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Abstract— In this paper the coverage control problem for
mobile sensor networks is studied. The novelty is to consider an
anisotropic sensor model where the performance of the sensor
depends not only on the distance but also on the orientation to
the target. By adapting the Lloyd algorithm and assuming a
fixed and equal sensor orientation, a distributed control law is
derived. Aside from coverage, the control law also guarantees
collision avoidance between the agents. A simulation is provided
to illustrate the results obtained in this paper. Furthermore,
a numerical performance analysis to compare the anisotropic
sensors modelling to isotropic approximations is performed.

I. I NTRODUCTION

Stimulated by the technological advances and the develop-
ment of relatively inexpensive communication, computation,
and sensing devices, the interest in the research area of
coordinated networked control has majorly increased over the
past years. One example is the deployment of autonomous
vehicles to perform challenging tasks such as search and re-
covery operations, manipulation in hazardous environments,
surveillance and also environmental monitoring for pollu-
tion detection and estimation. Deploying multiple agents to
perform tasks is advantageous compared to the single agent
case: It provides robustness to agent failure and allows to
handle more complex tasks.

In this paper, we consider a mobile sensing network of
vehicles equipped with sensors to sample the environment.
The goal is to drive the sensors/agents to the position such
that a given region is optimally covered by the sensors.

Some relevant works on the coverage control problem are
[1]–[6]. In [1] the agents move to the optimal configuration
which minimizes an objective function. The approach is
based on Voronoi tessellation and the Lloyd algorithm. The
same problem is considered in [2] with a more realistic
model by introducing “limited-range interactions” of the sen-
sors, i.e the sensing range is restricted to a bounded region.
The advantage of the Voronoi approach is that the control
law is distributed by its nature. Alternative approaches are
introduced in [3], [4]. In [3] the authors consider a proba-
bilistic sensing model and a density function to represent the
frequency of random events taking place over the mission
space. The authors develop an optimization problem that
aims at maximizing coverage using sensors with limited
ranges, while minimizing communication cost. A potential-
field-based approach to deployment problem in an unknown
environment is presented in [4]. Moreover, dynamic coverage

Azwirman Gusrialdi, Takeshi Hatanaka and Masayuki Fujita are with
Department of Mechanical and Control Engineering, Tokyo Institute of
Technology, Japanfujita@ctrl.titech.ac.jp

Sandra Hirche is with Institute of Automatic Control Engineering, Tech-
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is considered in [5]. Here, the agents move such that every
point in a given area is sensed with a pre-specified coverage
level C∗. The same problem is addressed in [6] under some
practical assumptions such as bounded sensing and actuation
capacities of the vehicles. However, in the works mentioned
above, only a uniform (isotropic) sensor model is considered.
In this paper, in contrast to the above papers, we consider
the coverage problem with an anisotropic sensor model. This
model is more realistic since most of the sensors such as
cameras, directional microphones, radars etc are anisotropic.
In this paper, one of the main objectives is to investigate
the applicability of the Voronoi based approach in [1] to
tackle the coverage problem with anisotropic sensor model.
For this reason, as a first approach we assume a specific class
of anisotropic sensors with elliptic sensing performance level
sets as one way of achieving a possibly better approximation
to sensor characteristics instead of circles as for the isotropic
case. The consideration of a general anisotropic sensor model
results in an anisotropic Voronoi tesselation which leads to
non-distributed control law, as we will discuss later. How-
ever, by assuming fixed, equal sensor orientation, the optimal
control law is shown to be decentralized. The idea of deriving
the control law for the considered anisotropic sensor model
is to transform the anisotropic problem to the isotropic one.
By the transformation properties the control law obtained
for the isotropic problem also solves the problem for the
considered anisotropic case. Simulations are performed in
order to validate the proposed approach and for comparison
to the approach with isotropic sensor models as over-/under-
approximation to truely anisotropic sensors. Numerical per-
formance analysis then indicates a design trade-off between
final costs and convergence speed w.r.t. the number of agents.
This paper is organized as follows: The problem formulation
for the anisotropic sensor model is presented in section 2.
The anisotropic Voronoi partition which is the extension
of the ordinary Voronoi partition in Lloyd algorithms and
the optimal location of the mobile sensors are derived in
section 3. In section 4 the control law for the deployment
is derived and collision avoidance is investigated. Numerical
performance analysis are provided in section 5.

