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Bounds on Mixed Binary/Ternary Codes
A. E. Brouwer, Heikki O. Ḧamäläinen, Patric R. J.̈Osterg̊ard, Member, IEEE, and N. J. A. Sloane,Fellow, IEEE

Abstract—Upper and lower bounds are presented for the
maximal possible size of mixed binary/ternary error-correcting
codes. A table up to length13 is included. The upper bounds
are obtained by applying the linear programming bound to the
product of two association schemes. The lower bounds arise from
a number of different constructions.

Index Terms—Binary codes, clique finding, linear program-
ming bound, mixed codes, tabu search, ternary codes.

I. INTRODUCTION

L ET be the set of all vectors with binary
and ternary coordinates (in this order). Let

denote Hamming distance on. We study the existence of
large packings in , i.e., we study the function
giving the maximal possible size of a code in with

for any two (distinct) codewords .
The dual version of this problem, the existence of small
coverings in , has been discussed in [17] and [33]. Both
of these problems were originally motivated by the football
pool problem (see [16]).

We begin by describing the use of product schemes to get
upper bounds on , and then discuss various con-
structions and computer searches that provide lower bounds.
Among the codes constructed, there are a few (with )
that improve the known lower bounds for ternary codes.

The paper concludes with a table of for
. The first and fourth authors produced a version

of this table in 1995 (improving and extending various tables
already in the literature, for example, that in [24]). These
results were then combined with those of the second and
third authors, who had used computer search and various
constructions to obtain lower bounds (many of which were
tabulated by the second author already in 1991).

II. PRODUCTS OFASSOCIATION SCHEMES

Let and be two association schemes,
with and .
(For definitions and notation, see [7, ch. 2].) We get a new
association scheme , theproductof these two, by taking

for the point set, and
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, where, for and ,
we have if and only if and

.
It is trivial to verify that this product scheme indeed is an

association scheme. The intersection numbers are given by
, where , etc., and the dual intersec-

tion numbers by . The adjacency matrices are
given by , the idempotents by ,
and for the eigenmatrix and dual eigenmatrix (defined
by and ) we have

and .
Products of more than two schemes can be defined in an

analogous way (and the multiplication of association schemes
is associative).

Although product schemes are well known, we cannot find
an explicit discussion of their properties or applications. There
is a short reference in Godsil [15, p. 231] and an only slightly
longer one in Dey [11, Sec. 5.10.7]. (We wrote this in 1995.
In the meantime several other applications of product schemes
have come to our attention. See for example [18], [19], [30],
[36], and [37].) Another recent paper dealing with mixed codes
is [12].

Our interest in product schemes in the present context stems
from the fact that the set of mixed binary/ternary vectors with

binary and ternary coordinate positions does not, in
general, form an association scheme with respect to Hamming
distance, and so Delsarte’s linear programming bound cannot
be directly applied there. This was a source of worry to the
fourth author for many years. However, this set does have
the structure of a product scheme, and so a version of the
linear programming bound can be obtained for both designs
(cf. [37]) and codes.

The linear programming bound for codes in an arbitrary
association scheme can be briefly described as follows. If

(the code we want to study) is a nonempty subset of an
association scheme, we can define itsinner distribution by

, the average number of codewords
at “distance” from a codeword. Clearly, (if is the
identity relation), and . A one-line proof1 shows
that one has (that is, for all ), and thus
we obtain the linear programming bound

and

The upper bound obtained this way will be referred to as the
“pure LP” bound. As we shall see, slightly better results can

1Let � be the characteristic vector ofC. Then, sinceEj is idempotent

jCj(aQ)j = jCj
i

aiQij =
i

Qij�
>Ai� = �>Ej� = jjEj�jj

2 � 0:
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sometimes be obtained by adding other inequalities thatis
known to satisfy.

A. The Hamming Scheme

Of course, the usual Hamming scheme also carries
the structure of a product scheme, for , and it is
sometimes useful to study nonmixed codes using this product
scheme setting, getting separate information on the weights in
the head and in the tail of the codewords, as in the split weight
enumerator of a code (cf. [29, pp. 149–150]).

Consider the Hamming scheme as being
obtained from the product of and by merging
all relations with into one relation . We
have

and

for any pair with . Indeed, the first holds
by definition, the second follows from the third, and the third
follows as soon as we have shown that the right-hand side
does not depend on the choice of the pair . But that
follows by viewing all three association schemes involved as
merged versions of powers of : we must show that

for any - vector with . However, since such
vectors are equivalent under the symmetric group on the
coordinates, the right-hand side is independent of, and the
equality follows.

