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ABSTRACT

Motivation: High-throughput perturbation screens measure the
phenotypes of thousands of biological samples under various
conditions. The phenotypes measured in the screens are subject to
substantial biological and technical variation. At the same time, in
order to enable high throughput, it is often impossible to include a
large number of replicates, and to randomize their order throughout
the screens. Distinguishing true changes in the phenotype from
stochastic variation in such experimental designs is extremely
challenging, and requires adequate statistical methodology.
Results: We propose a statistical modeling framework that
is based on experimental designs with at least two controls
profiled throughout the experiment, and a normalization and
variance estimation procedure with linear mixed-effects models.
We evaluate the framework using three comprehensive screens of
Saccharomyces cerevisiae, which involve 4940 single-gene knock-
out haploid mutants, 1127 single-gene knock-out diploid mutants
and 5798 single-gene overexpression haploid strains. We show
that the proposed approach (i) can be used in conjunction with
practical experimental designs; (ii) allows extensions to alternative
experimental workflows; (iii) enables a sensitive discovery of
biologically meaningful changes; and (iv) strongly outperforms the
existing noise reduction procedures.
Availability: All experimental datasets are publicly available at
www.ionomicshub.org. The R package HTSmix is available at
http://www.stat.purdue.edu/∼ovitek/HTSmix.html.
Contact: ovitek@stat.purdue.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Perturbation screens (Boutros and Ahringer, 2008; Forsburg, 2001)
subject model organisms to stresses that are external (e.g. heat shock
or chemical treatments) or genetic (e.g. disruption or deletion of
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genes). A variety of phenotypes can be measured in association with
the stresses. These can be univariate phenotypes such as cell growth
rate or activity of a reporter gene, low-dimensional phenotypes
such as cellular morphology or high-dimensional phenotypes such
as gene expression or protein abundance. When conducted on a
genome-wide scale, perturbation screens provide invaluable insight
into the function of living organisms (Markowetz, 2010; Markowetz
and Spang, 2007). They are increasingly used in functional
biology (Boone et al., 2007; Gstaiger and Aebersold, 2009), and
in biomedical (Ideker and Sharan, 2008) and biopharmaceutical
research (Bharucha and Kumar, 2007).

The throughput of genome-wide screens is a primary concern
in these investigations. Since it can take weeks and sometimes
months to measure the phenotypes, it is often impossible to fully
implement the fundamental principles of statistical experimental
design. In particular, the screens can incorporate little replication,
and a full randomization of the order of the replicates is often
impractical. At the same time, the measured phenotypes are subject
to large variation, which is due to both natural between-sample
variation, and technical variation in the sample handling and
measurement procedures. The problem is compounded by changes in
experimental characteristics (e.g. instruments, labor, reagents) that
are unavoidable in large-scale screens. Interpretation of the screens
is, therefore, a key and non-trivial step, which must take the specifics
of the experiments into account.

In this article, we propose a statistical modeling framework for
accurate interpretation of high-throughput screens, most specifically
in cases of low-dimensional phenotypes. We focus on screens which
have a limited number of replicate samples and a sensitive phenotype
(i.e. the phenotype that is affected in a non-negligible proportion
of the samples). Distinguishing the systematic signal from noise is
particularly challenging in such situations.

2 BACKGROUND
Statistical design and analysis of perturbation screens involve (i)
experimental design, (ii) normalization, (iii) summarization of the
phenotype of each sample from multiple replicates and estimation
of the associated variation, (iv) determination of ‘hits’, i.e. samples
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Fig. 1. Experimental design of the knock-out screen in Section 4. (a)
Samples are processed in 96-well plates. (b) Two negative controls (nc1
and nc2) are quadruplicated in the first column, and two positive controls
(pc1 and pc2) are quadruplicated in the last column of the plate. Samples
with 20 different genetic perturbations (s1,...,s20) are quadruplicated in the
remaining columns. (c) Distribution of the scored abundance of Cadmium for
the positive control YPR065W, in the first 18 plates of the screen, separately
for each plate and batch. The distributions show systematic effects of plates
and batches on the phenotype.

with systematic changes in phenotype and (v) evaluation and quality
control.

Experimental design: a typical design of a perturbation screen is
overviewed in Figure 1. Samples in the screen are processed in 96-
well or similar plates. To enable high throughput, the samples are
profiled with a small number of replicates [e.g. 4, as recommended
by (Zhang and Heyse, 2009)], and all replicates of a sample are
systematically allocated to the same plate. The screens typically
require tens, hundreds or even thousands of plates. Therefore, the
plates are handled in batches defined by the availability of biological
material and capacity of equipment.

The scored phenotypes can be systematically altered by batches
and plates (Malo et al., 2006), within-plate effects due e.g. to rows
and columns on the plate (Malo et al., 2006) or excessive evaporation
of media around the edges (Wiles et al., 2008). To account for
these artifacts, one or more control samples are included in all
plates. These can be negative controls (e.g. unperturbed samples)
and positive controls (e.g. samples with known changes in the
phenotype). Malo et al. (2006) recommend to allocate the controls
around the edges of the plate, in order to limit the negative effects
of evaporation on the perturbed samples.

