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A Hensel Lifting to Replace Factorization in
List-Decoding of Algebraic-Geometric and

Reed-Solomon Codes

Daniel Augot and Lancelot Pecquet

Abstract

This paper presents an algorithmic improvement to Sudan’s list-

-decoding algorithm for Reed-Solomon codes and its generalization

to algebraic-geometric codes from Shokrollahi and Wasserman.

Instead of completely factoring the interpolation polynomial over the

function field of the curve, we compute sufficiently many coefficients of

aHensel development to reconstruct the functions that correspond to

codewords. We prove that these Hensel developments can be found

efficiently using Newton’s method. We also describe the algorithm

in the special case of Reed-Solomon codes.

Keywords: List-decoding, algebraic-geometric codes, Reed-Solomon

codes, polynomials over algebraic function fields, Hensel lifting, Newton’s
method.

1 Introduction

In [10, 11], M. Sudan proposed an algorithm of polynomial-time complexity
to decode low-rate Reed-Solomon codes [4, p. 294, sqq.] beyond the usual
correction capability. This problem may have several solutions, thus Su-

dan’s algorithm is a list-decoding algorithm. The ideas of this algorithm have
been adapted [8] by M. A. Shokrollahi and H. Wasserman to algebraic-
geometric (AG) codes. More recently, V. Guruswami and M. Sudan de-
scribed an enhanced version of the method for all transmission rates [2]. The
structure of these algorithms can be sketched as follows:
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1. find an interpolation polynomial G under constraints;

2. find some factors of degree 1 of G and retrieve the codewords from
them.

In step 2, both algorithms involve factorization or finding the roots of the
polynomial G over the function field of an algebraic curve, (which turns to
be Fq(x) in the case of Reed-Solomon codes).

Our contribution is a speedup of this second step, that avoids factoriza-
tion. We notice that the solutions can be characterized by a finite number of
coefficients of theirHensel development and we prove that this development
can be computed fast using Newton’s method.

For instance, in the case of Reed-Solomon codes, a bivariate polyno-
mialG(x, T ) has to be factored over Fq. The method is roughly as follows [13,
p. 434]:

1. specialize the variable T in a well-chosen value y0 ∈ Fq in G(x, T );

2. factor the univariate polynomial G(x, y0);

3. lift the results to get the factorization of G(x, T ) mod (T − y0)
l for

large enough l.

As noted by a referee, both steps 1 and 2 are eliminated in our procedure.
The lifting process can be launched immediatly by inspection of the symbols
of the received word. This is an improvement since step 1 may require al-
gebraic extensions of the base field [13, p. 433], and since there is no know
deterministic algorithm to perform step 2. We use Newton’s method to do
the lifting, and our algorithm is completely deterministic. The same idea can
be adapted in the case of AG codes.

Note that the interpolation step has been investigated by T. Høholdt

and R. R. Nielsen [3] and by M. A. Shokrollahi and V. Olshevsky [6].
In Section 2, we recall the list-decoding algorithm of Shokrollahi and

Wasserman for algebraic-geometric codes, and the original version of Su-
dan’s algorithm in the special case of Reed-Solomon codes. In Section 3,
we recall the main known results concerning Hensel developments of func-
tions in a discrete valuation ring and a method to retrieve such a development
using Newton’s method when the function is a root of some polynomial. In
Section 4, we show how this method can be used to replace the factorization
step in Shokrollahi and Wasserman’s algorithm. Then in Section 5,

2



we describe in detail a fast implementation of our method, for which we
give some complexity estimates in Section 6. The paper contains three ap-
pendices: the first one describes an algorithm to build a basis of functions
of the vector space associated to a divisor with increasing valuations at a
given place as we use such bases in our implementation. The two following
appendices are examples of a step-by-step application of our method to a
Reed-Solomon code and to a Hermitian code.

2 Outline of Shokrollahi-Wasserman algorithm

2.1 General idea

We recall the Shokrollahi and Wasserman generalization of Sudan’s
algorithm.

Let X be a projective absolutely irreducible curve defined over K = Fq

and let K(X ) be its function field. A place of K(X ) is a maximal ideal of a
discrete valuation ring of K(X ).

Let (P1, . . . , Pn) be n-tuple of pairwise distinct places of degree 1 ofK(X ),
and D be a divisor of K(X ) such that none of the Pi is in SuppD, we denote
by L(D) the vector space associated to D and define the evaluation mapping
ev : L(D) → Fn

q by ev(f) = (f(P1), . . . , f(Pn)). If 2g − 2 < degD < n,
following the terminology of [7], the [n, k = ℓ(D) = degD − g + 1, d ≥
n−k+1−g]q-code C = Im(f) is called a strongly algebraic-geometric (SAG)
code. The reader may refer to [9, 12] for more complete reference on AG-
codes. We henceforth suppose that all these parameters are fixed, and for
1 ≤ i ≤ n, we also will denote by lPi

the maximal valuation at place Pi of a
function f ∈ L(D).

For a given y ∈ Fn
q , the problem of finding the set Bτ (y) of all words

of C at distance at most τ of y is equivalent to the problem of finding the
set B∗

τ (y) of all functions f ∈ L(D) such that f(Pi) = yi for at least n − τ
values of i. We suppose that y is fixed as well, and rephrase the theorem
given in [8]:

Theorem 1 (Shokrollahi and Wasserman, 1999) Let ∆ be a divisor of
degree less than n−τ such that none of the Pi is in Supp∆, for all polynomials
G(T ) = a0 + · · ·+ abT

b ∈ K(X )[T ] such that:

1. G is nonzero;
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2. G(yi) is a function of K(X ) vanishing on all Pi, i ∈ {1, . . . , n};

3. aj is in the space L
(
∆− jD

)
for all j ∈ {0, . . . , b};

then for all f ∈ B∗
τ (y), f is a root of G(T ).

Proof At any place P ofK(X ), for all f ∈ K(X ), vP (G(f)) ≥ min0≤j≤b

(
vP (aj)+

j vP (f)
)
. Thus for all j, we have vP (aj) + j vP (f) ≥ − vP (∆) + j vP (D) −

j vP (D) = − vP (∆). Hence G(f) ∈ L(∆).
Consider the set I of indices for which f(Pi) = yi. For i ∈ I we have

G(f) = a0 + · · ·+ abf
b. Since Pi /∈ SuppD ∪ Supp∆, we can evaluate G(f)

at Pi. Then, by hypothesis:

(
G(f)

)
(Pi) =

b∑

j=0

aj(Pi)f(Pi)
j =

b∑

j=0

aj(Pi)y
j
i =

(
G(yi)

)
(Pi) = 0 .