Here we did not need to actually compute the, but since
in we have

it follows immediately that in

The “detailed” linear programming bound obtained in the
above manner always implies the “ordinary” linear program-
ming bound: given any solution of the detailed system

for all

it follows by summing over the pairs with
that , where, of course, .

Conversely, given any solution of the ordinary system
, we find a solution of the detailed system by

letting

for all

Indeed, this follows if we again go “to the bottom,” express
everything in terms of , and use the symmetric group
on the coordinates.

Thus the two systems are equivalent over. However, the
detailed system can be useful i) if it is known that the
are integral, e.g., because is linear, or ii) when one can
add further constraints, e.g., because one has information on
a residual code. Jaffe [19] has recently obtained a number of
new bounds for binary linear codes by recursive applications
of this approach.

III. COMPARISON WITH EARLIER

RESULTS AND THE CASE

A. Counting

In the final section we give tables of upper and lower bounds
for codes in the mixed binary/ternary scheme. A table with
upper bounds was given in Van Lint Jr. and Van Wee [24]. Pure
linear programming agrees with or improves all the values in
their table with four exceptions, namely the parameter sets

, where
[24] gives while the pure LP bound
yields the upper bounds respectively.
The upper bound used in these cases in [24] is due to Van
Wee [43, Theorem 17], and states that if , , and

, then , where ,
and if is even or if is
odd.2 In fact, a stronger result is true.

Proposition 3.1: If , and is even or , then
.

Proof: Let be a code. Count paths
with , , , where
is nonzero at a binary coordinate position ifis even, and at a
ternary coordinate position if is odd. Put if is even,
and if is odd. For we have choices; given
there are choices for ; given and there is at least one
choice for . The number of paths is, therefore, at least. On
the other hand, there are at most choices
for , and given there are at most choices for , so
the number of paths is at most .

In the four cases mentioned, this yields the bounds
respectively. We shall see below (in

Proposition 5.10) that the last mentioned bound in fact holds
with equality.

B. Linear Programming with Additional Inequalities

The preceding results were obtained by studying what hap-
pens close to the code. In general, one should obtain at least
as strong results by adding analogous constraints on the
with small to the linear program (note that we change
notation here from what is usual in association scheme theory
to what is common in coding theory, and write where the
previous section had ).

2Gerhard van Wee has pointed out to us that there is a typographical error
in the statement of this bound in [43, Theorem 17]. The bound given here
(which follows at once from [24, Theorem 9]) is the correct version.
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What are the obvious inequalities to add when ?
Well, no two words of weight can agree in two nonzero
coordinates, so we have a packing problem for triples in a

-set, with a prespecified matching of size, where
the triples may not cover any edge of the matching. The
extra inequalities are found by counting triples, point-triple
incidences, and pair-triple incidences. Starting with the latter,
there are

pairs in the binary set, available pairs in the ternary
set, and pairs between the two sets. This yields the
inequalities

Next, counting point-triple incidences, we find

Finally, counting triples, we obtain

where with and
. Of course, the last three inequalities

only contribute when rounding down occurs.
As a test case, let us compute the improved LP bound in the

four cases mentioned above. We find
respectively. This improves the pure LP bound (of course),
and three of the four bounds from [24]. However, Proposition
3.1 is stronger—it really encodes information about distance
, and we would have to add inequalities involving with

to approach or beat it.
Precisely the same ideas work for larger. We have

for and all , where is the maximal
number of words of constant weight and mutual distance

with binary and ternary coordinates. A bound for
can be computed from the starting values

if
if

and the induction

(if ). (The inequalities given earlier for are special
cases of those obtained here.) Occasionally also

(if ) might be useful.

C. Further Inequalities

The inequalities discussed above described constraints on
what happens close to a given codeword. We can also add
constraints on the words that differ from a given word in
(almost) all binary and/or ternary coordinates. First of all we
have

(L2)

where .
For a property , let if holds, and

otherwise. If and , we have

if
if
if

This can be captured in one inequality:

(L4)

where are the above minima.
If and , then we have

if
if

This can be captured in one inequality:

(L5)

where is the above minimum.
Known bounds on (the maximal size of a binary

code of length and minimum distance) can be used:

and (L6)

More precise information about and can
sometimes be obtained using Plotkin’s argument (cf. [29, ch.
2], [28], and Proposition 4.2 below). Instead of presenting the
somewhat messy general details, we give here only the extra
inequality used to show , which is

(L7)

Suppose there are words of weight and words of
weight , and write . The sum of all distances

between thesewords is at least . On the other hand, each

column (coordinate position) without a contributes at most
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, and each adds at most to this (namely,
when it is the only in the column). Thus we have

For each given , this yields an upper bound on (when
), and itself is then bounded by (when

). We now find an inequality
which is satisfied by all pairs found. This argument can
be sharpened a little by noticing that if equality holds in this
Plotkin bound, then every pair of codewords are at the same
distance apart. This is impossible if and is odd.