II. PROBLEM FORMULATION

Let Q be a convex polytope inR2 including its interior.
φ(·) : Q→R+ is a continuous distribution density function
which represents the probability that some event takes place
in Q. Let P = (p1, ..., pn) be the location of then identical
mobile sensors moving in the regionQ. Let Θ = (θ1, ...,θn)
be the orientation/attitude ofn sensors. The non-decreasing
differentiable functionf (·) : R+ →R+ indicates the quality



R

q1

q2

sensor

(a)

q
1

q
2

X

Y

θ

sensor

(b)

Fig. 1. (a) Isotropic sensor model, (b) Anisotropic sensor model

of the sensing performance of the sensor, i.e the probability
of sensing an event inQ. Cortes et. al [1] consider an
isotropic sensor with the sensing performance defined as
f (‖q− pi‖) that degrades with the distance between a point
q∈Q and thei-th sensor positionpi . The points where the
sensing performance (or probability of sensing) is equal are
represented by a circle of radiusR, and the center is the
sensor location. As shown in Fig. 1(a), pointsq1 and q2

with the same distance to the sensor will result in the same
sensing probability.

In this paper, anisotropic sensors are considered where the
degradation of the sensing performance is also affected by
the orientation of the sensor w.r.t the point to be sensed. The
anisotropic sensor model in this paper is considered by a
non-Euclidean distance measure as follows.

Assumption 1:The sensing performance of the
anisotropic sensor model is given by the non-Euclidean
distance measure‖q− pi‖Li defined as

‖q− pi‖2
Li

= (q− pi)TLi(q− pi), (1)

where the matrixLi is positive definite and can be decom-
posed asLi = FT

i Fi with

Fi =
[( c

a 0
0 c

b

)(
cosθi sin θi

−sin θi cosθi

)]
(2)

whereθi is the orientation of thei-th sensor, anda,b,c > 0
are the parameters.
Observe that the matrixFi is invertible. The level sets of
sensing performance of the anisotropic sensor are given by
ellipses where the center is the sensor location as shown
in Fig. 1(b). Here,θi is the orientation of the ellipse,a,b
represent the length of major and minor axis of the ellipse
respectively.c is a scale factor that decide the sensing
performance on a certain level set.

The overall sensing cost incurred by all sensors can be
formulated as

H (P,Θ,W ) =
n

∑
i=1

∫

Wi

f (‖q− pi‖Li )φ(q)dq, (3)

where regionWi is the dominance region of thei-th sensor
andW = (W1, ...,Wn). The challenges addressed in this paper
are

1) Find the optimal configuration such that

min
P,Θ,W

H

2) Find the control lawui that drives the mobile sensors
to the optimal configuration given the mobile sensors
dynamics

ṗi = ui . (4)

Optimal coverage is achieved by minimizing (3) w.r.t (1)
sensor locationP and orientationΘ and (2) the assignment
of the dominance regionsW .

III. O PTIMAL PARTITION , LOCATION

A. Anisotropic Voronoi Partitions

To minimize (3), we introduce the notion of the Voronoi
partition. The Voronoi region of a sensor is defined by all
points which are “closer” in the sense of the considered
distance measure to that sensor than to any other. For the
Euclidean distance measure the Voronoi regionVi associated
with its generatorpi is defined as

Vi = {q∈Q|‖q− pi‖ ≤ ‖q− p j‖,∀ j 6= i}. (5)

The Voronoi partitionV∗
i of agent-i for the anisotropic case

considered in this paper is defined as follows.
Definition 1:

V∗
i = {q∈Q|‖q− pi‖Li ≤ ‖q− p j‖L j ,∀ j 6= i}. (6)

This anisotropic Voronoi partition is not only determined by
the sensors position but also the sensors orientationθi as
observable from the matrixLi . As a result the anisotropic
Voronoi tesselation is no longer composed of convex poly-
topes, but of curved possibly non-convex regions. Fig. 2(a)
and Fig. 2(b) depict the examples of isotropic and anisotropic
Voronoi partition.

