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Problem-based learning has been applied over the last three decades to a diverse 
range of learning environments. In this educational approach, different problems 
are posed to the learners so that they can develop different solutions while 
learning about the problem domain. When applied to conceptual modelling, and 
particularly to Qualitative Reasoning, the solutions to problems are models that 
represent the behaviour of a dynamic system. The learner's task then is to bridge 
the gap between their initial model, as their first attempt to represent the system, 
and the target models that provide solutions to that problem. We propose the use 
of semantic technologies and resources to help in bridging that gap by providing 
links to terminology and formal definitions, and matching techniques to allow 
learners to benefit from existing models. 
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1. Introduction 

Over the last three decades, problem-based learning (PBL) has been successfully 
applied in both authentic and situated learning environments, and its use has been 
widely reported in a number of domains, e.g. medicine (Barrows, 2000), architecture 
(Maitland, 1998), or chemical engineering (Woods, 1996). This approach consists of 
posing problems to learners, so that they can learn about a particular domain by 
developing solutions to them. Problem-based learning provides learners an 
opportunity to develop skills in problem definition and problem solving, to reflect 
on their own learning, and develop a deep understanding of the domain content 
(Spiro, Coulson, Feltovich, & Anderson, 1988). When compared to approaches 
driven by textbooks or other prepared instructional materials (Pierce & Jones, 2000), 
PBL students remember the information for longer period (Norman & Schmidt, 
1992), and are more likely to apply scientific knowledge appropriately in the future 
(Allen, Duch, & Groh, 1996). 

In problem-based learning environments, some target solution(s) usually exist to 
the proposed problem. The learner's task consists of developing their own solutions 
to the problem, and testing/evaluating them against some existing target solutions(s). 
In doing so, they move from their initial solution to the target solution. However, 
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Figure 1. Model of population growth based on competing processes, (a) Hierarchy of 
entities, (b) Relations between ingredients. 

bridging the gap between these two solutions is not a trivial task, especially for 
complex domains or for those concepts that are very new to learners. 

In this work, we focus on one of the strategies that have been commonly applied 
to problem-based learning for complex domains: conceptual modelling (Bredeweg & 
Forbus, 2004). In particular, we focus on Qualitative Reasoning (QR) modelling, 
which enables modellers to specify conceptual representations of complex, dynamic 
systems, and to predict their behaviour through reasoning (Forbus, 2008). In fact, 
QR has been already successfully applied for education across multiple disciplines, 
such as physics, economics, or environmental science. 

In QR, two relevant limitations hamper the scaffolding of model building and the 
autonomy of the learner towards learning targets: (1) tools do not allow the 
alignment of terminology in the models to common shared vocabularies, thus 
leading to heterogeneous models that are more difficult to compare, and (2) tools do 
not enable the automated reuse of knowledge coming from other models, thus losing 
learning opportunities by discovering relevant knowledge from experts or peers that 
could enrich the learner model. 

To illustrate this, let us consider a modelling task undertaken by a group of 
learners using one of the existing QR modelling tools. The students are given the task 
of representing in a QR model the behaviour of a population growth based on 
competing processes (e.g. Nuttle, Salles, Bredeweg, & Neumann, 2009) as shown in 
Figure 1. The learners use one of the existing modelling tools to build the model and 
start to define some concepts and their relations. At some point in time, the learners 
consider their models finished and require feedback on their models to check whether 
they have an appropriate solution to the task. In a typical problem-based learning 
task, the teacher will have also specified their own reference model representing a 
target solution to the problem. It can be anticipated that, with learners working 
individually they will have developed a diverse range of models, representing their 
individual understanding of the behaviour of the population. As the learners and the 
teacher have created their models independently, potentially using different 
terminologies and thus these different models are not easily aligned (for instance, 
a student may call "Death" the same concept that other student refers as "Mortality 
rate"). When the learners want to compare their models to detect whether there are 
any differences, they can only do it by manually inspecting the models. First, they 
need to agree on the terminology and align their models before being able to directly 



compare them. Second, they also lack the autonomy to validate on their own 
solution. In fact, the student models have to be validated by the teacher, either by 
directly correcting them by hand or by providing clear rules to allow self-correction 
by the student. In any case, this is a costly process and typically does not benefit of 
the knowledge contained in other expert or peer models maybe not known by the 
teacher in advance. 