The limited capacity of plates, the limited within-plate replication
of perturbed samples, the absence of between-plate replication and a
small number of controls makes elimination of experimental artifacts
in perturbation screens extremely challenging in practice. We argue
in Section 3 that the existing statistical methods under-use the
information provided by the controls in these situations, and that
it is possible to obtain a more specific detection of hits by a separate
use of two or more distinct positive or negative controls.

Normalization: scored phenotypes undergo quality control to
eliminate the outlying or failed samples or plates. After that,
a normalization procedure accounts for confounding and for
experimental artifacts, and makes the scored phenotypes comparable
across samples, batches and plates.

Two most frequently used families of normalization are sample
based and control based. Sample-based normalization methods
(detailed in Supplementary Section 1) assume that the majority
of perturbations do not affect the phenotype. Examples are B-
score (Tukey, 1960), Z-score and plate-wise median (Collins et al.,
2006). Malo et al. (2006) reviewed sample-based normalizations
for perturbation screens and recommended using B-score. Another
popular method is quantile normalization, which was introduced for
the analysis of gene expression microarrays (Bolstad et al., 2003;
Yang et al., 2002), and is applied to perturbation screens (Bankhead
et al., 2009). Principal component analysis can be used to account for
the batch effect (Leek et al., 2010), and surrogate variable analysis
can help remove the heterogeneous effect of plates between batches
(Leek and Storey, 2007). Within-plate artifacts can be normalized
using lowess smoothing (Baryshnikova et al., 2010).

Sample-based normalization is attractive because it is based on
the entire collection of measurements in the experiment, uses the
maximal number of observations and therefore produces an accurate
estimate of the normalized phenotype. However, it is not appropriate
for screens where many perturbations affect the phenotype, and also
in secondary and confirmatory screens. Alternative normalization
procedures, based on controls, are more appropriate in these
situations (Birmingham et al., 2009). Examples of control-based
normalization are detailed in Supplementary Section 2. Given
a relatively small number of controls in a plate, control-based
normalization can only account for limited types of experimental
artifacts, and can yield highly variable estimates of bias. Wiles
et al. (2008) compared the performance of seven sample-based
and control-based normalization methods, and found, in the words
of Birmingham et al. (2009), that ‘no single method excelled’ in all
situations. Software implementations, such as the ones in the open-
source Bioconductor packages RNAither (Rieber et al., 2009) and
cellHTS2 (Boutros et al., 2006) offer multiple above-mentioned
alternatives.

In this work, we demonstrate that control-based normalization
can improve the accuracy of results, as compared to the currently
available methods, in screens where a large proportion of samples
show changes in the phenotypes. We argue that such procedure
should involve more than one control sample, and should be used
not only for normalization, but also for estimation of residual
between-plate variation.

Summarization of phenotypes and estimation of variation: this step
summarizes the normalized phenotypes of a biological sample across
replicates in a single value, typically by averaging, and estimates
the associated variation. Estimation of variation is important, as
it allows us to distinguish random variation from stress-related
changes in the phenotype. Most existing methods estimate the
variation by sample variance (Collins et al., 2006), or by its robust
alternatives. Malo et al. (2006) recommended using Empirical
Bayes approach to variance stabilization, which was originally
introduced in the context of gene expression microarrays (Smyth,
2004, 2005), but is applicable directly to the context of perturbation
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screens. The approach is summarized in mathematical formulation
in Supplementary Section 3.

The goal of this article is to demonstrate that such estimation
of variation has serious deficiencies, in particular in screens with
sensitive phenotypes and no between-plate replication. If the
experimental design allocates all replicates of a biological sample in
the same plate, these methods only estimate the variation within the
plate. In other words, the methods assume that within-plate variation
represents the full extent of variation of the normalized phenotypes.

We argue in Section 3.3 that this assumption oversimplifies the
structure of variation in the screens, and is rarely verified. We note
that in control-based normalization, where normalizing quantities
are estimated from a small number of observations, estimates of
plate- and batch-specific bias are subject to uncertainty. Moreover,
the effect of batches and plates on the phenotype can differ somewhat
across biological samples, and further contribute to the variation.
We show that appropriately accounting for this residual variation
can play an important role in the determination of hits.

Determination of hits: determination of hits is formalized as
testing the null hypothesis ‘the perturbed phenotype is consistent
with the phenotype of a control’ or ‘the perturbed phenotype is
consistent with the average phenotype of all perturbations’ against
the corresponding alternative. The test is conducted using a test
statistic, such as the Student’s T or the moderated T above,
which compares the summary quantification of the phenotype
to its estimate of variation. Depending on the experiment, the
reference distribution of the statistic is assumed Student or Normal,
or is estimated empirically based on controls. Non-parametric
alternatives, e.g. the Mann–Whitney test and the Rank Product
test (Rieber et al., 2009) can also be used, but have lower power.