Sometimes one can make use of the fact that must
be an integer. For example, pure linear programming gives

, with an optimal solution that mentions
. However, if , then either

or .
But in both cases adding the extra inequality to the program
gives . It follows that . See also
Lemma 4.6.

IV. FURTHER BOUNDS

It is easy to determine for very small or
very large . (We shall always assume that and are
nonnegative, and that is positive, and all three are integral.)

Proposition 4.1:

i)

ii)
if
if
if

iii) If , then .

iv)
if
if

v)
if
if and

see table otherwise.

It is easy to give an explicit description of the codes
achieving these bounds.

Below we shall see that for very small codes the Plotkin
bound describes the situation completely. Let us state the
Plotkin bound in our case.

Proposition 4.2 (“Plotkin bound”): If ,
then

where . When equality holds, any
code is equidistant.

We omit the proof, which is analogous to that for the binary
case. (A slightly incorrect3 version of this bound for pure
ternary codes was given in [28].)

Given a code, there are various obvious ways of deriving
other codes from it.

Proposition 4.3: For nonnegative and we have:

i) .

ii) .

iii) .

iv) .

v) .

vi)
and .

(The inequalities and
follow from i), iii) and ii), iv), respec-

tively.)
We know precisely where the very small values of

will occur.
Proposition 4.4:

i) precisely when .

ii) precisely when .

iii) precisely when .

iv) precisely when

or

or

or

for some .

v) In all other cases, .

Proof: The upper bounds follow from the Plotkin bound,
the lower bounds from juxtaposition (see below). All the
necessary ingredients for making these codes exist, except in
the explicitly listed cases under iv), where we cannot find
codes of size or , even though the Plotkin bound would
permit them. Why are these codes impossible? In the cases

and
a code of size or would have equality in the Plotkin
bound, hence would be equidistant. Since , we
can make the ternary coordinate positions binary by selecting
a subcode of size at least. But in a binary Hamming
space, an equilateral triangle has an even side. This eliminates

and .
The case does not occur since
shortening would yield a code. In
this latter code, at most two distances differ from , so we
can again throw out two codewords and obtain an equilateral
triangle of odd side.

3For example, the bound in [28] givesN(0; 6; 5) � 3, whereas in fact
N(0;6; 5) = 4.
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Sometimes it is possible to show that a code cannot be
obtained by truncation (as in Proposition 4.3 vi)). For example,
if a code of minimum distance is obtained by removal of
a binary (ternary) coordinate position in a code of minimum
distance , then the distance- graph on its codewords
does not contain a triangle ( , respectively). In the lemma
below an integrality argument is used. First we need some
preparation.

The following result may be well-known. The proof is
almost identical to the proofs for the binary case in [3].

Proposition 4.5: Let . Any -ary -error-correcting
code of length has size at most , and the
inner distribution of any code meeting this bound is uniquely
determined. In particular, this holds for any code with the
parameters of the singly shortened perfect-ary Hamming
code.

Proof: For the -ary Hamming scheme of length we
have , , and

Assume that . Then
. Now let be

a -ary code of length , minimum distance , and size
, and with inner distribution . Let

. Then, since and ,
we find

so that . If equality holds, then
for , and

hence, by [3, Corollary 3.1], the inner distributionis uniquely
determined.

Lemma 4.6: .
Proof: We prove more generally that no ternary code

with the parameters of a singly shortened Hamming code of
word length , where , is the truncation of a
distance- ternary code.

By the above proposition and [3, Theorem 4.2.5], it follows
that the inner distribution of any code with

is uniquely determined. Doing the computation, we find
. But then is not an

integer, contradiction.
Finally, the following special upper bound follows from an

argument mostly due to Mario Szegedy (personal communi-
cation).

Lemma 4.7: .
Proof: Let be a code, and construct a

bipartite graph with two sets of nodes, one set labeled
and the other labeled . To

each node we associate the set consisting of the
84 vectors in at distance exactly from , and to
each we associate the set consisting of the nine vectors

with . We also define three kinds of edges:
(with and ) is joined to by a

blue edge if , by a red edge if , and by a
white edge if . Then is , , or in the
three cases. It is easy to see that: i) each nodeis incident with

exactly one blue edge, 10 red edges, and 40 white edges; ii)
the possibilities for blue and red edges meetingare just the
following: one blue edge and no red edges (there are exactly

such nodes ), no blue edges and 0, 1, 2, or 3 red edges
(we denote the numbers of such nodes by, , , and ,
respectively). Let there be , , and blue, red, and
white edges, respectively.

