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Abstract— We consider the self-calibration problem for perspective cameras, and espe-
cially the classical Kruppa equation approach. It is known that for several common types of
camera motion, self-calibration is degenerate, which manifests itself through the existence of
ambiguous solutions. In a previous paper, we have studied these critical motion sequences and
have revealed their importance for practical applications. Here, we reveal a type of camera
motion that is not critical for the generic self-calibration problem, but for which the Kruppa
equation approach fails. This is the case if the optical centers of all cameras lie on a sphere and
if the optical axes pass through the sphere’s center, a very natural situation for 3D object mod-
elling from images. Results of simulated experiments demonstrate the instability of numerical
self-calibration algorithms in near-degenerate configurations.

Index Terms— Self-calibration, Calibration, Euclidean reconstruction, Kruppa equations,
Critical Motions, Degeneracy, Absolute conic.

1 Introduction

We consider the self-calibration problem for perspective cameras. By self-calibration, we
mean the recovery of a camera’s intrinsic parameters by only using information contained
in images taken by this camera. Explicitly, no information on camera motion or on the 3D
structure of the environment is used.

It has been shown by Maybank and Faugeras that, if the camera’s calibration remains fixed
over an image sequence, self-calibration is in general possible [7]. This result is based on
the so-called Kruppa equations, that link the camera’s intrinsic parameters with the epipolar
geometry of pairs of views taken by the camera. The epipolar geometry can be estimated from
sole image point correspondences, so Kruppa’s equations put constraints on the intrinsic pa-
rameters and can thus be used for self-calibration. Several practical self-calibration approaches
based on Kruppa’s equations have subsequently been proposed by Faugeras and students of his
[1, 5, 6, 16]. For other self-calibration approaches, see for example [2, 4, 9, 10, 15].

It is known that several types of camera motion exist, for which self-calibration is a degen-
erate problem, i.e. there exist ambiguous solutions. In [12, 13], we report on a complete study



of the critical motion sequences. The problem of degeneracy must be taken into account in
practical self-calibration since several very common imaging situations are indeed critical.

In §4, we describe a configuration, that is not critical for generic self-calibration, but for
which approaches based on Kruppa’s equations fail. Concretely, we show that this is the case
if all optical centers lie on a sphere and if the optical axes pass through the sphere’s center — a
situation that appears frequently in 3D object modelling from photographs or image sequences.

In §2, we briefly introduce a theory of self-calibration on which the rest of the paper is based.
Kruppa’s equations are reviewed in §3. In §5, we examine the instability of Kruppa equation
based approaches for self-calibration in near-degenerate situations, through numerical experi-
ments. In §6, results are shown that underline the fact that other approaches may perform well
even in situations that are exactly degenerate for Kruppa’s equations. §7 discusses some spe-
cial cases of the degeneracy considered in this paper, whereas §8 provides a general discussion
on why certain types of methods suffer from certain types of degeneracies.

2 Self-Calibration and Euclidean Reconstruction

We consider camera (self-) calibration as an intermediate step to the recovery of metric 3D
structure, also called Euclidean reconstruction. In geometrical terms, obtaining a Euclidean
reconstruction is equivalent to determining the position of the absolute conic €2, [11]. The
calibration of a camera’s intrinsic parameters is equivalent to the determination of the absolute
conic’s projection. The absolute conic is characterized as being the only conic in 3-space that
is invariant to Euclidean transformations. A consequence of this is that even under arbitrary
camera displacements, the projection of €2, remains fixed, if the camera’s calibration does not
change during the displacement. This property gives us a constraint for the determination of
the absolute conic and its projection, and thus for Euclidean reconstruction and self-calibration.

Euclidean reconstruction or self-calibration can thus be formulated as the determination of
the unique conic in 3-space, whose projections are identical in all views of a given image
sequence [13]. In this paper, we consider perspective projection as camera model, whose in-
trinsic parameters are described in the next section. Most practical self-calibration approaches
start with a global projective reconstruction and try to identify the absolute conic in 3D; ap-
proaches based on Kruppa’s equations rely on the epipolar geometry of pairs of views, trying
to identify the image of the absolute conic in 2D using local information.