The second aspect of determination of hits is the selection of
the test statistic cutoff, which controls the rate of false positive
hits at the desired level. Multiple testing procedures controlling for
the false discovery rate (FDR), such as Benjamini and Hochberg
(1995) or Efron (2008), can be used directly. Alternatively, Zhang
et al. (2008) developed a specialized Bayesian procedure, which
directly models the probabilities of phenotypes and controls FDR.
Using ordered Z-scores, Kaplow et al. (2009) designed a tool called
RNAiCut for automated identification of pathway-relevant hits.
Although all these approaches are appropriate, their sensitivity and
specificity depend on the choice of the test statistic, and in particular
on its estimate of variation.

Evaluation: development of statistical methods for high-throughput
screens is challenging in part because of difficulties in their
evaluation on experimental datasets. The evaluation is facilitated
in the case of multivariate phenotypes, where we can examine
the consistency of normalized phenotypes of the controls in a
multivariate space. We use such multivariate phenotypes, and both
control-based and sample-based evaluation in Section 5.

3 METHODS
In the following, we consider high-throughput perturbation screens with 1D
or low-dimensional quantitative phenotypes. To be specific, we focus on
genetic perturbations, and refer to the screened samples as mutants. However,
the discussion is applicable to all perturbation types. The proposed method
is particularly relevant for screens with highly disruptive perturbations, or
with sensitive phenotypes, where we cannot expect a relatively small number
of hits.

We propose a stepwise interpretation procedure based on linear mixed-
effects models. In large-scale experiments, stepwise linear modeling is a
computationally efficient alternative to a global mixed-effects model that
is used to fit the entire dataset. In the past, stepwise procedures were
successfully applied in the context of gene expression microarrays (Dobbin
and Simon, 2002; Wolfinger et al., 2001), and the proposed approach is
similarly effective for perturbation screens.

3.1 Experimental design
We consider experiments which utilize 96-well or similar plates, and profile
all replicates of a sample in the same plate. One can use all within-plate
allocations of samples, e.g. suggested by Malo et al. (2006), and any number
of biological replicates, e.g. 4 recomended by Zhang and Heyse (2009).

A key requirement of the proposed approach is the presence of at least
two distinct control samples, profiled in all batches and all plates. The first
control is used for normalization of the phenotype across batches and plates.
The second control is used to estimate the associated variation, and to derive
the summary statistic for each mutant. Incorporating one or two additional
control samples, complementing the previous two, is beneficial to evaluate
the quality of the results.

3.2 Normalization
Basic model-based normalization: we denote Xgkbp a scored univariate
phenotype, where g is the mutant gene, k is the replicate sample of that
mutant, b is the batch index and p is the plate index. For multivariate
phenotypes we consider each dimension separately, and use the convention
that Xgkbp represents one particular dimension.

The major sources of variation in a screen are batches, plates, and
biological and technical variation. The basic normalization model assumes
that these effects are non-systematic Normal random variables, and
represents these assumptions with the linear model

Xgkbp = µg +Bgb +P(B)gp +εgkbp (1)

Bgb
iid∼N (0,σ2

Bg
),P(B)gp

iid∼N (0,σ2
Pg

), εgkbp
iid∼N (0,σ2

εg
)

where Bgb is the batch effect, P(B)gp is the plate effect nested within the
batch and εgkbp is the combination of the biological and technical variation.
Bgb, P(B)gp and εgkbp are independent.

Parameters µ1, Bgb and P(B)gp can be estimated with a sample-based
approach, i.e. using all the samples in the batch or plate. However, such
estimation is undesirable in screens with disruptive perturbations or sensitive
phenotypes, as it will produce biased estimates. Therefore, we focus on
control-based normalization, and estimate µ̂1, B̂1b and P̂(B)1p by fitting the
model in Equation (1) to the first control (i.e. to biological samples with g=1
in the notation above). In linear mixed models, such estimates are typically
obtained by maximizing the restricted/residual maximum likelihood (REML)
using Expectation–Maximum (EM) or Newton–Raphson algorithms. The
ridge-stabilized Newton–Raphson algorithm allows a faster convergence
(Lindstrom and Bates, 1988), and we use this algorithm as implemented in the
R package lme4. The resulting model-based estimates differ from sample
averages, and are derived to ensure an unbiased estimation of variances
σ2

P1
, σ2

B1
and σ2

ε1
. The normalization accounts for the batch- and plate-

specific deviations in quantitative phenotypes (also known as batch- and
plate-specific additive effects in statistical literature) by subtracting their
control-based estimates B̂1b and P̂(B)1p from all the scored phenotypes

rgkbp = Xgkbp −[B̂1b +P̂(B)1p] (2)

Here, rgkbp denotes the normalized phenotype Xgkbp of the k-th replicate of
the mutant sample g, located in the b-th batch and on the p-th plate.