We will evaluate the sum

in two ways. On the one hand, each contributes 84, so
that the sum is equal to . On the other hand, let us group
the terms in the sum according to the number of blue and
red edges meeting. A small clique-finding program shows
that in the five cases mentioned, there are at most 8, 13, 12,
8, and 6 white edges at. [We may take . Let be
the set of vectors where has weight . (These are the
words that will get a white edge to if they are in .) If
meets a blue edge, we may assume that . Otherwise,
if meets red edges, we may assume that the firstof

are in . Now find the largest
subset of with all mutual distances, and all distances to the
known codewords at least.] This means that in the five cases
mentioned, the sum

is at most . We can
also compute the total contribution of all vectorsincident
with a blue edge in a different way. These vectorscontribute

plus the number of pairs (white edge, blue edge) incident
on the points of . This latter number equals the number of
ordered pairs of codewords with .
And this equals the number of unordered pairs of red edges
incident on the points of , that is, .

Altogether we have found the following system of
(in)equalities:

Combining these with coefficients and yields

so that .

V. CONSTRUCTIONS

A. Juxtaposition

Let be a partition of a code ,
and a partition of a code . Let

denote the code consisting of all codewords
with and , for ,

where here denotes concatenation (juxtaposition). The size of
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this code is (which is equal to if
all have the same size and ). Its minimum distance is
at least (where,
of course, denotes the minimum distance of a code).
This construction is indicated by in the tables below. (It is
essentially Construction X4 of [29, p. 584].)

The partition of will often be a partition into translates
of a subcode of . In this case we write instead of

.
Let denote a mixed code with binary and

ternary coordinates, minimum distance, and codewords.
Let denote a -ary linear code of length, dimension

, and minimum distance, where we omit if .
The following are examples of the juxtaposition construc-

tion:

i) because of

ii) from

iii) from

iv) from

where for an even weight
code4 , where is a set of nine even-

weight vectors with all pairwise distancessuch as
.

v) (and hence ). In-
deed, we construct where

for some code
contained in the zero-sum ternary code

, where is a set of at least eight vectors in with
pairwise distance at most. In fact, it is easy to find
a of size : take .
One way to construct is to take the 18 words of
weight in the hexacode given in [9, p. 82, eq. (64)],
and rename the symbols (from to ). Then

contains the three multiples of, and 15 words
with symbol distribution , so that it is contained
in . For later use we remark that is invariant
under translation by (since the hexacode is invariant
under multiplication by ), so that we have a partition

.

For further examples, see also Section V-B below.
If is the partition into singletons, we write instead of

. This construction is indicated by in the tables. (It is
[29, p. 581, Construction X ].) Examples:

i) .
ii) .

iii) .
iv) .

4See [2], [29, p. 57], and [9, p. 140].

v) .
(There is a binary constant weight code with length

, weight , minimum distance , and size [8]; but
any such code has distance distribution ,
and so can be partitioned into codes.)

vi) .
vii) .

viii) .

If is also the partition into singletons, we have ordinary
juxtaposition (pasting two codes side by side, as in [29, p. 49]).
This construction is indicated by in the tables. Its main use
is the construction of codes of sizeor and large minimum
distance (cf. Proposition 4.4). We do not list all applications.
Examples are:

.
.

.

.

Sometimes it is possible to adjoin further words after
performing the juxtaposition construction. The Steiner system

is a binary code of length , constant weight ,
minimum distance , and size . It has a partition into six

Hadamard codes. So

Adding and shows . If we shorten once
or twice before adding and , we find
(hence ) and . (The
code must not contain or .)

To see why this partition of the Steiner system exists, we
remark that the extended ternary Golay code has 24 words
of weight , and if we normalize so that and are in
the code, then the other 22 words form a Hadamard code.
Adding we see that the places where these 22 words take
a fixed value are the supports of codewords of weight, that
is, belong to . This produces one Hadamard code
inside . Its stabilizer in is , of index
, so we find six pairwise disjoint copies.

B. Partitions of Zero-Sum Codes

As a special case of the juxtaposition construction, suppose
is an code with a partition into eight parts,

each with minimum distance (at least). Then
is an code. In this way

we find , ,
, and using , ,

, and codes with appropriate parti-
tions.

Motivated by this construction, we investigate distance-
codes and their partitions into distance-codes. As a

consequence, we will show that ,
, , and .