Consequently vPi

(
G(f)

)
≥ 1 and

(
G(f)

)
≥ −ΓI where

ΓI = ∆−
∑

i∈I

Pi .

The degree of ΓI is deg(ΓI) = deg(∆)−|I| and for all f ∈ B∗
τ (y), |I| ≥ n−τ .

Therefore the hypothesis deg∆ < n−τ implies deg ΓI < 0 hence L(ΓI) = {0}
and G(f) = 0. �

A polynomial G satisfying conditions 1–3 of Theorem 1 exists for all y ∈
Fn

q if τ is not too large. From [8], a necessary condition, based on the count
of the number of unkowns and linear equations satisfied by G, can be stated
as follows:

Theorem 2 Let C be an [n, k]-stronlgy algebraic-geometric code, for any τ ≤
n + g −

⌈√
2n(k + g − 1)

⌉
, a polynomial satisfying hypothesis of Theorem 1

exists of degree at most
⌈√

2n/(k + g − 1)
⌉
for all y ∈ Fn

q .

The algorithm is therefore the following:

1. Find a polynomial G(T ) satisfying conditions 1–3 of Theorem 1.

2. Compute the roots f of G(T ) in L(D) such that f(Pi) = yi for at least
n− τ values of i.
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2.2 Case of Reed-Solomon codes

The [n, k]q-Reed-Solomon codes can be described as a special case of a
strongly algebraic-geometric code. The corresponding curve is the projective
line, which is of genus 0, and the function field K(X ) is Fq(x). All places of
degree 1 of Fq(x) are the Pi = (x−pi) with pi ∈ Fq, plus the place at infinity
P∞ = (1/x). The divisor D is (k− 1) ·P∞, L(D) is the set of polynomials of
degree less than k over Fq.

Using a divisor ∆ =
(
n − τ − 1 − b(k − 1)

)
· P∞, Theorem 1 can be

reformulated as in Sudan’s original articles [10, 11]:

Theorem 3 (Sudan, 1997) For all bivariate polynomials G(x, T ) = a0(x)+
· · ·+ ab(x)T

b ∈ Fq[x, T ], such that:

1. G is nonzero;

2. G(pi, yi) = 0 for all i ∈ {1, . . . , n};

3. deg aj(x) < n− τ − (k − 1)j for all j ∈ {0, . . . , b};

then for all f ∈ B∗
τ (y), G(x, f(x)) = 0.

By applying Theorem 2, if τ ≤ n−
⌈√

2nk
⌉
, a polynomial G(x, T ) satis-

fying conditions 1–3 of Theorem 3 exists of degree at most
⌈√

2n/k
⌉
. The

algorithm becomes:

1. Find a bivariate polynomial G(x, T ) as in Theorem 3.

2. Find factors of the form (T − f(x)) where f is a polynomial of Fq[x] of
degree less than k such that f(pi) = yi for at least n− τ values of i.

3 Hensel lifting

In this section we recall some results on Hensel developments and their
computation by Newton’s method. We will use the following notation until
the end of the paper. For a given place P of the function field K(X ), we
denote by OP its discrete valuation ring, by tP a fixed uniformizer of P , and
by vP the valuation of OP . Any nonzero element f of OP can be written in a
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unique way as a converging (cf. [1, p. 432]) power series in tP with coefficients
in K, called its Hensel development at place P or P -adic development :

f =

∞∑

j=0

αjt
j
P .

The Hensel development up to order l of f will be denoted by:

HensP (f, l) =

l∑

j=0

αjt
j
P = f rem tl+1

P .

(To emphasize the algorithmics, we distinguish f rem tl+1
P , which is a poly-

nomial in tP , from f mod tl+1
P , which is an element of a quotient ring.) We

will also denote by coefP (f,m) and initP (f), respectively the m-th and the
first nonzero coefficient of the development of f .

We recall the following well-known results (see [5, pp. 126, sqq.] and [13,
pp. 243–263]).

Theorem 4 (Newton’s approximation theorem) Let G ∈ OP [T ] and
ϕj ∈ K[tP ] such that G(ϕj) = 0 mod t2

j

P and G′(ϕj) 6= 0 mod tP . Then

ϕj+1 = ϕj −G(ϕj) ·G′(ϕj)
−1 rem t2

j+1

P is defined in K[tP ] and

1. ϕj+1 = ϕj mod t2
j

P ;

2. G(ϕj+1) = 0 mod t2
j+1

P ;

3. G′(ϕj+1) 6= 0 mod tP .

Moreover if ψj+1 is a polynomial in K[tP ] such that G(ψj+1) = 0 mod t2
j+1

P

and ψj+1 = ϕj+1 mod t2
j

P , then ψj+1 = ϕj+1 mod t2
j+1

P (unicity of Hensel

development).

Proof As G′(ϕj) 6= 0 mod tP , G
′(ϕj) 6= 0 mod t2

j

P . In addition

G(ϕj) = 0 mod t2
j

P implies ϕj+1−ϕj = 0 mod t2
j

P , which proves assertion 1.
Taylor’s development at order two of G(T ) in ϕj is:

G(T ) = G(ϕj) + (T − ϕj)G
′(ϕj) + (T − ϕj)

2R(T − ϕj)
2
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where R is some polynomial in OP [T ]. If we specialize T in ϕj+1, we have:

G(ϕj+1) = G(ϕj) + (ϕj+1 − ϕj)G
′(ϕj) + (ϕj+1 − ϕj)

2R(ϕj+1 − ϕj)

= G(ϕj) + (ϕj+1 − ϕj)G
′(ϕj) mod t2

j+1

P

= G(ϕj) +
(
−G(ϕj) ·G′(ϕj)

−1
)
G′(ϕj) mod t2

j+1

P

= 0 mod t2
j+1

P .

This proves assertion 2. Since ϕj+1 = ϕj mod t2
j

P , we have ϕj+1 = ϕj

mod tP . Consequently, assertion 3. follows since G′(ϕj) 6= 0 mod tP im-
plies G′(ϕj+1) 6= 0 mod tP .

Finally, let ψj+1 be a polynomial inK[tP ] such thatG(ψj+1) = 0 mod t2
j+1

P

and ψj+1 = ϕj+1 mod t2
j

P . The second order Taylor’s development of G(T )
in ϕj+1, when specialized in ψj+1 is:

G(ψj+1)−G(ϕj+1) = (ψj+1 − ϕj+1)
(
G′(ϕj+1) + c · (ψj+1 − ϕj+1)

2
)
,

where c ∈ OP . Thus (ψj+1−ϕj+1)G
′(ϕj+1) = 0 mod t2

j+1

P . Since G′(ϕj+1) 6=
0 mod t2

j+1

P , ψj+1 − ϕj+1 = 0 mod t2
j+1

P . �

Newton’s method builds iteratively the Hensel development of the
roots of a given polynomial by repeating the iterations ϕj+1 ← ϕj −G(ϕj) ·
G′(ϕj)

−1 rem t2
j+1

P , as stated in the following corollary:

Corollary 1 Let G(T ) ∈ OP [T ] and α ∈ K such that (G′(α))(P ) 6= 0. For
all f ∈ OP such that G(f) = 0 and f(P ) = α, let (ϕj)j∈N be the sequence

defined by ϕ0 = α and for j ≥ 0, ϕj+1 = ϕj − G(ϕj) · G′(ϕj)
−1 rem t2

j+1

P .

