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Bounds on Mixed Binary/Ternary Codes

A. E. Brouwer, Heikki O. Hamélainen, Patric R. JOstergird, Member, IEEE and N. J. A. SloaneFellow, IEEE

Abstract—Upper and lower bounds are presented for the I’, " € I"”}, where, forz = (2/,2") andy = (¢/,y"),
maximal possible size of mixed binary/ternary error-correcting we have(x,y) € Ry if and only if (z/,3') € Ry and
codes. A table up to length13 is included. The upper bounds (z",y") € Ry
are obtained by applying the linear programming bound to the ’ v

product of two association schemes. The lower bounds arise from It is trivial to verify that this product scheme indeed is an

a number of different constructions. association scheme. The intersection numbers are given by
k N ; o i
. ) . . © = ph . pY ., wherei = (i7,7"), etc., and the dual intersec-
Index Terms—Binary codes, clique finding, linear program- rii — PiirPirjr ‘ o (k,Z ) ) i
ming bound, mixed codes, tabu search, ternary codes. tion numbers byg; = g7 q; ;- The adjacency matrices are

given by./‘lZ = A, A4, the idempotents bEz =FE,F,
and for the eigenmatrip’ and dual eigenmatrix) (defined

[. INTRODUCTION by A, = 3, P,E; and B, = ﬁEi Qi;A;) we have
ET X = F3*F3° be the set of all vectors with, binary P;; = Py Py and Q5 = Qi jr Qir .
and ng ternary coordinates (in this order). LeX.,.) Products of more than two schemes can be defined in an

denote Hamming distance al. We study the existence ofanalogous way (and the multiplication of association schemes
large packings inX, i.e., we study the functioV (ns,n3,d) is associative).
giving the maximal possible size of a code in X with Although product schemes are well known, we cannot find
d(e,d) > d for any two (distinct) codewords, ¢ € C. an explicit discussion of their properties or applications. There
The dual version of this problem, the existence of smal a short reference in Godsil [15, p. 231] and an only slightly
coverings inX, has been discussed in [17] and [33]. Bottonger one in Dey [11, Sec. 5.10.7]. (We wrote this in 1995.
of these problems were originally motivated by the footbalh the meantime several other applications of product schemes
pool problem (see [16]). have come to our attention. See for example [18], [19], [30],
We begin by describing the use of product schemes to §&86], and [37].) Another recent paper dealing with mixed codes
upper bounds oV (n., ns, d), and then discuss various conis [12].
structions and computer searches that provide lower boundsOur interest in product schemes in the present context stems
Among the codes constructed, there are a few (with= 0) from the fact that the set of mixed binary/ternary vectors with
that improve the known lower bounds for ternary codes. n, binary andns ternary coordinate positions does not, in
The paper concludes with a table df(n.,n3,d) for general, form an association scheme with respect to Hamming
ne +ng < 13. The first and fourth authors produced a versiodistance, and so Delsarte’s linear programming bound cannot
of this table in 1995 (improving and extending various tabldse directly applied there. This was a source of worry to the
already in the literature, for example, that in [24]). Thesmurth author for many years. However, this set does have
results were then combined with those of the second atite structure of a product scheme, and so a version of the
third authors, who had used computer search and varidimear programming bound can be obtained for both designs
constructions to obtain lower bounds (many of which wergf. [37]) and codes.

tabulated by the second author already in 1991). The linear programming bound for codes in an arbitrary
association scheme can be briefly described as follows. If
Il. PRODUCTS OFASSOCIATION SCHEMES C (the code we want to study) is a nonempty subset of an

) e . I association scheme, we can defineiriser distributiona by
_Lhet (/X_,R) a”d//(X 717; ) bde fwo association scr}ﬁmesai = |(C x C) N R;]/|C|, the average number of codewords
with R ._..{Ri' | & € } and R” = {Rir | & € I"}. 5t wdistance”i from a codeword. Clearlygy = 1 (if Ry is the
(For o!ef!nltlons and nofation, see [7, ch. 2].) We get a Nefentity relation), andy_ a; = |C|. A one-line proot shows
association scheme(, R ), theproductof these two, by taking that one has) > 0 (that is, (a@); > 0 for all j), and thus

. / 1 H _ . al
X = X' x X" for the point set, andR = {Ryi | ' € we obtain the linear programming bound
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sometimes be obtained by adding other inequalities ¢higt Indeed, this follows if we again go “to the bottom,” express

known to satisfy. everything in terms off (1, ¢), and use the symmetric group
on the coordinates.
A. The Hamming Scheme Thus the two systems are equivalent o¥&rHowever, the

Of course, the usual Hamming schettién, ¢) also carries detailed system can be useful i) if it is known that the
the structure of a product scheme, for > 2, and it is '€ integral, e.g., because is linear, or ii) when one can
sometimes useful to study nonmixed codes using this prod&&d fgrther constraints, e.g., because one h_as information on
scheme setting, getting separate information on the Weights‘?‘iﬁes'dual code. J.affe [1,9] has recently obtalned a nu_mbgr of
the head and in the tail of the codewords, as in the split weighf’ Pounds for binary linear codes by recursive applications
enumerator of a code (cf. [29, pp. 149-150]). of this approach.

Consider the Hamming schemB(m + n,q) as being

obtained from the product & (m, ¢) andH(n, ¢) by merging Ill. COMPARISON WITH EARLIER
all relationsR;» ;» with ¢ + 4" = 4 into one relationk;. We RESULTS AND THE CASE d = 3
have
A= > Awir A. Counting
dir=i In the final section we give tables of upper and lower bounds
E; = Z Eirir for codes in the mixed binary/ternary scheme. A table with
il =i upper bounds was given in Van Lint Jr. and Van Wee [24]. Pure
and linear programming agrees with or improves all the values in
Qij = Z Qirjr Qi o their table with four exceptions, namely the parameter sets
i =j (712, ns, d) = (37673)7 (57573)7 (77673)7 (8747 3)’ where

[24] gives 345, 465, 4515, 1184, while the pure LP bound

for any pair (¢/,4") with ¢ + ¢’ = i. Indeed, the first holds _. .
. ’ . . yields the upper bound356, 469, 4560, 1209, respectively.
by definition, the second follows from the third, and the thir he upper bound used in these cases in [24] is due to Van

follows as soon as we have shown that the right-hand Sifl\?ee [43, Theorem 17], and states thatli= 3, ny = b, and
does not depend on the choice of the pdiri”). But that na — 1 trylen|C| < 2"3t/’(|ba11|+5) Where|ba11,| _ 2t+l’)+1
follows by viewing all three association schemes involved as | - ' '

merged versions of powers @ (1, q): we must show that a”d§ =b/(2t+0) If bis even ore = 2t/(2t+b-1)if blis
odd~ In fact, a stronger result is true.

Qi = Z Qivjr Qi+ - Proposition 3.1:If b > 0, andb is even ort > 0, then
wt (§)=j N(b,t,3) < 283t /(2t + b + 2).

o N : Proof: Let C be a(b,¢,3)y code. Count pathéu, v, w)

for any 0-1 vector4 with wt (4) = ¢. However, since such with d(u, v) = d(v, w) = 1, d(u, C) = 2, w € C, wherev—w

vector.sz are equalent undgr th_e 'symmetnc group ‘on ti‘ﬁg nonzero at a binary coordinate positio i even, and at a
coordinates, the right-hand side is independent, aind the ternary coordinate position if is odd. Pute := b if b is even

equality fO”O.WS' . anda := 2¢ if bis odd. Forw we haveN choices; givenw
. Here we did not need to actually compute g, but since there area choices forv; givenw andw there is at least one

in H(l,q) we have choice foru. The number of paths is, therefore, at le¥st. On

0= 1 ¢g-1 the other hand, there are at maés* — N(2¢+ b+ 1) choices

T\l -1 ) for u, and givenu there are at most choices for(v, w), so

the number of paths is at mo&°3t — N(2t + b+ 1))a. O

it follows immediately that inH . : i
! WS | ately InH (1, q) In the four cases mentioned, this yields the bounds

Qi = Z (=1)"(q - 1)s<i> <”—L> 343, 457, 4443, 1152, respectively. We shall see below (in
Y remj r 5 Proposition 5.10) that the last mentioned bound in fact holds
with equality.

The “detailed” linear programming bound obtained in the
above manner always implies the “ordinary” linear program- i i . .
ming bound: given any solution of the detailed system B. Linear Programming with Additional Inequalities
The preceding results were obtained by studying what hap-

fall U U U 5. 4" .

Z“Z i Qirjr Qirjr 2.0, for all j°, j pens close to the code. In general, one should obtain at least
it follows by summing over the pairg’, ;) with 5/ +j/ = j @S strong rgsulﬁs by adgllng analogous constraints omjhe
that 3 a;Q;; > 0, where, of courseg; = 3",/ ., aiin. with small < + j to the linear program (note that we change

Conversely, given any solution of the ordinary system notation here from what is usual in association scheme theory
> a:Qi; > 0, we find a solution of the detailed system by© What is common in coding theory, and writg ; where the

letting previous section had; ;).
o m n m+n f M= 44" 2Gerhard van Wee has pointed out to us that there is a typographical error
Qirgrr = Q| o N\ 40 i ) orallz=¢+¢". iy the statement of this bound in [43, Theorem 17]. The bound given here
(which follows at once from [24, Theorem 9]) is the correct version.
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What are the obvious inequalities to add whén= 3? (if w > 0). (The inequalities given earlier fak= 3 are special
Well, no two words of weight3 can agree in two nonzerocases of those obtained here.) Occasionally also
coordinates, so we have a packing problem for triples in a
(b + 2t)-set, with a prespecified matching of sizewhere Nt w,d) < [(BN(b - 1,t,w,d)
the triples may not cover any edge of the matching. The +tNO,t— 1, w,d)/(b+t—w)]
extra inequalities are found by counting triples, point-triple
incidences, and pair-triple incidences. Starting with the lattdif w < b+ ¢) might be useful.
there are

C. Further Inequalities

<g> The inequalities discussed above described constraints on

what happens close to a given codeword. We can also add
pairs in the binary seBt(t — 1) available pairs in the ternary constraints on the words that differ from a given word in
set, and2bt pairs between the two sets. This yields thélmost) all binary and/or ternary coordinates. First of all we

inequalities have
3Az0+ A1 £ b(b—1)/2 Z An,—ij £1 (L2)
2A2,1 + 2A172 < 2bt itise
Ao+ 3403 < 2t(t —1). wheree = |(d — 1)/2].
For a propertyP, let §(P) = 1 if P holds, andé(P) = 0
Next, counting point-triple incidences, we find otherwise. Ifd = ns +1 > 2 andn, > 1, we have
3A30+2401+ A1 <D|(2t+0-1)/2] Apy 10
A271 =+ 2A172 =+ 3A073 < 2t|_(2t +b-— 2)/2J . 1, if Anzmg =1
_ . _ . <<<min(ng, 14+ 6(d < 3)), if Ay, pn,—1=1
Finally, counting triples, we obtain min(ny, 2 + 28(d < 4)), i Apyny = Ang g1 = 0.
Azo+ A2+ A12 + Aoz This can be captured in one inequality:

< [((2t4+b)(2t +b—1) — 2t — bey, — 2te1) /6] (3 — 1) Ay s + (3 — 13) Ay a1+ Ay 1ms < 122
where g,,e; € {0,1} with e, = (26 + b — 1)mod 2 and (L4)
e+ = (2t + b — 2) mod 2. Of course, the last three inequalities
only contribute when rounding down occurs. wherem;, m, are the above minima.
As a test case, let us compute the improved LP bound in thdf ¢ = n3 +1 andn, > ng > 1, then we have
four cases mentioned above. We fiRdl7, 459, 4491, 1178,
respectively. This improves the pure LP bound (of course), Apg—1n5—1 < {
and three of the four bounds from [24]. However, Proposition
3.1 is stronger—it really encodes information about distanddis can be captured in one inequality:
4, and we would have to add inequalities involvidg ; with
i+ j = 4 to approach or beat it. (m = n3)Anyng + Ans—1,n5—1 <M (L5)
Precisely the same ideas work for largerWe have

ns, if Anz,ng =1
min(ng, 2n3), if Ay, pn, =0.

wherem is the above minimum.

d /N fd— Known bounds ond;(n,d) (the maximal size of a binary
Z < ) <T _ j) i,d—i code of lengthn, and minimum distancé) can be used:

, Aony £ As(ng,d) and A, ., < As(ns,d). (L6)
<n2>< z b>N(n2_j7n3_T+j7d_T7d) ’ 2( ’ ) 2( ’ )

<27
J r=a More precise information aboutly ,, and Ag,,—1 can
for 0 < » < d and allj, where N(b, ¢, w, d) is the maximal sometimes be obtained using Plotkin’s argument (cf. [29, ch.

number of words of constant weight and mutual distance 2]; [28], and Proposition 4.2 below). Instead of presenting the
d with b binary and¢ ternary coordinates. A bound forSomewhat messy general details, we give here only the extra

=0 J

N(b,t,w,d) can be computed from the starting values  inequality used to showv(0,11,7) < 50, which is
. 4
1, if d> 2w Aon+ 774010 S 4. ()
N(b’t’w’d)S{L(b—i—t)/wJ, if d=2w H

Suppose there are words of weight(0, n3) and s words of
weight(0, n3—1), and writet = r+s. The sum of all distances

N, t,w,d) < [(ODN(b—1,t,w—1,d) between thesewords is at Ieas(t; )d. On the other hand, each
+2tN(b,t — 1, w—1,d))/w] column (coordinate position) without @ contributes at most

and the induction
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|£] - 5], and eactD adds at mosf£] — 1 to this (namely, ~ We omit the proof, which is analogous to that for the binary

when it is the only0 in the column). Thus we have case. (A slightly incorreétversion of this bound for pure
ternary codes was given in [28].)
t t t t : . . .
< )d < g - {_J . [_w + 3<[_W — 1)_ Given a code, there are various obvious ways of deriving

2 2 2 2 other codes from it.

For each givens, this yields an upper bound oh (when Pr_oposmon 4.3: For nonnegativé andt¢ we have:

2d — n3 > 0), and s itself is then bounded by < ¢t (when ) N(b,t,d) < Nb+1,t,d).

2d—n3 > 2). We now find an inequalitylo ., +Ao n,—1 < 3 i) N+ 1,t,d) < 2N(b,t,d).

which is satisfied by all pair, s) found. This argument can i) N(b+1,t,d) < N(bt+1,d).
be sharpened a little by noticing that if equality holds in this . T ’ ’
Plotkin bound, then every pair of codewords are at the same'v) Nt +1,d) < (3/2)N(b+1,t,d).
distance apart. This is impossiblerif> 3 andd is odd. V) N(bt+1,d) < N(b+2,t4d).

Sometimes one can make use of the fact {i4#; ; must Vi) N(b,t+ 1,d) < N(b,t,d—1)
be an integer. For example, pure linear programming gives and N(b+1,t,d) < N(b,t,d —1).
N(1,7,3) < 243, with an optimal solution that mentions (The inequalitiesN (b,¢,d) < N(b,¢t + 1,d) and N(b, ¢ +
Ao,s = 34.5. However, if [C] = 243, then eitherdos < 1 4 < 3N(b,¢,d) follow from i), iii) and ii), iv), respec-
8383/243 = 34.497-.. or Ay > 8384/243 = 34.502---. tively)

gives |C] < 243. It follows that N(1,7,3) < 242. See also || occur.

Lemma 4.6. Proposition 4.4:
i) N(bt,d) =1 precisely wherb + ¢ < d.

IV. FURTHER BOUNDS i) N(b,t,d) = 2 precisely wher2b + t < d < b+t.
It is easy to determineV(nq,ns,d) for very small or iii) N (b,t,d) = 3 precisely wher{4b-+5t) /6 < d < §b+t.
very larged. (We shall always assume that and n3 are iv) N(b,t,d) = 4 precisely when
nonnegative, and thatis positive, and all three are integral.) ) =4p y
Proposition 4.1: (3b+4t)/5 < d < (4b + 5t)/6
i) N(b,t, 1) = 2°3%, or
1 ifb=t=0 . .
) , ! b,t,d) = (2+105,0,1 + 6;
i) N, t,2) =421 ifp>0,t=0 (b,t,d) = (24105 7)
231, if ¢ > 0. or . .
iiiy If d> b+t thenN(b,t,d) = 1. (b,t,d) = (2 + 55,1,2 + 3j)
. _f2, ifb>0 or
v) N(b’t’b”)—{:s, if b=0,¢> 0. (b,t,d) = (9 + 104,2,7 + 65)
v) N(b’t’b+t2_1) ifb> 3 for somej > 0.
=<3, if b<3andb+1t/2>3 v) In all other casesN(b,t,d) > 6.
see table otherwise. Proof: The upper bounds follow from the Plotkin bound,

the lower bounds from juxtaposition (see below). All the
necessary ingredients for making these codes exist, except in

b\t ‘ 0 1 2 3 45 6
the explicitly listed cases under iv), where we cannot find

0 - - 9 9 9 6 4 . -
1 — 6 6 6 4 codes of size5 or 6, even though the Plotkin bound would
9 4 4 4 permit them. Why are these codes impossible? In the cases

a code of size5 or 6 would have equality in the Plotkin
It is easy to give an explicit description of the codebound, hence would be equidistant. Sirjéex 4/9] = 3, we
achieving these bounds. can make the ternary coordinate positions binary by selecting
Below we shall see that for very small codes the Plotkia subcode of size at least But in a binary Hamming
bound describes the situation completely. Let us state thgace, an equilateral triangle has an even side. This eliminates

Plotkin bound in our case. (b,t,d) = (94104, 2,7+65) and(b,t,d) = (7+104, 1, 5+67).
Proposition 4.2 (“Plotkin bound”): If N(b,¢,d) > M, The casgb,t,d) = (24 104,1,2+ 65) does not occur since
then shortening would yield &b, ¢, d) = (24104, 0,1+67) code. In
M this latter code, at most two distances differ fram 635, so we
d< ) < bMIMy + t(M§M3 + M M3 + Mz M3) can again throw out two codewords and obtain an equilateral
2 triangle of odd side. O

WhereMé = (M‘H)/QJ When equality holds, anfp. ¢, d) x 3For example, the bound in [28] gives(0,6,5) < 3, whereas in fact
code is equidistant. N(0,6,5) = 4.
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Sometimes it is possible to show that a code cannot bgactly one blue edge, 10 red edges, and 40 white edges; ii)
obtained by truncation (as in Proposition 4.3 vi)). For examplthe possibilities for blue and red edges meetingre just the
if a code of minimum distancé— 1 is obtained by removal of following: one blue edge and no red edges (there are exactly
a binary (ternary) coordinate position in a code of minimum¥/ such nodes:), no blue edges and O, 1, 2, or 3 red edges
distanced, then the distancéd — 1) graph on its codewords (we denote the numbers of such nodestfyt;, t2, andts,
does not contain a trianglek(,, respectively). In the lemma respectively). Let there beg, ng, and ny blue, red, and
below an integrality argument is used. First we need som#ite edges, respectively.

preparation. We will evaluate the sum
The following result may be well-known. The proof is B
almost identical to the proofs for the binary case in [3]. dnp +dng +nw = Z [Ne 0S|

Proposition 4.5: Let ¢ | n. Any g-ary lk-error-correcting eeCuet

code of lengthw has size at mosf™/(n(q — 1) + ¢), and the in two ways. On the one hand, eacle C contributes 84, so
inner distribution of any code meeting this bound is uniquehat the sum is equal t®4A/. On the other hand, let us group
determined. In particular, this holds for any code with thghe terms in the sum according to the number of blue and
parameters of the singly shortened perfgeeary Hamming red edges meeting. A small clique-finding program shows

code. that in the five cases mentioned, there are at most 8, 13, 12,
Proof: For theg-ary Hamming scheme of lengthh we 8, and 6 white edges at. [We may takex = 0. Let W be
have Py = 1, P;; = n(q— 1) — ¢i, and the set of vectorsua3 wherew has weight2. (These are the

n 1 1 words that will get a white edge to if they are inC.) If u

Po=(¢-1) <2> = 5¢ila(2n = 1) = 2n + 2] + §i2q2- meets a blue edge, we may assume tha C. Otherwise,

if » meets: red edges, we may assume that the firsif

Assume thay | n. Then2P;, +2(q— 1)P;; + (¢ — 1)nPjo = 1000000, 0100011, 0010022 are in C. Now find the largest
(qi — (¢ — )n — q)(gi — (g — 1)n) > 0. Now let C be subset ofi’ with all mutual distances, and all distances to the
a g-ary code of lengthn, minimum distance3, and size known codewords at leagt] This means that in the five cases
M, and with inner distributiona. Let uT = (n(q — 1), mentioned, the sum
2(q—1),2,0,---,0). Then, sinceP@Q = ¢"I and(a@)o = M,
w(e finzj : o) SUZZ|NCQS“|

ccC
nlg=1)¢" = aQPu = Mnlg = 1)(n(g = 1) +4) is at most+8, 13, 4+12, 44+4+8, 4 + 4 + 4 + 6. We can
so that M < ¢"/(n{q — 1) + ¢). If equality holds, then also compute the total contribution of all vectarsincident
(a@); = 0 for j # 0,(¢ — L)n/q — 1,(¢ — 1)n/q, and with a blue edge in a different way. These vectersontribute
hence, by [3, Corollary 3.1], the inner distributiams uniquely 444 plus the number of pairs (white edge, blue edge) incident
determined. [0 on the points ofU/. This latter number equals the number of
Lemma 4.6: N(0,13,4) < 3°. ordered pairs of codewordSia/3, vy6) with dp(u,v) = 2.
Proof: We prove more generally that no ternary codé&nd this equals the number of unordered pairs of red edges
with the parameters of a singly shortened Hamming code iatident on the points ot/, that is,¢5 + 3ts.
word lengthn, wheren = +2mod 5, is the truncation of a  Altogether we have found the following system of
distanced ternary code. (in)equalities:
By the above proposition and [3, Theorem 4.2.5], it follows

that the inner distribution of ang0, 13,4),, code withM = M+to+t+tz+its =243

3% is uniquely determined. Doing the computation, we find t1 + 2ty + 3t3 = 10M
As = n(n — 1)(n — 4)(n — 5)/30. But thenM A; is not an AM + to + 3t3 < 12M
integer, contradiction. O AM + 13to + 16t + 17ty + 21t5 > 84M.

Finally, the following special upper bound follows from an
argument mostly due to Mario Szegedy (personal commui@ombining these with coefficients18, 2, —3, and1 yields
cation).