Lemma 3.1:The boundary between two adjacentV∗
i and

V∗
j as defined in (6) is a quadratic curve.

Proof: Any point q in V∗
i ∩V∗

j which is the boundary
of the Voronoi partitions ofV∗

i andV∗
j satisfies‖q− pi‖Li =

‖q− p j‖L j i.e. (q− pi)TLi(q− pi) = (q− p j)TL j(q− p j). It
is clear that this equation is quadratic inq. Therefore any
point in V∗

i ∩V∗
j lies on a quadratic curve.

The boundary can be represented as



x
y
1




T 

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





x
y
1


 = 0, (7)

where A,B,C,D,E,K in (7) can be computed by solv-
ing (q− pi)TLi(q− pi) = (q− p j)TL j(q− p j). Due to the
space limitation, onlyA,B,C are described which will be
used later in this paper. The coefficients of (7) are :
q = (x,y), A = b2(cos 2θi −cos 2θ j)+a2(sin 2θi −sin 2θ j),
B = a2(cos 2θi −cos 2θ j)+b2(sin 2θi −sin 2θ j), C = (a2−
b2)(sin2θi −sin2θ j) andD,E 6= 0.

Another major difference to isotropic Voronoi tesselations
is that anistropic tesselations may contain regions without a
generator [7], i.e. a Voronoi cell of an anisotropic Voronoi
diagram is not necessarily connected. Moreover, the infor-
mation of all other sensor positions is required to compute
the anisotropic Voronoi diagrams.
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Fig. 2. (a) Isotropic Voronoi partition, (b) anisotropic Voronoi partition
given by (6). As can be seen, the regions on the right side have no generators
inside.

Fig. 3. Anisotropic Voronoi partition with equal orientation

Remark 1:Since the information of all sensor positions
is necessary to construct the anisotropic Voronoi diagrams,
the resulted control law will be non-distributed. This is
in contrast to isotropic Voronoi diagram where only the
Delaunay neighbour (agents which have adjacent Voronoi
cells) positions are required.
As mentioned above, in general i.e. for the arbitary ori-
entation of the sensors, the Voronoi approach results in
non-distributed control law. Therefore, for the remainder
of this paper, a more specific case given by the following
assumption is considered.

Assumption 2:The orientations of all sensors are equal
and fixed over time, i.e.θi(t) = θ j(t) = θ ,∀i 6= j and t ≥ 0.
This can be achieved by applying a known method (e.g [8])
for making an agreement on the orientation beforehand. This
assumption leads to the following lemma.

Lemma 3.2:From assumption 2 and definition 1, the
anisotropic Voronoi tessellation is composed of convex poly-
topes. Moreover,Fi(t) = Fj(t) = F and Li(t) = L j(t) = L
∀i 6= j and all t ≥ 0.

Proof: From the assumption 2,θi = θ j = θ , it follows
that A = B = C = 0 in (8) and furthermoreD,E 6= 0. As
a result the boundary of the Voronoi cell is a straight line.
SinceQ is a convex polytope, the Voronoi tessellation is also
composed of convex polytopes. From (2), it is also cleared
that Fi = F andLi = L.
One example of the anisotropic Voronoi diagram with fixed
and equal orientations is shown in Fig. 3.

B. Optimal Location

Corollary 1: The anisotropic Voronoi partitionV ∗ mini-
mizes (3) w.r.t the partitionW .

Proof: From definition 1 and sincef is a non-
decreasing function, it is clear that the Voronoi partitionV ∗

minimizes (3) w.r.t the partitionW .
As the orientation is assumed to be fixed and as a result of
corollary 1,

min
P,Θ,W

H = min
P

HV ∗ .