Then for all j ∈ N, ϕj+1 = f mod t2
j+1

P , and (ϕj)j∈N converges to f in OP .

4 Application to Shokrollahi-Wasserman al-

gorithm

Let G(T ) ge a polynomial satisfying the conditions of Theorem 1. For f ∈
B∗

τ (y), we know that G(f) = 0 and in order to use Corollary 1 to build
a sequence that converges to f , we need a place P and α ∈ K such that
f(P ) = α, and

(
G′(α)

)
(P ) 6= 0. We now prove that if G(T ) is chosen

of minimal degree, then for any f ∈ B∗
τ (y) there is a position i such that

f(Pi) = yi and
(
G′(yi)

)
(P ) 6= 0. Thus by choosing α = yi, we will retrieve f

using Newton’s method.
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Theorem 5 If G(T ) is a polynomial of minimal degree satisfying the con-
ditions of Theorem 1, then for each root f ∈ L(D), there is an index i ∈
{1, . . . , n} such that f(Pi) = yi and

(
G′(yi)

)
(Pi) 6= 0.

Proof Let a0 + a1T + · · · + abT
b be a polynomial of minimal degree,

satisfying the conditions of Theorem 1. For any f ∈ L(D) such that G(f) =
0, letR(T ) = r0+· · ·+rb−1T

b−1 ∈ K(X )[T ] be such thatG(T ) = (T−f)R(T ).
By identification, we have:

G(T ) = −fr0︸ ︷︷ ︸
a0

+ (r0 − fr1)︸ ︷︷ ︸
a1

T + · · ·+ (rb−2 − frb−1)︸ ︷︷ ︸
ab−1

T b−1 + rb−1︸︷︷︸
ab

T b .

Let us prove recursively that rj ∈ L(D − (j + 1)D) for 0 ≤ j < b.
It is true for rb−1 = ab ∈ L(D − bD). Suppose that for some j ≤ b − 1,

rj ∈ L(D− (j + 1)D). Then we have aj = rj−1 − frj, hence at any place P ,
vP (rj−1) ≥ min(vP (aj), vP (f) + vP (rj)). On the one hand, we know from
condition 3 of Theorem 1 that vP (aj) ≥ − vP (∆− jD); on the other hand,
the recursion hypothesis tells that vP (rj) ≥ − vP (∆ − (j + 1)D). We also
know that f ∈ L(D), hence vP (f)+vP (rj) ≥ − vP (∆− jD). So in all cases,
vP (rj−1) ≥ − vP (∆− jD).

We therefore have proved that for any j ≤ b− 1, rj ∈ L(∆− (j+1)D) ⊆
L(∆− jD). In particular, R(T ) also satisfies condition 3 of Theorem 1.

Consider the set I of indices i such that f(Pi) = yi, then for i /∈ I,
(R(yi))(Pi) = 0. Suppose now that for all i ∈ I, (R(yi))(Pi) = 0, then R(T )
would clearly satisfy conditions 1 and 2 of Theorem 1. As we have shown
that R(T ) satisfies condition 3, it would contradict the fact we have chosen
G(T ) of minimal degree satisfying these conditions. Consequently, there
exists an index i for which f(Pi) = yi and

(
R(yi)

)
(Pi) 6= 0. The derivative

is G′(T ) = (T − f)R′(T ) +R(T ), hence
(
G′(yi)

)
(Pi) = 0 +

(
R(yi)

)
(Pi) 6= 0.

Theorem 1 tells us that any f ∈ B∗
τ (y) is a root of G(T ). �

As we will see in Section 5.2, any function in L(D) can be characterized
by its Hensel development up to order lPi

, for any i ∈ {1, . . . , n}. Thus the
method to perform step 2 of Shokrollahi and Wasserman’s algorithm
is the following. Iterate through the set S of all positions i ∈ {1, . . . , n}
such that

(
G′(yi)

)
(Pi) 6= 0. For any such i, compute the lPi

-th term of the
sequence (ϕj)j∈N as built in Corollary 1 with ϕ0 = yi for large enough lPi

(see
Section 5.1), then convert ϕlPi

to a function f ∈ L(D), and test if f ∈ Bτ (y).
The next section describes all details of this method and the whole algo-

rithm for list-decoding is given in Section 5.3.
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5 Implementation

5.1 Newton’s method

In Newton’s method, each iteration ϕj+1 ← ϕj − G(ϕj)/G
′(ϕj) rem t2

j+1

P

involves a division of series, which can be replaced by a multiplication:
ϕj+1 ← ϕj − G(ϕj) · ηj rem t2

j+1

P where ηj is an auxiliary sequence which
approximates G′(ϕj)

−1. More precisely, we define:

Proposition 1 (Newton Inversion) Let P be a place of degree 1 of K(X ),
and h ∈ K[[tP ]] such that h 6= 0 mod tP . Let (ηj)j∈N be the sequence defined
by η0 = h(P )−1 and for all j ∈ N, ηj+1 = 2ηj + hη2j rem 2j+1. Then (ηj)j∈N
satisfies ηjh = 1 mod t2

j

P for all j ∈ N.

Proof For j = 0, we have hη0 = h(P )η0 = 1 mod t2
0

P . Suppose the
result is true up to j, then 1− hηj+1 = 1− h(2ηj − hη2j ) = 1− 2ηj + h2η2j =

(1− hηj)2 = 0 mod t2
j+1

P by the recurrence hypothesis. �

For computational purpose, the polynomial G(T ) = a0 + · · · + abT
b ∈

OP [T ] is replaced by the polynomial G̃P,l whose coefficients are the Hensel

developments at P of the coefficients of G up to order l, i.e. G̃P,l(T ) =
G(T ) rem tl+1

P = HensP (a0, l) + · · ·+HensP (ab, l) · T b ∈ K[tP ][T ].

