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Abstract—In this paper the coverage control problem for is considered in [5]. Here, the agents move such that every
mobile sensor networks is studied. The novelty is to consider an point in a given area is sensed with a pre-specified coverage
anisotropic sensor model where the performance of the sensor level C*. The same problem is addressed in [6] under some

depends not only on the distance but also on the orientation to . . h .
the target. By adapting the Lloyd algorithm and assuming a practical assumptions such as bounded sensing and actuation

fixed and equal sensor orientation, a distributed control law is ~capacities of the. VehiC'_es- However, in the Wor_ks mer}tioned
derived. Aside from coverage, the control law also guarantees above, only a uniform (isotropic) sensor model is considered.
collision avoidance between the agents. A simulation is provided |n this paper, in contrast to the above papers, we consider
to illustrate the results obtained in this paper. Furthermore, 6 coverage problem with an anisotropic sensor model. This

a numerical performance analysis to compare the anisotropic model is more realistic since most of the sensor ch a
sensors modelling to isotropic approximations is performed. IS : . IS '_ Si S Sensors _su _S
cameras, directional microphones, radars etc are anisotropic.

I. INTRODUCTION In this paper, one of the main objectives is to investigate

Stimulated by the technological advances and the develoi?—e applicability of the Voronoi based approach in [1] to

ment of relatively inexpensive communication, computatior‘:‘%ktlﬁiSthrzacso(;'r‘]arzgea Ff)irrg?fpn;r\évgghwésgg;)fgesggf)(érci?sgg.ss

and sensing devices, the interest in the research area : i . L .
o anisotropic sensors with elliptic sensing performance level

coordinated networked control has majorly increased over t ¢ ¢ achievi iblv bett mati
past years. One example is the deployment of autonomopig > &S On€ way ot achiéving a possibly betier approximation

vehicles to perform challenging tasks such as search and }8_sensor characteristics instead of circles as for the isotropic

covery operations, manipulation in hazardous environmentSe: The consideration of a general anisotropic sensor model

surveillance and also environmental monitoring for poIIu_results in an anisotropic Voronoi tesselation which leads to

tion detection and estimation. Deploying multiple agents tgon—dlstrlbuted control law, as we will discuss later. How-

: : by assuming fixed, equal sensor orientation, the optimal
erform tasks is advantageous compared to the single ag&it" i ' : S L
P 9 b gie ag éantrol law is shown to be decentralized. The idea of deriving

case: It provides robustness to agent failure and allows f trol law for th idered anisotroni del
handle more complex tasks. the control law for the considered anisotropic sensor mode
is to transform the anisotropic problem to the isotropic one.

In this paper, we consider a mobile sensing network the transformation properties the control law obtained
vehicles equipped with sensors to sample the environme Y ) . Prop
Qo the isotropic problem also solves the problem for the

The goal is to drive the sensors/agents (o the position Suconsidered anisotropic case. Simulations are performed in
that a given region is optimally covered by the sensors. . P ' b ;
order to validate the proposed approach and for comparison

Some relevant works on the coverage control problem agg the approach with isotropic sensor models as over-/under-
[1]-[6]. In [1] the agents move to the optimal configuration APpre P . .
approximation to truely anisotropic sensors. Numerical per-

EV:S'(;Z ;nr:n\'/rgr'é?]zi ?gssoe?f:tcigxea:éng:rll_'lngealagﬁ,:ﬁr?hﬂ?ormance analysis then indicates a design trade-off between
yd alg | ﬁnal costs and convergence speed w.r.t. the number of agents.

same pro_blem 'S co‘r‘1_5|d_ered n [2.] with a m’(,)re reaIIStIC]’his paper is organized as follows: The problem formulation
model by introducing *limited-range interactions” of the SeMN%or the anisotropic sensor model is presented in section 2
sors, i.e the sensing range is restricted to a bounded regi% '

. : ie anisotropic Voronoi partition which is the extension
The advantage of the Voronoi approach is that the contrgl . . o .