Extensions: the linear model above is flexible, and can be extended in a
variety of ways to account for within-plate effects, confounding effects or
time-dependent correlation effects. For example, the systematic changes in
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phenotype due to the position of a sample within a plate can be accounted
for similarly as with B-score [Equation (3) in Supplementary Section 1]:

Xgkbp = µg +Rip +Cjp +Bgb +P(B)gp +εgkbp, (3)∑
i Rip =0,

∑
j Cjp =0,

P(B)gp
iid∼N (0,σ2

Pg
), Bgb

iid∼N (0,σ2
Bg

), εgkbp
iid∼N (0,σ2

εg
)

where Rip and Cjp are the deviations on row i and column j on the p-th plate,
and the remaining notation is as in Equation (1). A lowess-based smoothing
of these effects can be used when rows or columns only contain a small
number of distinct biological samples (Baryshnikova et al., 2010).

The model can also be extended to account for confounding effects on
the scored phenotypes. For example, to account for the confounding effect
of growth rate of the mutants, one can normalize both the phenotype and the
growth rate as in Equations (1) and (2). If we denote gr as the normalized
growth rate, then a linear model can be fit to estimate a single linear
relationship between the confounding factor and the phenotype across all
the biological samples.

rgkbp = β0 +β1grgkbp +εgkbp, εgkbp
iid∼N (0,σ2

εg
) (4)

and the adjusted normalized values are obtained as

r′
gkbp = rgkbp −β̂1grgkbp (5)

The normalization steps above yield scored phenotypes that are comparable
across biological samples. For the experimental datasets in Section 4,
the within-plate quality control procedures (Supplementary Section 4)
indicate that the row and column effects are negligible. Therefore, the
analysis performed the basic normalization in Equations (1) and (2) and
the adjustment for growth rate in Equations (4) and (5) without within-plate
spatial normalization.

3.3 Estimation of variation and summarization
Figure 2 shows results of the normalization procedure in the knock-out screen
in Section 4, in three control samples, as applied to the sulfur accumulation
phenotype. Supplementary Sections 6–8 present such plots for all the controls
and all the phenotypes in Section 4. The first control (Fig. 2a) was used to
derive batch- and plate-specific changes of phenotype B̂1b and P̂(B)1p. Plate-
wise medians of the normalized phenotype in the right panel of Figure 2a
form a horizontal straight line, indicating that the normalization removed the
systematic between-batch and between-plate variation for that control.

Figure 2b and c show normalized phenotypes of two more controls, which
were not used to estimate the normalization parameters. They illustrate
that, although the normalization removed large artifacts, e.g. outlying
measurements in the left panel of Figure 2b and a systematic increasing
trend in the left panel of Figure 2c, it did not eliminate all between-batch
and between-plate deviations for these controls. This residual variation is due
to the differential effect of batches and plates on mutant phenotypes (also
known as non-additive effect, or batch×mutant and plate×mutant statistical
interactions), as well as to the uncertainty in estimation of B̂1b and P̂(B)1p

from a small number of replicates in a plate. In screens where the interaction
effects can be estimated, they can be accounted for e.g. by including them
as fixed effects into the normalization model in Equation (1), or using
alternative approaches (Leek et al., 2010). However, in screens where all
replicates of the samples are profiled in a single plate, these effects cannot
be estimated directly. Omitting these effects can seriously underestimate the
overall variation, and undermine the accuracy of the results.

We propose to express the residual variation in normalized phenotypes in
terms of random effects the second linear model

r′
gkbp = µ′

g +P′(B)gp +B′
gb +ε′

gkbp, (6)

P′(B)gp
iid∼N (0,σ2

P′
g
), B′

gb
iid∼N (0,σ2

B′
g
),

ε′
gkbp

iid∼N (0,σ2
ε′

g
), for g=2,3,4,5,...

(a)

(b)

(c)

Fig. 2. Effect of normalization on elemental abundance of Sulfur in
three controls of the knock-out screen in Section 4. (a) First control,
BY4741, used for normalization. Left: before normalization. Right: after
normalization. (b) Second control, YDL227C, not used for normalization.
Left: before normalization. Right: after normalization. (c) Third control,
YLR396C, not used for normalization. Left: before normalization. Right:
after normalization. Y -axis: raw or normalized abundance. X-axis: plate
id. The figures show boxplots of the phenotype in 305 plates, indicating
batches by gradient colors, similarly to Figure 1c. Normalization reduces
the systematic differences between batches and plates; however, residual
variation is present for the second and the third controls.