Proposition 2 Let G(T ) ∈ OP [T ] and α ∈ K be such that
(
G′(α)

)
(P ) 6= 0,

and let l be a nonnegative integer, then the sequences:
{
η0 =

(
G̃′

P,l(α)
)
(P )−1 and ∀j ∈ N, ηj+1 = 2ηj + G̃′

P,l(ϕj) · η2j rem t
min(2j+1,l+1)
P

ϕ0 = α and ∀j ∈ N, ϕj+1 = ϕj − G̃P,l(ϕj) · ηj+1 rem t
min(2j+1,l+1)
P

are well-defined and for all f ∈ OP such that G(f) = 0 and f(P ) = α,
HensP (f, l) = ϕ⌈log2(l+1)⌉.

Proof First,
(
G̃′

P,l(α)
)
(P ) =

(
G′(α)

)
(P ) 6= 0, which guarantees that the

sequences are well-defined. Let ψj be the sequence defined by ψ0 = α and

for all j ∈ N, ψj+1 = ψj −G(ψj) ·G′(ψj)
−1 rem t2

j+1

.

¿From Corollary 1, we know ψj+1 = f mod t2
j+1

P for all j ∈ N.

Furthermore, as for all j ∈ N, G(T ) = G̃P,l(T ) mod t
min(2j+1,l+1)
P , we have

ηj+1 = (G′(ϕj+1))
−1 mod t

min(2j+1,l+1)
P and ϕj+1 = ψj+1 mod t

min(2j+1,l+1)
P .

For j+1 = ⌈log2(l+1)⌉, we have 2j+1 ≥ l+1, thus ϕ⌈log2(l+1)⌉ = ψ⌈log2(l+1)⌉ rem tl+1
P =

f rem tl+1
P = HensP (f, l). �

9



We therefore have Algorithm 1 to compute the Hensel development at P
up to order l of a root f of G provided

(
G′(f(P )

)
(P ) 6= 0.

Algorithm 1

function Newton(G, P , α, l).
Input: A polynomial G(T ) ∈ OP [T ] and α ∈ K such that

(
G(α)

)
(P ) = 0

and (G′(α))(P ) 6= 0. An integer l ≥ 0.
Ouput: A polynomial ϕ ∈ K[tP ] of degree less than or equal to l (ϕ is equal
to HensP (f, l) if there exists f ∈ OP such that f(P ) = α and G(f) = 0).

1. G̃P,l(T )← G(T ) rem tl+1
P .

2. G̃′
P,l(T )← the derivative of G̃P,l(T ).

3. η ←
(
G̃′

P,l(α)
)
(P )−1. // This is η0

4. ϕ← α. // Compute ϕ0

5. for j from 0 to ⌈log2(l + 1)⌉ − 1 do

η ← 2η − G̃′
P,l(ϕ) · η2 rem t

min(2j+1,l+1)
P . // Compute ηj+1

ϕ← ϕ− G̃P,l(ϕ) · η rem t
min(2j+1,l+1)
P . // Compute ϕj+1

6. return ϕ. // Return ϕ⌈log2(l+1)⌉

5.2 Converting Hensel’s developments to functions

For our purpose, we focus on the roots of G(T ) ∈ OP [T ] that are in L(D)
(with P /∈ SuppD). In general, the output ϕ of Algorithm 1 is not necessarily
the Hensel development of a function of L(D). It is possible to decide fast
if there exists a function f ∈ L(D) whose truncated development is ϕ, and
retrieve f in this case, as described in Algorithm 2. Note that it is possible
that f is not a root ofG(T ). Hensel’s lemma tells us that ϕ is the truncation
of a root of G(T ) in the completion of the function field, which may not be
in L(D) a priori.

However, when G(T ) satisfies condition 3 of Theorem 1, then the output
of Algorithm 1 is always the Hensel development of a function of L(D), as
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shown in the next theorem. Consequently, Algorithm 2 will never return fail.

Theorem 6 Let G(T ) = a0 + · · · + abT
b be a polynomial such that aj ∈

L(∆ − jD) for 0 ≤ j ≤ b. Let P be a place of degree 1 such that P /∈
Supp∆∪SuppD, and α ∈ K be such that

(
G(α)

)
(P ) = 0 and

(
G′(α)

)
(P ) 6=

0. Then with the notation of Proposition 2, for all j ∈ {0, . . . , ⌈log2(lP +1)⌉},
ϕj+1 ∈ L(D). Consequently, given the output Newton(G, P , α, lP ) of
Algorithm 1 is the Hensel development of a function of L(D).

Proof We prove this by induction. First, note that ϕ0 = α ∈ L(D)

and η0 =
(
G̃′

P,lP
(α)

)
(P )−1 ∈ L(D − ∆). Suppose now that for some j ∈

{0, . . . , ⌈log2(lP + 1)⌉}, ϕj ∈ L(D) and ηj ∈ L(D − ∆). Then G̃′
P,lP

(ϕj) ∈
L(∆−D), η2j ∈ L(2D−2∆), and ηj+1 = 2ηj+G̃

′
P,lP

(ϕj)·η2j rem t
min(2j+1,l+1)
P ∈

L(D−∆). Furthermore, G̃P,lP (ϕj) ∈ L(∆), hence G̃P,lP (ϕj) · ηj+1 ∈ L(D) so

ϕj+1 = ϕj − G̃P,lP (ϕj) · ηj+1 rem t
min(2j+1,l+1)
P ∈ L(D). �

We use a special kind of basis of the space L(D) to retrieve a function in
this space from its Hensel development at a given place:

Definition 1 A basis (f1, . . . , fκ) of L(D) is said to be in P -reduced echelon
form if vP (f1) < · · · < vP (fκ), and such that initP (fi) is 1 for all i ∈
{1, . . . , κ}.

The P -valuation sequence of D is the set of valuations vP (f1), . . . , vP (fκ),
and we denote by by lP the integer max

f∈L(D)
vP (D) = vP (fκ).

See Appendix A to find how to construct such a basis from any basis
of L(D). Note that the definition of the valuation sequence does not depend
on the choice of the basis in P -reduced echelon form.

We use the result of the following remark in Algorithm 2 to verify if a
Hensel development corresponds to a function of L(D).

Remark 1 If (f1, . . . , fκ) is a basis of L(D) in P -reduced echelon form,
for all nonzero function f ∈ L(D), if f = λ1f1 + · · · + λκfκ 6= 0, then
vP (f) = vP (fi) where i = min

{
l ∈ {1, . . . , κ} | λl 6= 0

}
. Hence vP (f) ∈

{vP (f1), . . . , vP (fκ)}. In particular, lP = vP (fκ).
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Algorithm 2

function SeriesToFunction(P , ϕ).
Precomputed: A basis BP = (fP,1, . . . , fP,κ) of L(D) in P -reduced

echelon form, the integer lP , and a basis B̃P = (f̃P,1, . . . , f̃P,κ) where
f̃P,j = HensP (fP,j, lP ) for 1 ≤ j ≤ κ. The valuation sequence VP =
(vP (fP,1), . . . , vP (fP,κ)).
Input: P /∈ SuppD is a place of degree 1, ϕ is a polynomial in K[tP ] of
degree less than or equal to lP .
Ouput: The unique f ∈ L(D) such that HensP (f, lP ) = ϕ if such an f
exists, fail otherwise.

