < ∞, then an accepting trajectory does
not exist and there is no trajectory of T satisfying the LTL
formula (i.e., Prob. II.2 has no solution).
Lemma IV.1 (Feasiblity of (4)). Optimization problem (4)
always has at least one solution if there exists p0 such that
V (p0) <∞.

Proof. The proof follows from the fact that T is non-
blocking, and thus the set P(p0, N) is not empty.

Next, the receding horizon control algorithm for any time
instant k = 1, 2, . . . and corresponding state pk ∈ SP is
presented. This controller is of the form

p?k = RH(pk,p?k−1) (5)

i.e., it depends both on the current state pk and the optimal
predicted trajectory p?k−1 = p?1|k−1 . . . p

?
N |k−1 obtained at

the previous time-step. Note that, by the nature of a receding
horizon control scheme, the first control of the previous
predicted trajectory is always applied. Therefore, we have
the following equality

pk = p?1|k−1, k = 1, 2, (6)

As it will become clear in the text below, p?k−1 is used to
enforce repeated executions of this controller to eventually
reduce the energy of the state on P to 0.

We define controller (5) with the following three cases:
1) Case 1. V (pk) > 0 and V (p?i|k−1) 6= 0 for all i =

1, . . . , N : In this case, the receding horizon controller is
defined as follows.

p?k = RH(pk,p?k−1)

:= arg max
pk∈P(pk,N)

<k(pk),

subject to: V (pN |k) < V (p?N |k−1). (7)

The key to guarantee that the energy of the states on P
eventually decreases is the terminal constraint V (pN |k) <
V (p?N |k−1), i.e., the optimal finite predicted trajectory p?k
must end at a state with lower energy than that of the
previous predicted trajectory p?k−1. This terminal constraint
mechanism is graphically illustrated in Fig. 3.

Case 1

p?1|k�1 p?2|k�1 p?N |k�1

p?1|k p?2|k p?N |k

· · ·
V

V

V (p?N |k) < V (p?N |k�1)

Case 2

p?1|k�1 p?2|k�1

· · ·

p?1|k p?2|k p?N |k

· · ·V

V

p?i|k�1

p?i�1|k

V (p?i|k�1) = 0 =) V (p?i�1|k) = 0

· · ·

· · ·
Time k-1

Time k

Fig. 3. Constraints enforced for the receding horizon control law p?
k =

RH(pk, p?
k−1) for Cases 1 and 2.

To verify the feasibility of the optimization problem under
this constraint, we make use of the third property of V in
Thm. III.4. Namely, each state with positive finite energy can
make a transition to a state with strictly lower energy.

Lemma IV.2 (Feasibility of (7)). Optimization problem (7)
always has at least one solution if V (pk) <∞.

Proof. Given p?k−1 = p?1|k−1 . . . p
?
N |k−1, since pk = p?1|k−1,

we have pk →P p?2|k−1. Therefore, we can construct a
finite predicted trajectory pk = p1|k . . . pN |k where pi|k =
p?i+1|k−1 for all i = 1, . . . , N − 1. Using Thm. III.4 (iii),
there exists a state p where pN−1|k →P p such that V (p) <
V (pN−1|k). Setting pN |k = p, the finite trajectory pk =
p1|k . . . pN |k ∈ P(pk, N) satisfies the constraint V (pN |k) <
V (p?N |k−1), and therefore (7) has at least one solution.

2) Case 2. V (pk) > 0 and there exists i ∈ {1, . . . , N}
with V (p?i|k−1) = 0: We denote i0(p?k−1) as the index
of the first occurrence in p?k−1 where the energy is 0,
i.e., V (p?i0(p?

k−1)|k−1) = 0. We then propose the following
controller.

p?k = RH(pk,p?k−1)

:= arg max
pk∈P(pk,N)

<k(pk),

subject to: V (p?i0(p?
k−1)−1|k) = 0. (8)

Namely, this controller enforces a state in the optimal
predicted trajectory to have 0 energy if the previous predicted
trajectory contains such a state. This constraint is illustrated
in Fig. 3. Note that, if i0(p?k−1) = 1, then from (6), the
current state pk is such that V (pk) = 0, and Case 2 does not
apply but Case 3 (described below) applies instead.
Lemma IV.3 (Feasibility of (8)). Optimization problem (8)
always has at least one solution if V (pk) <∞.

