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Abstract. A fundamental problem arising in many applications in Web science and
social network analysis is the problem of identifying all nodes in a network whose
PageRank exceeds a given threshold Δ. In this paper, we study the probabilistic version
of the problem whereby given an arbitrary approximation factor c > 1, we are asked
to output a set S of nodes such that with high probability, S contains all nodes of
PageRank at least Δ, and no node of PageRank smaller than Δ/c. We call this problem
SignificantPageRanks.

We develop a nearly optimal local algorithm for the problem with time complexity
Õ(n/Δ) on networks with n nodes, where the tilde hides a polylogarithmic factor. We
show that every algorithm for solving this problem must have running time of Ω(n/Δ),
rendering our algorithm optimal up to logarithmic factors. Our algorithm has sublinear
time complexity for applications including Web crawling and Web search that require
efficient identification of nodes whose PageRanks are above a threshold Δ = nδ , for
some constant 0 < δ < 1.

Our algorithm comes with two main technical contributions. The first is a multiscale
sampling scheme for a basic matrix problem that could be of interest on its own. For
us, it appears as an abstraction of a subproblem we need to tackle in order to solve the
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SignificantPageRanks problem, but we hope that this abstraction will be useful in
designing fast algorithms for identifying nodes that are significant beyond PageRank
measurements.

In the abstract matrix problem, it is assumed that one can access an unknown right-
stochastic matrix by querying its rows, where the cost of a query and the accuracy
of the answers depend on a precision parameter ε. At a cost propositional to 1/ε, the
query will return a list of O(1/ε) entries and their indices that provide an ε-precision
approximation of the row. Our task is to find a set that contains all columns whose
sum is at least Δ and omits every column whose sum is less than Δ/c. Our multiscale
sampling scheme solves this problem with cost Õ(n/Δ), while traditional sampling
algorithms would take time Θ((n/Δ)2 ).

Our second main technical contribution is a new local algorithm for approximating
personalized PageRank, which is more robust than the earlier ones developed in [Jeh
and Widom 03, Andersen et al. 06] and is highly efficient, particularly for networks
with large in-degrees or out-degrees.

Together with our multiscale sampling scheme, we are able to solve the Significant-
PageRanks problem optimally.

1. Introduction

A basic problem in network analysis is to identify the set of network nodes
that are “significant.” For example, they could be the significant Web pages that
provide the authoritative contents in a Web search; they could be the critical pro-
teins in a protein interaction network; and they could be the set of people (in a so-
cial network) most influential in seeding online advertising. As networks become
larger, we need more efficient algorithms to identify these “significant” nodes.

1.1. Identifying Nodes with Significant PageRanks

The meanings and measures of significant vertices depend on the semantics of the
network and on the proposed applications. In this paper, we focus on a particular
measure of significance: the PageRank of the vertices.

Formally, the PageRank (with restart constant α, also known as the telepor-
tation constant) of a Web page is proportional to the probability that the page
is visited by a random surfer who explores the Web using the following simple
random walk: at each step, go with probability (1 − α) to a random Web page
linked from the current page, and with probability α, restart the process from
a uniformly chosen Web page. For ease of presentation of our later results, we
consider a normalization of PageRank so that the sum of the PageRank values
over all vertices is equal to n, the number of vertices in the network:∑

u∈V

PageRank(u) = n.
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PageRank has been used by the Google search engine and has found applica-
tions in a wide range of data analysis problems [Berkhin 05, Brin and Page 98].
In this paper, we consider the following natural problem of finding vertices with
“significant” PageRank.

Problem 1.1. (SignificantPageRanks.) Given a network G = (V,E), a thresh-
old value 1 ≤ Δ ≤ |V |, and a positive constant c > 1, compute a subset S ⊆ V

with the property that S contains all vertices of PageRank at least Δ and no
vertex of PageRank less than Δ/c.

For the corresponding algorithmic problem, we assume that the network topol-
ogy is described in the sparse representation of an (arbitrarily ordered) adjacency
list for each vertex, as is natural for sparse graphs such as social and information
networks. We are interested in developing an efficient local algorithm [Spielman
and Teng 13, Andersen et al. 06, Andersen et al. 08] for the problem in the context
of Web applications. The algorithm is allowed to sample randomly only out-links
of previously accessed nodes in addition to sampling nodes uniformly at random
from the network. This model is highly suitable for PageRank maintenance in
Web graphs and online information networks.

As the main contribution of this paper, we present a nearly optimal local
algorithm for SignificantPageRanks.

The running time of our algorithm is Õ(n/Δ). We also show that every al-
gorithm for SignificantPageRanks must have query complexity as well as
runtime complexity Ω(n/Δ). Thus, our algorithm is optimal up to a logarithmic
factor. Note that when Δ = Ω(nδ ), for some constant 0 < δ < 0, our algorithm
has sublinear time complexity.

Our SignificantPageRanks algorithm applies a multiscale matrix sampling
scheme that uses a fast personalized PageRank estimator (see below) as its main
subroutine.

1.2. Personalized PageRanks

While the PageRank of a vertex captures the importance of the vertex as collec-
tively assigned by all vertices in the network, one can use the distributions of the
following random walk to define the pairwise contributions of significance [Haveli-
wala 03]: given a teleportation probability α and a starting vertex u in a network
G = (V,E), go at each step with probability (1 − α) to a random neighboring ver-
tex, and with probability α, restart the process from u. For v ∈ V , the probability
that v is visited by this random process, denoted by PersonalizedPageRanku (v),
is u’s personal PageRank contribution of significance to v. It is not hard to verify
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that

∀u ∈ V,
∑
v∈V

PersonalizedPageRanku (v) = 1,

∀v ∈ V, PageRank(v) =
∑
u∈V

PersonalizedPageRanku (v).

Personalized PageRanks have been widely used to describe personalized be-
havior of Web users [Page et al. 98] as well as for developing good network
clustering techniques [Andersen et al. 06]. As a result, fast algorithms for comput-
ing or approximating personalized PageRank are quite useful. One can approxi-
mate PageRanks and personalized PageRanks by the power method [Berkhin 05],
which involves costly matrix–vector multiplications for large-scale networks.
Applying effective truncation, [Jeh and Widom 03] and [Andersen et al. 06]
developed personalized PageRank approximation algorithms that can find an
ε-additive approximation in time proportional to the product of ε−1 and the
maximum in-degree in the graph.