Lemma 5.1:Let . There is (up to translation and sign
change at some coordinate positions) a unique code

with , namely, the code consisting
of the words with zero coordinate sum. (In other words, any
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code is of the form
for some “parity-check” vector and .)

Proof: Induction on . For the statement is obvious.
Assume . By induction we may assume that the subcode
of consisting of the words ending in is a zero-sum code.
If and (for some ), then
precisely one of , , occurs in , but not , and
only if . Consequently, if and
and then if and only if . But
the distance- graph on the nonzero-sum vectors in is
connected, so a single choice determines all of. By a sign
change in the last coordinate, if necessary, we can force one
zero-sum vector that ends inor , and then is the zero-sum
code.

For optimal codes with the classification is
much more messy, and we shall not try to write down the
details.

Parts of a partition of an optimal code into distance-
codes are often smaller than arbitrary codes. Indeed,

contrast , ,
with the following result.

Lemma 5.2:

i) Any zero-sum code has , and there
is (up to coordinate permutation and translation by
a zero-sum vector) a unique optimal code, namely

.
ii) Any zero-sum code has ,

and there is a unique optimal code, namely
, where denotes the

five codewords obtained from by cyclic coordinate
permutations.

iii) Any zero-sum code has , and there
is a unique optimal code, namely

.

These codes can be found inside the ternary Golay code
: let be a codeword of weight with support . Pick the

33 words of that have weight at most on and discard
the coordinate positions in to get a zero-sum
code. If is the extended (self-dual) ternary Golay code, and

, then taking the 33 words of that have weight
at most on and deleting the coordinate positions in
we get a code after arbitrarily changing the check
position in the three codewords where it is. Consequently,

. (In fact, , since exhaustive
search shows that .)

Lemma 5.3: .
Proof: Let . Let be a zero-

sum code. Then the six translates for
are pairwise-disjoint. Thus we can construct

Lemma 5.4: .
Proof: Let . Let be a zero-

sum code. Then the six translates for
are pairwise-disjoint. We can add the (nonzero-sum) word

to and obtain a partition of a code into

six distance- codes. Now the required code is constructed as

Lemma 5.5:The zero-sum code has a partition
into eight distance- codes.

Proof: Take of size
, and seven codes of size , namely

where is the cyclic coordinate permutation.
As a consequence we find , as announced.
Lemma 5.6: .

Proof: Let be the partition constructed in the previous
lemma. Then

Note that the former ingredient exists: we can construct
as , and then use trans-

lates by the eight coset leaders of .
We have not found a partition of the zero-sum

code into eight distance-codes, but can come close. First
notice that a partition of a zero-sum code into
distance- codes that are invariant under translation byis
equivalent to a partition of a zero-sum code into
codes in which the distancesand do not occur.

Thus we find a partition of a zero-sum code from

As a consequence we find .
Shortening this yields a good partition of a code.

An explicit code does slightly better. The code below is a
good partition of a code, and if we delete the
words that have a at the second position, we obtain a
good partition of a code. (This last one is optimal:

.) As a consequence we find
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and .

C. The Construction

Given two codes and , consider the code whose
codewords are , for , . (Here must
act coordinatewise, and satisfy , and

when . In particular, there is no problem
adding binary and ternary coordinates—just view them all
as ternary coordinates.) By calculating the parameters of the
resulting code (cf. [29, p. 76]) we obtain

Proposition 5.7: for

and

For example,

There are similar constructions that combine more than two
codes. For example, given three mixed binary/ternary codes

, , and , consider the code whose codewords are

, where the coordinate positions that
and have in common are interpreted as ternary coordinates.
We obtain

Proposition 5.8:

for

and

where .
If is not even, or not a multiple of , then small

modifications are slightly more efficient. For example, we find

by taking for
. (Giving the two copies of a common coordinate

position results in instead of in the expression for
the minimum distance.)

D. Constructions from the Binary Hamming Code

The following result is useful for constructing codes with
minimum distance or .

Proposition 5.9: Let be an code and assume
that is a vector of weight on the binary coordinates and
weight on the ternary coordinates such that . Then
we can construct an code with
by taking three of the four patterns , , , on the
support of , and replacing them by ternary symbols, , .

Since the binary Hamming code is perfect (and
linear), it is a good starting point for constructions.

The picture below shows the distribution of codewords in
the binary Hamming code with respect to five
codewords of weight with pairwise-disjoint
supports. The rows are numbered fromto . Each left son in
row gives the number of codewords counted by its father that
have the pattern on the support of , the right son gives
the number of codewords with one of the patterns, ,
or . Thus the entry for the father is twice the sum of the
entries for the sons. For rows 1, 2, 3 the entries are determined
because the positions are independent, and all patterns occur
equally often. For rows 4 and 5 the zero entries are caused by
the fact that has minimum distance, and they determine
the remaining entries.