S . . af the ordinary Voronoi partition in Lloyd algorithms and
law is distributed by its nature. Alternative approaches ar ; . . . .
: ) ) the optimal location of the mobile sensors are derived in
introduced in [3], [4]. In [3] the authors consider a proba-_ . )

- . . . section 3. In section 4 the control law for the deployment
bilistic sensing model and a density function to represent thle derived and collision avoidance is investigated. Numerical
frequency of random events taking place over the mission . . . '9 '

rformance analysis are provided in section 5.

space. The authors develop an optimization problem th8F
aims at maximizing coverage using sensors with limited Il. PROBLEM FORMULATION
ranges, while minimizing communication cost. A potential-

- ; Let Q be a convex polytope %2 including its interior.
field-based approach to deployment problem in an unknown( ):Q— . is a continuous distribution density function

environment is presented in [4]. Moreover, dynamic covera 8\ o
P [41 y YWhich represents the probability that some event takes place
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Department of Mechanical and Control Engineering, Tokyo Institute ofnohile sensors moving in the regi@ Let © = (91,-~-,9n)
Technology, Japafujita@ctrl.titech.ac.jp . . . .
Sandra Hirche is with Institute of Automatic Control Engineering, Tech-be the orientation/attitude af sensors. The non'decreasmg

nische Universiit of Miinchen, Minchen, Germanhirche@tum.de differentiable functionf (-) : Z, — %, indicates the quality



v 2) Find the control lawy; that drives the mobile sensors
& to the optimal configuration given the mobile sensors
dynamics

'R/" P = Ui. (4)
! “12

L semsor sensor . * Optimal coverage is achieved by minimizing (3) w.r.t (1)
sensor locatiorP and orientation® and (2) the assignment
S of the dominance regiong’ .
@ (b) [1l. OPTIMAL PARTITION, LOCATION

Fig. 1. (a) Isotropic sensor model, (b) Anisotropic sensor model A. Anisotropic Voronoi Partitions

of the sensing performance of the sensor, i.e the probability TO minimize (3), we introduce the notion of the Voronoi
of sensing an event Q. Cortes et. al [1] consider an partition. The Voronoi region of a sensor is defined by all
isotropic sensor with the sensing performance defined &9ints which are “closer” in the sense of the considered
f(|lg— pi||) that degrades with the distance between a poirlistance measure to that sensor than to any other. For the
g€ Q and thei-th sensor positio;. The points where the Euclidean distance measure the Voronoi regipassociated
sensing performance (or probability of sensing) is equal amith its generatomp; is defined as
represented by a circle of radilg and the center is the , ! R
sensor location. As shown in Fig. 1(a), poirds and gy Vi=taeQllla=pil = lla=psll.vi#i}- ©)
with the same distance to the sensor will result in the sanéhe Voronoi partitionV;* of agentt for the anisotropic case
sensing probability. considered in this paper is defined as follows.

In this paper, anisotropic sensors are considered where theDefinition 1:
degradation of the sensing performance is also affected b -
thegorientation of the sensgrr\)/v.r.t the point to be sensed. ThZ Vir={aeQlla-pillu < lla=pjll;,¥i#i}. (6)

anisotropic sensor model in this paper is considered by'gpis anisotropic Voronoi partition is not only determined by
non-Euclidean distance measure as follows. the sensors position but also the sensors orientafjoas

Assumption 1:The sensing performance  of heobservable from the matrik;. As a result the anisotropic

anisotropic sensor model is given by the non-Euclidea}{oronoi tesselation is no longer composed of convex poly-
distance measurig— pi ||, defined as topes, but of curved possibly non-convex regions. Fig. 2(a)
' and Fig. 2(b) depict the examples of isotropic and anisotropic

la—pillf, = (a—p)"Li(a— pi), (1)  Voronoi partition.
where the matrix; is positive definite and can be decom-V*Leménafl_ 3.3:'_I'he6b(_)undary (;)et\{veen two adjacait and
posed ad; = F'F; with ;" as defined in ( ) is g guadratic cu.rve..