Proof. Given p?k−1 = p?1|k−1 . . . p
?
N |k−1, since pk = p?1|k−1,

we have pk →P p?2|k−1. Therefore, we can construct a
finite predicted trajectory pk = p1|k . . . pN |k where pi|k =
p?i+1|k−1 for all i = 1, . . . , N − 1. If we let pN |k to be
any state where pN−1|k →P pN |k and V (pN |k) < ∞, then
pk = p1|k . . . pN |k ∈ P(pk, N) satisfies the constraint. Thm.
III.4 (iii) gurantees that such a state pN |k exists.

3) Case 3, V (pk) = 0: In this case, the terminal con-
straint is that energy value of the terminal state is finite. The
controller is defined as follows.

p?k = RH(pk,p?k−1)

:= arg max
pk∈P(pk,N)

<k(pk).

subject to: V (pN |k) <∞. (9)

Lemma IV.4 (Feasiblity of (9)). Optimization problem (9)
always has at least one solution.

Proof. If V (pk) = 0, then there exists p1|k such that pk →P
p1|k and V (p1|k) <∞ (if not, then V (pk) must equal to∞).
From Thm. III.4 (iii), we have that there exists p2|k such that
p1|k →P p2|k and V (p2|k) < V (p1|k) < ∞. By induction,
there exists pk ∈ P(pk, N) such that V (pN |k) <∞.

Remark IV.5. The proposed receding horizon control law
is designed using an extension of the terminal constraint

approach in model predictive control [14] to finite determin-
istic systems. The particular setting of the Büchi acceptance
condition, combined with the energy function V , makes
it possible to obtain a non-conservative analogy of the
terminal constraint approach, via either a terminal inequality
condition (7) or a terminal equality condition (8).

B. Control algorithm and its correctness

The overall control strategy for the transition system T is
given in Alg. 1. After the off-line computation of the product
automaton and the energy function, the algorithm applies
the receding horizon controller RH0(SP0) at time k = 0,
or RH(pk,p?k−1)) at time k > 0. At each iteration of the
algorithm, the receding horizon controller returns the optimal
predicted trajectory p?k. The immediate transition (pk, p

?
1|k) is

applied on P and the corresponding transition (qk, γT (p?1|k))
is applied on T . This process is then repeated at time k+ 1.

Algorithm 1 Receding horizon control algorithm for T =
(Q, q0,∆, ω,Π, h), given an LTL formula φ over Π

Executed Off-line:
1: Construct a Büchi automaton B = (SB, SB0, 2

Π, δB, FB)
corresponding to φ.

2: Construct the product automaton P = T × B =
(SP , SP0,∆P , ωP , FP). Find V (p) for all p ∈ SP [16].

Executed On-line:
1: if there exists p0 ∈ SP0 such that V (p0) 6=∞ then
2: Set k = 0.
3: Observe rewards for all q ∈ N (q0, k) and obtain

R0(q).
4: Obtain p?0 = RH0(SP0).
5: Implement transition (p0, p

?
1|0) on P and transition

(q0, γT (p?1|0)) on T .
6: Set k = 1
7: loop
8: Observe rewards for all q ∈ N (qk, k) and obtain

Rk(q).
9: Obtain p?k = RH(pk,p?k−1).

10: Implement transition (pk, p
?
1|k) on P and transition

(qk, γT (p?1|k)) on T .
11: Set k ← k + 1
12: end loop
13: else
14: There is no run originating from q0 that satisfies φ.
15: end if

First, we show that the receding horizon controllers used
in Alg. 1 are always feasible. We use a recursive argument,
which shows that if the problem is feasible for the initial
state, or at time k = 0, then it remains feasible for all future
time-steps k = 1, 2,
Theorem IV.6 (Recursive Feasiblity). If there exists p0 ∈
SP0 such that V (p0) 6= ∞, then RH0(SP0) is feasible and
RH(pk, p?k−1)) is feasible for all k = 1, 2,

Proof. From Lemma IV.1, RH0(SP0) is feasible. From the
definition of V (p), for all p ∈ SP , if p→P p′, then V (p′) <