where r′
gkbp is the normalized phenotype of sample g, and the remaining

notation is as in Equation (1). For samples profiled in a single plate, the
summary phenotype of mutant g is µg, and its estimate is equivalent to the
average of the observed phenotypes over all replicates r̄′

g··. The associated
estimated variation is

V̂ar(r̄′
g··)= (σ̂2

P′
g

+ σ̂2
B′

g
+ σ̂2

ε′
g
/ng)

where ng is the number of within-plate replicate samples of the mutant g.
Parameter σ̂2

ε′
g

is estimated by the sample variance s2
ε′

g
; however σ2

P′
g

and

σ2
B′

g
are not estimable for each mutant directly. Therefore, we propose to use

one or several additional controls, which have not been previously used for
normalization, to obtain plug-in estimates of σ2

P′
g

and σ2
B′

g
. Such approach

assumes that the control-based estimates accurately represent the residual
variation of all the biological samples in the screen. In our experience, this
assumption is frequently plausible, and yields accurate results. In screens
where we cannot make this assumption, the residual variation can only be
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estimated by changing the experimental design and implementing between-
plate replication; however, this will reduce substantially the throughput and
may be difficult to implement in practice.

In the following, we use the second control for variance estimation, i.e.

σ̂2
P′

g
+ σ̂2

B′
g
≈σ2

P′
2
+σ2

B′
2

for all g. (7)

Fitting the model to the second control in Figure 2 using the R package
HTSmix yields (σ̂2

B′
2
+ σ̂2

P′
2
)/σ2

ε′
2
=0.23, indicating the relative importance of

the residual variation. We show in Section 5.1 that results of the proposed
normalization and variance estimation procedure have little sensitivity to the
specific choice of the controls.

3.4 Determination of hits
Hypothesis and test statistic: in screens where we expect a relatively small
number of affected phenotypes, determination of hits is equivalent to testing
H0 : Phenotype is consistent with the phenotype of control against Ha :
Phenotype is systematically larger (or smaller) than the phenotype of the
control (Boutros and Ahringer, 2008; Malo et al., 2006). However in
experiments with disruptive perturbations or sensitive phenotypes, the test
will result in an unpractically large number of hits. An alternative hypothesis
in this case is H0 : Phenotype is consistent with the median phenotype of
all perturbed samples against Ha : Phenotype is systematically larger (or
smaller) than the median phenotype of all perturbed samples. We focus on
the latter hypothesis in the discussion below.

The test statistic standardizes the normalized phenotype, i.e. it quantifies
the phenotype in the units of its estimated standard deviation

Dg = r̄′
g··/

√
(σ̂2

P′
2

+ σ̂2
B′

2
+ s2

ε′
g
/ng) (8)

The denominator in Equation (8) incorporates σ̂2
P′

2
and σ̂2

B′
2
, and therefore Dg

will yield fewer hits as compared to the regular (or moderated) T-statistic.
When the assumptions of the models in Equations (1) and (6), as well as of the
estimation procedure in Equation (7) are verified, the sampling distribution
of the test statistic is approximately Normal. The center and the scale of the
distribution depend on the nature of the effects in the screen.

Controlling FDR in the list of hits: to produce a list of hits while controlling
the FDR, we adapt the approach by Efron (2008). The approach assumes that
under H0, the sampling distribution of the test statistics Dg is the same for
all g, and models the observed distribution of the test statistic as a mixture
of distributions under H0 and Ha. Similarly to Efron (2008), we apply a
transformation to the test statistic to ensure that the sampling distribution
under H0 is close to the Standard Normal, i.e.

Zg = Dg −median(Dg)

median( |Dg −median(Dg)| )·C , (9)

where C =1/�−1(3/4)≈1.4826 is a normalizing constant for a robust
unbiased estimation of the scale (Hoaglin et al., 1983). We then use the
implementation of the approach by Efron (2008) in the R package locfdr
to fit a Normal distribution to the center of the histogram of Zg, and determine
the cutoff of Zg that controls the FDR.

In multivariate phenotypes, the sampling distributions of Zg are
comparable across dimensions, and we suggest combining all dimensions
in a single distribution to optimize the quality of fit. When the assumptions
of the models in Equation (1) and Equation (6), as well as of the estimation
procedure in Equation (7) are verified, the sampling distribution of Zg under
H0 is approximately Standard Normal. Supplementary Section 5 (Figs 2
and 3) illustrate the sampling distributions of Zg, and indicate that the data
present no gross departures from the assumptions.

4 EXPERIMENTAL DATASETS
Perturbation screens: we illustrate the performance of the proposed approach
using three large-scale genetic perturbation screens of S.cerevisiae (baker’s

yeast). The first perturbation screen, that we denote KO, involves the
collection of 4940 viable mutants where the open reading frames in haploid
cells have been disrupted one at a time. The second screen, that we denote
KOd, involves the collection of 1127 viable diploid lines, with one of the
two copies of the gene disrupted one at a time. The lines correspond to lethal
disruptions in the haploid lines. The third screen, that we denote OE, involves
the full collection of 5770 viable mutants where each of the open reading
frames is expressed at a higher than normal rate. In the three experiments, the
mutants were incubated in a series of 96-well plates, with 4 (and sometimes
8 or 16) replicates per strain. The majority of mutants were only grown in a
single plate.