_ Proof: Any point g in V{*NV;" which is the boundary

(5 0 cos6 sin 6 of the Voronoi partitions o¥/* andV;* satisfies||q— pi|., =

Ri= 0 ¢ —sin 6 cos6 (2) - T ' J T '

b ! ! lla=pjll; i-e. (@—pi)'Li(a—p) = (a—pj) Lj(a—pj). It

where 6 is the orientation of thé-th sensor, ané,b,c>0 is clear that this equation is quadratic gn Therefore any

are the parameters. point in V;* NV lies on a quadratic curve. |
Observe that the matri is invertible. The level sets of The boundary can be represented as
sensing performance of the anisotropic sensor are given by T 1 1
ellipses where the center is the sensor location as shown X A € ?D X
P y ic B IE||y|=0 @)

in Fig. 1(b). Here,6 is the orientation of the ellipses,b
represent the length of major and minor axis of the ellipse
respectively.c is a scale factor that decide the sensing where A,B,C,D,E,K in (7) can be computed by solv-

NI N

1
D E K]|1

performance on a certain level set. ing (q—pi)"Li(q— pi) = (d— p;)"Lj(q— pj). Due to the
The overall sensing cost incurred by all sensors can kepace limitation, onlyA,B,C are described which will be
formulated as used later in this paper. The coefficients of (7) are :

no, a=(xY), A= b?(cos?8 —cos?8)) +a2(sin 26 —sin %)),
A (P.OY) ZZ/ f(la—npillu)e(@da,  (3) B=a?(cos26 —cos26;)+b(sin 26 —sin 26,), C = (a2 —
= b?)(sin26; —sin26;) and D, E # 0.

where regionW is the dominance region of theth sensor  Another major difference to isotropic Voronoi tesselations
and”?’ = (Wi, ...,Wh). The challenges addressed in this papeis that anistropic tesselations may contain regions without a

are generator [7], i.e. a Voronoi cell of an anisotropic Voronoi
1) Find the optimal configuration such that diagram is not necessarily connected. Moreover, the infor-
. mation of all other sensor positions is required to compute

p7m@,'9/% the anisotropic Voronoi diagrams.



minimizes (3) w.r.t the partitior? . |
s As the orientation is assumed to be fixed and as a result of
corollary 1,
- min 27 = minJ&y+.
PO.W P

. . )
/ K< Assume that the sensing performandd|q— pi|lL) =

la— pill2. Then (3) can be written as

n .
_ N2
@ ) %w(P)—i;/vi la- pili2e(@)da

Fig. 2. (a) Isotropic Voronoi partition, (b) anisotropic Voronoi partition In order to ‘?'e”Ve the op_tlmgl_ location of the sensors, the
given by (6). As can be seen, the regions on the right side have no generatal3ove equation can be simplified to

inside. n
#-P)=3 [ IF@-plPo@ds @
i=17/Vi

Next, we introduce anisotropic centroidal Voronoi configu-
ration.

Definition 2: Given the set of point® in Q. CVI is the
center of mass (centroid) of an anisotropic Voronoi partition.
A Voronoi tessellation is called an anisotropic centroidal
Voronoi configuration if

Fig. 3. Anisotropic Voronoi partition with equal orientation pi = Cy+,Vi;
I

: Remark 1:Since the mformathn of a_II sensor _po_S|t|onsi_e the pointsP serve as generators and also centroids for the
is necessary to construct the anisotropic Voronoi diagram

th lted trol | il b distributed. This i gnisotropic Voronoi tessellations.

the resulted control law WITl be Non-aistributed. ThiS 1S e gptimal location is given by the following proposition.
In contrast to_isotropic Voronol _d|agram Wh_ere only the . Proposition 3.1: The objective function (8) is minimized
Delaunay neighbour (agents which have adjacent Voront/ the anisotropic centroidal Voronoi configuration .