1.3. Multiscale Matrix Sampling

Following the matrix view of the personalized PageRank formulation of [Haveli-
wala 03] and the subsequent approximation of algorithms in [Jeh and Widom 03,
Andersen et al. 06], we introduce a matrix problem whose solution would lead to
fast PageRank approximation and sublinear-time algorithms for Significant-

PageRanks.
In the basic form of this matrix problem, we consider a black-box model for ac-

cessing an unknown n × n right-stochastic matrix, in which we can make a query
only of the form matrixAccess(i, ε), where 1 ≤ i ≤ n and ε ∈ (0, 1]. This query
will return, with high probability, a list of O(1/ε) entry–index pairs that provide
an ε-precise approximation of row i in the unknown matrix: for each 1 ≤ j ≤ n,
if (p, j) is in the list of entry–index pairs returned by matrixAccess(i, ε), then
|p − mi,j | ≤ ε, where mi,j is the (i, j) entry of the unknown matrix; otherwise,
if there is no entry containing index j, then mi,j is guaranteed to be at most ε.
Further, the cost of this query is propositional to 1/ε. We will refer to this black-
box model as the sparse and approximate row access model, or SARA model for
short.

We now define the basic form of our matrix problem:

Problem 1.2. (SignificantMatrixColumns.) Given an n × n right-stochastic
matrix M in the SARA model, a threshold Δ, and a positive constant c > 1,
return a subset of columns S ⊆ V with the property that S contains all columns
of sum at least Δ and no column with sum less than Δ/c.
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There is a straightforward connection between SignificantMatrixColumns

and SignificantPageRanks. Following [Andersen et al. 08], we define a matrix
PPR (short for PersonalizedPageRank) to be the n × n matrix whose uth row is

PersonalizedPageRanku (·).

Clearly, PPR is a right-stochastic matrix, and for 1 ≤ v ≤ n, PageRank(v) is
equal to the sum of the vth column in PPR. Therefore, if we can solve the
SignificantMatrixColumns problem with cost Õ(n/Δ) and also solve the
problem of computing an ε-additive approximation of personalized PageRank in
Õ(log(n)/ε) time, then we shall be able to solve SignificantPageRanks in
Õ(n/Δ) time.

In this paper, we analyze a multiscale sampling algorithm for SignificantMa-

trixColumns. The algorithm selects a set of precision parameters {ε1 , . . . , εh},
where h grows linearly with n/Δ and εi = i/h. It then makes use of sparse-and-
approximate-row-access queries to obtain approximations of randomly sampled
rows. For each i in the range 1 ≤ i ≤ h, the algorithm makes Õ(1) (depending
on the desired success probability) row-access queries to get a good approxima-
tion of the contribution of column elements of value of order εi . We show that
with probability 1 − o(1), the multiscale sampling scheme solves Significant-

MatrixColumns with cost Õ(n/Δ).
While we could present our algorithm directly on PPR, we hope that this ma-

trix abstraction will enable us to highlight the two key algorithmic components
in our fast PageRank approximation algorithm: multiscale sampling and robust
approximation of personalized PageRanks.

1.4. Robust Approximation of PersonalizedPageRanks

For networks with constant maximum degrees, we can simply use personalized
PageRank approximation algorithms developed in [Jeh and Widom 03] or [An-
dersen et al. 06] inside the multiscale scheme to obtain an Õ(n/Δ)-time algorithm
for SignificantPageRanks. However, for networks such as Web graphs and
social networks that may have nodes with large degrees, these two approaches
are insufficient for our needs.

We develop a new local algorithm for approximating personalized PageRank
that satisfies the desirable robustness property that our multiscale sample scheme
requires. Given λ, ε > 0 and a starting vertex u in a network G = (V,E), our
algorithm estimates each entry in the personalized PageRank vector defined by u,

PersonalizedPageRank(u, ·),
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to a [1 − λ, 1 + λ] multiplicative approximation around its value plus an additive
error of at most ε. The time complexity of our algorithm is

O

(
log2 n log(ε−1)

ελ2

)
.

Our algorithm requires a careful simulation of random walks from the starting
node u to ensure that its complexity does not depend on the degree of any
node. Together with the multiscale sampling scheme, this algorithm leads to an
Õ(n/Δ)-time algorithm for SignificantPageRanks. We conclude our analysis
by showing that our algorithm for solving SignificantPageRanks is optimal
up to a polylogarithmic factor.

Remark 1.3. While the main contribution of this paper is theoretical, that is, our
focus is to design the first nearly optimal local algorithm for PageRank approxi-
mation, we hope that our algorithm or its refinements can be useful in practical
settings for analyzing large-scale networks. For example, our sublinear algorithm
for SignificantPageRanks could be used in Web search engines, which often
need to build a core of Web pages, to be used later for Web search. It is de-
sirable that pages in the core have high PageRank values. These search engines
usually apply crawling to discover new significant pages and insert them into
the core to replace existing core pages with relatively low PageRank values. As
noted already, our algorithms are local and are implementable in various network
querying models that assume no direct global access to the network but allow
one to generate random out-links of a given node as well as to sample nodes
from the network uniformly at random. Such an implementation is desirable for
processing large social and information networks as in the construction of the
core pages for Web search. We also anticipate that our algorithm for Signifi-

cantPageRanks and the multiscale scheme for its matrix abstraction will be
useful for many other network analysis tasks.

1.5. Related Work

Our research is inspired by the body of work on local algorithms [Spielman
and Teng 13, Andersen et al. 06, Andersen et al. 08], sublinear-time algorithms
[Rubinfeld and Shapira 11], and property testing [Goldreich 10], which study al-
gorithm design for finding relevant substructures or estimating various quantities
of interest without examining the entire input. Particularly, we focus on identi-
fying nodes with significant PageRanks and approximating personalized PageR-
anks without exploring the entire input network. In addition, our framework is
based on a combination of uniform crawling and uniform sampling of vertices in
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a graph, and hence it can be viewed as a sublinear algorithm (when Δ = nΩ(1))
in a rather general access model as discussed in [Rubinfeld and Shapira 11].

It is well known that in a directed graph, high in-degree of a node does not
imply high PageRank for that node and vice versa. In fact, even in real-world
Web graphs, only weak correlations have been reported between PageRank and
in-degree [Pandurangan et al. 06]. One therefore needs to use methods for Page-
Rank estimation that are not based solely on finding high in-degree nodes. In-
deed, over the past decade, various beautiful methods have been developed to ap-
proximate the PageRank of all nodes. The common thread is that they all run in
time at least linear in the input (see [Berkhin 05] for a survey of results). Perhaps
closest to our framework are the following two Monte Carlo–based approaches:
The PageRank estimation method of [Avrachenkov 07] conducts simulation of a
constant number of random walks from each of the nodes in the network, and
therefore it requires linear time in the size of the network. A similar approach is
analyzed in [Bahmani et al. 10], where a small number of random walks are com-
puted from each network node, which shows that a tight estimate for the Page-
Rank of a node with a large enough PageRank can be computed from the sum-
mary statistics of these walks. In addition, the paper shows how these estimates
can be kept up to date, with a logarithmic factor overhead, on a certain type of
a dynamic graph in which a fixed set of edges is inserted in a random order.

Our scheme is suitable for any network with arbitrary changes in it as well,
including addition or removal of edges and nodes, with the necessary computation
being performed “on the fly” as needed. But in contrast to the above approaches,
for Δ = nΩ(1) , our construction gives a sublinear-time algorithm for identifying
all nodes whose PageRanks are above the threshold Δ and approximating their
PageRanks.