The phenotype of interest in these screens is the yeast ionome. The
ionome of an organism is defined as its mineral nutrient and trace element
composition (Baxter, 2009; Salt et al., 2008), and includes P, Ca, K, Mg
(macronutrients); Cu, Fe, Zn, Mn, Co, Ni, Se, Mo, Cl (micronutrients of
significance to plant and human health); and Na, As and Cd (minerals
causing agricultural, environmental or health problems). To quantify each
element, a common yeast growth media was supplemented with additional
elements (Danku et al., 2009), and each sample was processed, in batches of
three plates, using inductively coupled plasma spectroscopy combined with
mass spectroscopy (ICP-MS). Peaks in the spectra were signal processed,
and the absolute quantification in parts per billion (ppb) obtained through
the use of calibration standards as described in Danku et al. (2009). A quality
control procedure removed failed and outlying samples. Overall, the KO and
KOd screen yields the multivariate phenotype of 14 elements, and the OE
screen yields the multivariate phenotype of 17 elements for each mutant.

Each experiment included two negative and two positive control strains
(BY4741, YDL227C, YLR396C and YPR065W for the KO screen, BY4743,
YDL227C, YLR396C and YPR065W for the KOd screen, and YMR243C,
YDL227C, YBR290W and YGL008C for the OE screen), which were grown
in four replicates within each plate. The positive controls were chosen based
on the results of Eide et al. (2005), who found observable changes in key
elements such as Ni60, Cd111 and S34 for these strains. The controls help
test our ability to detect such known changes in abundance.

Quality control did not identify strong spatial within-plate effects on the
ionomic profiles (Supplementary Section 4). However, it was established
that differences of growth rates between mutants could act as potential
confounders of the ionomic phenotypes. To account for that, the growth
rate of each mutant was quantified by the sample optical density (OD) using
an OpsysMR plate reader (DYNEX Technologies, Chantilly, VA, USA). All
measurements are publicly available at www.ionomicshub.org.

The elements constitute an integral part of most biochemical processes,
and therefore a large number of mutations is expected to affect the ionomic
phenotype. The goal of these experiments is, therefore, to identify the mutant
strains, for which the abundance of at least one element deviates substantially
from its median abundance over all mutants.

5 RESULTS

5.1 Evaluation based on controls
One negative control (BY4741 for KO, BY4743 for KOd, and
YMR243C for OE) was used to perform the normalization procedure
in Equation (1) and one negative control (YDL227C for KO,
YDL227C for KOd, and YDL227C for OE) to estimate the variation
in Equation (6). Positive control samples (YLR396C and YPR065W
for KO, YLR396C and YPR065W for KOd, and YBR290W and
YGL008C for OE) were used to evaluate the quality of the results.

Normalization and variance estimation: univariate phenotypes:
supplementary Section 1 show the results similar to Figure 2
for positive controls in all screens, and for all the phenotypes,
before and after normalization with Equations (1), (2), (4) and (5).
The figures show that the methods roughly succeed at removing
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the systematic trend in element abundance. For illustration,
Supplementary Section 5 also present results of normalization with
B-score, Z-score and normalized percent inhibition (NPI). Although
the methods also remove the systematic trends, they alter the scale
of the phenotype, and a relative comparison in one dimension is not
straightforward. We utilize multivariate phenotypes for this purpose
instead.

(a) (b)

(c) (d)

Fig. 3. Profile plots of the standardized phenotypes of the control
YLR396C in the KO screen, which has not been used for normalization
or standardization. (a) Raw phenotypes. Average pairwise correlation is
0.558. (b) Proposed normalization and standardization. Average pairwise
correlation is 0.968. (c) Normalization with B-score, standardization with
moderated T. Average pairwise correlation is 0.640. (d) Normalization with
NPI, standardization with moderated T. Average pairwise correlation is
0.438. X-axis: inorganic elements. Y -axis: (a) raw and (b–d) normalized
and standardization phenotypes. Each line represents the phenotype of the
control in one plate.

Normalization and variance estimation: multivariate phenotypes:
Multivariate phenotypes provide additional insight into the relative
efficiency of noise reduction procedures. Since we do not expect
biologically meaningful differences in phenotypes between plates
for the controls, a tighter pattern of standardized phenotypes of the
controls across all dimensions, as compared to the mean phenotype
in each dimension, indicates a better removal of the residual batch-
and plate-specific variation.