cells) positions are required. Proof: Defineq,z asq= Fq andz = Fp; which are

As mentioned above, in general i.e. for the arbitary Or'boints of region and sensors in a space transformed by matrix

entation of the sensors, the Voronoi approach results | .oied the solution space. Note that the reg@iis trans-

non-distributed control law. Therefore, for the remaindeformed byF to the convex regiorQs and the minimization

of this paper, a more specific case given by the followingy gy jn the solution space leads to the minimization in the

assumption is c9n3|der§d. _ real physical space. Moreover, from (6) and by applying the
Assumption 2:The orientations of all sensors are equalyansformation matris, the anisotropic Voronoi partitios*

and fixed over time, i.ef(t) = 6;(t) = 6,Vi# j andt > 0. i yransformed to the isotropic Voronoi partitiokt Y in the
This can be achieved by applying a known method (e.9 [8]qution space defined as

for making an agreement on the orientation beforehand. This _ B B _ o
assumption leads to the following lemma. Vi={aeQdlla—z| <lla—zl,Vj#i}.

I'_emma} 3.2:From assumptlorj 2 and definition 1, the By applying substitution rule for multiple variables, the
anisotropic Voronoi tessellation is composed of convex polyrl-ntegral in (8) can be rewritten as
topes. MoreoverFi(t) = Fj(t) = F and Lij(t) = Lj(t) =L '

Vi j and allt > 0. %_Z:”/' - 2(20(@ |detF D da. (9
Proof: From the assumption & = 6; = 8, it follows 72) i;.\ZHq 2[%0(@|detF )] dg ©

that A=B=C =0 in (8) and furthermoreD,E # 0. As : B . .

a result the boundary of the Voronoi cell is a straight IineWlth < =(21,....7)- Applying the parallel axis theorem, (9)
. : : C o becomes

SinceQ is a convex polytope, the Voronoi tessellation is also N N

composed of convex polytopes. From (2), it is also cleared . 7} _ |getE 1 o 5 Moz —Co |2

thatF = F andL; =L. n V() = Jdet )|(i;JV“CVi 2, Malla =Gl

One example of the anisotropic Voronoi diagram with fixer\iNhere

and equal orientations is shown in Fig. 3.

My = [ g(@dd Gy =M | Ge(@aa
B. Optimal Location v qu(ﬁ) a4 Cv =My Vq(p(d) g
Corollary 1: The anisotropic Voronoi partitior”* mini- X, = /_H(T— z||2(p(d)dti
mizes (3) w.r.t the partitior?” . ' \
Proof: From definition 1 and sincef is a non- denote mass, centroid and polar moment of inertia of an
decreasing function, it is clear that the Voronoi partitioii ~ anisotropic Voronoi partition respectively. The local mini-



Q
_F
-
F»l
Physical space Solution space
(anisotropic) (isotropic) Fig. 5. By the proposed control law, each sensor moves towards the
centroid.
Fig. 4. Transformation between solution and real space . . . .
] ) converge to the largest invariant set which is the set of
mum is the solution of anisotropic centroid Voronoi configurations. If this set con-
O~ 047 1 sists of finite points, then the sensors converge to one of
0z them (see Corollary 1.2 in [1]). [ ]

Remark 2: This control law is distributed since each sen-
sor only needs the information of it's neighbour’s position
0%\?(2) = 2|det(F )| My (z — Cy)- to compute the control as observable from (10). Taking out

Jz ' ' assumption 2 i.e. the case of fixed, unequal orientation will
The local minimum points given bg = Cy i.e. the critical lead to the same control law. However in this case the control
points for & are the centroids of the Voronoi cells in thelaw will be non-distributed.
solution space which are the Cemroﬂsﬁ = F*%q of the Remark 3: The control law is optimal under the constraint
anisotropic Voronoi partitions. m of the fixed orientation. By considering the orientation as op-
timization variable (non-fixed orientation) as in the original
problem will lead to a better result i.e. lower values.#f
are achieved.