We have benefited from the intuition of several previous works on personal-
ized PageRank approximation. Jeh and Widom developed a method based on a
deterministic simulation of random walks by pushing out units of mass across
nodes [Jeh and Widom 03]. Their algorithm gives an ε-additive approximation
with runtime cost of order of log n/ε times the maximum out-degree of a node
in the network. Andersen, Chung, and Lang provided a clever implementation of
the approach of Jeh and Widom that removes the log n factor from the runtime
cost, still stopping when the residual amount to push out per node is at most ε

[Andersen et al. 06].1 We note, however, that for networks with large out-degrees,
the complexity of this algorithm may not be sublinear.

1 Thus at termination, the infinity norm of the residual vector is at most ε, which can easily
be shown to bound from above the infinity norm of the difference between the true personalized
PageRank vector and the estimation computed.
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In [Andersen et al. 08], a “backward-running” version of the local algorithm of
[Andersen et al. 06] was developed. That algorithm finds an ε-additive approxi-
mation to the PageRank vector with running time proportional to the product
of 1/ε, the maximum in-degree in the network, and the PageRank value. The
authors show how it can be used to provide some reliable estimate to a node’s
PageRank: for a given k, with running time proportional to Θ̃(k) times the max-
imum in-degree in the network (and no dependency on the PageRank value),
it can bound the total contribution from the k highest contributors to a given
node’s PageRank. However, for networks with large in-degrees, its complexity
may not be sublinear even for small values of k. We also note that the method
does not scale well for estimating the PageRank values of multiple nodes, and
the algorithm needs to be run separately for each target node.

The problem of SignificantMatrixColumns can also be viewed as a matrix
sparsification or matrix approximation problem, where the objective is to remove
all columns with l1 norm less than Δ/c while keeping all columns with l1 norm
at least Δ. To achieve time efficiency, it is essential to allow the algorithm the
freedom in deciding whether to keep or delete columns whose l1 norm is in the
range [Δ/c,Δ].

While there has been a large body of work on finding a low-complexity approx-
imation to a matrix (such as a low-rank matrix) that preserves some desirable
properties, many of the techniques developed are not directly applicable to our
task.

First, we would like our algorithms to work even if the graph does not have a
good low-rank approximation; indeed, all of our algorithms work for any input
graph. Second, our requirement to approximately preserve the l1 norm only for
significant columns enables us to achieve Õ(n/Δ) complexity for every stochastic
matrix, whereas all low-rank matrix approximations run in time at least linear in
the number of rows and columns of the matrix in order to reconstruct a low-rank
approximation explicitly; see [Kannan 10, Kannan and Vempala 09] for recent
surveys on low-rank approximations.

At a high level, the problem of SignificantMatrixColumns may seem to
share some resemblance to the heavy-hitters problem considered in the data-
streaming literature [Cormode and Muthukrishnan 05]. In the heavy-hitter prob-
lems, the goal is to identify all elements in a vector stream that have value greater
than the sum of all elements. The main difficulty to overcome is the sequential
order by which items arrive and the small space one can use to store information
about them. The main technique used to overcome these difficulties is the use
of multiple hash functions, which allows for concise summary of the frequent
items in the stream. However, in SignificantMatrixColumns, we are faced
with a completely different type of constraint—access to only a small fraction



28 Internet Mathematics

of the input matrix (in order to achieve sublinear running time) and having a
precision-dependent cost of matrix row approximations. As a result, hashing does
not seem to be a useful avenue for this goal, and one needs to develop different
techniques in order to solve the problem.

1.6. Organization

In Section 2, we introduce some notation that will be used in the remainder of the
paper. In Section 3, to better illustrate the multiscale framework, we present a
solution to a somewhat simpler abstract problem that distills the computational
task we use to solve SignificantMatrixColumns. In particular, we consider
a black-box model accessing an unknown vector that either returns an exact an-
swer or 0. Like the access model in SignificantMatrixColumns, higher pre-
cision costs more. In Section 4, we present our multiscale sampling algorithm for
SignificantMatrixColumns. In Section 5, we address the problem of finding
significant columns in a PageRank matrix by giving a robust local algorithm for
approximating personalized PageRank vectors. The section ends with a presenta-
tion of a tight lower bound for the cost of solving SignificantMatrixColumns

over PageRank matrices.

2. Preliminaries

In this section, we introduce some basic notation that we will use frequently. For
a positive integer n, [1 : n] denotes the set of all integers j such that 1 ≤ j ≤ n.
If M ∈ R n×n is an n × n real matrix, then for v ∈ [1 : n], we will use M(v, ·) and
M(·, v) to denote the vth row and the vth column of M , respectively. We denote
the sum of column v in M by ColumnSum(M,v). When the context is clear, we
shall suppress M in this notation and denote it by ColumnSum(v).

Most graphs considered in this paper are directed. For a given directed graph
G = (V,E), we usually assume V = [1 : n]. We use an n × n matrix A(G) to
denote the adjacency matrix of G. In other words,

A(i, j) =

{
1 if (i, j) ∈ E,

0 otherwise.

The PageRank vector of a graph G is the (unique) stationary point of the fol-
lowing equation [Page et al. 98, Haveliwala 03]:

PageRank(·) = α · 1n + (1 − α) PageRank(·) · D−1A(G),
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where 1n is the n-place row vector of all 1’s, 0 < α < 1 is a teleportation prob-
ability constant, and D is a diagonal matrix with the out-degree of v at entry
(v, v).

Similarly, the personalized PageRank vector of u in the graph G is the (unique)
stationary point of the following equation [Haveliwala 03]:

PersonalizedPageRanku (·) = α · 1u + (1 − α) PersonalizedPageRanku (·)
·D−1A(G),

where 1u is the indicator function of u.
Note that with the above definition of PageRank, the sum of the entries of the

PageRank vector is normalized to n. This normalization is more natural in the
context of personalized PageRank than the traditional normalization in which
the sum of all PageRank entries is 1.

For every x, log(x) means log2(x) and ln(x) denotes the natural logarithm of x.

3. Multiscale Approximation of Vector Sum

Before presenting our algorithms for SignificantMatrixColumns, we give a
multiscale algorithm for a much simpler problem that captures, we hope, the
essence of the general algorithm.

We consider the following black-box model for accessing an unknown vec-
tor p = (p1 , . . . , pn ) ∈ [0, 1]n : We can access the entries of p only by making
a query of the form vectorAccess(i, ε). If pi ≥ ε, the query vectorAccess(i, ε)
returns pi ; otherwise, when pi < ε, vectorAccess(i, ε) returns 0. Furthermore,
vectorAccess(i, ε) incurs a cost of 1/ε. In this subsection, we consider the follow-
ing abstract problem.