1. Set f ← 0.

2. repeat

if ϕ 6= 0 then

v ← vP (ϕ)

if v ∈ V then

Let i be the index for which v = VP,i.

λ← initP (ϕ).

f ← f + λfP,i.

ϕ← ϕ− λf̃P,i.
else f ← fail.

until (ϕ = 0) or (f = fail)

3. return f .
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Example 1 In the case of the rational function field Fq(x), the polyno-
mial t = x−a is a uniformizer of the place P = (x−a) and a base of L((k−
1)P∞) in P -reduced echelon form is (1, (x−a), (x−a)2, . . . , (x−a)k−1). The
P -valuation sequence is (0, 1, . . . , k−1) and lP = k−1. Algorithm 2 behaves
simply in that case: for a polynomial ϕ = a0 + · · ·+ ak−1t

k−1, it will return
the polynomial f(x) = ϕ(x− a).

The following fact is of interest to reduce the cost of the algorithm:

Proposition 3 Let S be the set
{
i ∈ {1, . . . , n} |

(
G′(yi)

)
(Pi) 6= 0

}
. The

set Φ = {SeriesToFunction(Pi, Newton(G, Pi, yi, lPi
)), i ∈ S} is a set

of m functions f1, . . . , fm ∈ L(D) amongst which are all functions of B∗
τ (y).

The subsets sj = {i ∈ S | fj(Pi) = yi} for 1 ≤ j ≤ m form a partition of S.

Proof For each position i ∈ S, we know from Theorem 6 that the
output ϕ of Algorithm 1 is the Hensel development of a function f =
SeriesToFunction(Pi,ϕ) ∈ L(D). If two such functions match at some
place Pi, Theorem 4 indicates the two Hensel developments will coincide
and therefore the two functions will also coincide. �

This corollary suggests that once a function f has been found, using
successively Algorithm 1 then Algorithm 2, it is useless to apply these al-
gorithm at all places Pi with i ∈ S such that f(Pi) = yi because they
will lead to the same function. Consequently, it is possible to remove the
set I = {i ∈ S | f(Pi) = yi} from the set S before to continue to find other
functions.

5.3 The whole algorithm

We are now able to computeB∗
τ (y) using Algorithm 3. We denote by B1, . . . ,Bn

some bases in echelon form with respect to the places P1, . . . , Pn, repectively.

6 Complexity

6.1 General complexity

We denote by M(l), the cost of the product of two dense power series trun-
cated at order l with coefficients in K. This can be done in O(l2) arithmetic

13



Algorithm 3

ListDecode(y, τ).
Precomputed: For each i ∈ {1, . . . , n}, a basis BPi

= (fPi,1, . . . , fPi,κ)
of L(D) in Pi-reduced echelon form, the Pi-valuation sequence VPi

, and a

basis B̃Pi
= (f̃Pi,1, . . . , f̃Pi,κ) where f̃Pi,j = HensP (fPi,j, lPi

) for 1 ≤ j ≤ κ.
Input: y ∈ Fn

q , and τ such that Theorem 1 applies.
Ouput: The set Bτ (y) = {c ∈ C | d(c, y) ≤ τ}.

1. G(T ) ← a polynomial of minimal degree satisfying the conditions of
Theorem 1.

2. Set B ← ∅.

3. Set S ←
{
i ∈ {1, . . . , n}

∣∣ (G(yi)
)′
(Pi) 6= 0

}
.

4. for i in S do

a) ϕ← Newton(G, Pi, yi, lPi
). // In L(D)

b) f ← SeriesToFunction(Pi, ϕ). // Never fails

c) c← ev(f) // Well defined since f ∈ L(D).

d) I ←
{
j ∈ {1, . . . , n}

∣∣ f(Pj) = yj
}
.

e) S ← S \ I. // The indices in I would lead to the same function

f) if |I| ≥ n− τ then // Corresponds to a codeword in Bτ (y)

Include c into the set B.

5. return B.
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operations in K with standard polynomial multiplication, O(l1.59) opera-
tions with Karatsuba multiplication and O(l log l) operations with a Fast
Fourier Transform (which may require a field extension in order to get a
primitive l-th root of unity).

Almost all operations of Algorithm 3 involve the computation of Hensel

developments, valuations and evaluations of functions of K(X ). The cost of
these operations depend a lot on the implementation of the function field.
However, we can give a cost of the main loop of Algorithm 1:

Proposition 4 The main loop of Algorithm 1 can be performed at place P
in deterministic O(bM(lP )) arithmetic operations in K.

Proof First, note that all operations of the kind u rem tmP do not cost
anything since they just mean not to compute terms of valuation greater
than or equal to m. Using Horner’s rule [13, p. 93], we can compute

G̃P,l(ϕ) and G̃P,l(ϕ) in b multiplications and additions of truncated power se-
ries at order 2j+1, this can be performed in O(bM(2j+1)) operations. The
other operations to compute η and ϕ are also multiplications and addi-
tions of truncated power series at order 2j+1 hence the cost of one iteration
is O(bM(2j+1)) operations. By convexity of the cost function M, we have
M(2j+1) ≥ 2M(2j), let us denote by N the integer ⌈log2 lP + 1⌉, the global
cost is: O(b(M(1) + · · ·+M(2N))) = O(b(M(2N)/2N +M(2N)/2N−1 + · · · +
M(2N))) = O(bM(2N)) = O(bM(lP )) operations. �

6.2 Case of Reed-Solomon codes

We fix a transmission rate R = k/n, and study the asymptotic behaviour of
the algorithm when n goes to infinity.

Proposition 5 For an [n,Rn]q-Reed-Solomon code, step 2 of Sudan’s
algorithm can be performed deterministically in O(nM(n) logn) arithmetic
operations in Fq and even in O(n2 log n) operations using a Fast Fourier

Transform.

Proof For each coefficient aj(x) of G(T ), we can compute all aj(x− pi)
for 1 ≤ i ≤ n in O(M(n) logn) operations using fast multipoint evalua-
tion/interpolation (cf. [13, p. 279–285]). This can also be done in O(n logn)
operations using a Fast Fourier Transform (FFT).
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The global cost of the computation of G̃Pi,k−1(T ) for 1 ≤ i ≤ n is there-
fore O(bM(n) logn) operations without a FFT and O(bn log n) operations
using a FFT.