We now start with and repeatedly apply Proposition 5.9,
obtaining codes showing that ,
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, , , and .
That was shown earlier by Karl-G̈oran
Välivaara.

A similar construction can be used starting from the
extended binary Hamming code . Let be a

codeword of weight , and replace the four binary coordinate
positions in its support by two ternary positions, replacing

by
respectively. We see that so
that . (In fact, equality holds in both cases
since .)

Proposition 5.10: .
Proof: The upper bound follows from Proposition 3.1.

The lower bound can be established using the juxtaposition
construction , where is a
partition of the zero-sum code into eight distance-

codes. (Such a partition is equivalent to a perfect one-
error-correcting code with one octal coordinate, eight binary
coordinates, and 128 codewords.) The partition can be
obtained using the construction of Section V-B in reverse. Let

be the set of coordinate positions of. Fix a codeword
of weight in , and let be its support. We find the

code by discarding the coordinate positions in
. The discarded tails of a codeword form a coset

of the code formed by the codewords of with
support in , and we can define the partition by letting
the eight parts correspond to the eight cosets of.

E. Constructions from the Ternary Golay Code

Most of the lower bounds for and are derived
from the extended ternary Golay code. We saw in
Section V-B how to obtain using this code.

Lemma 5.11: , , and
.

Proof: Take the extended ternary Golay code
and let be the support of some codeword of weight

. There are 3, 0, 6, 6, 18, 30, and 66 codewords whose
support meets in a given subset of size and

(respectively). Taking the 66 codewords that do not vanish
on , we see that . If we pick two or three
more positions outside , and require that the codewords
do not vanish there either, we find and

.
Lemma 5.12: .

Proof: Take the ternary Golay code . In the
last two coordinates replace each ternary digit by two binary
digits (e.g., replace by ). Discard all words
that have a in either of the first two coordinates. We now
have a code . There are precisely 36 words
at distance from (all ending in ), forming four
cosets of the subcode of consisting of the codewords
that are on the first two and the last two coordinates.
The four cosets are permuted transitively by the four-group
generated by multiplication by and the element of

that interchanges the first two coordinates and fixes the
last two, so that there are three different ways of taking the
union of two cosets. These unions have minimum distances

(corresponding to respectively). Taking this

latter union together with yields the required code of size
.

Lemma 5.13: .
Proof: Take the ternary Golay code , chosen

in such a way that is a codeword. In the
last two coordinates replace each ternary digit by two binary
digits (e.g., replace by ). Discard all words
that have a in one of the first three coordinates. We now
have a code . There are precisely 54 words at
distance from (all ending in ). Inspection using
a small clique-finding program shows that there is a set of 18
(invariant under negation and under translation by) among
these 54 that have mutual distances at least. Adding these
to yields the required code.

F. Some Cyclic Codes

Let be the smallest length ternary code which is
invariant under translation by and under cyclic coordinate
permutations, and which contains the vector .
Let . Both are equidistant codes, and

is a code. If we now replace the first
coordinate of all words in by and in by , we get a
code with minimum distance , so .

Let be the smallest code which is invariant under
negation and under translation by, and contains

Then is a code.
We construct a code proving that by

taking and adding the words from , each prefixed by a.
The code already improves the old bound
, but we can do even better. Indeed, we find
by taking the smallest cyclic code containing

Similarly, we get from the smallest cyclic
code containing

Finally, one obtains from the smallest
cyclic code containing

G. Constructions Using a Union of Cosets

We give the codes in humanly readable format, and the coset
leaders in compressed format: the binary part in hexadecimal,
the ternary part in base, both right-justified. If the linear code
is the direct sum of a binary part of dimensionand a ternary
part of dimension , then we arrange the code generators so
that there is a binary identity matrix of orderin front, and
a ternary identity matrix of order at the back, and the coset
leaders are zero on these positions, so that we need give
only the remaining coordinates.
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(i) . Use 52 cosets of a-dimensional binary code.

matrix cosets

(ii) . This improves the bound found by Seppo Rankinen. Use 62 cosets of a
-dimensional ternary code.

matrix

cosets

(iii) . Use 57 cosets of the direct sum of a-dimensional ternary code and a-dimensional binary code.

matrix
cosets

(iv) . Use 76 cosets of a-dimensional ternary code.

matrix

cosets

(v) . Use 74 cosets of the direct sum of a-dimensional ternary code and a-dimensional binary code.