Assume that the sensing performancef (‖q− pi‖L) =
‖q− pi‖2

L. Then (3) can be written as

HV ∗(P) =
n

∑
i=1

∫

V∗i
‖q− pi‖2

Lφ(q)dq.

In order to derive the optimal location of the sensors, the
above equation can be simplified to

HV ∗(P) =
n

∑
i=1

∫

V∗i
‖F(q− pi)‖2φ(q)dq. (8)

Next, we introduce anisotropic centroidal Voronoi configu-
ration.

Definition 2: Given the set of pointsP in Q. CV∗i is the
center of mass (centroid) of an anisotropic Voronoi partition.
A Voronoi tessellation is called an anisotropic centroidal
Voronoi configuration if

pi = CV∗i ,∀i;

i.e the pointsP serve as generators and also centroids for the
anisotropic Voronoi tessellations.

The optimal location is given by the following proposition.
Proposition 3.1:The objective function (8) is minimized

by the anisotropic centroidal Voronoi configuration .
Proof: Define q̄,zi as q̄ = Fq and zi = F pi which are

points of region and sensors in a space transformed by matrix
F called the solution space. Note that the regionQ is trans-
formed byF to the convex regionQs and the minimization
of (8) in the solution space leads to the minimization in the
real physical space. Moreover, from (6) and by applying the
transformation matrixF , the anisotropic Voronoi partitionV∗

i
is transformed to the isotropic Voronoi partition (V̄i) in the
solution space defined as

V̄i = {q̄∈Qs|‖q̄−zi‖ ≤ ‖q̄−zj‖,∀ j 6= i}.
By applying substitution rule for multiple variables, the

integral in (8) can be rewritten as :

HV̄ (Z) =
n

∑
i=1

∫

V̄i

‖q̄−zi‖2φ(q̄)
∣∣det(F−1)

∣∣dq̄. (9)

with Z = (z1, ...,zn). Applying the parallel axis theorem, (9)
becomes

HV̄(Z) =
∣∣det(F−1)

∣∣(
n

∑
i=1

JV̄i ,CV̄i
+

n

∑
i=1

MV̄i
‖zi −CV̄i

‖2),

where

MV̄ =
∫

V̄
φ(q̄)dq̄, CV̄ = M−1

V̄

∫

V̄
q̄φ(q̄)dq̄,

JV̄,z =
∫

V̄
‖q̄−z‖2φ(q̄)dq̄.

denote mass, centroid and polar moment of inertia of an
anisotropic Voronoi partition respectively. The local mini-
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mum is the solution of

∇HV̄ = [...
∂HV̄

∂zi
...]T = 0,

with the partial derivative of (9) given by

∂HV̄

∂zi
(Z) = 2

∣∣det(F−1)
∣∣MV̄i

(zi −CV̄i
).

The local minimum points given byzi = CV̄i
i.e. the critical

points for HV̄ are the centroids of the Voronoi cells in the
solution space which are the centroidsCV∗i = F−1CV̄i

of the
anisotropic Voronoi partitions.

IV. CONTINUOUS LLOYD DESCENTFOR COVERAGE

CONTROL

A. Optimal Control for Fixed Orientation

In this section, a control law based on Lloyd algorithm to
drive the sensors to the location that minimize (3) is derived.
The strategy is to transform the control law in the solution
space into the real physical space as illustrated in Fig. 4.

Consider the sensors in real space with dynamics given in
(4). Set

ui =−k(pi −CV∗i ), (10)

wherek is a positive gain andV∗
i is the anisotropic Voronoi

partition and assumed to be continuously updated.
Proposition 4.1:By applying the control law in (10), the

sensors in the physical space will converge asymptotically
to the set of critical points i.e the set of anisotropic centroid
Voronoi configurations. If this set is finite, the sensors
converge to one of them.