For a given i, in the Newton step (Algorithm 1), the computation of
derivatives can be done in O(bn) operations and the computation of η requires
O(bn) operations, then from Proposition 4, we perform the loop in O(bM(n))
operations. The back-translation (Algorithm 2) can also be done by fast mul-
tipoint evaluation/interpolation in O(M(n) logn) operations or in O(n logn)
operations using a FFT. Steps c) and d) are free as we have evaluated f at
all pi, 1 ≤ i ≤ n. Step e) can be done in O(n) operations.

The degree in T of the polynomial G(x, T ) is bounded above by
√

2/R+1,
and we can consider that b is constant. The for loop is run n times in the
worst case, therefore the global cost is O(nM(n) logn) operations without a
FFT, and O(n2 log n) operations using a FFT. �

Invoking the result of [6], we know that step 1 of Algorithm 3 in which one
builds the polynomial G(T ) can be performed in O(n2) operations. In the
case of Reed-Solomon codes, the FFT is feasible, thus we can conclude:

Corollary 2 The list-decoding of an [n,Rn]q-Reed-Solomon code can be
performed deterministically using Sudan’s algorithm in O(n2 log n) arith-
metic operations in Fq.

7 Conclusion

We have presented an algorithm to find specific roots of polynomials with
coefficients in the function field of an algebraic curve. This algorithm is
applied to the list decoding algorithm of AG codes designed by Shokrol-

lahi and Wasserman, where it is needed to find roots which belong to
the space L(D) defining the AG code. The algorithm computes Hensel de-
velopments of possible solutions, using Newton’s method. Assuming that
the polynomial to factor has minimal degree with respect to the conditions
imposed by Shokrollahi and Wasserman’s algorithm, initial values can
be found to start the iterations. This removes the step of univariate fac-
torizations in root-finding algorithms. As a consequence our algorithm is
completly deterministic and fast. We also note that it very easy to imple-
ment with a very simple control structure (one loop), and that it avoids the
use of algebraic extensions of the base field.
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Our algorithm can be applied to any AG codes, whether the curve is
singular or not. Since many operations are dependent on manipulations of
functions on the curve, we cannot give a general complexity measure. But
at least we have proven an quadratic complexity up to logarithmic factors in
the case of Reed-Solomon codes.

For our algorithm to work, we need that the polynomial G(T ) is of mini-
mal degree. The algorithm can not be applied to the more powerful general-
isation of Guruswami and Sudan [2], where multiplicities are imposed on
the polynomial G(T ). An adaptation of this algorithm will be presented in
a future paper.
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A Computation of reduced echelon form bases.

The construction of a basis of L(D) in P -reduced echelon form, as described
in Algorithm 4, corresponds to the construction of a matrix in reduced eche-
lon form from the matrix of the P -adic expansions of the fi, up to order lP .

B A [17, 5, 13]17 extended Reed-Solomon code

We consider the field K = F17. A basis of the vector space L(4P∞), of
polynomials of degree less than 5 is (f1 = 1, f2 = x, f3 = x2, f4 = x3, f5 = x4).

We build the extended Reed-Solomon code of dimension 5 by evaluat-
ing polynomials of degree less than 5 on points p1 = 0, p2 = 1, . . . , pn = 16.
Its actual minimum distance is n − k + 1 = 13. Consequently, its usual
correction capability is t = ⌊(d− 1)/2⌋ = 6.

A generator matrix of C in reduced echelon form is:



1 0 0 0 0 1 5 15 1 2 7 6 7 2 1 15 5
0 1 0 0 0 12 10 15 10 8 1 11 5 14 14 11 7
0 0 1 0 0 10 11 7 8 13 10 10 13 8 7 11 10
0 0 0 1 0 7 11 14 14 5 11 1 8 10 15 10 12
0 0 0 0 1 5 15 1 2 7 6 7 2 1 15 5 1



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Algorithm 4

procedure ReducedEchelonForm(B, P ).
Input: A basis B = (f1, . . . , fκ) of L(D) and a place P .
Specification: Transforms B in P -echelon form.

1. to do← [1, . . . , κ]

2. while |to do| > 0 do

a) Let v be the minimal valuation of all functions fi i ∈to do.

b) Let i be the minimum index for which vP (fi) = v.

c) fi ← fi/ initP (fi).

d) Remove i from to do.

e) s←
{
j ∈ to do

∣∣ vP (fj) = vP (fi)
}
.

f) for j ∈ s do fj ← fj − initP (fj) · fi.

3. Sort B with respect to increasing valuations.

According to Theorem 2, we can correct up to τ = 5 errors. In reality,
the algorithm gives decoding up to τ = 7 errors. Consider now a vector
y = (10, 6, 0, 16, 11, 0, 4, 8, 10, 9, 4, 0, 14, 9, 11, 12, 15). A polynomial satisfying
the conditions of Theorem 3 of minimal degree is G(x, T ) = xT 2 + (11x4 +
10x3 + 7x2 + 12x)T + 15x9 + 12x8 + 3x7 + 10x6 + 8x5 + 7x4 + 7x3 + x2 + x,
and (∂G/∂T )(x, T ) does not vanish on (pi, yi) for i ∈ S = {2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16}.

Consider position i = 2. We take the basis of the vector space of
polynomials of degree less than k = 5 consisting in powers of tP2

= (x− 1),
namely: (fP2,1 = 1, fP2,2 = x+16, fP2,3 = x2+15x+1, fP2,4 = x3+14x2+3x+

16, fP2,5 = x4 + 13x3 + 6x2 +13x+ 1). We now compute G̃P2,4 = G(x− 1) =
(1+ tP2

)T 2+(6+15tP2
+ t2P2

+3t3P2
+11t4P2

)T +13+13tP2
+9t2P2

+6t3P2
+6t4P2

.

We start Newton’s method with α = y2 = 6. The derivative of G̃P2,4 is

G̃′
P2,4

= (2 + 2tP2
)T + 6 + 15tP2

+ t2P2
+ 3t3P2

+ 11t4P2
. We initialize:

• η ← G̃′
P2,4

(α)−1 = 1
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• ϕ← α = 6

We have to loop ⌈log2(lP2
+ 1)⌉ = 3 times and:

For j = 0:

• η = 1 + 7tP2

• ϕ = 6 + 14tP2

For j = 1:

• η = 1 + 13tP2
+ 2t2P2

+ 7t3P2

• ϕ = 6 + 14tP2
+ 6t2P2

+ 14t3P2

For j = 2:

• η = 1 + 13tP2
+ 9t2P2

+ 4t4P2

• ϕ = 6 + 14tP2
+ 6t2P2

+ 14t3P2
+ 11t4P2

The truncated power series ϕ is the Hensel development of a function f =
6·fP2,1+14·fP2,2+6·fP2,3+14·fP2,4+11·fP2,5 = 11x4+4x3+13x2+12. We have
ev(f) = (12, 6, 0, 6, 11, 11, 11, 8, 8, 9, 1, 0, 14, 9, 11, 4, 15), which is at distance
d(c, y) = 7 ≤ τ from y, hence we include it in the list B. Moreover, we know
that we can remove the set of indices I = {j ∈ S | f(Pj) = yj} = {2, 3, 5, 8,
10, 12, 13, 14, 15} from our investigation.