Problem 3.1. (VectorSum.) Given a black-box model vectorAccess(·) for access-
ing an unknown vector p = (p1 , . . . , pn ) ∈ [0, 1]n , a threshold Δ ∈ [1 : n], and a
positive constant c > 1, return pass if

∑
i pi ≥ Δ, return fail if

∑
i pi < Δ/c,

and otherwise return either fail or pass.

To motivate our approach, before describing our multiscale algorithm to solve
this problem, let us first analyze the running time of a standard sampling algo-
rithm. In such an algorithm, one would take h i.i.d. samples s1 , . . . , sh uniformly
from [1 : n] and query pst

at some precision ε to obtain an estimator

n

h

h∑
t=1

pst
I[pst

≥ ε]
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for the sum
∑

i pi . The error stemming from querying at precision ε would be of
order nε, so we clearly will have to choose ε of order Δ/n or smaller not to drown
our estimate in the query error, leading to a running time of order hn/Δ. The
number of samples h, on the other hand, has to be large enough to guarantee
concentration, which at a minimum requires that the expectation of the sum∑h

t=1 pst
I[pst

≥ ε] be of order at least unity. But the expectation of this sum is
bounded above by (h/n)

∑
pi , which is of order hΔ/n in the most interesting

case, in which
∑

pi is roughly equal to Δ. We thus need h to be of order at least
n/Δ, giving a running time of order (n/Δ)2, while we are aiming for a sublinear
running time of order Õ(n/Δ).

Our algorithm is based on a different idea by querying pt at a different precision
each time, namely, by querying pst

at precision εt = t/h on the tth draw, and
considering the estimator

n

h

h∑
t=1

I[pst
≥ εt ]

for the sum
∑

i pi . In expectation, this estimator is equal to n times

1
h

h∑
t=1

Pr[pst
≥ εt ] =

1
h

h∑
t=1

Pr
[
pst

≥ t

h

]
,

with st denoting an integer chosen uniformly at random from [1 : n]. This is a
Riemann sum approximation to the well-known expression

E[ps ] =
∫ 1

0
dx Pr[ps ≥ x],

and it differs from this integral by an error O( 1
h ). In the most interesting case,

in which
∑

i pi is of order Δ, concentration again requires h to be of order at
least n/Δ, which also guarantees that the error O(1/h) from the Riemann sum
approximation does not dominate the expectation E[ps ] = 1

n

∑
i pi . But now we

query ps at the highest resolution ε1 = 1/h only once, leading to a much faster
running time. In fact, up to log factors, the running time will be dominated by
the first few queries, giving a running time of Õ(h) = Õ(n/Δ), as desired.

In the next section, we proceed with the algorithm’s formal description and
analysis.

3.1. A Multiscale Algorithm for Approximating Vector Sum

Algorithm 1, MultiScaleVectorSum, replaces the standard sampling to estimate
the sum

∑
i pi by a multiscale version that spends only a small amount of time at

the computationally intensive scales requiring high precision. In addition to the
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black-box oracle vectorAccess(·), this algorithm takes three other parameters:
Δ ∈ (1, n) and c > 1 as defined in VectorSum, and a confidence parameter
δ ∈ (0, 1). This algorithm uses randomization, and we will show that it correctly
solves VectorSum with probability at least 1 − δ.

Our algorithm implements the strategy discussed above except for one modifi-
cation: instead of sampling at a different precision εt each time, we sample at each
precision a constant number of times τ , where τ depends on the desired success
probability, given a total number of queries equal to L = τh, where h = Θ(n/Δ)
with the implicit constant in the Θ-symbol depending on c in such a way that it
grows with (c − 1)−2 as c → 1.2

Algorithm 1. MultiScaleVectorSum

Require: vectorAccess(·, ·), threshold Δ ∈ (1, n), cutoff parameter c > 1, failure
probability δ ∈ (0, 1).

1: β = c−1
4c ; τ = �log(1/δ)	; h = � 3n

Δβ 2 	; L = τh

2: sum = 0.
3: for t = 1 : L do
4: εt = 1

h � t
τ 	.

5: Let st be an uniform random element from [1 : n].
6: zt = vectorAccess(st , εt).
7: sum = sum + zt.
8: end for
9: if sum ≥ (1 − 2β)LΔ/n then

10: Return pass.
11: else
12: return fail.
13: end if

Theorem 3.2. (Multiscale Vector Sum.) For every p ∈ (0, 1)n accessible by vectorAccess(·),
threshold Δ ∈ (1, n), robust parameter c > 1, and failure parameter δ ∈ (0, 1),
the method MultiScaleVectorSum (vectorAccess(·),Δ, c, δ) correctly solves Vec-

torSum with probability at least (1 − δ) and costs

O

(
n

Δ

(
1

c − 1

)2

log
(

n

Δ(c − 1)

)
log

(2
δ

))
.

2 Somewhat arbitrarily, but conveniently for our notation and proofs, we introduce the c
dependence of our constructions through the variable β(c − 1)/4c; in terms of this variable, we
write the lower cutoff Δ/c as Δ(1 − 4β), and use the midpoint Δ(1 − 2β) between Δ and Δ/c
as the cutoff for the algorithm to decide between pass and fail.
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Proof. By steps 3–7 of Algorithm 1, for every constant c > 1, the cost of the
algorithm is

L∑
t=1

1
εt

= τ
h∑

i=1

h

i
≤ L(1 + log h) = O

(
n

Δ

(
1

c − 1

)2

log
( n

Δ(c − 1)

)
log

(2
δ

))
.

We now prove the correctness of the algorithm.
After the initialization steps 1 and 2, Algorithm 1 computes the multiscale

parameters εt and applies sampling to calculate the sum

Q =
L∑

t=1

zt =
L∑

t=1

I [pst
≥ εt ],

where s1 , . . . , sL are chosen i.i.d. uniformly at random from [1 : n]. The expec-
tation of Q is easily estimated in terms of the bounds

E[Q] =
1
n

n∑
k=1

L∑
t=1

I [εt ≤ pk ] =
1
n

n∑
k=1

L∑
t=1

I [�t/τ	 ≤ hpk ]

=
τ

n

n∑
k=1

h∑
i=1

I [i ≤ hpk ] =
τ

n

n∑
k=1


hpk� ≤ τ

n

n∑
k=1

hpk =
L

n

n∑
k=1

pk

and

E[Q] ≥ τ

n

n∑
k=1

(
hpk − 1

)
=

L

n

n∑
k=1

pk − τ.

We thus use n
L Q as an estimate of

∑n
k=1 pk when we decide whether to output

pass in step 9.
Assume first that

∑
pk ≥ Δ. Since

τ ≤ β2 LΔ
3n

≤ β
LΔ
n

,

we then have

E[Q] ≥ LΔ
n

− τ ≥ (1 − β)
LΔ
n

,

implying that

(1 − β)E[Q] ≥ (1 − 2β)
LΔ
n

.
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This allows us to use the multiplicative Chernoff bound in the form of Lemma 6.1
to conclude that

Pr
[
Q ≤ (1 − 2β)

LΔ
n

]
≤Pr [Q ≤ (1 − β)E[Q]] ≤ exp

(
−β2

2
E[Q]

)

≤ exp
(
−3

8
β2LΔ

n

)
≤ δ,

where we used β ≤ 1/4 in the last step.
On the other hand, if

∑
pk ≤ Δ/c = (1 − 4β)Δ, we bound

E[Q] ≤ LΔ
n

(1 − 4β),

which in turn implies that

(1 + 2β)E(Q) ≤ (1 − 2β)
LΔ
n

.