1.1. A proposal for semantically-enhanced QR-based PBL 

In this paper, the use of some of the resources available in the Web of Data (Bizer, 
Heath, & Berners-Lee, 2009), more specifically DBpedia1, is proposed to ease the 
modelling task and avoid some of the aforementioned limitations. Since QR models 
can be represented as ontological models (Liem & Bredeweg, 2007), the application 
of semantic-based techniques is possible. The approach consists of two main 
components: (1) grounding of terminologies and vocabulary in different models to a 
common vocabulary to align different models considering similar concepts and (2) 
the generation of semantic-based feedback to the modellers. Both components aim 
to ensure lexical correctness of their terms, as well as facilitate the interoperability 
among models at a terminological level. The goal, from an educational perspective, is 
twofold: 

(1) Allow learners to link their particular terminology to well established 
vocabularies, thus having the opportunity of learning the correct terminology 
and modifying their model accordingly. 

(2) Enable automatic model comparisons to discover pieces of common 
knowledge among the models as well as to detect possible discrepancies or 
misconceptions. Suggestions have to be created from these discrepancies and 
communicated as feedback to the learner. These suggestions are aimed to 
stimulate learners to evaluate their models and to scaffold their progress, 
modifying their models and understanding, directing their representations 
towards the representations found in reference models. 

The rest of this manuscript is organised as follows. Section 2 provides 
background on Qualitative Reasoning and the zone of proximal development as 
scaffolding strategy for learning. Section 3 describes the system architecture and its 
main components. Sections 4 and 5 provide a detailed description of the semantic 
grounding and the feedback generation processes. Section 6 details the evaluations 
run to validate this approach. The related work is discussed in Section 7. Finally, 
conclusions and future work are presented in Section 8. 

2. Context 

In this section, some preliminary concepts of QR modelling and development levels 
are introduced to allow a better understanding of the remainder of the paper. 

2.1. Qualitative Reasoning as a learning environment 

Qualitative Reasoning modelling allows modellers to create non-numerical descrip­
tions of system structure and behaviour concerning domain concepts and 



phenomena. Qualitative Reasoning can support models that preserve important 
properties and qualitative behavioural distinctions of systems behaviour and can 
automate reasoning and problem solving about the physical world (Forbus, 2008). 
Qualitative Reasoning modelling requires that modellers define the model in terms of 
ingredients that can define both the system structure and notions of causality from a 
systems viewpoint. These ingredients include: entities, configurations, quantities and 
quantity spaces. Entities define the concepts with which the physical components/ 
structure of the system is described, typically organised in taxonomies (e.g. 
"Ecosystem" and "Population" in Figure 1(a) are two disjoint entities and 
"Habitat" is a subtype of "Ecosystem"). Configurations define structural relations 
between entities (e.g. part of, contains, and lives in), and quantities represent the 
features of entities that may change during simulation of dynamic behaviour. 
Quantities are defined by a set of possible qualitative values (quantity spaces). 
Quantity spaces represent the possible values a magnitude (or derivative) of a 
quantity can have, and contain an ordered set of possible values. All of these 
ingredients are defined by their type and by the name given to them by the modeller. 
Some of the ingredients described above can be put in relation by means of causal 
relationships, correspondences, inequalities, and other generic building blocks 
representing mechanisms of change within the model. For instance, in Figure 1(b), 
e.g. the positive influence (1+) from "Birth rate" of "Population" makes the size of 
that population increase. On the other hand, the "Size" of the population is 
propagated to "Birth rate" via a positive proportionality (P+). Similarly, the 
negative influence (I — ) from "Death rate" makes the size of population decrease, 
while the "Size" is positively proportional to "Death rate". 

Therefore, given that all ingredients in the QR approach are defined by their 
name and the terminology used by the modeller, it is this process of defining 
ingredients that is fundamental to the creation of models. It is also during modelling 
that learners will require feedback and support on how to construct an appropriate 
explanation for the behaviour of a certain system, and how to use and define 
domain-appropriate vocabulary. 

2.2. Development levels as a framework for scaffolding 

During the modelling process, the learners' models are constructed based on the 
modellers' current understanding of the system or phenomena they are representing. 
Therefore, this model can be considered to be an external representation of the 
modellers' understanding (mental model) of the system. The amount of knowledge a 
user has about a particular domain determines, together with their modelling skills, 
the quality of this representation and how much this model may differ from a 
reference or target model for the subject/problem. The assumption is that the closer 
the learner model is to the target one, the better the user model represents the reality. 
In this process, four classes of models can be identified, following a similar approach 
to (Tran, Cimiano, Rudolph, & Studer, 2008): 

(1) Mental model (Mm). This corresponds to the learner's internal mental 
representation/understanding of the system that they intend to represent 
by means of a conceptual model. The mental model is composed of 
mental structures (from distinct and well structured concepts and relations 
to vaguely formulated ideas) that are relevant to the topic to represent. 



The mental model is understood as the user's initial knowledge about the 
system. 

(2) Learner model (Mi). This is the result of the learner's intent to formalise and 
externalise their mental model in terms of a formal modelling vocabulary. In 
most cases, not all the knowledge contained in the mental model is 
successfully represented in the learner model, depending to a great extent 
on the learner's modelling skills and the expressiveness of the knowledge 
representation language. 