Proof: The dynamics of the sensors in the solution
space (isotropic case) is given by

żi = ūi ,

From [1], it is well-known that the control input given by

ūi =−k(zi −CV̄i
)

drives the sensors in the solution space to the centroidal
Voronoi configuration, the critical points of the objective
function (8).

By using the chain rule, the control law in the physical
space can be computed by

u = ṗi .

=
∂ (F−1zi)

∂zi
żi .

= −k(pi −CV∗i ).

ConsiderHV ∗ as a Lyapunov function. Under the control
law (10), d

dtHV ∗ ≤ 0. By LaSalle’s Principle, the sensors

p
i

C
Vi

∗

V
i
∗p

i

:

Fig. 5. By the proposed control law, each sensor moves towards the
centroid.

converge to the largest invariant set which is the set of
anisotropic centroid Voronoi configurations. If this set con-
sists of finite points, then the sensors converge to one of
them (see Corollary 1.2 in [1]).

Remark 2:This control law is distributed since each sen-
sor only needs the information of it’s neighbour’s position
to compute the control as observable from (10). Taking out
assumption 2 i.e. the case of fixed, unequal orientation will
lead to the same control law. However in this case the control
law will be non-distributed.

Remark 3:The control law is optimal under the constraint
of the fixed orientation. By considering the orientation as op-
timization variable (non-fixed orientation) as in the original
problem will lead to a better result i.e. lower values ofH
are achieved.

B. Collision Avoidance Guaranty

Another advantage of the Voronoi approach is the implicit
collision avoidance.

Proposition 4.2:With the control law (10), if there is no
collision at t∗, there will be no collision att > t∗.

Proof: The sensors applying the control law (10) will
move towards the centroid of its Voronoi cell as shown in
Fig. 5. From Lemma 3.2 and the continuity ofφ(·), the
centroid is always inside the Voronoi cell and since the
Voronoi tessellations are nonoverlapping by construction, no
two sensors will come to the same point i.e there will be no
collision between the sensors for allt ≥ t∗ if there was no
collision at timet∗.

V. NUMERICAL PERFORMANCEANALYSIS

The complexity of the control law which is strongly related
to the Voronoi tessellation make the analytical performance
analysis is difficult to perform. For this reason, here numer-
ical performance analysis is considered. In this section, two
kinds of simulations are presented. In a first simulation the
proposed approach is validated. Furthermore we compare the
using of anisotropic models for design versus isotropic model
approximation in a design task.

A. Convergence with Anisotropic Sensors

First we illustrate the results above through simulation. As-
sume that there are 4 mobile sensors which sensor parameters
a,b,c,θ are equal to3,1,1,−π/2, respectively. The region
Q is a rectangle region of5×4 unit length. Density function
φ(q) = 1, ∀q. Assume that at the initial time,pi 6= p j ,∀i 6= j
where pi = (xi ,yi) i.e no collision occurs. The results of
applying the control law (10) are shown in Fig. 6. Figure
6(a) and Fig. 6(b) show trajectories of the sensors in the
transformed and the real physical space respectively. The
decreasing of the objective function can be observed from
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Fig. 6. Trajectories of the sensors in (a) solution space, (b) real physical
space. The square and circle signs show the initial and final position of the
agents respectively, (c) the trajectories of the mobile sensors with isotropic
sensor model.
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Fig. 7. Cost (objective function) for anisotropic sensor in the real space.

Fig. 7. For comparison, the final configuration of the sensors
with isotropic sensor model is depicted in Fig. 6(c).

B. Anisotropic vs. Isotropic Sensor Model Approximation

In the following we compare the anisotropic sensor
modelling vs. using isotropic approximations of the true
anisotropic sensors. An important design question is how
many agents are necessary to achieve a desired control goal
and what is the influence of the agent number on other
performance criteria. In the following we will investigate
exactly this question under different modelling assumptions
for the true anistropic sensor considered in this paper.