∞ if and only if V (p) < ∞. Since RH0(SP0) is feasible,
we have p1 = p?1|0 and thus V (p1) < ∞. At each time
k > 0, if V (pk) <∞, from Lemmas IV.2, IV.3 and IV.4, we
have that controller RH(pk,p?k−1) is feasible. Since pk+1 =
p?1|k, we have V (pk+1) <∞. Using induction we have that
RH(pk,p?k−1) is feasible for all k = 1, 2,

Finally, we show that Alg. 1 always produces an infinite
trajectory satisfying the given LTL formula φ, giving a
solution to Prob. II.2.
Theorem IV.7 (Correctness of Alg. 1). Assume that there
exists a satisfying run originating from q0 for a transition
system T and an LTL formula φ. Then, Alg. 1 produces an
(infinite) trajectory q = q0q1 . . . satisfying φ.

Proof. If there exits a satisfying run originating from q0,
then there exists a state p0 ∈ SP0 such that V (p0) < ∞.
Therefore, from Thm. IV.6, the receding horizon controller
is feasible for all k > 0, and Alg. 1 will always produce an
infinite trajectory q.

At each state pk at time k > 0, if V (pk) > 0, then either
Case 1 or Case 2 of the controller RH(pk) applies. If Case 1
applies, since V (p?k|N) > V (p?k+1|N > V (p?k+2|N) . . ., there
exists j > k such that V (p?j|N) = 0. This is because the
state-space SP is finite, and therefore, there is only a finite
number of possible values for the energy function V (p). At
time j, Case 2 of the proposed controller becomes active until
time l = j + i0(p?j), where V (pl) = 0. Therefore, for each
time k, if V (pk) > 0, there exists l > k such that V (pl) = 0
by repeatedly applying the receding horizon controller. If
V (pk) = 0, then Case 3 of the proposed controller applies,
in which case either V (pk+1) = 0 or V (pk+1) > 0. In either
case, using the previous argument, there exists j > k where
V (pj) = 0.

Therefore, at any time k, there exists j > k where
V (pj) = 0. Furthermore, since j is finite, we can conclude
that the number of times where V (pk) = 0 is infinite. By
the definition of V (p), p ∈ SP , Vk = 0 is equivalent to that
pk ∈ F ?P ⊆ FP . Therefore, the trajectory p is accepting.
The trajectory produced on T is exactly the projection q =
γT (p), and thus, it can be concluded that q satisfies φ, which
completes the proof.

C. Discussions

It is possible to extend the optimization problem of
maximizing rewards to other meaningful cost functions.
For example, it is possible to assign penalties or costs on
states of the system and minimize the accumulated cost of
trajectories in the horizon. It is also possible to define costs
on state transitions and minimize the control effort (or the
combination of this cost function with the one above).

The complexity of the off-line portion of Alg. 1 depends
on the size of P . Denoting |S| as the cardinality of a
set S, from [18], a Büchi automaton translated from an
LTL formula over Π contains at most |Π| × 2|Π| states1.

1In practice, this upper limit is almost never reached (see [1]).

Therefore, the size of SP is bounded by |Q| × |Π| × 2|Π|.
From [16], the complexity of generating the energy function
is O(|SP |2 + |FP |3). The complexity of the on-line portion
of Alg. 1 is highly dependent on the horizon N . If the
maximal number of transitions at each state of P is ∆max

P ,
then the complexity at each iteration of the receding horizon
controller is bounded by (∆max

P)N , assuming a depth first
search algorithm is used to find the optimal trajectory. It
may be possible to reduce this complexity from exponential
to polynomial if one applies a more efficient graph search
algorithm using Dynamic Programming. This will be studied
in future research.

V. SOFTWARE IMPLEMENTATION AND CASE STUDY

The control framework presented in this paper was im-
plemented in a user friendly software package, available on
http://hyness.bu.edu/LTL_MPC.html. To utilize
this software, a user needs to input the finite transition
system T , an LTL formula φ, the horizon N , and a function
R(q, k) that generates the time-varying rewards defined on
the states of T . The software executes the control algorithm
outlined in Alg. 1, and produces a trajectory in T that
satisfies φ and maximizes the rewards collected locally with
the proposed receding horizon control laws. This software
uses the LTL2BA [18] tool for the translation of an LTL
formula to a Büchi automaton.