matrix
cosets

(vi) . Use 13 cosets of a-dimensional binary code.

matrix cosets

(vii) . Use 25 cosets of a-dimensional binary code.

matrix
cosets
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(viii) . Use 54 cosets of a-dimensional binary code.

matrix

cosets

(ix) . Use 52 cosets of a-dimensional binary code.

matrix
cosets

(x) . Use 17 cosets of a-dimensional ternary code.

matrix
cosets

(xi) . Use 29 cosets of a-dimensional ternary code.

matrix
cosets

(xii) . Use 40 cosets of a-dimensional ternary code.

matrix
cosets

(xiii) . Use 34 cosets of the direct sum of a-dimensional ternary code and a-dimensional binary code.

matrix cosets

(xiv) . Use 33 cosets of a-dimensional ternary code.

matrix cosets

(xv) and . Use 23 cosets of a-dimensional ternary code to find .
Discarding all codewords with or or , we find .

matrix

cosets
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(xvi) . Use 12 cosets of a-dimensional binary code.

matrix cosets

(xvii) . Use 41 cosets of a-dimensional binary code.

matrix
cosets

H. Explicitly Presented Codes
In this section we give a number of codes for which we have no better description than to simply list all the words.

These were found by a variety of techniques: by hand, by exhaustive search, by clique-finding using a number of different
programs, or by heuristic search procedures like those described in Section VI.

The first few codes are given explicitly.
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The remaining codes are given in the compressed format
where the binary portion is in hexadecimal and the ternary
portion in base , both right-justified.

(i) . This improves the bound
found by Mario Szegedy.

(ii) .

(iii) .

(iv) . A code proving has
been published in Norway (see [41]) as a football pool
system.



BROUWER et al.: BOUNDS ON MIXED BINARY/TERNARY CODES 153

(v) . This improves an earlier bound
found by Lohinen [27], and by

Vaessenset al. [42].

(vi) . This improves an earlier bound
by Seppo Rankinen (personal com-

munication).

(vii) (found by Mario Szegedy, personal
communication).

(viii) .

(ix) .

(x) and . The former
is given explicitly, the latter follows by discarding the

words ending in .

(xi) .
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(xii) .

(xiii) .

(xiv) .

(xv) .

(xvi) .

(xvii) .

(xviii) .

(xix) .

(xx) .

(xxi) .
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(xxii) .

(xxiii) .

(xxiv) .

(xxv) .

(xxvi) .

(xxvii) .

(xxviii) .

(xxix) .

VI. HEURISTIC SEARCHES

Given parameters , , , and , we search for mixed
binary/ternary codes of size , with binary and ternary
coordinate positions, and minimum Hamming distance. For
very small parameters an exhaustive search is possible. For
slightly larger parameters we employed tabu search [14]. Let

be the set of all codes satisfying the requirements except
possibly that on the minimum distance, that is, the set of all-
subsets of . Starting with an arbitrary
we do a walk on in the hope of encountering a
with minimum distance . Each step goes from a codeto a
neighbor , that is, to a code obtained from by replacing
a single codeword by one that is at Hamming distance. We
choose the best neighbor, where the badness of a codeis
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TABLE I
VALUES OF A3(n; d)

measured either by

(this worked well for large and small ) or by

where measures the number of codewords close toand
is chosen in such a way that the code has minimum distance

if and only if for all (this worked better for
small ). There is some freedom in the choice of the function

. For odd , say , we took to be the
number of codewords at distance at mostfrom . For even

, say , we took to be the number of codewords at
distance at most from plus times the number of
codewords at distance from , where .
(We took .)

In order to avoid looping, a so-called tabu list—after which
this search method is called tabu search—containing (attributes
of) reverses of recent moves is maintained. Moves in the tabu
list are not allowed within a given number of steps.

Almost the same methods and programs were used earlier
for finding covering codes .

A. Searching for Codes with a Given Structure

Searching for codes by these methods becomes ineffective
if the codes are too large (for , when there are more than
about 100 codewords, for example). However, imposing some
structure on the code allows us to search for larger codes.

A method used by Kamps and Van Lint [21] and Blokhuis
and Lam [6] leads to codes that are unions of cosets of linear
codes. This method was originally developed for covering
codes. An analogous method that works for error-correcting

codes was presented in [34]. Let us formulate it here for
the case of mixed binary/ternary error-correcting codes. (See
also [10] and [33], where the method is applied to mixed
binary/ternary covering codes.)