Consider position i = 4. We take the basis of the vector space of
polynomials of degree less than k = 5 consisting in powers of tP4

= (x− 3),
namely: (fP4,1 = 1, fP4,2 = x+14, fP4,3 = x2+11x+9, fP4,4 = x3+8x2+10x+

7, fP4,5 = x4 + 5x3 + 3x2 + 11x+ 13). We now compute G̃P4,4 = G(x− 3) =
(3+tP4

)T 2+(2+16tP4
+11t2P4

+6t3P4
+11t4P4

)T+16+16tP4
+3t2P4

+t3P4
+15t4P4

.

We start Newton’s method with α = y4 = 16. The derivative of G̃P4,4

is G̃′
P4,4

= (6 + 2tP4
)T + 2 + 16tP4

+ 11t2P4
+ 6t3P4

+ 11t4P4
. We initialize:

• η ← G̃′
P4,4

(α)−1 = 4

• ϕ← α = 16

19



We have to loop ⌈log2(lP4
+ 1)⌉ = 3 times and:

For j = 0:

• η = 4 + 14tP4

• ϕ = 16 + 13tP4

For j = 1:

• η = 4 + 7tP4
+ 3t2P4

+ 15t3P4

• ϕ = 16 + 13tP4
+ 13t2P4

+ 6t3P4

For j = 2:

• η = 4 + 7tP4
+ 4t2P4

+ 6t4P4

• ϕ = 16 + 13tP4
+ 13t2P4

+ 6t3P4
+ 6t4P4

The truncated power series ϕ is the Hensel development of a function f =
16 ·fP4,1+13 ·fP4,2+13 ·fP4,3+6 ·fP4,4+6 ·fP4,5 = 6x4+2x3+11x2+10x+10.
We have ev(f) = (10, 5, 16, 16, 3, 0, 4, 3, 10, 12, 4, 6, 12, 7, 1, 12, 15), which is at
distance d(c, y) = 9 > τ from y. So we discard this candidate.

Moreover, we know that we can remove the set of indices I = {j ∈
S | f(Pj) = yj} = {4, 6, 7, 9, 11, 16} from our investigation.

Finally, the list contains 1 codeword, namely:

• c1 = (12, 6, 0, 6, 11, 11, 11, 8, 8, 9, 1, 0, 14, 9, 11, 4, 15)

C A [64, 3, 29]16 Hermitian code

We consider the field K = F16 = F2[ω] where the primitive element ω has
minimal polynomial ω4 + ω + 1. We consider the absolutely irreducible
affine curve X with defining polynomial X5 + Y 4 + Y over K. Its genus
is g = 6. The curve has 64 points of degree 1, namely: p1 = (0, 0),
p2 = (0, 1), p3 = (0, ω5), p4 = (0, ω10), p5 = (1, ω), p6 = (1, ω2), p7 = (1, ω4),
p8 = (1, ω8), p9 = (ω, ω6), p10 = (ω, ω7), p11 = (ω, ω9), p12 = (ω, ω13),
p13 = (ω2, ω3), p14 = (ω2, ω11), p15 = (ω2, ω12), p16 = (ω2, ω14), p17 = (ω3, ω),
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p18 = (ω3, ω2), p19 = (ω3, ω4), p20 = (ω3, ω8), p21 = (ω4, ω6), p22 = (ω4, ω7),
p23 = (ω4, ω9), p24 = (ω4, ω13), p25 = (ω5, ω3), p26 = (ω5, ω11), p27 =
(ω5, ω12), p28 = (ω5, ω14), p29 = (ω6, ω), p30 = (ω6, ω2), p31 = (ω6, ω4),
p32 = (ω6, ω8), p33 = (ω7, ω6), p34 = (ω7, ω7), p35 = (ω7, ω9), p36 = (ω7, ω13),
p37 = (ω8, ω3), p38 = (ω8, ω11), p39 = (ω8, ω12), p40 = (ω8, ω14), p41 = (ω9, ω),
p42 = (ω9, ω2), p43 = (ω9, ω4), p44 = (ω9, ω8), p45 = (ω10, ω6), p46 = (ω10, ω7),
p47 = (ω10, ω9), p48 = (ω10, ω13), p49 = (ω11, ω3), p50 = (ω11, ω11), p51 =
(ω11, ω12), p52 = (ω11, ω14), p53 = (ω12, ω), p54 = (ω12, ω2), p55 = (ω12, ω4),
p56 = (ω12, ω8), p57 = (ω13, ω6), p58 = (ω13, ω7), p59 = (ω13, ω9), p60 =
(ω13, ω13), p61 = (ω14, ω3), p62 = (ω14, ω11), p63 = (ω14, ω12), p64 = (ω14, ω14),
Its projective closure also contains the point p∞ = (0 : 1 : 0).

All points are smooth and we denote by Pi the place corresponding to pi
for 1 ≤ i ≤ 64, and by P∞ the place over the point p∞.

We define the divisor D = 7 · P∞. A basis of the Riemann-Roch space
L(D) is (f1 = 1, f2 = X, f3 = Y ).

We build the Hermitian AG-code with support (P1, . . . , Pn) and divisor
D. It is a [64, 3]-code. Its Goppa designed distance is 57 and its actual
minimum distance is 59. Consequently, its usual correction capability is
t = ⌊(d− 1)/2⌋ = 29.

According to Theorem 2, we can correct up to τ = 28 errors. In reality,
the algorithm gives decoding up to τ = 31 errors. Consider now a vector
y = (ω7, 0, ω2, ω12, 0, ω2, 0, ω12, ω6, ω3, ω11, ω10, ω7, ω7, ω, 0, ω4, 0, ω7, ω14, ω14,
ω13, ω3, ω, 1, ω10, ω11, ω13, ω10, ω3, 1, ω, ω10, ω4, ω3, ω6, ω11, ω13, ω2, ω8, ω12, ω8,
ω5, ω8, ω11, ω9, ω4, ω14, 1, 0, ω7, ω2, ω, 1, ω7, ω3, ω14, ω11, ω8, 1, ω10, ω4, ω4, ω14).

A polynomial satisfying the conditions of Theorem 1 of minimal de-
gree is G(T ) = ω13X4T 2 + (ω2X5 + ω14X4Y + ω4X4)T + ω11X6 + X5Y +
ω8X5 + ω4X4Y 2 + ωX4Y +X4, and its derivative does not vanish on Pi for
i ∈ S = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64}.