We now present a case study applying the software
package. In this case study, we use the transition system
defined as vertices of a rectangular grid as shown in Fig. 1.
We consider the following LTL formula, which expresses a
robotic surveillance task:

φ := GF base

∧G (base −→ X¬baseU survey)

∧G (survey −→ X¬surveyU recharge)

∧G¬unsafe. (10)

The first line of φ, GF base, enforces that the state
with observation base is repeatedly visited (possibly for
uploading data). The second line ensures that after base

is reached, the system is driven to a state with observation
survey, before going back to base. Similarly, the third line
ensures that after reaching survey, the system is driven to
a state with observation recharge, before going back to
survey. The last line ensures that, at any time, the states
with observation unsafe should be avoided.

We assume that at each state q ∈ Q, the rewards at state
q′ can be observed if the Euclidean distance between q and
q′ is less than or equal to 25. In this case study, we define
R(q, k) as follows. At time k = 0, the reward value R(q, 0)
at each state q is generated randomly by a uniform sampling
in the range of [10, 25]. At each subsequent time k > 0, if
the reward value at a state is positive, then it decays with a
specific rate. Otherwise, there is a probability that a reward
is assigned to this state with a value chosen by a uniform
sampling in the range of [10, 25]. In this case study, the states
with rewards can be seen as “targets”, and the reward values

can be seen as the “amount of interest” associated with each
target. The control objective of maximizing the collected
rewards can be interpreted as maximizing the information
gathered from surveying states with high interest.

(a) (b)

(c) (d)

Fig. 4. Snapshots of the system trajectory under the proposed receding
horizon control laws. In all snapshots, the state with rewards are marked in
green, where the size of the state is proportional with the associated reward.
a) At time k = 0, the initial state of the system is marked in red (in the
lower left corner). b) The controller p?

0 = RH0(SP0) is computed at the
initial state. The optimal predicted trajectory p?

0 is marked by a sequence
of states in brown. c) The first transition q0 →T q1 is applied on T and
transition p0 →P p1 is applied on P . The current state (q1) of the system
is marked in red. d) The controller p?

1 = RH(p1, p?
0) is computed at p1.

The optimal predicted trajectory p?
1 is marked by a sequence of states in

brown.

By applying the method described in the paper, our
software package first translates φ to a Büchi automaton
B, which has 12 states. This procedure took 0.5 second on
a Macbook Pro with a 2.2GHz Quad-core CPU. Since T
contains 100 states, |SP | is 1200. The generation of the
product automaton P and the computation of the energy
function V took 4 seconds. In this case study, we chose
the horizon N to be 4. By applying Alg. 1, some snapshots
of the system trajectory are shown in Fig. 4. Each iteration
of Alg. 1 took 1 − 3 seconds (due to different numbers of
graph searches needed, the computation time varies for each
iteration).

We applies the control algorithm for 100 time-steps. We
plotted the results after 100 time-steps in Fig. 5. At the top,
we plot the energy V (p) at the each time-step. We see that
after 55 time-steps, the energy is 0, meaning that an accepting
state is reached. Note that, each time an accepting state is
reached, the system visits the base, survey and recharge

states at least once i.e., one cycle of the surveillance mission

http://hyness.bu.edu/LTL_MPC.html

task (base – survey – recharge) is completed. We also
compare the receding horizon controller with the controller
proposed in [16] at the bottom of Fig. 5. We clearly see
that the receding horizon controller proposed in this paper
performs better in terms of rewards collection, since it reacts
much quicker to the time varying rewards. An example video
of the evolution of the system trajectory is also available at
http://hyness.bu.edu/LTL_MPC.html.

Fig. 5. Upper figure: plot of energy V (p) at the current state for 100
time-steps. Bottom figure: in blue, plot of the cumulative rewards collected
in 100 time-steps by the proposed receding horizon controller; in red, plot
of the cumulative rewards collected by the controller in [16] using the same
reward function R(q, k).

VI. CONCLUSION AND FINAL REMARKS

In this paper, a receding horizon control framework that
optimizes the trajectory of a finite deterministic system
locally, while guaranteeing that the infinite trajectory satisfies
a given linear temporal logic formula, was proposed. The
optimization criterion was defined as maximization of time-
varying rewards associated with the states of the system.
A control strategy that makes real-time control decisions in
terms of maximizing the reward while ensuring satisfaction
of the LTL specification was developed. The proposed frame-
work is a step toward synergy of model predictive control
and formal controller synthesis, which is beneficial for both
areas.