3 Kruppa’s Equations

Kruppa’s equations can be considered as an epipolar matching constraint for the projections
of quadrics or conics. Consider figure 1, where the case of a quadric’s projection in two views
is illustrated. Two epipolar planes are tangent to the quadric, and the induced epipolar lines
in the images are thus tangent to the conics obtained by projection of the quadric. Hence, an
epipolar line that is tangent to an image conic corresponds to an epipolar line that is tangent to
the conic in the other image. The same kind of epipolar constraint is valid if the conics in the
images are obtained by projection of a conic in 3-space, instead of a quadric.

If we consider the projections of the absolute conic, we obtain a special case of this conic
matching constraint, since the image conics are identical when the images are taken by a



Figure 1: Left: the image of a quadric is the projection of its silhouette, as seen from the optical
center of the camera. Right: two epipolar planes are tangent to the quadric; the associated
epipolar lines are tangent to the images of the quadric.

camera with fixed intrinsic parameters (cf. §2). Let w be the projection of the absolute conic.
The matching constraint can be expressed in the following form [16]:

Fu'FT ~ [e]cw![e]x, (1)

where F is the fundamental matrix of the two views, €’ is the second epipole (the first epipole
e is not used in this formula), ~ means equality up to scale (we work in homogeneous coordi-
nates) and [e’] is the skew-symmetric matrix associated with the cross-product of e’. Equation
(1) is one formulation of Kruppa’s equations. It links the intrinsic parameters of the camera
(represented by the image w of the absolute conic) with the epipolar geometry (represented
by F and €’). Since the epipolar geometry can be estimated from sole image correspondences,
Kruppa’s equations can be used for self-calibration.

Once the image w of the absolute conic has been determined using Kruppa’s equations or
any other approach, the intrinsic parameters are determined straightforwardly, as described in
the following. Let the calibration matrix of the camera be given by:

Tae —Tocot® wug
K=10 «/sin® ] ,
0 0 1

where 7 is the aspect ratio, « the focal length (in pixels), (ug, v) the principal point and © the
skew angle between pixel axes. The image of the absolute conic in a view with calibration K
is, independently of the view’s extrinsic parameters, given by:

w~ K TK |

Hence, once w is known, the intrinsic parameters are easily determined by Cholesky decom-
posing w, using the property of the calibration matrix being upper triangular. Equivalently, but
slightly more conveniently, we may decompose the dual of the absolute conic’s image:

wl~ KK (2)



4 A Degenerate Case For Kruppa’s Equations

In this section, we consider the case where the camera to be self-calibrated moves on a sphere
while its optical axis points towards the sphere’s center. This type of camera motion is not
critical for the generic self-calibration problem, but Kruppa’s equations are degenerate, which
is demonstrated in the following'.

Let C be the center of the viewing sphere (i.e. the sphere of camera positions). Consider an
arbitrary sphere ® that is also centered in C. Obviously, since the camera is always pointed
towards C, the sphere ® is perceived in the same way in all views, i.e. its projections are
identical. Let ¢ be the conic representing the sphere’s projections. The fact that ¢ is the
identical projection of a quadric into all views means nothing else than that ¢ satisfies Kruppa’s
equations for each pair of views. Hence, ¢ gives us a mathematically valid, but wrong, solution
for the self-calibration problem. We did not constrain the radius of sphere ®, which means that
there is a whole family of ambiguous solutions for self-calibration. Note that this degeneracy
is independent of scene structure: the sphere ® does not have to exist in the real world —itis a
purely algebraic object, like the absolute conic.

In the following, we examine the nature of the ambiguous solutions, i.e. which intrinsic
parameters are affected in which way. Let the camera’s distance from C be d and denote
spheres centered in C and with (possibly imaginary) radius r by ®,.. It is easy to verify that
the dual of the image of ®, is identical in all views and is given by the matrix ¢ *:

2

2=z 0 0
o ~KL 0 5 0K 3)
0 0 1

Since ¢, is satisfying Kruppa’s equations (1), we may try to extract intrinsic parameters from
it, as described in §3 for the true image of the absolute conic. By Cholesky decomposing ¢, !,
we obtain an upper triangular calibration matrix K, satisfying ¢ ~ K, K, ". From equations
(2) and (3), it follows that K, is given by:

= 0 0
K.=K|[ 0 0
0 0 1

With regard to the following decomposition of K, separating the focal length o from the other
intrinsic parameters:

T —Tcot® wg a 0
K=[0 1/sin® g 0 «
0 0 1 00

— o O

the ambiguous solution for the calibration matrix, due to ¢, is given by:

T —Tcot® wuy ﬁ& 0 0

Ki=10 1/sin® v 0 T
0 0 1 0 0 1

ITriggs already pointed out that this configuration is degenerate for the quasi-linear approach proposed in
[15]. Relationships between degeneracies for different types of self-calibration approaches are discussed in §8.
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We observe that the intrinsic parameters given by K, are identical with the true parameters in
K, with the exception of the focal length, which is given by:

.
Vi@ ¢

This result has two implications: first, the focal length is usually the intrinsic parameter one
is most interested in when self-calibrating (the aspect ratio being constant and often precisely
known, the principal point being close to the image center) and it is embarassing that exactly
this parameter is obstructed. Second, even prior knowledge of the other intrinsic parameters
(aspect ratio, principal point, skew angle) does not help in resolving the ambiguity in focal
length estimation!

We now have a closer look at the factor s = \/TJW in equation (4). Depending on the
radius 7 of the sphere ®,., this factor takes imaginary or real values. The focal length being a
real number, we are interested in the cases when s is real. It is easy to check that this is valid
exactly in the following two cases:

“)

Oy =

e 7 is real and larger or equal than d, i.e. ®, is a real sphere of equal or larger radius than
the viewing sphere. In this case, we have s € [1, o0].

e ris amultiple of I = +/—1,1i.e. @, is a sphere of imaginary points only. In this case,
we have s € (0, 1].

In conclusion, all non-zero real values are mathematically valid solutions for the ambiguous
focal length a,..

The reason of Kruppa’s equations having ambiguous solutions in a configuration that is
not critical for the generic self-calibration problem, may be resumed by the following phrase.
Namely, Kruppa’s equations are constraints on the image of the absolute conic, but they do
not enforce the planarity of the absolute conic in 3D, which is exactly why, in our case, the
projections of spheres are admitted as solutions. This issue is discussed in more detail in §8.

The degeneracy of Kruppa’s equations we revealed in this section has been observed in ex-
periments by Zeller and Faugeras [16]: in their self-calibration approach, a global optimization
stage is initialized by a robust fit of estimates of the aspect ratio and focal length, obtained from
pairs of views and with the principal point being supposed known. The two-view results of
the focal length were reported to be extremely unstable, whereas the aspect ratio is estimated
reliably. Zeller and Faugeras were not aware that the reason for this seems to be the numerical
instability caused by the camera configuration used for their experiments, which is close to the
configuration dealt with in this paper. However, during the global optimization stage, when
all views are taken into account simultaneously, the instability seems to be reduced enough to
obtain good results, which is possible since the camera configuration is only near to, but not
exactly, degenerate.

5 Instability for Near-Degenerate Camera Configurations

In the following, we report on numerical simulations that have been designed to reveal the
instability caused by near-degenerate camera configurations. It is not intended to give a com-
plete quantitative analysis of the problem, but to demonstrate the effect of near-degeneracy on
numerical algorithms.



The basic simulated camera setup is as follows. The scene consists of 50 3D points that
are randomly chosen in a sphere of radius 100, centered in the origin. We place the camera at
arbitrary positions on the sphere of radius 200, that is also centered in the origin. The camera’s
calibration is fixed to:

1000 0 256
K= 0 1000 256 | ,
0 0 1

and the camera is rotated such that it focuses the origin (the viewing sphere’s center).
The following variations and perturbations are applied in various combinations:

e The camera’s orientation is changed such that the camera focuses a randomly chosen
point within a given distance from the origin (a different point for each view). This
distance will be referred to as “optical axis offset” and varies between 0 and 10.

e The camera is translated off the viewing sphere, toward the origin. Its distance from the
origin is reduced from 200 to 180. The number of translated cameras will be referred to
as “number of views off viewing sphere” in the following.

e Gaussian noise of standard deviation 1 pixel is added to the coordinates of the image
points.

The first two actions move the configuration away from being critical for Kruppa’s equations.

The estimation of the intrinsic parameters is carried out as follows. First, fundamental
matrices between pairs of views are estimated by a quasi-linear method [3]. The intrinsic
parameters are estimated by a Levenberg-Marquardt type optimization scheme, minimizing a
criterion based on Kruppa’s equations. The intrinsic parameters are initialized with their true
values. Thus, large errors in the estimated parameters indicate large instabilities caused by
near-degenerate configurations.