Consider position i = 5. A local parameter at place P5 is tP5
= (X−1).

A basis of L(D) in P5-reduced echelon form is (fP5,1 = 1, fP5,2 = X + 1,
fP5,3 = X + Y + ω4). The P5-valuation sequence is VP5

= (0, 1, 5), and we
have lP5

= 5.

We now compute G̃P5,5 = (ω13+ω13t4P5
)T 2+(ω5+ω13tP5

+ω5t4P5
+ω2t5P5

)T+
ω2tP5

+ ω6t2P5
+ ω10t5P5

.
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We start Newton’s method with α = y5 = 0. The derivative of G̃P5,5 is

G̃′
P5,5

= ω5 + ω13tP5
+ ω5t4P5

+ ω2t5P5
. We initialize:

• η ← G̃′
P5,5

(α)−1 = ω10

• ϕ← α = 0

We have to loop ⌈log2(lP5
+ 1)⌉ = 3 times and:

For j = 0:

• η = ω10 + ω3tP5

• ϕ = ω12tP5

For j = 1:

• η = ω10 + ω3tP5
+ ω11t2P5

+ ω4t3P5

• ϕ = ω12tP5

For j = 2:

• η = ω10 + ω3tP5
+ ω11t2P5

+ ω4t3P5
+ ω3t4P5

+ ω13t5P5

• ϕ = ω12tP5
+ ω14t5P5

The truncated power series ϕ is the Hensel development of a function
f = ω12 · fP5,2 + ω14 · fP5,3 = ω5X + ω14Y + ω10. We have ev(f) =
(ω10, ω11, ω2, ω13, 0, ω4, ω14, ω9, ω13, ω10, ω11, ω2, ω3, ω7, ω, 1, ω4, 0, ω9, ω14, ω7, 1,
ω3, ω, ω2, ω10, ω11, ω13, ω3, ω7, 1, ω, ω11, ω2, ω13, ω10, ω11, ω13, ω2, ω10, ω12, ω6, ω5,
ω8, 0, ω9, ω4, ω14, 1, ω, ω7, ω3, ω, 1, ω7, ω3, ω14, ω4, ω9, 0, 0, ω4, ω9, ω14), which is
at distance d(c, y) = 31 ≤ τ from y, hence we include it in the list B. More-
over, we know that we can remove the set of indices I = {j ∈ S | f(Pj) =
yj} = {5, 11, 14, 15, 17, 18, 20, 23, 26, 27, 28, 31, 32, 38, 39, 41, 43, 44, 47, 48, 49,
53, 54, 55, 56, 57, 62, 64} from our investigation.

Consider position i = 6. A local parameter at place P6 is tP6
= (X−1).

A basis of L(D) in P6-reduced echelon form is (fP6,1 = 1, fP6,2 = X+1, fP6,3 =
X+Y +ω8). The P6-valuation sequence is VP6

= (0, 1, 5), and we have lP6
= 5.
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We now compute G̃P6,5 = (ω13+ω13t4P6
)T 2+(ω8+ω13tP6

+ω8t4P6
+ω2t5P6

)T+
ω4 + ωtP6

+ ω6t2P6
+ ω4t4P6

+ t5P6
.

We start Newton’s method with α = y6 = ω2. The derivative of G̃P6,5

is G̃′
P6,5

= ω8 + ω13tP6
+ ω8t4P6

+ ω2t5P6
. We initialize:

• η ← G̃′
P6,5

(α)−1 = ω7

• ϕ← α = ω2

We have to loop ⌈log2(lP6
+ 1)⌉ = 3 times and:

For j = 0:

• η = ω7 + ω12tP6

• ϕ = ω2 + ω11tP6

For j = 1:

• η = ω7 + ω12tP6
+ ω2t2P6

+ ω7t3P6

• ϕ = ω2 + ω11tP6

For j = 2:

• η = ω7 + ω12tP6
+ ω2t2P6

+ ω7t3P6
+ ω2t4P6

+ ω5t5P6

• ϕ = ω2 + ω11tP6
+ ω7t5P6

The truncated power series ϕ is the Hensel development of a function
f = ω2 · fP6,1 + ω11 · fP6,2 + ω7 · fP6,3 = ω8X + ω7Y + ω7. We have ev(f) =
(ω7, 0, ω2, ω12, ω7, ω2, 0, ω12, ω6, ω3, ω4, ω10, ω7, ω2, ω12, 0, 0, ω12, ω7, ω2, ω14, ω13,
ω5, ω, 1, ω11, ω8, ω9, ω10, ω3, ω6, ω4, ω10, ω4, ω3, ω6, ω11, 1, ω9, ω8, ω9, ω8, 1, ω11,
ω11, ω9, 1, ω8, ω12, 0, ω7, ω2, ω3, ω10, ω4, ω6, ω9, ω11, ω8, 1, ω10, ω3, ω4, ω6), which
is at distance d(c, y) = 28 ≤ τ from y, hence we include it in the list B. More-
over, we know that we can remove the set of indices I = {j ∈ S | f(Pj) =
yj} = {6, 7, 8, 9, 10, 12, 13, 16, 19, 21, 22, 25, 29, 30, 33, 34, 35, 36, 40, 42, 45, 50,
52, 58, 59, 60, 61, 63} from our investigation.

Finally, the list contains 2 codewords, namely:
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• c1 = (ω7, 0, ω2, ω12, ω7, ω2, 0, ω12, ω6, ω3, ω4, ω10, ω7, ω2, ω12, 0, 0, ω12, ω7,
ω2, ω14, ω13, ω5, ω, 1, ω11, ω8, ω9, ω10, ω3, ω6, ω4, ω10, ω4, ω3, ω6, ω11, 1, ω9,
ω8, ω9, ω8, 1, ω11, ω11, ω9, 1, ω8, ω12, 0, ω7, ω2, ω3, ω10, ω4, ω6, ω9, ω11, ω8, 1,
ω10, ω3, ω4, ω6)

• c2 = (ω10, ω11, ω2, ω13, 0, ω4, ω14, ω9, ω13, ω10, ω11, ω2, ω3, ω7, ω, 1, ω4, 0, ω9,
ω14, ω7, 1, ω3, ω, ω2, ω10, ω11, ω13, ω3, ω7, 1, ω, ω11, ω2, ω13, ω10, ω11, ω13, ω2,
ω10, ω12, ω6, ω5, ω8, 0, ω9, ω4, ω14, 1, ω, ω7, ω3, ω, 1, ω7, ω3, ω14, ω4, ω9, 0, 0,
ω4, ω9, ω14)
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