Lemma 4.7: N(0,7,4) < 46. —5to 2 94M — 4374

_ P_roof: Let C be a(0,7,4)); code, and construct agg thatM < 4374/94 < 47. 0
bipartite graph with two sets of nodes, one set labdled
¢ € C} and the other labeledu, | « € U = F3}. To
each node: € C we associate the séY¥. consisting of the
84 vectors inV = Fg at distance exactl from ¢, and to »
eachu we associate the sét, consisting of the nine vectors”- Juxtaposition
uaf3 € V with «, 3 € F3. We also define three kinds of edges: Let ¢ = {C; | 1 < i < m} be a partition of a code€’,
c=wvaf € C (withv € U anda, 5 € F3)is joined tow by a andnp = {D, | 1 £ j < n} a partition of a codeD. Let
blue edge ifu = v, by a red edge ifiyz(u,v) = 1, and by a (C/n¢) | (D/7p) denote the code consisting of all codewords
white edge ifdg (u,v) = 2. Then|N.NS,|is4, 4, orlinthe (c¢; |d;) with ¢; € C; andd; € D;, fori =1,---,min(m,n),
three cases. It is easy to see that: i) each radéncident with where herd denotes concatenation (juxtaposition). The size of

V. CONSTRUCTIONS
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this code iy ™2™ |C;|-| D;| (which is equal tdC|- | D;| if V) (0,4,3)9 | ((9,0,4)15/(9,0,8)2) = (9,4, 7)1s.

all D; have the same size and> m). Its minimum distance is (There is a binary constant weight code with length
at leastmin{dc +dp,dc,,dp, | 1 <4 < min(m,n)} (where, 9, weight4, minimum distancel, and sizel8 [8]; but

of course,d; denotes the minimum distance of a codg any such code has distance distributiott2648?,
This construction is indicated kb in the tables below. (It is and so can be partitioned int@, 0,8), codes.)
essentially Construction X4 of [29, p. 584].) vi) (0,2,2)3 | ([12,4,6]/[12,2,8]) = (12,2, 8)12.

The partitionr of C will often be a partition into translates  vii) (2,4,4)s | ([8,4,4]/[8,1,8]) = (10,4, 8)16.
of a subcodeF of C. In this case we writ€/E instead of  vii)) (0,5,4)s | ([8,4,4]/[8,1,8]) = (8,5,8)12.
Clmc. If 7p is also the partition into singletons, we have ordinary
Let(n2,n3, d)n denote a mixed code withy, binary andns  juxtaposition (pasting two codes side by side, as in [29, p. 49]).
ternary coordinates, minimum distanéeand M codewords. This construction is indicated byin the tables. Its main use
Let [n, k, d], denote a-ary linear code of length, dimension s the construction of codes of sizeor 6 and large minimum

k, and minimum distance, where we omitg if ¢ = 2. distance (cf. Proposition 4.4). We do not list all applications.
The following are examples of the juxtaposition constru@&xamples are:
tion: (3,0,2)4 | (3,0,2)4 | (2,2,3)0 = (8,2,7)a.
i) N(3,3,3) > 18 because of (1,3,3) | (4,2,4)s = (5,5,7)6
(10,0,6)¢ | (1,2,2) = (11,2,8)6
([37 3, 1]/[37 1, 3]) | ([37 2, 2]3/[37 1, 3]3)' (0, 5, 4)6 | (27 6, 6)6 _ (27 11, 10)6-
i) N(4,2,4) > 6 from Sometimes it is possible to adjoin further words after
performing the juxtaposition construction. The Steiner system
([4,3,2]/14, 1,4]) | (2,1, 2]/[2,0, o0]3). 5(5,6,12) is a binary code of length2, constant weight,
iii) N(8,4,4) > 384 from minimum distancet, and sizel32. It has a partition into six

(12,0,6)22 Hadamard codes. So
([87 77 2]/[87 47 4]) | ([47 37 2]3/[47 17 4]3)'

iv) N(9,4,4) > 540 from

([4,3,2]3/[4,1,4]3) | (D/7p)) Adding 0 and1 showsN(13,2,6) > 134. If we shorten once
or twice before adding and 1, we find N(12,2,6) > 68
whererp = {Do+u | v € U} for an even weight (henceN(12,1,5) > 68) andN(11,2,6) > 38. (The(1,2,2)s
(9,0,4)20 codé Dy, whereU is a set of nine even- code must not contaifi00 or 111.)
weight vectors with all pairwise distanc@ssuch as  To see why this partition of the Steiner system exists, we
{0} ufer +e¢; | 2L 5 <9} remark that the extended ternary Golay code has 24 words
V) N(8,6,4) > 2304 (and henceV(7,6,4) > 1152). In-  of weight 12, and if we normalize so that and 2 are in
deed, we construdi8, 7,2]/[8,4,4]) | (D/np) where the code, then the other 22 words form a Hadamard code.
mp = {Do+u | u € U} for some(0,6,4)13 code Adding 1 we see that the places where these 22 words take
D, contained in the zero-surf6, 5, 2|3 ternary code a fixed value are the supports of codewords of weighhat
E, whereU is a set of at least eight vectors with  is, belong toS(5, 6,12). This produces one Hadamard code
pairwise distance at most In fact, it is easy to find inside S(5,6,12). Its stabilizer inMs is 2 x My, of index
aU of sizell: take {0} U {£(e; —¢;) |2 <j <6} 6, so we find six pairwise disjoint copies.
One way to construchy is to take the 18 words of
weight 6 in the hexacode given in_[9, p. 82, eq. (64)]8. Partitions of Zero-Sum Codes
and rename the symbols (fromw, ® to 0,1,2). Then ) _ - _
D, contains the three multiples df, and 15 words AS @ Special case of the juxtaposition construction, suppose
with symbol distributior021222, so that it is contained 1S @an(nz, ns,2)y code with a partitionr¢ into eight parts,
in E. For later use we remark thab, is invariant €ach with minimum distance (at least) Then (C/nc) |
under translation byl (since the hexacode is invariant([7, 7> 11/(7,4,3]) is an (ny + 7,73, 3)161 code. In this way
under multiplication byw), so that we have a partitionWe find N(7,5,3) > 1296, N(9,4,3) > 1728, N(8,5,3) >
(0,6,4)15/(0,6,6)s. 2544, and N(7,6,3) > 3792 using (0_,5,2)81, (2,_4, 2)108,_
(1,5,2)1509, and (0, 6,2)237 codesC with appropriate parti-
tions.
Motivated by this construction, we investigate distance-
2 codes and their partitions into distangeeodes. As a
i consequence, we will show that(1,6,4) = 33, N(2,6,3) >
I) [37 27 2] | ((07674)18/(07 676)3) = (37 67 6)12- 134’ ]\?(27 77 3) Z 396, and ‘1\7(47 (; 3) 2)486 ( )
..'.') [4,3,2] 1 ((0,6,4)15/(0,6,6)3) = (4,6,6)1s. Lemma 5.1:Let ¢t > 1. There is (up to translation and sign
i) (1,3,3)e | ([8,4,4]/18,1,8]) = (9,3, )12 change at some coordinate positions) a unigye, 2),; code
iv) (0,4,3)o | ([8,4,4]/[8,1,8]) = (8,4, T)1s. C with M = N(0,¢,2) = 3*~1, namely, the code consisting
4See [2], [29, p. 57], and [9, p. 140]. of the words with zero coordinate sum. (In other words, any

(1,2,2)6 | ((12,0,4)132/(12,0,6)22) = (13,2, 6)132.

For further examples, see also Section V-B below.

If 7 is the partition into singletons, we writ@ instead of
C/n¢. This construction is indicated kje in the tables. (It is
[29, p. 581, Construction X ].) Examples:
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(0,,2)p codeC is of the formC = {u € F, | u-c =~} six distance3 codes. Now the required code is constructed as
for some “parity-check” vectoe € {1,2}* andv € F3.)
Proof: Induction ont. Fort = 1 the statement is obvious.  ((2,1,1)12/(2,1,3)2) | ((0,5,2)¢7/7) = (2,6,3)134. 0
Assumet > 1. By induction we may assume that the subcode
of C consisting of the words ending ihis a zero-sum code. Lemma 5.5:The (0,5, 2)s; zero-sum code has a partition
If al € C anddy(a,b) = 1 (for somea,b € F5 '), then Into eight distanca- codes.
precisely one of0, b1, b2 occurs inC, but notbl, and b0 Proof: TakeCp = {00000, (01221), (02112)5} of size
only if b = 0. Consequently, ifS"a # 0 and> b # 0 11, and seven codes of siZ®, namely
and dg(a,b) = 1 thenal € C if and only if b2 € C. But
the dist(anc)d— graph on the nonzero-sum vectors iy ' is C1=1{(00012)s, (02211)5}
connected, so a single choice determines alCoBy a sign C2={(00021)5, (01122);}
change in the last coordinate, if necessary, we can force org = {00111, 00222, 11010,
iﬁ(rj%-sum vector that ends Iror 2, and therC is the zero-sgm 22020, 11121, 22212, 12102, 21201, 10200, 02010}
For optimal (b,¢,2) codes withy > 0 the classification is C31j=07C3 (j=0,1,2,3,4)
(rjnetf[;ﬂs.more messy, and we shall not try to write down thv?/herea is the cyclic coor_dinate permutation. O
Parts of a partition of an optim&0, ¢, 2) code into distance- fgn?rﬁgns %q;]\?(rlcz v:\;)e f>"j?1§3767 3) = 1296, as announced
3 codes are often smaller than arbitrfy ¢, 3) codes. Indeed, Proof: Lét b b7e éhe _artitio.n constructed in the previous
contrastN(0,4,3) = 9, N(0,5,3) = 18, N(0,6,3) = 38 | 10T - P P
with the following result. '
Lemma 5.2 (4,1, 1)as/(4,1,3)6) | ((0,5,2)s1/7) = (4,6,3)1s6.
i) Any zero-sum(0,4,3)y, code hasM < 4, and there
is (up to coordinate permutation and translation byote that the former ingredient exists: we can construct
a zero-sum vector) a unique optimal code, namely 1 3)¢ as([4,3,2]/[4,1,4]) | (0,1,1)s, and then use trans-
{0000, 0111, 2220, 1122}. lates by the eight coset leaders[df1, 4]. O
i) Any zero-sum (0,5,3)y; code hasM < 11,  we have not found a partition of th@,6,2),43 zero-sum
and there is a unique optimal code, namelyode into eight distancg-codes, but can come close. First
{00000, (01221)5, (02112);}, where(u)s; denotes the notice that a partition of a zero-sui, 6,2)s,, code into
five codewords obtained from by cyclic coordinate distance3 codes that are invariant under translation bys

permutations. equivalent to a partition of a zero-su(0,5,2)5; code into
iii) Any zero-sum(0,6,3)y code has\ < 33, and there codes in which the distancésand 5 do not occur.
is a unique optimal code, name{yaaaaa, a(abeeb)s | Thus we find a partition of a zero-suf@, 6, 2) 237 code from

{a,b,¢} = {0,1,2}}.
These codes can be found inside the ternary Golay codd00111, 00222, 01002, 02010, 10200, 11211,