1) Simulation goal and method:Assume that anisotropic
sensors are used to sense a given region. The goal is to
achieve a certain performance in terms of the final cost
function value (the cost of the objective function when the
agents converge to the critical points). The design task is
to choose the necessary number of agents to achieve this
goal. Therefore we will compare the cases where we use
anisotropic model of the sensor and two other cases where
the anisotropic sensor is approximated by an isotropic sensor

model. Here we consider two ways to approximate the sensor
by using isotropic model, either under-approximate it or
over-approximate the sensor as shown in Fig. 8. From simu-
lations with the corresponding sensor models we can derive
the necessary number of agents to achieve the desired final
cost function value. With these numbers we then investigate
the behavior of the ”real” system with the anisotropic sensor.

2) Simulation setting:The parameters of the anisotropic
sensorsa,b,c,θ are equal to2,1,1,−π/6, respectively. The
regionQ is a square region of side lengthl = 10 unit length
with φ(q) = 1, ∀q. The number of agents are varied from
5 to 60 agents and the number of iterations are 500 steps.
The simulation is run once for each number of agent. Initial
position are chosen randomly from a square region of side
length 3.5 unit length in the middle of the regionQ for
the different agent numbers as shown in Fig. 9. For a fixed
agent number the same initial position is used in order to
compare the different modelling approaches. The simulations
are carried out first for the case where the isotropic model is
used to (under/over)-approximate the anisotropic sensor and
when the proposed anisotropic sensor is applied.

3) Results and discussions:Figure 10 shows the influence
of number of agents to the final cost for the isotropic
and anisotropic sensor model. As expected, for the same
number of agents, the anisotropic sensor model leads to a
lower final cost than the under-approximation and higher
cost than the over-approximation isotropic model. Now the
system designed with under/over-approximation is compared
to the real one designed with anisotropic sensor model. The
comparison is made for number of agents of each sensor
model that achieve the same final cost. Here the final cost
is assumed to be 100. From Fig. 10, the number of agents
for under-approximation, over-approximation and anisotropic
sensor model which final cost equal to 100 are given by 32, 8,
22 agents respectively. The behaviour of the system designed
with anisotropic sensor model for those number of agents are
shown in Fig. 11. As expected, higher number of agents will
result to a lower final cost.

C. Number of Agents vs. Convergence Speed

Next, through the similar setting as above the influence
of the number of agents to the convergence speed of the
system is studied. The settling time is used as a metric of
the convergence speed which is defined as the number of
steps needed to achieve a value in a range of 10% of the
final cost. The simulation result of anisotropic sensor model
for different number of agents is shown in Fig. 12. It has
been shown analytically that in the one-dimensional case, the
convergence rate of Lloyd algorithm slows down as the num-
ber of generators becomes large [9]. Here numerical analysis
indicates a similar result for the two-dimensional case and the
anisotropic sensor model, i.e. large number of agents leads to
a slower convergence speed (the settling time is larger). On
the other hand, utilizing a large number of agents will lead
to a lower final cost. Hence there exists a trade-off between
the final cost and convergence speed (settling time) w.r.t the
number of agents in the system. Moreover, it will result in a
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Fig. 9. Example of initial condition for numerical analysis.

higher robustness to agents/sensors failures since for a large
number of agents, the final cost is not significanly different
(Fig. 10). Note however that, large number of sensors are
expensive in terms of the sensors cost.

VI. CONCLUSION AND FUTURE WORKS

In this paper a first approach for the coverage control with
an anisotropic sensor model is presented. The anisotropic
sensors considered in this paper are assumed to have elliptic
sensing performance level sets. An optimal control law for
fixed and equal orientation is derived using a Voronoi based
approach with an adapted Lloyd algorithm and a gradient
descent approach. The control law is distributed and also
guarantees collision avoidance. The efficacy of the proposed
control law is confirmed by simulation. The comparison of
anisotropic and isotropic sensor model is studied through
numerical analysis. It is shown that there is a trade-off
between final cost and convergence speed w.r.t number of
agents. Currently, the problem with the orientation as opti-
mization variable and a method to make the related control
law distributed are investigated. Future work addresses the
use of more general anisotropic sensor models and a more
suitable alternative approach.
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