Figure 3 compares the profile plots of the standardized phenotypes
for one positive control in the KO screen, obtained before
normalization, after sample-based normalization with B-score and
standardization with moderated T statistic, after normalization with
control-based NPI and standardization with Moderated T, and after
the proposed normalization with Equations (1), (2), (4) and (5)
and standardization with Equations (6)–(9). As can be seen, B-
score and NPI, combined with the moderated T statistic, result in
noisy standardized profile, and between-plate variation exceeds the
differences in standardized abundance of the elements. The average
abundance of most elements is not distinguishable from zero. The
proposed normalization and estimation procedure produces the
tightest pattern in the profiles, which will allow us to best distinguish
changes in element abundance. Supplementary Section 6–8 contain
similar plots for all the screens and all the phenotypes.

We further compare the performance of the methods quantitatively
by calculating the average Pearson correlations of standardized
profiles (as in Fig. 3) across all pairs of plates. Table 1 shows that the
proposed approach produces the highest correlation, and therefore
successfully reduces the noise as compared to the other techniques.

Stability of noise reduction to choice of controls: Table 2 shows
the average pairwise Pearson correlations of profiles of the controls
in the KO screen, such as in Figure 3b, calculated over all pairs
of plates, and using all possible combinations of controls for

Table 1. Pearson correlation of normalized and summarized profiles between pairs of plates, for two positive controls which have not been previously used
for normalization or standardization

Average pairwise Pearson correlations between plates

KO screen KO screen KOd screen KOd screen OE screen OE screen
YLR396C YPR065W YLR396C YPR065W YBR290W YGL008C

Current B-scorea 0.640 0.720 0.889 0.825 0.491 0.331
existing Z-scoreb 0.765 0.776 0.910 0.817 0.530 0.361
methods Plate-wise medianc 0.738 0.819 0.915 0.835 0.595 0.481

PocMeand 0.666 0.670 0.875 0.729 0.626 0.523
PocMede 0.765 0.806 0.896 0.834 0.554 0.424
NPIf 0.438 0.508 0.689 0.686 0.759 0.595
Quantileg 0.696 0.772 0.857 0.917 0.630 0.485

Proposed Mixed modelh 0.968 0.971 0.963 0.940 0.962 0.961

Higher values indicate better noise reduction.
aNormalization by B-score, standardization by Moderated T.
bNormalization by Z-score, standardization by Moderated T.
cNormalization by plate-wise median, standardization by Moderated T.
dNormalization by percent of mean of positive controls, standardization by Moderated T.
eNormalization by percent of median of negative controls, standardization by Moderated T.
f Normalization by normalized percent inhibition (NPI), standardization by Moderated T.
gQuantile normalization, standardization by Moderated T.
hProposed mixed-effect modeling for normalization with Equations (1), (2), (4) and (5), and standardization with Equations (6)–(9). The methods in the above footnotes (a)–(g) are
detailed in Supplementary Section 1.
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Table 2. Average Pearson correlations of profiles of the controls,
standardized as in Figure 3b, and calculated over all pairs of plates

Normalization–
standardization

Evaluation samples, KO screen

BY4741 YDL227C YLR396C YPR065W

BY4741-YDL227C 0.968 0.971
BY4741-YLR396C 0.906 0.902
BY4741-YPR065W 0.985 0.968
YDL227C-BY4741 0.966 0.960
YDL227C-YLR396C 0.811 0.838
YDL227C-YPR065W 0.979 0.970
YLR396C-BY4741 0.980 0.974
YLR396C-YDL227C 0.974 0.973
YLR396C-YPR065W 0.975 0.979
YPR065W-BY4741 0.977 0.966
YPR065W-YDL227C 0.982 0.971
YPR065W-YLR396C 0.857 0.881

Rows: control samples used for normalization and variance estimation. Columns:
validation controls.

normalization, variance estimation and validation. All combinations
yield consistently high correlations, indicating that the results have
little sensitivity to the specific choice of controls for the steps of the
proposed procedure.

Relative contribution of analysis steps to the overall accuracy:
Table 1 in Supplementary Section 9 shows average Pearson
correlations of the validation controls obtained with partial
normalization or variance estimation in the three screens.
Normalization with respect to the covariate and estimation of
residual variance terms (σ2

B′ and σ2
P′ ) contribute more to the noise

reduction than the batch- and plate-wise normalization.

5.2 Evaluation based on mutant strains
The main drawback of the existing procedures is in underestimating
the between-plate variation. Therefore, the number of the resulting
false positive hits can exceed the nominal FDR. To illustrate this, we
considered the moderated T statistics for the KO screen in Table 1,
fit the two-group model to determine the test statistic cutoff at the
FDR = 0.05, and determined the number of mutants with at least one
differentially abundant phenotype. Supplementary Section 5 (Fig. 2)
show results of the model fit for each of the procedures.

The analysis resulted in 3497 (70%) hits using B-score; 3709
(75%) hits using Z-score; 4885 (98%) hits using NPI; 4584 (92%)
hits using plate-wise median; 4044 (81%) hits using percent of
positive controls; 3962 (80%) hits using percent of negative control;
3359 (68%) hits using Quantile normalization. These numbers
exceed the 1303 (26%) hits obtained using the proposed procedure,
and likely contain some false positive hits. Although some of the
reduction in the number of hits with the proposed approach can be
due to a loss of sensitivity, we show in the next section that it is
specific, and helps direct the follow-up experiments towards useful
targets.