Using the multiplicative Chernoff bound in the form of Lemma 6.1 (part 3), this
gives

Pr
[
Q ≥ (1 − 2β)

LΔ
n

]
≤ exp

(
−β2 LΔ

n

1 − 2β

1 + 2β

)
≤ exp

(
−β2LΔ

3n

)
≤ δ,

where we again used β ≤ 1/4.
Thus, MultiScaleVectorSum (vectorAccess(·),Δ, c, δ) correctly solves Vec-

torSum with probability at least 1 − δ.

4. Multiscale Matrix Sampling

In this section, we consider SignificantMatrixColumns in a slightly more
general matrix access model than what we defined in Sections 1 and 3. The
extension of the model is also needed in our PageRank approximation algorithm,
which we will present in the next section.

4.1. Notation: Sparse Vectors

To better specify this model and the subsequent algorithms, we first introduce the
notation of sparse vector introduced in [Gilbert et al. 92] for Matlab. Suppose
a = (a1 , . . . , an ) ∈ R n is a vector. Let nnz(a) denote the number of nonzero
elements in a. Let Sparse(a) denote the sparse form of vector a by “squeezing
out” any zero elements in a. Conceptually, one can view Sparse(a) as a list of
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nnz(a) index–entry pairs, one for each nonzero element and its index in a. For
example, we can view Sparse([0, 0.3, 0.5, 0, 0.2]) as ((2, 0.3), (3, 0.5), (5, 0.2)).

A sparse vector can be easily implemented using a binary search tree.3

Throughout this paper, we shall make use of the following simple proposition.

Proposition 4.1. For a,b ∈ R n , a + b can be implemented in time O(nnz(b) · log n)
by saving the result in the data structure of a.

Proof. Each sparse vector can be implemented as a balanced binary search tree,
where the index of an entry serves as the entry’s key. When performing the
addition, we update the binary search tree of a by inserting the elements of b into
it one by one (and updating existing entries whenever needed). By the standard
theory of binary search trees, each such insertion operation takes O(log n) time.

In the rest of the paper, without further elaboration, we assume that all vectors
are expressed in this sparse form. We also adopt the following notation: let
Sparse([ ]) denote the all-zeros vector in the sparse form, and for i ∈ [1 : n] and
b ∈ R − {0}, let Sparse(i, b) denote the sparse vector with only one nonzero
element b located in the ith place in the vector. In addition, we will use the
following notation: For two n-place vectors a = (a1 , . . . , an ) and b = (b1 , . . . , bn )
and parameters ε ∈ R and C > 0, we use a ≤ C · b + ε to denote ai ≤ Cḃi + ε,
∀i ∈ [1 : n].

4.2. The Matrix Access Model

In the model that we will consider in the rest of this section, we can ac-
cess an unknown n × n right-stochastic matrix M = (mi,j ) using queries of the
form matrixAccess(i, ε, λ, p), where i ∈ [1 : n] specifies a row, ε ∈ (0, 1] specifies
a required additive precision, λ ∈ (0, 1] specifies a multiplicative precision, and
p ∈ (0, 1] specifies the probability requirement. This query will return a sparse
vector m̃i = Sparse([m̃i,1 , . . . , m̃i,n ]) such that

� with probability at least 1 − p,

(1 − λ) · mi − ε ≤ m̃i ≤ (1 + λ) · mi + ε, (4.1)

where mi = M(i, ·) denotes the ith row of matrix M , and

3 For average-case rather than worst-case guarantees, a hash table is a typical implementation
choice.
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� with probability at most p (the query may fail), m̃i can be any sparse
vector.

We refer to this black-box model as the probabilistic sparse-and-approximate
row-access model with additive/multiplicative errors. For constant integers

c1 , c2 , c3 , c4 > 0,

we say that matrixAccess is a (c1 , c2 , c3 , c4)-SARA model if for all i ∈ [1 : n], ε ∈
(0, 1), λ ∈ (0, 1), and p ∈ (0, 1), the cost of calling m̃i = matrixAccess(i, ε, λ, p)
and that of calling nnz(m̃i) are bounded above by

c1

(
1
λ

)c2
(

logc3 (1/ε)
ε

)
(logc4 n) log

(
1
p

)
.

4.3. The Matrix Problem

In this section, we give a solution to the following abstract problem.

Problem 4.2. (SignificantMatrixColumns.) Given an n × n right-stochastic
matrix M in the (c1 , c2 , c3 , c4)-SARA model, a threshold Δ, and a positive con-
stant c > 1, return a sparse vector cSum with the property that for all j ∈ [1 : n],
if ColumnSum(M, i) ≥ Δ, then cSum(j) �= 0, and if ColumnSum(M, i) < Δ/c,
then cSum(j) = 0.

4.4. Understanding the Impact of Additive/Multiplicative Errors

Our algorithm for SignificantMatrixColumns is straightforward. At a high
level, it simultaneously applies Algorithm 1 to all columns of the unknown
matrix. It uses a sparse-vector representation for efficient bookkeeping of the
columns with large sum according to the sampled data. Our analysis of this al-
gorithm is similar to that presented in Theorem 3.2 for VectorSum, since we
can use the union bound over the columns to reduce the analysis to a single col-
umn. The only technical difference is the handling of the additive/multiplicative
errors.

To understand the impact of these errors, we consider a vector p = (p1 , . . . , pn )
in [0, 1]n and choose εt , t = 1, . . . , L, as in Algorithm 1. Fix φ, λ ∈ (0, 1/2), and
suppose that we access pi with multiplicative error λ and additive error φ · εt .
We will show that if this returns a number p̃i ≥ εt , then the actual value of pi is
at least ρεt , where ρ = 1 − λ − φ. To see this, we bound

pi ≥ (1 + λ)−1(p̃i − φ · εt) ≥ (1 + λ)−1(1 − φ)εt .

Since (1 − φ)/(1 + λ) ≥ (1 − λ − φ), this implies that pi ≥ ρεt , as desired.
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In a similar way, it is easy to see that pi ≥ ρ−1εt implies that p̃i ≥ εt . Indeed,
if pi ≥ ρ−1εt , then

p̃i ≥ (1 − λ)pi − φ · εt ≥
(

1 − λ

1 − λ − φ
− φ

)
εt .