with the partial derivative of (9) given by

IV. CONTINUOUSLLOYD DESCENTFOR COVERAGE
CONTROL

A. Optimal Control for Fixed Orientation . .
B. Collision Avoidance Guaranty

In this section, a control law based on Lloyd algorithm to . _ L
drive the sensors to the location that minimize (3) is derived. Another advantage of the Voronoi approach is the implicit

The strategy is to transform the control law in the solutioffollision eyoidanee. ith th ¥ it there |
space into the real physical space as illustrated in Fig. 4. Proposition 4.2:With the control law (10), if there is no

Consider the sensors in real space with dynamics given ﬁ?”iSion att”, there will be no (_:ollision at > t*. .
(4). Set Proof: The sensors applying the control law (10) will

U = —k(pi — Gys), (10) move towards the centroid of its Voronqi ceII as shown in
i Fig. 5. From Lemma 3.2 and the continuity gf:), the
wherek is a positive gain an¥;* is the anisotropic Voronoi centroid is always inside the Voronoi cell and since the
partition and assumed to be continuously updated. Voronoi tessellations are nonoverlapping by construction, no
Proposition 4.1: By applying the control law in (10), the two sensors will come to the same point i.e there will be no
sensors in the physical space will converge asymptoticallyollision between the sensors for &alb t* if there was no
to the set of critical points i.e the set of anisotropic centroidollision at timet*. u
Voronoi configurations. If this set is finite, the sensors
converge to one of them. V. NUMERICAL PERFORMANCEANALYSIS

Proof: The dynamics of the sensors in the solution The complexity of the control law which is strongly related

space (isotropic case) is given by to the Voronoi tessellation make the analytical performance
o analysis is difficult to perform. For this reason, here numer-
4=Uu, ical performance analysis is considered. In this section, two

From [1], it is well-known that the control input given by kinds of simulations_ are presented. In a first simulation the
proposed approach is validated. Furthermore we compare the

Ui = —k(z —Cy) using of anisotropic models for design versus isotropic model

drives the sensors in the solution space to the centroig@PProximation in a design task.

Voronoi configuration, the critical points of the objectivea. Convergence with Anisotropic Sensors
function (8).

By using the chain rule, the control law in the physica
space can be computed by

First we illustrate the results above through simulation. As-
Isume that there are 4 mobile sensors which sensor parameters
a,b,c, 6 are equal td3,1,1, —11/2, respectively. The region

u = p. Q is a rectangle region d x 4 unit length. Density function
A(F1z). @(0) =1, Vqg. Assume that at the initial timey # pj, Vi # j
“on ' where p; = (x,V¥i) i.e no collision occurs. The results of
—  _K(pi—Gy). applying the control law (10) are shown in Fig. 6. Figure

6(a) and Fig. 6(b) show trajectories of the sensors in the
Consider 7+ as a Lyapunov function. Under the controltransformed and the real physical space respectively. The
law (10), %%’i,/* < 0. By LaSalle’s Principle, the sensorsdecreasing of the objective function can be observed from



model. Here we consider two ways to approximate the sensor
5 by using isotropic model, either under-approximate it or
4 over-approximate the sensor as shown in Fig. 8. From simu-
3 lations with the corresponding sensor models we can derive
2
1
0

A_J 4 the necessary number of agents to achieve the desired final
cost function value. With these numbers we then investigate
the behavior of the "real” system with the anisotropic sensor.
0 2 4 0 2 4 2) Simulation setting:The parameters of the anisotropic
sensors, b,c, 0 are equal t®,1,1, —11/6, respectively. The
regionQ is a square region of side lengtk= 10 unit length
with @(q) = 1, ¥g. The number of agents are varied from
5 to 60 agents and the number of iterations are 500 steps.
The simulation is run once for each number of agent. Initial
o H— position are chosen randomly from a square region of side
length 3.5 unit length in the middle of the regio® for
S| the different agent numbers as shown in Fig. 9. For a fixed
1 pen B agent number the same initial position is used in order to
0 0 > 7 compare the different modelling approaches. The simulations
X are carried out first for the case where the isotropic model is
used to (under/over)-approximate the anisotropic sensor and
(c) when the proposed anisotropic sensor is applied.