G: let a be a codeword of weighi with supportA. Pick the 12021, 12102, 20001, 21120, 22212}, {00102,
33 words _ofG that hf';lve vyelght at mogt on A and discard 00210, 01020, 02121, 10011, 11112, 12000,
the coordinate positions il to get a zero-sun{0, 6,3)s3
code. IfG is the extended (self-dual) ternary Golay code, and 12222, 20022, 21201, 22110}, {00120, 01200,
la € G, then taking the 33 words off that have weight 02001, 02112, 10101, 11022, 12210, 20010,
at mostl on A and deleting the coordinate positions ih 20202, 21111, 22221}, {00000, 01122, 02211,
we get a(1,6,4)s3 code after arbitrarily changing the check ;5591 19012, 12120, 20112. 21021. 21210
position in the three codewords where itlis Consequently, ! ! ’ ’ ’ ’
N(1,6,4) > 33. (In fact, N(1,6,4) = 33, since exhaustive 22101}, {00021, 01110, 02202, 10122, 11001,
search shows tha¥v(2,4,3) < 22.) 11220, 12111, 20100, 21012, 22020}, {01212,

Lemma 5.3: N(2,7,3) > 396. 02022, 02100, 10002, 11010, 11121, 12201,

Proof: Let U = {000000, 2(_00001)5}. Let C be a zero- 20220, 21102, 22011}, {00201, 01011, 10020,
sum(0, 6, 3)33 code. Then the six translat€s+ v for v € U
10212, 11100, 20121, 21222, 22002}, {00012,

are pairwise-disjoint. Thus we can construct
01101, 02220, 10110, 11202, 20211, 21000, 22122}}.
((2,1,1)12/(2,1,3)2) | ((0,6,2)108/(0, 6, 3)33)
=(2,7,3)396. O As a consequence we fild(7,6,3) > 3792.
Shortening this yields a good partition of & 5, 2); 53 code.
Lemma 5.4: N(2,6,3) > 134. An explicit code does slightly better. The code below is a
Proof: Let U = {00000, (11112);}. Let C' be a zero- good partition of a(l,5,2);59 code, and if we delete the
sum(0,5,3);; code. Then the six translat€s+ « for w € U words that have & at the second position, we obtain a
are pairwise-disjoint. We can add the (nonzero-sum) wogbod partition of &2, 4, 2)109s code. (This last one is optimal:
11111 to € and obtain a partitiom of a (0,5, 2)s7 code into N(2,4,2) = 108.) As a consequence we finN(8,5,3) >
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2544 and N(9,4,3) > 1728. (w,u — v, (u+v) +w), where the coordinate positions tHat
andV have in common are interpreted as ternary coordinates.
{{000122, 001100, 001211, 002021, 010010, 011222, :
We obtain
012101, 020201, 021002, 022112, 022220, 100001, Proposition 5.8:

100220, 101012, 102110, 110102, 111200, 112022,

N(b,t,d) > N(by,t1,d1)N(ba,t2,d2)N(b3,t3,d3)
112211, 120212, 121121, 122000}, {000002, 000110,

001121, 002201, 010220, 011000, 012011, 012122, for

020021, 021212, 022100, 100211, 101102, 102020, d = min(3dy, 2dz, ds)

111110, 111221, 112202, 120122, 120200, 121001, b+t =by +t1 +m+ max(m, bs + t3)
122111}, {000101, 001112, 002000, 002222, 010202,  and

011021, 012110, 020012, 020120, 021200, 022211, t =t + max(ty, t2) + max(ty, 2, t3)

100022, 101120, 101201, 102011, 110000, 110111, wherem = max(by + t1, by + 2,5y + bs + min(ty, £2)).

111212, 112220, 120221, 121010}, {000020, 000212, If d is not even, or not a multiple of, then small
001001, 010121, 011012, 012200, 020102, 021110, modifications are slightly more efficient. For example, we find
021221, 022022, 100100, 101210, 102002, 102221, N(0,16,3) > N(0.5, 1)N(0,6,2)N(0,5.3) = 3 - 37 - 18
110222, 111020, 111101, 112112, 120011, 121202, — 1062882

122120}, {000011, 001220, 002102, 010022, 010100, _
by taking (u,u — v,u + v + w,vg) for v € U, vy € V,

011111, 012212, 020210, 021122, 022001, 100112, w € W. (Giving the two copies o a common coordinate
101021, 102200, 110201, 111002, 112010, 112121, position results irkd, — 1 instead of2d, in the expression for
120020, 121100, 122222}, {000221, 001022, 002210, the minimum distance.)

010112, 011120, 011201, 012002, 021011, 022121,

100202, 101000, 101111, 102122, 110021, 110210, _ ) _ _
112100, 120101, 121220, 122012}, {000200, 002012, The following result is useful for constructing codes with

minimum distance3 or 4.
002120, 010001, 011102, 011210, 012221, 020111, Proposition 5.9: Let C be an(ns, ns, 3) s code and assume

021020, 022202, 100010, 101222, 102101, 110120, that « is a vector of weighB on the binary coordinates and
111011, 120002, 121112, 122021, 122210}, {001010,  WeightO on the ternary coordinates such that= C+u. Then

H 3
001202, 002111, 010211, 012020, 020000, 020222, W€ canconstruct amy—3,n3+1,3)y codeD with N 2> sM

by taking three of the four patter$)0, 001, 010, 100 on the
021101, 100121, 102212, 110012, 111122, 112001, support ofu, and replacing them by ternary symbalsi, 2.

D. Constructions from the Binary Hamming Code

120110, 121211, 122102}}. Since the binanf15, 11, 3] Hamming code is perfect (and
linear), it is a good starting point for constructions.
C. The(w,u 4 v) Construction The picture below shows the distribution of codewords in

the [15, 11, 3] binary Hamming coded with respect to five
codewordsu; (1 < j < 5) of weight3 with pairwise-disjoint
act coordinatewise, and satisfy+ 0 = 0 + ¢ = a, and supporFs. The rows are numbered frorto 5. Each I_eft son in
a+b# a+cwhenb # c. In particular, there is no problemrowj gives the number of codewords counted by its father that
ve the patter®00 on the support of:;, the right son gives

adding binary and ternary coordinates—just view them ﬂ% " ith ¢ h
as ternary coordinates.) By calculating the parameters of number of codewords with one 0 { e paitedos, 010,
or 100. Thus the entry for the father is twice the sum of the

resulting code (cf. [29, p. 76]) we obtain _ i .
Proposition 5.7:N (b, t,d)> N (by, t1, dy )N (ba, t2, do) for entries for the sons. For rows 1, 2, 3 the entries are determined

because the positions are independent, and all patterns occur

Given two codesl/ and V, consider the cod&” whose
codewords aréu,u + v), for v € U, v € V. (Here + must

d = min(2dy, d2) equally often. For rows 4 and 5 the zero entries are caused by
b+t =by +t, +max(by +t1,by +t2) the fact thatH has _minimum distancsg, and they determine
the remaining entries.
and
2048
t= tl + Inax(tl, tg). 956 768
For example, 32 96 288
< 4 12 36 108
N(1,12,4) > N(0,6,2)N(1,6,4) > 3° - 33 = 8019. 9 0 6 19 49
1 0 0 3 3 18

There are similar constructions that combine more than two
codes. For example, given three mixed binary/ternary codesVe now start withH and repeatedly apply Proposition 5.9,
U, V, and W, consider the cod&€” whose codewords are obtaining codes showing thaf(12,1,3) > 768, N(9,2,3) >
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288, N(6,3,3) > 108, N(3,4,3) > 42, andN(0,5,3) > 18. latter union together witl?’ yields the required code of size
That N(3,4,3) > 42 was shown earlier by Karl-@an 342 =324+ 18. O
Valivaara. Lemma 5.13: N(7,6,5) > 234.

A similar construction can be used starting from the Proof: Take the[ll, 6, 5]; ternary Golay codé, chosen
[16,11,4] extended binary Hamming codf. Let « be a in such a way that: = 00011111100 is a codeword. In the
codeword of weightl, and replace the four binary coordinatdast two coordinates replace each ternary digit by two binary
positions in its support by two ternary positions, replacindigits (e.g., replacé, 1,2 by 00,01, 10). Discard all words
1000, 0100, 0010, 1001,0101,0011 by 00,11,22,01,12,20, that have a in one of the first three coordinates. We now
respectively. We see tha¥(12,2,4) > & x 2048 = 768 so have a(7, 6, 5)216 codeG”. There are precisely 54 words at
that N(11,2,4) > 384. (In fact, equality holds in both casesdistance5 from G (all ending in---1111). Inspection using
since N(12,0,3) = 256.) a small clique-finding program shows that there is a set of 18

Proposition 5.10: N (8, 4, 3) = 1152. (invariant under negation and under translationcpyamong

Proof: The upper bound follows from Proposition 3.1these 54 that have mutual distances at Iéaskdding these
The lower bound can be established using the juxtaposititmG” yields the required code. O
construction(C/w¢) | ([4,4,1]3/[4,2,3]3), where r¢ is a
partition of the zero-sunfg, 0, 2);25 code into eight distance- )

3 codes. (Such a partition is equivalent to a perfect onb: SOme Cyclic Codes

error-correcting code with one octal coordinate, eight binary Let C; be the smallest length3 ternary code which is
coordinates, and 128 codewords.) The partitign can be invariant under translation by and under cyclic coordinate
obtained using the construction of Section V-B in reverse. Leermutations, and which contains the vedio21122221121.

S be the set of coordinate positions &. Fix a codeword Let C> = —Cj. Both are equidistan{0, 13, 8)39 codes, and
a of weight8 in HL, and letA be its support. We find the C1 U C> is a (0,13,7)7s code. If we now replace the first
(8,0,2)108 codeC by discarding the coordinate positions ircoordinate of all words irC; by 0 and inC» by 1, we get a

S\A. The discarded tails of a codeworde C form a coset codeC with minimum distancey, so N(1,12,7) > 78.

of the [7,4, 3] code D formed by the codewords off with Let C3 be the smallest code which is invariant under
support inS'\ 4, and we can define the partition- by letting negation and under translation iy and contains
the eight parts correspond to the eight coset®of O

{0, 001212010122, 001221122100,010120201212,
E. Constructions from the Ternary Golay Code 012120012120}.