The lower bound is clearly larger than εt , showing that p̃i ≥ εt .
For s1 . . . , sL ∈ [1 : n], the sum

Q̃ =
L∑

t=1

I[p̃st
≥ εt ] (4.2)

can therefore be bounded from below and above by

Q− =
L∑

t=1

I[pst
≥ ρ−1εt ] and Q+ =

L∑
t=1

I[pst
≥ ρεt ], (4.3)

respectively:

Q− ≤ Q̃ ≤ Q+ . (4.4)

Finally, we also note that if we access pi with multiplicative error λ and additive
error φ · εt , then this returns a number that is never larger than ρ−1 . Indeed, this
follows by bounding p̃i by 1 + λ + φ · εt ≤ 1 + λ + φ ≤ ρ−1 .

4.5. A Multiscale Algorithm

In this section, we present the multiscale algorithm in full detail and proceed
with an analysis of its running time and correctness. The algorithm is essentially
an extension of Algorithm 1, applying the VectorSum algorithm to all columns
in parallel. Since the call to vectorAcesss has now been replaced by a com-
bined additive–multiplicative method, the constant β is set to a slightly smaller
value than in Algorithm 1. In addition to the constants β, τ, h, L that are used in
Algorithm 1, we also have the constant λ for the value of multiplicative approx-
imation needed and φ for the additive approximation needed. Lastly, p is the
desired success probability of the row approximation procedure (matrixAccess)
invoked throughout the algorithm. We note that these constants are defined to
allow complete and rigorous analysis of our algorithm and its correctness. Since
the multiscale algorithm will essentially be implementing Algorithm 1 over all
columns, we will need a method that can return all elements in a row that fall
within a certain bin; we call it the rangeIndicator method: for a sparse vector a
and l, u ∈ R such that l < u, we have that b = rangeIndicator(a, l, u) returns a
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sparse vector b such that for all i ∈ [1 : n],

b(i) =

{
1 if l ≤ a(i) ≤ u,

0 otherwise.

For example, rangeIndicator(Sparse([0, 0.3, 0.5, 0, 0.2]), 0.1, 0.3) returns the
sparse form of [0, 1, 0, 0, 1]. We shall use the following simple proposition.

Proposition 4.3. rangeIndicator(a, l, u) takes O(nnz(a)log n) time.

Proof. The sparse vector nnz(a) is implemented using a binary search tree; one can
therefore scan its contents using, say, an in-order scan and insert each element
in the range [l, u] into a sparse vector b, initially empty. The in-order scan costs
O(nnz(a)) time, and each insertion into b costs O(log n) time, giving the desired
result.

Algorithm 2. MultiScaleColumnSum

Require: matrixAccess(·, ·, ·, ·), threshold Δ ∈ (1, n), cutoff c > 1, failure prob-
ability δ ∈ (0, 1).

1: β = c−1
5c ; τ = �log(2n/δ)	; h = � 3n

Δβ 2 	; L = τh; p = δ/(2L); λ = β/2;
φ = β/2; ρ = 1 − λ − φ.

2: cSum = Sparse([ ]).
3: for t = 1 : L do
4: εt = 1

h � t
τ 	.

5: Let st be an uniform random element from [1 : n]; qt =
matrixAccess(st , φ · εt , λ, p).

6: zt = rangeIndicator
(
qt , εt , ρ

−1
)
.

7: cSum = cSum + zt .
8: end for
9: cSum = rangeIndicator

(
cSum, (1 − 2β)LΔ

n , L
)
;

10: Return cSum.

We are now ready to state our main theorem.

Theorem 4.4. (Multiscale column sum.) For every right-stochastic matrix M accessible by
matrixAccess, threshold Δ ∈ (1, n), robust parameter c > 1, and failure parame-
ter δ ∈ (0, 1), with probability at least (1 − δ),

cSum = MultiScaleVectorSum (vectorAccess(·),Δ, c, δ)

correctly solves SignificantMatrixColumns.
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Furthermore, if matrixAccess is a (c1 , c2 , c3 , c4)-SARA model, then the cost of
MultiScaleVectorSum (vectorAccess(·),Δ, c, δ) is

O

(
c1

( n

Δ

) (
1

c − 1

)c2 +3

logc3 +2
(

1
c − 1

)
logc3 +c4 +3 n log2

(
2
δ

))
.

Proof. The cost of the algorithm is dominated by the sparse matrix operations in
lines 5–7 of Algorithm 2, plus the cost of the last operation in line 9. Using our
access model together with Propositions 4.1 and 4.3, we see that the cost of the
steps in lines 5–7 at time t is of order

O

(
c1

(
1
β

)c2 logc3 ( 1
βεt

)

βεt
logc4 +1 n log

(
2L

δ

))

≤ O

(
c1

h

�t/τ	 logc3 h

(
1
β

)c2 +1

logc4 +1 n log
(

2n

Δβδ

))
.

Note that this includes the extra factor of log n from Proposition 4.1, a factor
that is absent in the sparseness of qt and zt .

Summing over t gives a running time of order

O

(
c1L logc3 +1 h

(
1
β

)c2 +1

logc4 +1 n log
(

2n

Δβδ

))

= O

(
c1

( n

Δ

)
logc3 +1

( n

Δβ

) (
1
β

)c2 +3

logc4 +1 n log
( 2n

Δβδ

)
log

(2
δ

))

= O

(
c1

( n

Δ

) (
1
β

)c2 +3

logc3 +2
( 1

β

)
logc3 +c4 +3 n log2

(2
δ

))
.

To estimate the cost of the last step of the algorithm, we bound the sparseness
of cSum at the completion of the for loop by nnz(cSum) ≤ ∑

t nnz(zt) and then
apply Proposition 4.3 once more, giving a cost that is of the same order as the
total cost of the algorithm accrued up to this step.

To prove the correctness of the algorithm, we first note that with probability at
least (1 − p)L ≥ 1 − pL, each of the L calls of matrixAccess in line 5 will return
a sparse vector satisfying the bound (4.1). Next, we apply the union bound to
reduce the focus of the analysis to a single column:

Pr{MultiScaleColumnSum is unsuccessful}

≤
n∑

i=1

Pr{MultiScaleColumnSum is unsuccessful on column i}.
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When considering column i, we now let p = (p1 , . . . , pn )T = M(·, i), the ith col-
umn of M . In other words, pj = mi,j for all j ∈ [1 : n]. Note that the ith entry of
cSum after step 8 is of the form (4.2). With the bound (4.4) taken into account,
our proof will be very similar to that of Theorem 3.2.

We first consider the case that
∑

i pi ≥ Δ, in which case we bound

E[Q−] ≥ Lρ

n

∑
k

pk − τ ≥ ΔL

n

[
ρ − β2

3

]
=

ΔL

n

[
1 − β − β2

3

]
.

Multiplying both sides by (1 − β), we obtain

(1 − β)E[Q−] ≥ ΔL

n
(1 − 2β) .

Combined with the bound (4.4) and the multiplicative Chernoff bound
(Lemma 6.1), this shows that conditioned on matrixAccess returning a sparse
vector satisfying the bound (4.1) in each instance in line 5, we get

Pr
{

cSum(i) ≤ (1 − 2β)
ΔL

n

}
≤ exp

(
−β2

2
E[Q−]

)
≤ exp

(
−3

8
β2LΔ

n

)
≤ δ

2n
.