For each setup, we carried out 20 different experiments. In the following graphs, median
relative errors for the focal length, the aspect ratio and the coordinates of the principal point
are shown. For all of the results shown, eight views have been used for self-calibration.

Figure 2 shows the situation when all cameras are placed exactly on the viewing sphere, but
their optical axes are rotated away from the center by various amounts. As the theory in the
previous section suggests, the aspect ratio and the principal point are estimated quite reliably
even in the exactly degenerate situation when there is no optical axis offset. The error on the
focal length however, is, as expected, very large for the degenerate case (note the different
scales in the left and right parts of figure 2), and only reaches the same level as for the other
parameters, when the optical axis offset becomes significant.

Figure 3 shows the situation when between zero and four of the eight views are translated
away from the viewing sphere, but there is no optical axis offset. Again, the aspect ratio and
the principal point are estimated with less than 5% of error (graph not shown). As for the focal
length estimation, it is interesting to note that even with only one view taken from a position
not on the viewing sphere, the error decreases dramatically, but half of the views have to be
translated in order to come close to the 5% error level.

Finally, figure 4 shows the case of both optical axis offset and views translated away from
the viewing sphere. The optical axis offset is such that the cameras focus points within 5 units
distance of the viewing sphere’s center. It is worth noting that the focal length error drops to
less than the half when half of the views are translated off the viewing sphere.
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Figure 2: The camera is placed exactly on the viewing sphere, but the optical axis is rotated
away from the sphere’s center by various amounts. The labels “pp horizontal” and “pp vertical”
refer to the principal point coordinates ug and vy. Note the different scales in the graphs.
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Figure 3: Between 0 and 4 of the 8 views are translated away from the viewing sphere. There
is no optical axis offset.

6 Solving the Present Case

As we mentioned, the camera configuration discussed in this paper is not inherently degenerate
for self-calibration, but for approaches based on Kruppa’s equations (and others, cf. §8). Non
linear methods which include the planarity constraint for the absolute conic, e.g. [2, 4, 9, 15],
will in general succeed in self-calibration (cf. also §8). To demonstrate this, we designed a
simple method to resolve the ambiguity introduced by Kruppa’s equations. Since the other
intrinsic parameters beside the focal length are estimated well by a Kruppa equation approach,
we adopt these and, in a second step, apply a method for estimating the focal length only. We
want to use the same input as for Kruppa’s equations, i.e. fundamental matrices for pairs of
views. An alternative is the method proposed in [10], which is based on a global projective
reconstruction.

In general, the focal length can be computed from a single pair of views, given the epipolar
geometry. Our camera configuration, however, is degenerate for this problem [8]. For triplets
of views, focal length estimation is no longer degenerate in general [14]. For each triplet, it
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Figure 4: Between 0 and 4 of the 8 views are translated away from the viewing sphere. The
optical axes are offset.

is possible to obtain 12 equations of degree 4 in the focal length, with coefficients depending
on the 3 fundamental matrices. These equations can be solved individually and their solutions
combined in a robust manner to provide an estimate for the focal length. Details of this method
are omitted due to lack of space, please contact the author for further information.

Figure 5 shows the relative errors, with respect to the amount of Gaussian noise added to the
image points, for the aspect ratio and the principal point (estimated using Kruppa’s equations),
and the focal length (estimated subsequently). The low error for the focal length confirms that
our camera configuration is not inherently critical for self-calibration.
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Figure 5: Relative errors for intrinsic parameters with respect to noise in the image points.

7 Spurious Solutions

It can be shown that in general, the ambiguous solutions for the focal length described in §4
represent the only degeneracies for Kruppa’s equations with the considered camera configura-
tion. There are however, special cases where further solutions exist, prohibiting the estimation
of other intrinsic parameters as well. Additional ambiguities arise for example if there exist
quadrics other than spheres whose projections are identical in all views. As we discuss in §8,
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it would be very difficult to give an exhaustive list of all additional degeneracies and thus to
derive conditions under which certain intrinsic parameters can be estimated for sure. However,
it is possible to derive some sufficient conditions under which certain parameters can not be
estimated without ambiguity. In the following, we describe such conditions for three special
cases of the camera configuration discussed in this paper?.