Most of the lower bounds fod = 5 andd = 6 are derived ThenCs is a(0,12,7)»7 code.
from the [12, 6,6]; extended ternary Golay code. We saw in We construct a code proving tha¥(0,13,7) > 105 by

Section V-B hqw to obtainV(1,6,4) > 33 using this code.  a1ing  and adding the words frorfis, each prefixed by a.
Lemma 5.11:N(6,6,6) > 66, N(8,4,6) > 32, and  tne coder; already improves the old bourdi(0, 13,8) >

N(9,3,6) _Z 26. 36, but we can do even better. Indeed, we fiNdo, 13,8) >
Proof: Take the[12, 6, 6]; extended ternary Golay code42 by taking the smallest cyclic code containing

G and let A be the support of some codeword of weight
6. There are 3, 0, 6, 6, 18, 30, and 66 codewords who$8,1,2,0000122121221, 0021102220112, 0120220210121}.
support meetsi in a given subset of siz@,1,2,3,4,5, and  gimjjarly, we getV(0,12,7) > 51 from the smallest cyclic
6 (respectively). Taking the 66 codewords that do not Van'%de containing

on A, we see thatV(6,6,6) > 66. If we pick two or three

more positions outsided, and require that the codewords{0,1,2,000011202121, 001222102211, 002020121122,

do not vanish there either, we fin&/(8,4,6) > 32 and 002201110101},
N(9,3,6) > 26. O . :
Lemma 5.12: N (6,7, 5) > 342. Finally, one obtainsV(0,14,9) > 31 from the smallest

Proof: Take the[11, 6, 5]; ternary Golay codé&. In the cyclic code containing
last two coordinates replace each ternary digit by two binary {0,1,2,00001122102121, 00222011102012}.
digits (e.g., replace, 1,2 by 00,01, 10). Discard all words
that have & in either of the first two coordinates. We now ] ) ]
have a(6,7,5)4 code G'. There are precisely 36 wordsC- Constructions Using a Union of Cosets
at distance5 from G’ (all ending in---1111), forming four We give the codes in humanly readable format, and the coset
cosets of the subcod& of GG consisting of the codewordsleaders in compressed format: the binary part in hexadecimal,
that are0 on the first two and the last two coordinatesthe ternary part in bas® both right-justified. If the linear code
The four cosets are permuted transitively by the four-group the direct sum of a binary part of dimensiband a ternary
generated by multiplication by-1 and the element of part of dimensior¢, then we arrange the code generators so
My, that interchanges the first two coordinates and fixes thigat there is a binary identity matrix of ordérin front, and
last two, so that there are three different ways of taking tleeternary identity matrix of order at the back, and the coset
union of two cosets. These unions have minimum distandesders are zero on thege-¢ positions, so that we need give
1,4, 5 (corresponding te-o, —1, ¢, respectively). Taking this only the remainingr, — b + n3 — ¢ coordinates.
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(i) N(11,2,3) > 832. Use 52 cosets of @-dimensional binary code.

matrix cosets

1000110000000 190, 240, 3F0, 420,001, 271,2A1, 311, 5D1,6C1, 0B2, 172, 1C2, 2D2, 502
0100101100000 612, 662, 7A2, 033,143,293, 2E3, 583,653,064, 0D4, 1A4, 3C4, 414, 6B4,
0010101010000 704,774, 205,365, 3B5, 475, 4A5, 086, 326, 356, 4F6, TE6, 1F7, 447, 537,
0001101001000 627,797,058, 0E8, 238, 388, 498.

(i) N(4,5,3) > 186. This improves the boundv(4,5,3) > 178 found by Seppo Rankinen. Use 62 cosets of a
1-dimensional ternary code.

cosets

matrix 900,201, E02, A03, 104, D05, 406, F07, 010, B11, 712, 313,814, 415, D16,
_ F20,523,826,627,328,330, 831,432,033, B34, 735, E36, 537, 938, C40,
000011001 F43,146, A47, 648, E51,252, 653, D54, 155, B56, 057, C58, 560, C63, 367,
A68,A70,171,D72,973,274, E75, 776, C77, 078, 781, 882, 484, B85, 286,
987, 538.

(i) N(5,5,3) > 342. Use 57 cosets of the direct sum oflalimensional ternary code andladimensional binary code.

cosets

martrix
____fii____ 700, A02, B04, 605,006, D08, 410, 311, F12, E13, 814, 515, 916, 218, D20,
0000011001 022,124, C25, 626, B28, 830, F'31, 332, 233, 434, 536, 937, E38, B40, 041,
1111000000 C42,143, D44, A47, 651,955, F56, 458,160, C61, D63, 065, A66, 768, 672,
773, A75,C76,178, ER0, 981, 582, 483, 284, F85, 386, 838.

(iv) N(3,7,3) > 684. Use 76 cosets of @-dimensional ternary code.

cosets

matrix 1000, 4005, 5012, 7014, 3016, 0021, 2023, 6028, 6032, 2034, 5036, 4041, 1043, 2048, 3050,
" 1057,2060,7065,3072,0074, 6076, 7081, 4083, 0088, 6101, 0103, 2108, 6115, 5117, 4122,
0001100010 3124,7126,3132, 1134, 6136, 2141, 4143, 1148, 5150, 0155, 7155, 4157, 0162, 4164, 3166,
0002111101 1171,7173,4178, 6180, 2187, 3201, 6203, 1208, 0215, 6217, 2222, 5224, 4226, 5231, 3233,

4238,0240, 7240, 5245, 3247, 1252, 6254, 2256, 4260, 2265, 0267, 7267, 6272, 5276, 1283,
3288.

(v) N(4,7,3) > 1332. Use 74 cosets of the direct sum oRalimensional ternary code andladimensional binary code.

cosets

matrix
6001, 3003, 0008, 1010, 2015, 3017, 4022, 5024, 6026, 3031, 6038, 7040, 4045, 1052, 2053,

00001100010 7057, 4060, 7065, 5067, 5072, 6074, 0076, 0081, 1083, 3088, 2100, 1105, 0114, 5116, 7122,

00002111101  4123,2127, 5132, 7134, 4136, 4141, 6143, 7148, 0150, 3155, 1157, 1160, 2165, 0167, 0172,

11110000000 5174, 3176, 6181,7183, 5188, 5201, 6203, 3208, 4210, 7215, 6217, 2222, 3224, 0226, 0232,
2234,1236, 1241, 3243, 2248, 6250, 5255, 4257, 4264, 7266, 2271, 1278, 5280, 6285.

(vi) N(7,2,4) > 26. Use 13 cosets of a-dimensional binary code.

matrix cosets

111100000 OF0, 120, 240,291, 3E1, 3B3, 005, 175,225, 0A7, 147, 277, 3D8.
(vii) N(10,3,4) > 400. Use 25 cosets of d-dimensional binary code.

matrix

- cosets
1000111000000

0100110100000 0C00,1A01,3101,2B04, 1505, 2606, 3D06, 0308, 0210, 2412, 3F12, 3013, 0E14, 1914, 1717
0010101100000 0D18,2A18,2721,1622, 2922, 0123, 3E23, 3325, 1B26, 1027.
0001011100000
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N(5,5,4) > 108. Use 54 cosets of a-dimensional binary code.

cosets

matrix 4003, 1008, E015, D016, 9021, 2022, 5031, 3033, A040, 7048, C054, 0056, A068, 1070, 6071,
111000000 5085, F087,E101,4112,2113,9115, F123, 5127, 9136, 2137, 5143, 6150, 1152, A155, 7162,
B164, C165, D171, E176,0184, 3186, B202, D204, 6208, 7210, 0217, A226, 8231, £233, B247,
€248, D250, 7254, 2260, 5266, 8273, 3275, E282, 9288.

N(6,5,4) > 208. Use 52 cosets of @-dimensional binary code.
cosets

matrix
D005, 1016, A017, 6022, B030, C031, 3044, 4045, E056, 9057, F067, 8068, 7070, 0071, 2083,

10111000000 5084, 2100, 5101, B113, C114, 8126, F128, 7136,0137, F141,8142, D153, 6154, £163, 9164,
01110100000 3178,4176,1180, A181,3207, 4208, E210,9211, 7223, 0224, 1233, A234, 2246, 5247, 4250,
3252, D260, 6261, 8273, F275, B286, 0287.

N(2,6,4) > 51. Use 17 cosets of a-dimensional ternary code.

. cosets
matrix

1017, 3022, 2044, 1053, 0061, 3066, 0106, 3148, 2150, 1170, 3184, 3213, 2227, 3231, 0235,

00111111 2272,1288.
N(3,6,4) > 87. Use 29 cosets of a-dimensional ternary code.

. cosets
matrix

7002, 4011, 1026, 5033, 3040, 0045, 2057, 0060, 7074, 4088, 0108, 5115, 3117, 2120, 3135,

000111111 4146,7151,4164, 7166, 1182, 5207, 4223, 4232, 7248, 1254, 3261, 5270, 0277, 2285.
N(4,7,4) > 360. Use 40 cosets of &-dimensional ternary code.

. cosets
matrix

3004, 6006, 8007, D014, 4035, D036, 6074, 8075, F078, 4080, B00, 1115, E117, 7120, 9121,
0126, 2133, B137, A142, 0143, 5158, 9163, 7165, C168, 5171, 3176, 2181, F201, 5203, 2218,
A224,0244, 7247, 9248, 8250, 6252, F253, 0262, A266, D282.

00001110010
00001001101

N(5,7,4) > 612. Use 34 cosets of the direct sum oRalimensional ternary code andladimensional binary code.

matrix cosets

000001110010 9001, 4013, D026, 0030, B036, 8054, F055, 4068, BO74, 7076, E081, 6105, 9113, 4121, 3131,
000002101101 6140, A145,9158, 5160, 2166, 7184, 0185, 200, 8206, C212, 1217, 2224, 5225, 238, 3243,
111100000000 A250, D264, E273, 3288.

N(4,8,4) > 891. Use 33 cosets of 8-dimensional ternary code.

matrix cosets

000011100100 A002, 1011,4020, 4038, A047, 1056, 7065, D074, A083, F100, 6107, 9107, C116, 3128, 3134,
000021010010 6143, 9143, F148, C155, C161, 3170, 6182, 9182, 0184, 5203, 2215, E224, 8230, 5242, B251,
000020101001 2266, 8278, 5287.

N(2,11,4) > 5589 and N(5,8,4) > 1674. Use 23 cosets of &dimensional ternary code to find/(2,11,4) > 5589.
Discarding all codewords with ug = 0 or w12 = 0 or w33 = 0, we find N(5,8,4) > 1674.

matrix

0011100010000 cosets

0011010001000 505 5009 1976, 3323, 3418, 2437, 3460, 1514, 2550, 0561, 2614, 0628, 3635, 1650, 3687,

0011001000100 ‘ i
0011000100010 1702, 3741,0754, 2776, 0803, 1837, 0842, 2885.

0020111100001
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(xvi) N(6,4,5) > 24. Use 12 cosets of a-dimensional binary code.

matrix cosets

1111110000 1E08,1515,0921,0726,0A30,0437,0F44, 1352, 1963, 1C71, 1276, 0085
(xvii) N(8,4,5) > 82. Use 41 cosets of a-dimensional binary code.

cosets
matrix

0000, 2514, 6215, 4917, 3B18, 3824, 1625, 6E27, 7528, 7634, 4535, 3D37, 6838, 2A41, 3442,
111111110000 7943,1344, 6746, 5E48, 6151, 1952, 4A53, 2F55, 3256, 0457, 6B64, 3165, 1A67, 2668, 4671,
6D72,3E73,0875, 1576, 7077, 3781, TAS2, 6483, 5D84, 2986, 4388.