In a similar way, if
∑

k pk ≤ Δ/c = Δ(1 − 5β), we bound

E[Q+] ≤ ΔL

nρ
(1 − 5β) =

ΔL

n

1 − 5β

1 − β
,

implying that

(1 + 2β)E[Q+] ≤ ΔL

n
(1 − 2β)

and hence

Pr
{

cSum(i) ≥ (1 − 2β)
ΔL

n

}
≤ exp

(
−β2 ΔL

n

1 − 2β

1 + 2β

)

≤ exp
(
−ΔLβ2

3n

)
≤ δ

2n
,

again conditioned on matrixAccess returning a sparse vector satisfying the bound
(4.1) in each instance in line 5.

Thus the total failure probability is at most p · L + nδ/2n = δ, as desired.

5. Identifying Nodes with Significant PageRank

5.1. Robust Approximation of Personalized PageRanks

We now present our main subroutine for SignificantPageRanks, which, we
recall, addresses the following problem: Given a directed graph G = (V,E), a
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threshold value 1 ≤ Δ ≤ |V |, and a positive constant c > 1, compute a subset
S ⊆ V with the property that S contains all vertices of PageRank at least Δ and
no vertex with PageRank less than Δ/c.

Let PPR denote the personalized PageRank matrix of G defined in the intro-
duction, where we recall that PPR(i, j) is equal to the personalized PageRank
contribution of node i to node j in G. Under this notation, the Significant-

PageRanks problem can be viewed as a SignificantMatrixColumns prob-
lem if we can develop an efficient procedure for accessing the rows of PPR. This
procedure, which we refer to as PPRmatrixAccess(·), takes a row number i, an
additive precision parameter ε, a multiplicative precision parameter λ, and suc-
cess probability p, and returns a sparse vector m̃i = Sparse([m̃i,1 , . . . , m̃i,n ]) such
that

� with probability at least 1 − p,

(1 − λ) · mi − ε ≤ m̃i ≤ (1 + λ) · mi + ε,

where mi = PPR(i, ·), and

� with probability at most p, m̃i can be any sparse vector.

Our algorithm for PPRmatrixAccess(·) uses the following key observation that
connects personalized PageRank with the hitting probability of a Markov model.

Remark 5.1. PPR(v, j) is equal to the success probability that a random walk
starting at v and independently terminating at each time step with probability
α hits j just before termination.

Proof. Let 1v be the indicator vector of v. Solving the system given by

PersonalizedPageRank(v, ·) = α1v + (1 − α) PersonalizedPageRank(v, ·)D−1A,

one obtains

PersonalizedPageRank(v, ·) = α1v (I − (1 − α)D−1A)−1

= α1v

∞∑
i=0

((1 − α)D−1A)i .

The observation then follows directly from the last equation.

Our Algorithm 3 for PPRmatrixAccess conducts a careful simulation of such
restarting random walks. As such, it needs only an oracle access to a random
out-link of a given node.
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Algorithm 3. PPRmatrixAccess
Require: node v, additive approximation ε, multiplicative approximation λ.

1: cSum = Sparse([ ]).
2: Set length = �log 1

(1−α )
( 4

ε )	.
3: Set r = � 1

ελ2 · 4 ln(n/p)	.
4: for r rounds do
5: Run one realization of a restarting random walk from v. Artificially stop

the walk after length steps if it has not terminated already.
6: if the walk visited a node j just before making a termination step then
7: cSum = cSum + Sparse(j, 1/r) //namely, add 1/r to j’s value.
8: end if
9: Return cSum.

10: end for

Theorem 5.2. For every node v, values 0 < ε < 1, 0 < λ < 1, 0 < α < 1, and success
probability 0 < p < 1, PPRmatrixAccess(v, ε, λ, p) is a(

10max
{

log−1
(

1
1 − α

)
, 1

}
, 2, 1, 2

)
-SARA model.

In particular, its running time is bounded above by

O

(
ln2(n) ln(1/p) log(ε−1)

ελ2

)
.

Proof. We begin by analyzing the running time guarantee. The algorithm performs
� 1

ελ2 · 4 ln(n/p)	 rounds, where at each round, it simulates a random walk with
termination probability of α for at most length steps. Each step is simulated by
taking a uniform sample (“termination” step) with probability α and by choosing
a random out-link with probability 1 − α. The update of cSum in line 7 takes at
most log n (see Proposition 4.1). Thus the total number of queries used is

⌈
4 ln(n/p)

ελ2

⌉
·
⌈
log 1

(1−α )

(
4
ε

)⌉
log(n) ≤

⌈
4 ln(n/p)

ελ2

⌉
·
⌈

log( 4
ε )

log( 1
1−α )

⌉
log(n)

≤ (8 + 2)max
{

log−1
(

1
1 − α

)
, 1

}
ln2(n) log(1/p) log(ε−1)

ελ2 .

We now prove the guarantees on the returned vector cSum (line 9 in the algo-
rithm). Given a node j, denote by pk (v, j) the contribution to j from restarting
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walks originating at v that are of length at most k, namely,

pk (v, j) = α1v

k∑
i=0

(1 − α)D−1A)i .

We ask how much is contributed to j’s entry from restarting walks of length
greater than or equal to k. The contribution is at most (1 − α)k , since the walk
needs to survive at least k consecutive steps. Taking (1 − α)k ≤ ε/4 will guaran-
tee that at most ε/4 is lost by considering only walks of length smaller than k,
namely,

PPR(v, j) − ε

4
≤ pk (v, j) ≤ PPR(v, j).

For this to hold, it suffices to take k = �log 1
(1−α )

( 4
ε )	, the value to which the

parameter length is set in step 2.
Next, the algorithm computes an estimate of pk (v, j) by realizing walks of

length at most k. This is the value of cSum at index j returned by the algorithm.
Denote this by p̂k (v, j). The algorithm computes such an estimate (in line 7) by
taking the average number of hits over r trials (adding 1/r per hit).

Now, if PPR(v, j) ≥ ε/2, then pk (v, j) ≥ ε/4, and by the multiplicative Cher-
noff bound (Lemma 6.1),

Pr (p̂k (v, j) > (1 + λ)pk (v, j)) ≤ exp(− ln(n/p))

and

Pr (p̂k (v, j) < (1 − λ)pk (v, j)) ≤ exp(− ln(n/p)).

By the union bound, we can conclude that with probability 1 − 2p/n,

(1 − λ)
(
PPR(v, j) − ε

4

)
≤ p̂k (v, j) ≤ (1 + λ)PPR(v, j).

Similarly, if PPR(v, j) < ε
2 , then pk (v, j) < ε

2 , and by the multiplicative Cher-
noff bound (Lemma 6.1, part 3),

Pr
(
p̂k (v, j) > (1 + λ)

ε

2

)
≤ exp(− ln(n/p)) =

p

n
.