(3) Target model (Mt). This is an ideal (and typically unknown) formal 
representation of the studied system, assumed to be complete and to cover 
all aspects of system. There is no unique target model (as there is no unique 
view of the world). It depends on several factors such as scope, granularity 
and perspective. 

(4) Reference model (Mr). As the target model (ideal representation of the 
system) is typically unknown, an expert user's model is taken as reference 
model, and is considered an approximation of the target model. 

Vygotsky (1978) proposed the concept of a zone of proximal development 
(ZPD), defined as "the distance between the actual development level as 
determined by independent problem solving and the level of potential develop­
ment [...] in collaboration of more capable peers". In this context, Mm represents 
the initial point in the actual development level space, and Mi constitutes the first 
effort to formalise the learner's knowledge, while Mr is an intermediate point 
before Mt, which is typically unreachable from the current level of the learner 
(see Figure 2). 

In our case, both learner and reference models are represented as QR models. 
Given this, the modelling process can be seen as a progression from an initial 
representation of the learners' understanding of the phenomena and the QR 
approach towards a better system understanding and greater ability with the QR 
tool. The systematic evolution of the learner model towards the reference 
model(s) should act to refine the learners' mental model of the system and to 
therefore enhance their understanding of the concept. To achieve these, learners 
will require scaffolding during their modelling task to support their appropriate 
use of domain knowledge and also their use of the QR vocabulary. Automation 
of this support and scaffolding requires that the QR tool can provide situated 
feedback and suggestions to the student on how their model could be improved. 
This support should provide suggestions that are within the zone of proximal 
development for the student. 

Figure 2. Development levels. 



3. System overview 

In traditional approaches driven by textbooks or other prepared instructional 
materials, the progression between Mt to M, requires "manual" comparisons among 
models, which has inherent limitations in time (expert/teacher validation is time 
consuming) and scope (reference models has to be known beforehand). In this work, 
the use of two semantic techniques, semantic grounding and semantic-based 
feedback, is proposed to overcome these limitations. This approach aims to support 
a learner's transition from Mi to Mt by providing automated feedback based on 
"intermediate" reference models extracted from a pool of models created by the 
community of users. 

To support such pool of models, an online semantic repository has been 
conceived where the models created by all the users are stored and remain accessible 
for later reuse. Then, during the construction of the learner model, the system can 
perform the following actions (see Figure 3): 

• Semantic grounding. Determining links between the unrestricted terminology 
used by learners and resources of the Web of Data (particularly DBpedia), 
making easier the interoperability and later alignment among models. 

• Semantic-based feedback. Analysis of the differences between the learner model 
and the reference model and generation of suggestions provided as feedback 
for the learner. 

The DynaLearn2 workbench, a system intended to allow learners to acquire 
conceptual knowledge, is used for creating the model. In this workbench, the 
conceptual knowledge contained in QR models is extracted (Liem & Bredeweg, 
2007) and expressed in OWL to ease their ontology-based description. During the 
modelling process, the learner grounds the terms in their models to online semantic 
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Figure 3. General overview of the semantic technologies. 



resources. The choice of DBpedia for that was motivated by its good coverage in 
comparison to other semantic resources (Gracia et al., 2010). At a certain point, the 
learner asks for semantic feedback on their model. Then, relevant models contained 
in the semantic repository are searched. The most relevant model is selected as 
reference model and compared with the learner's model for the generation of 
feedback. As a result, a list of discrepancies is obtained which are communicated 
back to the learner as suggestions to improve their model. The learner can then 
decide whether to follow such suggestions or not, thus changing or maintaining the 
model accordingly. The whole process should scaffold a learner to evaluate their own 
model and evolve their model towards capturing a more insightful understanding of 
the concepts they are modelling and the terminology they are using. 

4. Grounding of terms 

The semantic grounding process allows conceptual models to be linked to other 
existing ones by means of common terms that come from external resources. Figure 
4 illustrates the main steps of the semantic grounding process. 

The first step in the grounding process is to normalise the term (e.g. replacing "_" 
symbols with blank spaces). Also, if the term is composed of multiple words, it is 
syntactically analysed3 and split in the parts delimited by separators (e.g. "the change of 
energy flow" becomes "change" and "energy flow"). The original term and its parts 
constitute the list of words to be grounded. If one of these parts is still a multiword, their 
constituent words and their possible combinations are added to the list. 

The next step is to look up in DBpedia the given list of words to be grounded. 
The obtained DBpedia terms form the list of candidate groundings. A ranking 
process is applied on this list of candidates. This performs comparisons, based on 
vector space modelling (Raghavan & Wong, 1986) and string-based distances 
(Levenshtein, 1966), between each candidate grounding and the original term and its 
context (related terms in the QR model). As a result, the candidate groundings are 
ranked according to their relevance to the QR model. 