H. Explicitly Presented Codes
In this section we give a number of codes for which we have no better description than to simply list all the words.
These were found by a variety of techniques: by hand, by exhaustive search, by clique-finding using a number of different
programs, or by heuristic search procedures like those described in Section VI.
The first few codes are given explicitly.
N(7,2,5)=9 N(4,4,5) =9

N(3,4,5)=6 N(6,3,6)=6 N6 =7 NE6E=T 000000000 00000000
0000000000 000000000000 000011111 00011111
ggégggg é?gé?gégg 0000111111 000011111111 001100112 00101222
100 2290 00100l00; 0011001122 000101222222 010101021 01012022
1100012 111111 0101110022 011110001122 011010120 01102101
011111 000111905 1011010011 101110112200 100110022 10112210
0111922 111000295 1101011100 110110220011 101111100 11001120
1110100101 111001002211 110001102 11010201
111000011 11100012
N(4.3.4) = 11 N(6,4,6) =12
N(6,5,7) =9 N(2,87)=9 N(9,48=9 ——————— (000000000
0000000 0000111111
00000000000 0000000000 0000000000000 0001111 0001012992
00001111111 0001111111 0000011111111 0010122 0110001192
00110011222 0010122222 0001100112222 0101022 0110112900
01010122012 0112200112 0110101001122 0110011 0111010011
01101022120 0121212020 0111010002211 0111200 1010100919
10100122201 1012211200 1010111012200 1001202 011002101
11001100222 1102002221 1011011100022 1010210 011111090
11110000111 1111120001 1101101010011 1011021 100102091
11111111000 1120021110 1101110101100 1100101
111119 1101001210
1101110102
B N(5,4,5) = 14
N(G,67T) =12 N(1,9,7)=12 N(4,88 =12 V&9 =1 77
000000000000 200000000
00000000000 0000000000 000000000000 o 0 W0 T 000011111
00001111111 0001111112 000011111111 o 2oooo, 000101222
00110011222 0120012222 001100112222 0 o cct"0 001012022
00111222001 0122200111 001122220011  °7 %% oo 001102101
01010122120 0211212001 010111222200 0 o ono, 001110210
01011200212 0212021120 010122001122 oo 7oy 010110021
10100202112 1011020211 101012021202 o0 " o000 011000112
10101120220 1012102022 101021202120 | 27700 S0 100110102
11000221201 1100122101 110002122021 ) ooo o0 o 101000221
11001012022 1101201220 110020210212 |\ v oot o 110001120
11110110011 1220221012 111101010101 J0011000212 110012201
11111001100 1222110200 111110101010 | o0 vonto0 110102012

111111000
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N(5,2,3) =22
N(5,3,4)=20 ————

N(2,10,8) =18 —————— 0000000

- 00000000 0000111

NO,10,7) > 14 N (2,6,5) =15 000000000000 00001111 0001022

- 00000000 000011111111 00010122 0010012

0000000000 00011111 001100112222 00100212 0010120

0001111111 00101222 001122220011 00111001 0011001

0010122222 00222012 002211222200 01000221 0100021

0112200112 01012202 010202021212 01011010 0101100

0121212020 01102110 010220202121 01101100 0110102

0222001221 01121001 012112010120 01110111 0111010

1012211200 01220220 012121101002 01111222 0111121

1121120201 10020122 101212100102 10001222 1000102

1202110022 10122200 101221011020 10010011 1001010

1220102110 10200211 102002201221 10011100 1001121

2102022011 10211020 102020022112 10100101 1010021

2120011102 11002021 110011220022 10101010 1011100

2201202202 11110012 110022112200 10110220 1100012

2211020120 11201102 111100221100 11000110 1100120

111111002211 11001001 1101001

112200110011 11010202 1110000

11100022 1110111

1111022
The remaining codes are given in the compressed format 2104, 2126, 2143, 2152, 2168, 2217,
where the binary portion is in hexadecimal and the ternary 2236, 2254, 2275, 2280, 3014, 3053,
port|_0n in basey, both rlg.ht_-Just|f|ed. 3062, 3100, 3118, 3157, 3171, 3185,

(i) N(8,1,3) > 50. This improves the boun®¥(8,1,3) >
3205, 3221, 3242, 3267.

49 found by Mario Szegedy.

(iv) N(3,5,3) > 98. A code provingN(3,5,3) > 98 has

000, 0B1, 0C1, 162, 192, 1F0, 232, 260, : _
been published in Norway (see [41]) as a football pool

2D0, 310, 371, 3A0, 302, 442, 471, 490,

system.
4E0, 501, 530, 5A2, 5D1, 621, 682, 6F2,
752, 7E1, 870, 8A2, 8D2, 932, 951, 980, 0000, 7000, 0014, 5015, 6017, 3018,
A02, A91, AE1, B21, BF2, C12, €20, C81, 3024, 6025, 5027, 0028, 4034, 2035,
D61, DB1, DC2, E51, E62, EBO, ECO, F00, 7037, 1038, 2041, 4042, 6043, 5046,
F70, F92. 1051, 7052, 0053, 3056, 1064, 7065,
) 2067, 4068, 7071, 1072, 3073, 0076,
(i) N(6,2,3) = 38. 4081, 2082, 5083, 6086, 5104, 3105,
070, 1D0, 220, 2C0, 041, 0A1, 291, 351, 0107, 6108, 1111, 7112, 4113, 2116,
012, 1E2, 2F2, 332, 382, 003, OE3, 313, 2121, 4122, 1123, 7126, 3131, 5132,
3F3, 0D4, 274, 324, 3C4, 175, 195, 245, 7133, 4136, 0140, 1145, 6150, 2158,
2A5, 096, 136, 146, 256, 3A6, 187, 1F7, 6161, 0162, 2163, 1166, 5170, 6175,
207, 2E7, 028, 0C8, 368, 3DS. 3177, 4177, 3180, 0184, 7184, 5188,
6204, 0205, 3207, 5208, 4211, 2212,
(i) N(2,5,3) > 52.
7213, 1216, 7221, 1222, 2223, 4226,
0006, 0035, 0050, 0072, 0115, 0121, 0231, 6232, 1233, 2236, 3240, 5244,
0137, 0160, 0202, 0223, 0241, 0258, 0248, 7248, 5250, 3255, 4255, 6257,
0264, 0276, 1001, 1028, 1046, 1084, 5261, 3262, 4263, 7266, 6270, 2274,
1132, 1144, 1186, 1210, 1233, 1282, 0280, 1287.
2010, 2025, 2031, 2048, 2063, 2087,
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(v) N(0,6,3) > 38. This improves an earlier bound
N(0,6,3) > 37 found by Lohinen [27], and by

Vaessenst al. [42].

848, 774, 570, 358, 404, 000, 526, 072,
757, 716, 321, 811, 608, 468, 265, 453,
732, 145, 640, 213, 250, 584, 502, 181,
377, 136, 128, 866, 315, 661, 834, 882,
623, 441, 086, 054, 363, 207.

(vi) N(1,6,3) > 71. This improves an earlier bound
N(1,6,3) > 69 by Seppo Rankinen (personal com-

munication).

0020, 0042, 0077, 0125, 0130, 0144,
0186, 0204, 0218, 0251, 0262, 0273,
0328, 0336, 0354, 0365, 0370, 0413,
0452, 0461, 0478, 0500, 0545, 0587,
0614, 0631, 0682, 0707, 0712, 0735,
0746, 0784, 0823, 0858, 0866, 0871,
1005, 1057, 1060, 1116, 1138, 1153,
1171, 1222, 1240, 1267, 1317, 1332,
1343, 1381, 1420, 1434, 1466, 1485,
1508, 1524, 1556, 1572, 1606, 1655,
1664, 1678, 1728, 1751, 1762, 1773,
1801, 1815, 1833, 1847, 1880.

(vii) N(6,3,4) > 34 (found by Mario Szegedy, personal

communication).

0006, 0304, 0523, 0610, 0821, 0B16,
0C15, 0DO07, 1128, 1202, 1417, 1721,
1914, 1A23, 1C00, 1F05, 2025, 2117,
2320, 2401, 2708, 2903, 2A14, 2D22,
2E26, 3010, 3227, 3315, 3603, 3808,
3B01, 3024, 3D16, 3E12.

(vii) N(4,4,4) > 28.

000, 044, 118, 181, 225, 267, 332, 373,
427, 465, 536, 650, 711, 788, 858, 904,
940, A33, A72, B26, C13, C31, D22,
D77, E08, E84, F45, F60.

(iX) N(7,3,5) > 20.

0900, 7000, 3E02, 0603, 5D05, 6305,
1511, 2211, 3B13, 4814, 6516, OF18,
5218, 5B21, 4422, 2D24, 7624, 1026,
6A26, 3128.

(x) N(10,3,5) > 128 and N(11,2,5) > 96. The former
is given explicitly, the latter follows by discarding the

words ending inl.

00500, 04A00, 1BA00, 1F500, 27600,
29F00, 32000, 3C900, 03C02, 0E002,
15F02, 18302, 22B02, 25102, 39402,
3EE02, 0A603, 0DC03, 11903, 16303,
26D03, 2B103, 30E03, 3D203, 01205,
0FB05, 14405, 1AD05, 28805, 2C705,
33705, 37805, 07910, 10610, 2AC10,
31310, 02211, 05411, 19D11, 1EBI11,
24F11, 28111, 33E11, 3F011, 0B712,
10812, 2DA12, 36512, 08B13, 13413,
24013, 3FF13, 0B814, 0E514, 10714,
15A14, 27314, 29614, 32914, 3CC14,
06E15, 1D115, 21D15, 3A215, 01E16,
0F216, 14D16, 1A116, 22716, 2D516,
36A16, 39816, 04318, 08418, 13B18,
1FC18, 23018, 2E918, 35618, 38F18,
09020, 12F20, 2E320, 35020, 01B21,
OFE21, 14121, 1A421, 23521, 26821,
38A21, 3D721, 0CD22, 17222, 20622,
3B922, 05723, 1E823, 23A23, 38523,
00024, 00224, 17D24, 1B324, 2AF24,
2D924, 31024, 36624, 02125, 19E25,
2F425, 34B25, 06426, 0BD26, 10226,
1DB26, 20926, 2CE26, 37126, 3B626,
05828, 0AA28, 11528, 1E728, 27F28,
29328, 32C28, 3C028.
(xi) N(9,4,5) > 136.
02200, 0DD00, 16F00, 19000, 01E02,
0E102, 13502, 1CA02, 05303, 0ACO3,
17803, 18703, 00905, 0F605, 14405,
1BB05, 15610, 1A910, 01111, OEEL1,
16011, 19F11, 07B12, 08412, 06513,
09A13, 05C14, 0A314, 14B14, 1B414,
12E15, 1D115, 00F16, 0F016, 13316,
1CC16, 04218, 0BD18, 11818, 1ET718,
04820, 0B720, 02D21, 0D221, 13A21,
1C521, 10322, 1FC22, 11D23, 1E223,
00624, 0F924, 17724, 18824, 03025,
0CF25, 07E26, 08126, 12426, 1DB26,
05528, 0AA28, 16928, 19628, OFA30,
11B30, 1E430, 0AF32, 12832, 04E33,
0B133, 13633, 16335, 09737, 0C837,
10D37, 15237, 03C40, OF541, 12741,
IFF43, 13944, 0A646, 16A46, 02148,
0DE48, 17448, 18E50, 05F51, 0A051,
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1EB51, 06652, 02B53, 0BE54, 16054, (xv) N(8,5,7) > 20.
1A555, 0ED56, 14756, 1B856, 0F358,
13F58, 00560, 05062, 1D762, 1C963,

07D65, 08265, 19065, 03867, 06767,

1A167, 1FE67, 00370, 00A71, 1D8T71,
14D72, 1B272, 10073, 07274, 08D74,

1C674, 01775, OE875, 05976, 19576, (xvi) N(6,6,7) > 17.
18B78, 17180, 11481, 09982, 0D483,

04184, 19384, 15A85, 01286, 00038, 1C08S.

F4018, 4F025, 21035, 97056, EA060,
1C071, 82112, BE124, 7D137, CC143,
1B163, D1181, 24186, 41216, 56232,

B9240, 0A257, 8D268, E7274, 78285.

24006, 12022, 39084, 27175, 3E231,
01240, OF360, 29438, 16446, 33503,
(xii) N(7,4,6) > 18. 00515, 15635, 2A643, 3D710, 04781,

0000, 0344, 0588, 1848, 1B8O, 1D04, 0B827, 30878.

9834, 2B08, 2D40, 3611, 4E15, 5267,

5453, 6252, 6763, 7115, 7C62, TF5T.
(i) N(9,4.6) > 48, 21001, 1B026, 60046, 0F141, 55188,
65225, TA261, 08275, 43374, 10437,
5E453, 26465, 69480, 44521, 33552,
3D577, 77637, 59642, 2A654, 16670,
4AT08, 3C722, T0813, 05833.