Since λ < 1, we therefore have 0 ≤ p̂k (v, j) ≤ ε with probability at least 1 −
p/n. And since PPR(v, j) < ε/2, we clearly have, with probability 1 − p/n,

(1 − λ)PPR(v, j) − ε ≤ p̂k (v, j) ≤ (1 + λ)PPR(v, j) + ε,

as required.
By the union bound, the complete claim holds with probability at least 1 − p.
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5.2. A Tight Lower Bound for Solving the SignificantPageRanks Problem

In this subsection, we present a corresponding lower bound for identifying all
nodes with significant PageRank values. Our lower bound holds under the strin-
gent model whereby one can access any node of interest in the graph in one unit
of cost and the PageRank of the node accessed is given for free. We call such
a model the strong query model. We first give a lower bound to illustrate the
challenge for identifying nodes with significant PageRanks, even in graphs with
only one significant node.

We then show that for every integral threshold Δ and precision c, there are in-
stances whereby the output size of SignificantPageRanks is Ω(n/Δ). Clearly,
this also serves as a lower bound for the running time of any algorithm that
solves the SignificantPageRanks problem, regardless of the computational
model used to compute the required output. We note that the running time of
our algorithmic solution to SignificantPageRanks is at most only a small
polylogarithmic factor away from this bound.

For clarity of exposition, we present our lower bounds for α = 0.5. Similar
lower bounds hold for every fixed 0 < α < 1.

Theorem 5.3. (Difficulty in identifying one significant node.) Let α = 0.5. For n large enough,
every algorithm making fewer than n/6Δ queries in the strong query model
on graphs on n nodes and threshold Δ ≤ n/9 will fail with probability at least
1/e to find a node with PageRank at least Δ, on at least one graph on n

nodes.

Proof. The proof will apply Yao’s minimax principle for analyzing randomized
algorithms [Yao 77], which uses the average-case complexity of the deterministic
algorithms to derive a lower bound on the randomized algorithms for solving a
problem.

Given positive integers n and Δ ≤ n/9, we construct a family F of undirected
graphs on n nodes by taking a cycle subgraph on n − d − 1 nodes and an iso-
lated star subgraph on the remaining d + 1 nodes, where we set d = 3Δ − 1. To
complete the construction, we take a random labeling of the nodes. See Figure 1
for an illustration.

Let A be a deterministic algorithm for the problem. We shall analyze the
behavior of A on a uniformly random graph from F .

First, by solving the PageRank equation system, it is easy to check that each
node on the cycle subgraph has PageRank value of 1, the hub of the subgraph
has PageRank d

3 + 2
3 , and a leaf of the star subgraph has PageRank 2

3 + 1
3d . The

only node with PageRank at least Δ is the hub of the star subgraph.
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Figure 1. An example illustrating the “cycle & star” lower bound construction
for PageRank computations.

Let T be the number of queries the algorithm makes. The probability that
none of the nodes of the star subgraph are found after T queries by A is at least

(
1 − d + 1

n

)T

≥ exp
(
−2T

d + 1
n

)
≥ exp(−1), for T ≤ n

6Δ
=

n

2(d + 1)
.

Here we used the fact that 1 − x ≥ exp(−2x) for 0 ≤ x ≤ 1/3.
We define the cost of the algorithm as 0 if it has found a node of PageRank at

least Δ, and as 1 otherwise. Note that the cost of an algorithm equals its prob-
ability of failure. Then by Yao’s minimax principle, every randomized algorithm
that makes at most n/6Δ queries will have an expected cost of at least 1/e, i.e.,
a failure probability of at least 1/e on at least one of the inputs.

Theorem 5.4. (Graphs with many significant nodes.) Let α = 0.5, let Δ be integral, and let c

be given. Then there are infinitely many n such that there exists a graph on n

nodes whose output to SignificantPageRanks has size Ω(n/Δ).

Proof. The construction is a variant of that used in the proof of Theorem 5.4.
The graph comprises n/(3Δ + 1) identical copies of an undirected star graph on
d + 1 = 3Δ nodes. An easy calculation with the PageRank equations shows that
each hub has PageRank Δ + 1

3 , and each leaf has PageRank

2
3

+
1

9Δ − 3
≤ 1.
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The number of nodes with PageRank at least Δ is therefore
n

d
= Ω

( n

Δ

)
.

6. Appendix: Concentration Bounds

Lemma 6.1. (Multiplicative Chernoff bound.) Let X =
∑n

i=1 Xi be a sum of independent
(but not necessarily identical) Bernoulli random variables. Then the following
hold:

1. For 0 < λ < 1,

Pr[X < (1 − λ)E[X]] < exp
(
−λ2

2
E[X]

)
,

Pr[X > (1 + λ)E[X]] < exp
(
−λ2

4
E[X]

)
.

2. For λ ≥ 1,

Pr[X > (1 + λ)E[X]] < exp
(
−λE[X]

3

)
.

3. For every constant Δ ≥ (1 + λ)E[X],

Pr[X > Δ] <

{
exp(−λ2

4 · Δ
1+λ ) if 0 < λ < 1,

exp(−λ
3 · Δ

(1+λ) ) if λ ≥ 1.

Proof. The case 0 < λ < 1 is standard, and a proof can be found, for example, in
[Motwani and Raghavan 95, Chapter 4]. For every λ, it is also shown therein
that

Pr[X > (1 + λ)μn] ≤
(

eλ

(1 + λ)(1+λ)

)μn

.

Now for λ ≥ 1,

eλ

(1 + λ)(1+λ) < exp
(
− λ2

2 + λ

)
≤ exp

(
−λ

3

)
,

and the second item follows.
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We now prove the last item. Assume that

Δ
(1 + λ)

− E[X] > 0

(otherwise, the proof follows immediately from part 1). Define

k =
⌈

Δ
(1 + λ)

− E[X]
⌉

and Y =
n+k∑
i=1

Yi,

where for 1 ≤ i ≤ n, Yi = Xi , and n < i ≤ n + k, the Yi are independently dis-
tributed Bernoulli random variables each with expectation(

Δ
(1+λ) − E[X]

)
k

.

Note that k ≥ 1; the Yi are indeed Bernoulli random variables, since

0 <

(
Δ

1+λ − E[X]
)

k
≤ 1

and

E[Y ] = E[X] +
(

Δ
(1 + λ)

− E[X]
)

=
Δ

(1 + λ)
.

Now,

Pr(X > Δ) = Pr
(

X >
(1 + λ)Δ

1 + λ

)

≤ Pr
(

Y >
(1 + λ)Δ

1 + λ

)
<

{
exp(−λ2

4 · Δ
1+λ ) if λ < 1,

exp(−λ
3 · Δ

(1+λ) ) if λ ≥ 1.

The next-to-last inequality follows from the fact that Y first-order stochastically
dominates X, and the last inequality follows from parts 1 and 2 of the lemma.
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