The first case concerns cameras located on a circle and fixating this circle’s center. We
suppose that the cyclotorsion (rotation about the optical axis) is the same for all the views.
This configuration is inherently degenerate for self-calibration, giving rise to a 2-degree-of-
freedom family of solutions [13]. For Kruppa’s equations, the ambiguity has at least 3 degrees
of freedom. The following conditions hold for cameras with rectangular pixels (i.e. © =
90°; similar but more complicated conditions can be derived for non rectangular pixels). The
coordinates of the principal point can never be estimated both at the same time. If the cameras
are not upright (i.e. none of the two pixel axes lies in the plane of motion), then none of the
coordinates of the principal point can be estimated. If the cyclotorsion is such that none of
the pixel axes forms a 45° angle with the plane of motion, then the aspect ratio can not be
estimated. The focal length can never be estimated since we are in a special case of §4.

The second special case consists again of a camera moving on a circle, but fixating an
arbitrary point on the circle’s axis, i.e. the optical axes do not lie in the plane of motion. The
third case is en extension of this, considering two such sets of cameras, arranged symetrically
(i.e. the locus of camera positions is the union of two “parallel” circles of the same size). The
ambiguity conditions here are essentially the same as in the first case, except for the aspect
ratio, where the 45° cyclotorsion constraint has to be adapted appropriately to account for the
inclination of the optical axes with respect to the plane(s) of motion.

8 Levels of Degeneracy

We briefly explain that self-calibration methods may be divided into at least three groups, suf-
fering from increasing levels of degeneracy, i.e. for which increasingly many critical motions
exist. Inherent degeneracies, 1.e. degeneracies concerning any method, occur exactly if there
is a proper virtual conic (i.e. a conic with no real points) in 3-space, different from the absolute
conic, whose projections are identical in all views of an image sequence [13].

Methods that do not enforce the planarity® of the absolute conic, suffer from additional
degeneracies: camera configurations for which there is a quadric, whose projections are iden-
tical in all views, are degenerate. Kruppa’s equations are one example: the epipolar matching
constraint they represent can not distinguish between quadrics and conics in 3-space. Another
example is the linear method proposed by Triggs [15]: the planarity of the absolute conic is a
non linear constraint, thus omitted in the linear approach, causing the degeneracy.

In the following, we explain that there exist even more degeneracies for Kruppa’s equations,
which do not concern the other self-calibration methods cited in this paper. Suppose that w is
an ambiguous solution for Kruppa’s equations. This means that for each pair of views ¢ and 7,
there exists a quadric ®;; which projects to w in both views. However, Kruppa’s equations do
not constrain these quadrics to be the same for any pair of views!

2Results are just summarized here; for details contact the author.
3Planarity of the absolute conic is equivalent to rank-3-ness of the “absolute quadric” used in [15].



The three levels of degeneracies are summarized in table 1. Clearly, from top to bottom,
there is more and more room for the existence of degenerate configurations. It seems to be
quite difficult to describe all the degeneracies for Kruppa’s equations explicitly, which is why
in §7 we only give some sufficiency conditions for the existence of spurious solutions.

Methods | Reason for degeneracy 2D sketch of the reason for degeneracy

Any Existence of a single conic (repre-
sented by two points here), different
from the absolute conic, with iden-
tical projections in all views

Linear Existence of a single quadric (repre-
methods | sented by an ellipse here) with iden-
tical projections in all views

Kruppa Existence of one quadric per pair
equations | of views, the projections of which
in the associated pair of views be-
ing identical with those of the other
quadrics in the respective views

Table 1: Different levels of degeneracy, affecting different types of self-calibration methods.
Each method inherits the degeneracies from the levels above it.

9 Conclusion

In this paper, we have considered the camera self-calibration problem and the classical practi-
cal approach, based on Kruppa’s equations. We have revealed that for one of the most natural
imaging situations (camera moving on a sphere while focusing the sphere’s center) this ap-
proach fails, in spite of self-calibration being possible in general. Precisely the focal length
can not be estimated, even when the other intrinsic parameters are known.

The occurrence of serious numerical instabilities due to near-degenerate camera configura-
tions has been demonstrated by experiment. However, our results suggest that it should be
relatively easy to avoid this problem in practice, either by introducing sufficient variation in
the camera placement or by using a method that does not suffer from the degeneracy.

We have shown informally that Kruppa’s equations suffer from more degeneracies than
other known self-calibration methods, which is a prize paid for using local information (fun-
damental matrices), as opposed to starting with a global projective reconstruction. In general,
this paper contributes to the understanding of how to successfully apply self-calibration, which
needs good algorithms but also awareness of degenerate situations.
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