Detection of known changes in abundance: Eide et al. (2005)
assayed 4358 mutants from the knock-out library in yeast, and
quantified the abundance of 13 elements, namely Ca, Co, Cu, Fe, K,
Mg, Mn, Ni, P, Se, Na, S and Zn. The study quantified the ionomic

(a) (b)

Fig. 4. Cadmium sensitivity of BY4741 wild-type (Wt) and selected mutant
strains. (a) YBR290W (BSD2�) and YGL167C (PMR1�) to Cd supplement
in growth medium. (b) YPR194C (OPT2�).

phenotypes with Inductively Coupled Plasma-Atomic Emission
Spectroscopy (ICP-AES), is less sensitive and subject to larger
variation, used different controls and no growth rate adjustments.
Despite these differences in the experimental settings, the proposed
approach confirmed 36 (i.e. 65%) of the KO hits reported by that
study. Therefore, the proposed noise reduction procedure enables a
sensitive detection of known changes in the phenotypes.

Functional annotation of differentially abundant mutant strains:
to further evaluate the specificity of the proposed approach, we
considered functional annotations of genes that yield mutants
with at least one differentially abundant ionomic phenotype.
Gene annotations were obtained from the SGD database
www.yeastgenome.org, and by literature search. In particular, 37
hits in the KO screen, and 19 hits from the differentially abundant
mutants in the OE screen, were involved in mineral regulation.

Three detailed examples of these mutants are YBR290W
(BSD2�), YGL167C (PMR1�) and YPR194C (OPT2�), which
were found differentially abundant in Cadmium (Cd) in the KO
screen. Evidence of the involvement of these genes in Cadmium
regulation has been previously established. In particular, BSD2
(bypass SOD deficiency) encodes endoplasmatic reticulum (ER)-
localized membrane protein. It controls the uptake of divalent
metal ions from the growth medium (Liu et al., 1997). PMR1 is
the major Golgi membrane-localized Ca2+ and Mn2+-transporting
P-type ATPase that has been recently shown to be essential for
intracellular Cd2+ trafficking and detoxification (Lauer Jùnior et al.,
2008; Rudolph et al., 1989). OPT2 is an oligopeptide transporter.
The loss-of-function of OPT2 in yeast increases cells’ sensitivities
to anticancer drugs and divalent ion Cd (Aouida et al., 2009).

Experimental validation: finally, we experimentally validated the
results of a subset of 19 KO mutant strains, which were determined
as differentially abundant in Cd with the proposed design and
analysis methods. In the validation experiment, S.cerevisiae cells
were grown overnight to an OD600 nm of 1.3. Aliquots of the
cell suspensions were then serially diluted 10-, 100- and 1000-
fold and spotted onto solid YNB medium supplemented with the
indicated concentrations of CdCl2. Colonies were visually assessed
after incubating plates for 2 days at 30◦C.

Figure 4 compares the growth of three mutant strains, YBR290W
(BSD2�), YGL167C (PMR1�) and YPR194C (OPT2�) that were
among 19 profiled mutants, and the wild-type BY4741 strain in the
medium with or without Cd. The growth of the three KO strains on
the medium without Cd is indistinguishable from the control strain.
However, when the growth medium was supplemented with Cd, all
KO strains showed more sensitivity to Cd than control strain, and the
sensitivity increased with the increase of Cd concentration. These
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results are consistent with the KO ionomic screen, which concluded
that these lines accumulate more Cd than the median mutant. This
is also consistent with the existing literature, which has established
the role of BSD2, PMR1 and OPT2 in Cd detoxification (Aouida
et al., 2009; Lauer Jùnior et al., 2008; Liu et al., 1997). Similar
experimental confirmation was obtained for 18 out of the 19
differentially abundant mutants that we profiled.

6 CONCLUSION
The requirements of high throughput impose constraints on the
design and implementation of perturbation screens, and introduce
challenges in their interpretation. Work in this article was motivated
by the insights that (i) control-based normalization is most
appropriate for the screens where a large proportion of samples
show changes in the phenotypes, and (ii) residual non-additive
effects of batch and plate variation are important components of
the stochastic variation in the screens, and should be accounted for
the optimal detection of hits. We proposed an experimental design
that involves at least two control samples, and a normalization and
variance estimation procedure based on linear mixed-effects models.
Evaluations on three comprehensive ionomic screens showed that
the proposed method:

• can be used in conjunction with a practical experimental design;

• allows extensions to alternative structures of data;

• enables a specific discovery of biologically meaningful hits;
and

• strongly outperforms the existing approaches.

We therefore recommend this approach as a useful tool in high-
throughput functional investigations.
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