Future research deals with the extension of the proposed
framework to finite probabilistic systems, such as Markov
decision processes or partially observed Markov decision
processes, where the specifications are given as formulas of
probabilistic temporal logic.

REFERENCES

[1] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[2] L. Habets, P. Collins, and J. van Schuppen, “Reachability and control
synthesis for piecewise-affine hybrid systems on simplices,” IEEE
Transactions on Automatic Control, vol. 51, pp. 938–948, 2006.

[3] J. Desai, J. Ostrowski, and V. Kumar, “Controlling formations of
multiple mobile robots,” in IEEE International Conference on Robotics
and Automation, 1998, pp. 2864–2869.

[4] L. Habets, M. Kloetzer, and C. Belta, “Control of rectangular multi-
affine hybrid systems,” in IEEE Conference on Decision and Control,
2006, pp. 2619–2624.

[5] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning for dynamical systems,” in IEEE Conference
on Decision and Control and Chinese Control Conference, Shanghai,
China, December 2009, pp. 5997–6004.

[6] C. Belta, V. Isler, and G. Pappas, “Discrete abstractions for robot
motion planning and control in polygonal environments,” Robotics,
IEEE Transactions on, vol. 21, no. 5, pp. 864–874, 2005.

[7] S. Lindemann, I. Hussein, and S. LaValle, “Real time feedback control
for nonholonomic mobile robots with obstacles,” in IEEE Conference
on Decision and Control, New Orleans, LA, December 2007, pp.
2406–2411.

[8] R. Milner, Communication and Concurrency. Prentice-Hall, 1989.
[9] H. Kress-Gazit, G. Fainekos, and G. J. Pappas, “Where’s Waldo?

Sensor-based temporal logic motion planning,” in IEEE International
Conference on Robotics and Automation, 2007, pp. 3116–3121.

[10] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in IEEE Conference on Deci-
sion and Control, Shanghai, China, 2009, pp. 2222 – 2229.

[11] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of multi-
agent motion tasks based on LTL specifications,” in IEEE Conference
on Decision and Control, Paradise Islands, The Bahamas, December
2004, pp. 153–158.

[12] E. M. Clarke, D. Peled, and O. Grumberg, Model checking. MIT
Press, 1999.

[13] N. Piterman, A. Pnueli, and Y. Saar, “Synthesis of reactive(1) designs,”
in International Conference on Verification, Model Checking, and
Abstract Interpretation, Charleston, SC, January 2006, pp. 364–380.

[14] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory
and Design. Nob Hill Publishing, 2009.

[15] W. Li and C. Cassandras, “A cooperative receding horizon controller
for multivehicle uncertain environments,” Automatic Control, IEEE
Transactions on, vol. 51, no. 2, pp. 242–257, 2006.

[16] X. C. Ding, C. Belta, and C. G. Cassandras, “Receding horizon
surveillance with temporal logic specifications,” in IEEE Conference
on Decision and Control, December 2010, pp. 256–261.

[17] M. Browne, E. Clarke, and O. Grumberg, “Characterizing finite kripke
structures in propositional temporal logic,” Theoretical Computer
Science, vol. 59, no. 1-2, pp. 115–131, 1988.

[18] P. Gastin and D. Oddoux, “Fast LTL to Buchi automata translation,”
Lecture Notes in Computer Science, pp. 53–65, 2001.

http://hyness.bu.edu/LTL_MPC.html

	I Introduction
	II Problem Formulation and Approach
	III A tool for enforcing the Büchi acceptance condition
	IV Main results:Receding Horizon Controller Design
	IV-A Receding horizon controller
	IV-A.1 Case 1. V(pk)>0 and V(pi|k-1)=0 for all i=1,…,N
	IV-A.2 Case 2. V(pk)>0 and there exists i{1,…,N} with V(pi|k-1)=0
	IV-A.3 Case 3, V(pk)=0

	IV-B Control algorithm and its correctness
	IV-C Discussions

	V Software Implementation and Case Study
	VI Conclusion and final remarks
	References