(xvi)) N(7,6,7) > 24.

00703, 0AA04, 12906, 13607, 1D211,
04B12, 1A413, 03D14, 0B316, 00017,
18F17, 15C18, 16521, 18822, 0D927,
00628, 17330, 0B932, 1D833, 07E35,
00041, 10642, 05747, 1E148, 13C50, (xvii) N(4,7,7) > 14.
08351, 05052, 1DF52, 0F553, 1B255,
16A57, 00D58, 05D60, 1F462, 03063,
1BF63, 10C64, 0D365, 18266, 0A567,
08973, 12374, 02E76, 1B877, OFASO,

00000, 10444, 21158, 31861, 40878,
62463, 72017, 82284, 92708, B0386,
C1337, D1170, E0721, F0235.

03782, 15683, 17985. xix) N(5,7,7) > 20.

(xiv) N(7,6,6) > 99. 121214, 032028, 0E2362, 120782,
30000, 77013, 1D024, 55032, 42040, 051272, 1F0135, 102718, 031463,
21045, 70047, 2E053, 3F068, 0C0T2, 172867, 081587, 142083, 141431,
4B085, 09108, 1E116, 6F127, 22137, 1F1520, 002835, 192304, 0B2741,
4D143, 68152, 56154, 35156, 71164, 050724, 111646, 080100, 060346.

2B170, 00183, 63202, 50215, 0A221,

2D231, 1B233, 4E238, 36242, 41257, (xx) N(6,7,7) = 28.

14267, 5F271, 72286, 41303, 13312, 1A0017, 200052, 3D0185, 0C0236,
4E314, 2D316, 36327, 72335, 14343, 310410, 320564, 0B0582, 2A0723,
S5F356, 0A366, 63377, 58381, 2E402, 140821, 0F1073, 2B1131, 101186,
55417, 21421, 7C423, 42428, 4B431, 021300, 191354, 2C1417, 161548,
3F444, 00457, 1D460, 38478, 77482, 331628, 251853, 381872, 352047,
56500, 35505, 68507, 22513, 4D522, 262168, 112205, 3E2350, 292366,
00532, 71540, 2B558, 6F'563, 09574, 072424, 002674, 0D2742, 1F2867.
1E585, 2B604, 00617, 71628, 1E631,

6F642, 09650, 4D667, 35671, 63673, (xxi) N(3,8,7) = 16.

96678, 22682, 5705, 72711, 14722, 30242, 40634, 51020, 21887, 72368,
98736, 0AT45, 63753, 36763, 41772, 02513, 03382, 53876, 64530, 65174,
4E780, 2D785, 1B787, 0C803, 4B816, 35653, 26006, 76524, 17347, 48258,
3F820, 77837, 1D848, 38854, 7C862, 18702

42864, 21866, 2E877, 55883.
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xxi) N(4,8,7) > 22. 452663, 471725, 522171, 530358

( ) ? ? ? ? ? ?
81356, F1718, 21862, 12010, 62155, 563064, 578806, 608520, 634183,
72367, A2514, D2851, 53162, E3538, 661248, 685355, 686768, 703715,
86222, D6443, 36784, E7041, 77203, oovil) N(2,11,7) > 58,

08431, C8665.
0000000, 0001444, 0002888, 0043045,

L .
Ooxdil) - (5,8, 7) = 33. 0044406, 0046581, 0058604, 0078740,

070342, 0D0467, 110847, 051253, 0084087, 0113722, 0115237, 0117365,
141321, 092115, 1F2206, 122788, 0126176, 0133863, 0137212, 0138356,
173087, 183224, 023270, 0D3620, 0170317, 0181530, 0225513, 0242162,
0A3735, 104038, 1D4272, 174405, 0250757, 1014270, 1025332, 1026225,
0B4557, 0E5411, 045664, 1B5673, 1035121, 1063478, 1067837, 1070683,
046128, 116163, 1C6346, 1E6861, 1108671, 1151713, 1171158, 1204626,
037001, 1A7150, OE7385, 007444, 1208133, 1286401, 2023841, 2037183,
077776, 087806, 168245, 018582, 2050368, 2065205, 2122055, 2127527,
1D8754. 2145474, 2164648, 2211681, 2241246,
(xxiv) N(3,9,7) > 26. 2262420, 2276855, 3010707, 3031552,

3058148, 3077014, 3101264, 3142630,
3176566, 3183020, 3200315, 3233037,
3257370, 3282877.

600028, 500562, 701847, 302310,
003153, 404675, 205881, 207706,
408441, 112458, 412823, 014001,
715115, 616270, 116514, 516636, (xxvii)y N (6,7,8) > 14.
218365, 220742, 621164, 021576,
323077, 523721, 624350, 425238,
327255, 128160.

000000, 011444, 021888, 0D2058,
0F0804, 162115, 1B0372, 272480,
2A2643, 201512, 312832, 360337,
(xxv) N(4,9,7) = 39. 380284, 3B1106.

000000, 001444, 002888, 113045,

(xxix) N(5,8,8) > 18.
114406, 116581, 128623, 213627,

214262, 218146, 226405, 303770, 000000, 004444, 008888, 070148,

307358, 312834, 321121, 414853, 074621, 0B1283, 0B8332, 0D3567,

417312, 423137, 505211, 507165, 0D&713, 135516, 157065, 162834,

520376, 605363, 620842, 815184, 166480, 190751, 1A3675, 1A7107,

825332, 827217, 906836, 912712, 1C1512, 1C5056.

A08520, A11673, C10504, 026780,

D01627, D22255, E02108, E06054, VI. HEURISTIC SEARCHES

F13452, F17286, F28474. Given parametersas, n3, M, andd, we search for mixed

) binary/ternary codes of siz&f, with n, binary andng ternary
(oxvi) N(3,10,7) > 48. coordinate positions, and minimum Hamming distardc&or
000000. 001444. 002888. 043045 very small parameters an exhaustive search is possible. For
’ . ’ ’ ’ slightly larger parameters we employed tabu search [14]. Let
044406, 046581, 083627, 084262, S be the set of all code§’ satisfying the requirements except

088113, 113731, 115383, 117017, possibly that on the minimum distance, that is, the set Qt&ll
126505, 135122, 136776, 151253, subsets ofX := F3? F3*. Starting with an arbitraryCy € S
172542, 215204, 216156, 224640, we do a walk onS in the hope of encountering @ € §

. c or with minimum distancel. Each step goes from a codéto a
235377, 237605, 250412, 270873, neighborC’, that is, to a cod€’ obtained fromC by replacing
322038, 327784, 361321, 363536, a single codeword by one that is at Hamming distahce/e
417332, 423576, 434811, 438137, choose the best neighbor, where the badness of a €oide
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TABLE |
VALUES OF Az(n,d)
n\d 3
1 9 4
5 18 6 5
8
6 384 18 4 6
144 46%
7 99 33 10 § 7
340 138+ N
Bl a3 99 | ¥ o R
937 340 N
91 o9 oz | 8 27 6 3 o
2811 937 18
W01 o1g7 | omoe | 28 ] 8 T | 813 |
7020 | 2561« 50+
11 6561 1458 729 243 35 12 4 3 1
) X 7029 | 1562 138 A
1219683 |t | g | 29| gy, | 36 |9 4 3 19
10682+ | 4163 | 1562 | 363 | 103 (
1B 59049 ) 19 | g1g7 | 720 [ 1ose | a2« | 2T 0 ] 3 1 % |4
14 | 153527 [ 59046« | 10736 | 3885 | 836 | 237 | 06x | 15 6 N 3
118098 240567 | 6661 | 2187 243 81 31x 12 b 14
15 | 434815 153527 | 29524 | 10736 | 2268 | 711 | 166 | 45 | o 6 3 3
354294 72171 6561 2187 | 729+ | 243 81 27 15
16 1304445 | 434815 | 77217 | 29524 | 6643 | 2079 | 451 127 30 9 4 3 3
1062882« | 216513 | 19683 | 6561 729 297 | 243 54 18
measured either by codes was presented in [34]. Let us formulate it here for
) the case of mixed binary/ternary error-correcting codes. (See
> > max(0,d—d(c,c)) also [10] and [33], where the method is applied to mixed
ccC eC\{c} binary/ternary covering codes.)

Let A be ann, x ms binary matrix of rankn, and

(this worked well for largeZ and smallA/) or by let B be anns x mg ternary matrix of rankns. For two

Z max(0, c(z) — 1) words In($2, 373)7_9 = (y_27 y3) With @2, y» € F§27
= z3, ys3 € F3®, we define thalistance between and y using
A and B to be

wherec(z) measures the number of codewords close tnd
is chosen in such a way that the code has minimum distance d 4 g(z,y) = min{wt (t2) + wt (t3) | At2 = z2 — yo,
d if and only if ¢(z) < 1 for all = (this worked better for

small d). There is some freedom in the choice of the function

c(z). For oddd, sayd = 2¢ + 1, we took ¢(z) to be the it 4 ¢ F7 andt; € F'. As the matricesd and B have

number of codewords at distance at mestom x. For even rank, the distancely 5(z,y) is always defined. For a set
d, sayd = 2¢, we tookc(z) to be the number of codewords atys \words ¢ F22F2* we further define

distance at most — 1 from x plus K~ times the number of
codewords at distance from z, where K > |(n2 + n3)/ec]. dap(C)= min dyplcd).
(We took K = 10.) ’ e, €C,cste!
In order to avoid looping, a so-called tabu list—after which . ) . . .
this search method is called tabu search—containing (attribu@eg roposition 6.1 Let A be a parity-check matrix for a binary

of) reverses of recent moves is maintained. Moves in the tal jiear code with minimum distanag, let B be a parity-check

matrix for a ternary linear code with minimum distanée and
et C be a subset oF;?F3*. Then the code