Let be an binary matrix of rank and
let be an ternary matrix of rank . For two
words with

we define thedistance between and using
and to be

with and . As the matrices and have
full rank, the distance is always defined. For a set
of words we further define

Proposition 6.1: Let be a parity-check matrix for a binary
linear code with minimum distance , let be a parity-check
matrix for a ternary linear code with minimum distance, and
let be a subset of . Then the code

has minimum distance and
.

In searching for codes using this approach, the following
idea from [31] was used. First, we construct a family of
inequivalent matrices and with given parameters. Then
the computer search is carried out separately for all possible
combinations of these matrices.

Most of the codes given in Section V-G were found in this
way.



BROUWER et al.: BOUNDS ON MIXED BINARY/TERNARY CODES 157

TABLE II-A
VALUES OF N(n2; n3; d) FOR d = 2

TABLE II-B
VALUES OF N(n2; n3; d) FOR d = 3

VII. T ABLES

Tables of bounds on binary codes can be found in many
places—see, e.g., Conway and Sloane [9, Table 9.1, p. 248].
An improvement was given in [22].

An early table of bounds on , the maximal size
of a ternary code of length and minimum distance, was
given in [28]. Another table was given in Vaessens, Aarts,
and van Lint [42]. We know of 19 improvements to the latter
table, and give an updated version in Table I. (We explain
only the entries that have changed, indicated by an asterisk.)
We omit the trivial entries ( , and if then

and ).
The differences between Table I and the table in [42] are

as follows.
Since ternary linear and codes exist

([23], [26]), we have and .

In [34] it was shown that (using a
variation on Proposition 5.8).

Svanstr̈om [38] showed that , and Bitan
and Etzion [5] improved this to .

In this paper we find that
and

(see Section V-F).
Concerning upper bounds, Mario Szegedy (personal com-

munication) proved that (cf. Lemma 4.7) and
Antti Perttula [35] showed that .

In this paper we find
(see

Lemma 4.6)
and (by the linear programming bound, using
the analog of (L ) for this case).

Table II gives lower and upper bounds for . We
vary vertically and horizontally.
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TABLE II-C
VALUES OF N(n2; n3; d) FOR d = 4

TABLE II-D
VALUES OF N(n2; n3; d) FOR d = 5

A. Notes on Tables II-A to II-H

All unmarked upper bounds follow from Propositions 4.1,
4.3, or 4.4.

The entries in Table II-A are all given by Proposition 4.1(ii).
Concerning Table II-D, the rows of a well-known orthogonal
array ( in [40, p. 1153]) form a code. In the
second part of Table II-Eall lower bounds follow directly from
the extended ternary Golay code. For the exact values
are known. For we have from the
Plotkin bound, so all entries in the table are at most, and
follow directly from Proposition 4.4.

Key to Table II. Lower bounds:

Best code, see [2], [25].
From the ternary Golay code.
Generalized Hadamard matrix, see [28].
From the binary Hamming code, see Sec-
tion V-D.
From the Hadamard matrix of order .
Words of weight in the quaternary hexa-
code.
Julin code, see [20] or [29, ch. 2, Sec. 7].
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TABLE II-E
VALUES OF N(n2; n3; d) FOR d = 6

TABLE II-F
VALUES OF N(n2; n3; d) FOR d = 7

From the binary Nordstrom–Robinson
code.
Ternary Hamming code.
From [42].
From a cyclic code, see Section V-F.
Follows from lower bound for larger (Proposition
4.3(vi)).
Juxtaposition, see Section V-A.
Juxtaposition, using two partitioned codes, see Sec-
tion V-A.
Juxtaposition, using one partitioned code, see Section
V-A.
Juxtaposition plus additional words, see Section V-A.

Linear code.
From the construction (Proposition 5.7).
Explicit construction, see Section V-H.
Explicit construction by taking a union of cosets, see
Section V-G.

Key to Table II. Upper bounds:

See [4].
See [3]. (This also falls under .)
See [22].
Pure LP bound, using only the Delsarte inequalities.
LP bound, with additional inequalities for words of
weight , cf. Section III.
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TABLE II-G
VALUES OF N(n2; n3; d) FOR d = 8

TABLE II-H
VALUES OFN(n2; n3; d) FOR d = 9

LP bound, with the additional inequality
.

LP bound, with several of the above mentioned
additional inequalities.
LP bound plus integrality, see Section III.
From the Plotkin bound.
From Lemma 4.7.
Follows from upper bound for smaller(Proposition
4.3(vi)).
Exhaustive search.
By Lemma 3.1.
By Lemma 4.6.

Any improvements to the tables should be sent to the authors
by electronic mail, to aeb@cwi.nl, PatricOstergard@hut.fi, or
njas@research.att.com.
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