Fig. 6. Trajectories of the sensors in (a) solution space, (b) real physical 3) Results and discussionEigure 10 shows the influence

space. The square and circle signs show the initial and final position of ti@; ] . .
agents respectively, (c) the trajectories of the mobile sensors with isotrop! number  of agents to the final cost for the Isotropic

sensor model. and anisotropic sensor model. As expected, for the same
number of agents, the anisotropic sensor model leads to a

- N W~ O

(=)

€Y (b)

lower final cost than the under-approximation and higher

100 cost than the over-approximation isotropic model. Now the
system designed with under/over-approximation is compared

> to the real one designed with anisotropic sensor model. The
50 comparison is made for number of agents of each sensor
model that achieve the same final cost. Here the final cost

0 is assumed to be 100. From Fig. 10, the number of agents

0 100 200 300

X for under-approximation, over-approximation and anisotropic

sensor model which final cost equal to 100 are given by 32, 8,
Fig. 7. Cost (objective function) for anisotropic sensor in the real spac&2 agents respectively. The behaviour of the system designed

with anisotropic sensor model for those number of agents are
Fig. 7. For comparison, the final configuration of the sensoghiown in Fig. 11. As expected, higher number of agents will
with isotropic sensor model is depicted in Fig. 6(c). result to a lower final cost.

B. Anisotropic vs. Isotropic Sensor Model Approximation C. Number of Agents vs. Convergence Speed

In the following we compare the anisotropic sensor Next, through the similar setting as above the influence
modelling vs. using isotropic approximations of the trueof the number of agents to the convergence speed of the
anisotropic sensors. An important design question is hosystem is studied. The settling time is used as a metric of
many agents are necessary to achieve a desired control gited convergence speed which is defined as the number of
and what is the influence of the agent number on othetteps needed to achieve a value in a range of 10% of the
performance criteria. In the following we will investigatefinal cost. The simulation result of anisotropic sensor model
exactly this question under different modelling assumptiorfr different number of agents is shown in Fig. 12. It has
for the true anistropic sensor considered in this paper.  been shown analytically that in the one-dimensional case, the

1) Simulation goal and methodAssume that anisotropic convergence rate of Lloyd algorithm slows down as the num-
sensors are used to sense a given region. The goal ishter of generators becomes large [9]. Here numerical analysis
achieve a certain performance in terms of the final costdicates a similar result for the two-dimensional case and the
function value (the cost of the objective function when thanisotropic sensor model, i.e. large number of agents leads to
agents converge to the critical points). The design task & slower convergence speed (the settling time is larger). On
to choose the necessary number of agents to achieve thig other hand, utilizing a large number of agents will lead
goal. Therefore we will compare the cases where we use a lower final cost. Hence there exists a trade-off between
anisotropic model of the sensor and two other cases whettee final cost and convergence speed (settling time) w.r.t the
the anisotropic sensor is approximated by an isotropic sengaumber of agents in the system. Moreover, it will result in a
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Fig. 9. Example of initial condition for numerical analysis.

w
o
o

higher robustness to agents/sensors failures since for a large
number of agents, the final cost is not significanly different
(Fig. 10). Note however that, large number of sensors are
expensive in terms of the sensors cost.

settling time (step)
n
o
[=)

—_
o
o

VI. CONCLUSION AND FUTURE WORKS

0 20 40 60

In this paper a first approach for the coverage control with number of agents
an anisotropic sensor model is presented. The anisotrogig 12. Number of agents vs. settling time for anisotropic sensor model.
sensors considered in this paper are assumed to have elliptigeasing number of agents slows down the convergence speed.
sensing performance level sets. An optimal control law for ACKNOWLEDGEMENTS
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