Bt3 = xz3 —y3}

list are not allowed within a given numbér of steps.
Almost the same methods and programs were used ear

for finding covering code$32, 33]. W = {(ws,ws) € FU2F | (Awy, Bus) € O}

A. Searching for Codes with a Given Structure has minimum distancanin{d 5(C),ds,ds} and [W| =
Searching for codes by these methods becomes ineffectie —23ms—"3|(|.
if the codes are too large (fakf= 3, when there are more than In searching for codes using this approach, the following
about 100 codewords, for example). However, imposing sortea from [31] was used. First, we construct a family of
structure on the code allows us to search for larger codes.inequivalent matricesi and B with given parameters. Then
A method used by Kamps and Van Lint [21] and Blokhuishe computer search is carried out separately for all possible
and Lam [6] leads to codes that are unions of cosets of lineambinations of these matrices.
codes. This method was originally developed for covering Most of the codes given in Section V-G were found in this
codes. An analogous method that works for error-correctingpy.
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TABLE II-A
VALUES OF N(n2,n3,d) FORd = 2
d=21] 0 1 2 3 4 5 6 7 8 9
0 1 1 3 9 27 81 243 729 2187 6561
1 1 2 6 18 54 162 486 1458 4374 13122
2 2 4 12 36 108 324 972 2916 8748 26244
3 4 8 24 72 216 648 1944 5832 17496 52488
4 8 16 48 144 432 1296 3888 11664 34992 104976
5 16 32 96 288 864 2592 7776 23328 69984
6 39 64 192 576 1728 5184 15552 46656
7 64 128 384 1152 3456 10368 31104
8 128 256 768 2304 6912 20736
9 256 512 1536 4608 13824
10 | 512 1024 3072 9216
11 1024 2048 6144
12 | 2048 4096
13 | 4096
d=2| 10 11 12 13
0 19683 59049 177147 531441
1 39366 118098 354294
2 78732 236196
3 157464
TABLE II-B
VALUES OF N(n2,n3.d) FORd = 3
d=3 0 1 2 3 4 5 6
0 1 1 1 3 9 718 v38-487
1 1 1 2 6 12¢ 433 z71-96
2 1 2 4 9 29¢ 752-66 sb134-178%
3 2 3 6¢ 18 H49 44 9812652 264-343°
4 2 dg 12 28-33 72-88 7€186-243°  Ib486-631L2
5 4 8¢ ¥99° 54-65L 144-16742  #¢342-457° 948-1227°
6 8 16 238 44 Hy08-123° 288-3220X  648-863LX 1896 2332°
7 416 496 -30 72-85L2 192-230° 576-609°  £1296-1612L2 5379944435
8 208%  *50-60 144-160%%  384-417L%2  H1159¢ 169544-3110°
9 440 96-109L2 Hogg 2934  768-806L 7b1728-2131L2
10 72-76%  192-213L 512 556LX  1152-1536°
11 |4144-152 384 €832-104942
12 25688 Hrgg
13 512
d=3 7 8 9 10 11 12 13
0 99-144 243-3407 729-937% 2187-2811 6561-7029% 196831 TH59049
1 19824257 486-680 1458-1874  4374-4920% 13122-14058 39366
2 7396-484 972-1284%  2916-3514L  8748-9840 26244 26790%
3 ec684-902L  1944-246417 5832-6846° 17496-18589%
4 |*c1332-1749° 3888-4767%7 11664-12887L2
5 2592-3259LX 7776-9128°
6 5184 -6362°
VII. TABLES In [34] it was shown thatd;(16, 3) > 1062882 (using a

Tables of bounds on binary codes can be found in map@riation on Proposition 5.8).

Svanstdom [38] showed thatd;(15, 10) > 24, and Bitan
I — .g. I Table 9.1, p. 248]: ’
places—see, e.g., Conway and Sloane [9, Table 9.1, p asrld Etzion [5] improved this tol3(15, 10) > 27.

An improvement was given in [22]. In this paper we find thati3(6, 3) > 38, A3(10, 7) > 14,

fAnt early tablde off l:l)ountt;ls 0533(7?,@), thed.rrlaxm;lal size As(12, 7) > 51, As(13, 7) > 105, As(13, 8) > 42, and
of a ternary code of length and minimum distance, was As(14, 9) > 31 (see Section V-F).

given in [28]. Another table was given in Vaessens, Aarts, Concerning upper bounds, Mario Szegedy (personal com-

and van Lint [42]. We know of 19 improvements to the lattehunication) proved thatl;(7, 4) < 47 (cf. Lemma 4.7) and
table, and give an updated version in Table |. (We explajwiti perttula [35] showed thaﬂgzll 7) < 52.

only the entries that have changed, indicated by an asterisk.)n this paper we findds(7, 4) < 46, As(8, 4) < 138,
We omit the trivial entries 4(n, 1) = 3", and ifn > 0then 4,11 4) < 2561, A3(13, 4) < 3°, A3(14, 4) < 310 (see
Asz(n,2) = 3"~ and Az(n,n) = 3). Lemma 4.6) A3(8, 5) = 27, A3(9, 5) = 81, A3(11, 7) < 50,
The differences between Table | and the table in [42] aghd Az (14, 9) < 66 (by the linear programming bound, using
as follows. the analog of I(7) for this case).
Since ternary lineafl4, 8, 5] and[15, 6, 7] codes exist  Table Il gives lower and upper bounds ®i(n2, ns, d). We
([23], [26]), we haveds(14, 5) > 6561 andA3(15, 7) > 729. vary ny vertically andng horizontally.



158

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 1, JANUARY 1998

TABLE II-C
VALUES OF N(n2,n3,d) FORd = 4
d=4 0 1 2 3 4 5 6
0 1 1 1 1 3 6 Hepg
1 1 1 1 2 4 12 G33
2 1 1 2 3 8 22 #5166
3 1 2 3 6 15¢ 34-44 zegy 1941
4 2 2 ibg £]]€ 798-30 58-86L 144-242L
5 2 4 gd #90* 48-60 #€108-1674 288 -454L
6 4 8 16 734-40 96-120 zc908-319L6  576-863¢
7 8 16 2°96-30 64-80 192-230L2 384-609¢  461152-1612¢
8 116 204 48-60  128-160 °384-417¢ 768-1120L2
9 20 40 96-109¢ 256-293¢ b540-782L
10 B 72-76%  192-213¢ %°400-556¢
11 72-76 144-152  H384
12 | 7144-152 2564
13 “256
d=4 7 8 9 10 11 12 13
0 33-46%¢  V99-138 243-3407 729-937¢  1458-256177 ¥4374-70299 8019-19682°
1 66 92 162-242¢  486-680 972-1749%1  2916-4920¢ “8019-14058
2 108-1787  324-484  729-1272%1 1944 3498 *°5589.9777L!
3 216-343L1  486-9029 1296-2464¢  3726-6791L7
4 7c360-631¢ #°891-17497 2484 47671
5 | #612-1223L 7¢1674-32594
6 1152-2332¢
TABLE II-D
VALUES OF N(n2,n3,d) FORd = 5
d=5 0 1 2 3 4 5 6
0 1 1 1 1 1 3 1
1 1 1 1 1 2 3 8
2 1 1 1 2 3 6 Ty5e
3 1 1 2 3 =6 419 24-27
4 1 2 2 4 zge 18¢ 48-54
5 2 2 4 6¢ €]4¢ 33-36  96-108
6 2 3 6 12 T€94.98  66-72  144-216
7 2 4 zge 290-24 44-56 99 144 G234-432
8 4 7¢ 416¢ 32-48  #°82-112 156288
9 6l 12¢ 26-32 64-91%  2136-224
10 12 24 48-64  “128-170L2
11 24 438-48  *96-121%
12 3285 jrgg-gpl?
13 | VBgq
d=5 7 8 9 10 11 12 13
0 V10e 27 81 243 4729 729-1562% 12187-4163%
1 18°¢ 54 162 486 729 -1145% 1458-2984L
2 36 108 324 729-867% 972-21571
3 72 216 486-633L6 729-1567F
4 144 324-432  729-1153%1
5 216-288  486-850%1
6 | G342-576

A. Notes on Tables II-A to II-H

All unmarked upper bounds follow from Propositions 4.1,
4.3, or 4.4.

The entries in Table II-A are all given by Proposition 4.1(ii). G

Concerning Table II-D, the rows of a well-known orthogonal GH
array (L1g in [40, p. 1153]) form a1, 7, 5).5 code. In the H
second part of Table II-Bll lower bounds follow directly from

the extended ternary Golay code. kbp 9 the exact values Ha
are known. Ford = 10 we haveN(0, 13, 10) < 6 from the He
Plotkin bound, so all entries in the table are at m@gsand

follow directly from Proposition 4.4. J

Key to Table Il. Lower bounds:

Best code, see [2], [25].

From the ternary Golay code.

Generalized Hadamard matrix, see [28].

From the binary[15,11, 3] Hamming code, see Sec-
tion V-D.

From the Hadamard matrix of ordég.

Words of weight6 in the quaternary6, 3, 4], hexa-
code.

Julin code, see [20] or [29, ch. 2, Sec. 7].
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TABLE II-E
VALUES OF N(n2,n3,d) FORd = 6
d=6| 0 1 2 3 4 5 6
0 1 1 1 1 1 1 3
1 1 1 1 1 1 2 3
2 1 1 1 1 2 3 6
3 1 1 1 2 3 4 1
4 1 1 2 2 4 8 g
5 1 2 2 3 67 12¢ 33-36
6 2 2 3 6 ®12 22-24 C66-72
7 2 2 4 8 T18-24 44-48 799-144
8 2 4 o7 16 ©32-43L 66-96
9 1 67 129 G26-32 cag-77l
10 6 12 24 3861
11 12 24 7%38-48
12 |Heoa  32¢
13 32
d=6 7 8 .9 10 11 12 13
0 3 9 27 81 243 G729 72915627
1 6 18 54 162 486 729-1145¢
2 12 36 108 324 729-867¢
3 24 72 216 486-614L
4 48 144 324-4257
5 96 216-288
6 144-192
TABLE II-F
VALUES OF N(ny,ng,d) FORd = 7
d=7]0 1 2 3 1 5 6
0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 2
2 1 1 1 1 1 2 3
3 1 1 1 1 2 3 4
4 111 2 2 3 6
5 1 1 2 2 3 76 12
6 1 2 2 3 4 r9e  F17-24
7T |2 2 2 4 8 16° *24-45%4
8 2 2 4 6 *16  T20-32
9 2 3 4¢ r12 1826l
10 2 4 8 16-18
1m (4 6 127
12 4¢ €12
13 8
d=7] 7 8 9 10 11 12 13
0 3 3 67 714 18 936-5077 v51-138F  ¥105-363%
1 3 76 12 24-36  36-100 <78 251F
2 4 9P 41894 436 72 *58-182%
3 7P r16-18 ©26-48 *48-134L
4 | 714 72236 739-96
5 *20-28 *33-72
6 |"28-56
NR From the binary(15, 256, 5) Nordstrom—Robinson [ Linear code.
code. u From the(w, u + v) construction (Proposition 5.7).
TH Ternary[13,10,3]s Hamming code. x Explicit construction, see Section V-H.
V' From [42]. zc Explicit construction by taking a union of cosets, see
cy From a cyclic code, see Section V-F. Section V-G.
d Follows from lower bound for larged (Proposition
) ger (Prop Key to Table II. Upper bounds:
4.3(vi)).
4 Juxtaposition, see Section V-A. B5 See [4].
jb Juxtaposition, using two partitioned codes, see Sec- BB See [3]. (This also falls undet2.)
tion V-A. K See [22].
je Juxtaposition, using one partitioned code, see Section L Pure LP bound, using only the Delsarte inequalities.

jx

V-A.

L1 LP bound, with additional inequalities for words of

Juxtaposition plus additional words, see Section V-A. weight d, cf. Section lIl.
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TABLE 1I-G

VALUES OF N(na,n3,d) FORd = 8

o

8

9 10 11 12 13

7
1 3
2 3
3 4
3 6f
6 719
8¢ F18-24
4 =7l #14-16
6F 12¢
ey
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TABLE II-H [3]
VALUES OF N(ng,n3,d) FORd = 9

6 7 8 9 10 11 12 13 (4]
3 3 4 9 by

3 4 6" 18

3 6 12 [5]
rloP

. [6]

(7]
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o

[20]

b~
Q

LP bound, with the additional inequaliiL), (o =

2,4,5,6,7). H;}

LX LP bound, with several of the above mentione&1
additional inequalities.

LZ LP bound plus integrality, see Section III. (13]

P From the Plotkin bound.
Sz From Lemma 4.7. [14]
d Follows from upper bound for smaller(Proposition [15]
4.3(vi)).
¢ Exhaustive search. [16]
s By Lemma 3.1.
t By Lemma 4.6. [17]

Any improvements to the tables should be sent to the authors
by electronic mail, to aeb@cwi.nl, PatricOstergard@hut.fi, ¢fg)
njas@research.att.com.

[19]
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