Additionally, a stemming process (Miller, 1995) is applied to get a canonical form 
from plurals, inflected forms, etc., and a spelling suggestion service4 is accessed to 
get alternative forms in case of misspelling errors. These suggestions are 
communicated to the learner as alternatives to the original term. In case the 
candidate groundings were not satisfactory to the learner, they could repeat the 
search using one of the alternatives instead of their original term. 

Finally, in order to cover the cases in which the groundings provided by DBpedia 
are not satisfactory, the system allows the users to create the so called anchor terms. 
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Figure 4. Main steps of semantic grounding. 



An anchor term contains the label and description of a user term that could not be 
grounded in DBpedia, and is stored apart in an online ontology that remains 
available for later reuse in other models. Therefore, this solution also enables the 
emergence of much specialised common vocabularies shared by the users of the 
system. This common vocabulary is also used as source during the search of 
groundings, and the results are added to the list of candidate groundings. 

5. Semantic-based feedback 

As a consequence of the preliminary grounding process, the comparison of models 
becomes a feasible task, and thus the possibility of generating valuable feedback for 
the learner from existing models. This feedback informs the learner about the 
discrepancies between their model and the model used as reference in the 
comparison. In particular, feedback is given on: 

• Terminological discrepancies. During the modelling task, the selection of the 
appropriate vocabulary to be used in the model is the first, and therefore very 
important, step. An incorrect choice of the terminology in the learner model could 
indicate a misunderstanding of the problem to be solved or a lack of knowledge in 
the particular domain. The comparison of the terminologies of the learner model 
and a reference model allows the detection of some of these problems. 

• Taxonomic discrepancies. Two equivalent entities should share the same 
terminology but also have the same equivalent position in their respective 
hierarchies. The system informs of this inconsistent situation, so the learner 
could revise the hierarchy and change it accordingly. 

• Structural discrepancies. Correctly representing the causal dependencies 
(influences and proportionalities) between quantities is a difficult task in QR 
modelling. By comparing the causal dependencies between equivalent 
quantities in the reference and the learner model, the relations that are 
missing, extra or different in the learner model can be detected. 

5.1. Generation of feedback 

The generation of feedback is based on the comparison between the learner model and a 
reference model. The selection of this reference model can be done in two manners: the 
teacher can select the model that learners have to pursue, or it can be left to the system to 
automatically select an appropriate reference from the models currently available 
based on the common groundings between the learner model and the models in the 
repository. The assumption here is that the existence of common groundings indicates 
that the models address similar concepts and share the same domain. 

Figure 5 shows the different processes that compose the generation of semantic 
feedback. 

5.1.1. Grounding-based alignment 

First, the learner and reference models are compared using a grounding-based 
alignment, which identifies the common groundings between the two models. These 
common groundings are used to generate a preliminary set of mappings, which are 
added to the learner model as owhEquivalentClass statements. As a result, pairs of 



terms considered semantically equivalent are obtained, and these constitute the 
preliminary set of mappings. To illustrate this, we use Figure 1 and Figure 6 as 
examples of reference model and learner model, respectively. In this example, the 
learner's model has a term labelled Birth that is grounded to the DBpedia term Birth 
rate5, and the reference model has a term labelled Birth rate that is also grounded to 
the same DBpedia resource Birth rate. To allow later inference, Birth and Birth rate 
are identified as equivalent terms (expressed using owl .-Equivalent Class). 

5.1.2. Ontology matching 

Then, ontology matching techniques (Gracia, Bernad, & Mena, 2011) are applied 
between the enriched version of the learner model and the reference model to 
discover new equivalences beyond the common groundings, based on the semantic 
similarity of the terms. These new equivalences, together with the grounding-based 
ones form the final set of mappings. These techniques have been adapted to the QR 
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scenario and applied to the models, which are treated as ontologies (Liem & 
Bredeweg, 2007). The obtained mappings are added to the learner model as 
owl:EquivalentClass statements. 

Finally, the system compares the pairs of equivalent terms, obtained from the 
ontology matching, to detect the possible differences between them. This detection is 
carried out through three different processes, according to the type of difference we 
want to find: 

5.1.3. Detection of terminological discrepancies 

Each pair of equivalent terms is analysed to find the possible terminological 
discrepancies between the models. Depending on the type of differences, the system 
finds: 

• Discrepancies between labels or groundings: The system compares the label and 
grounding of each pair of equivalent terms and detects the differences. In our 
example, the system would suggest that the quantity Birth in the learner's 
model could be renamed as Birth_rate. 

• Missing and extra ontological elements: Those terms from the reference model 
that are not present in the learner model are seen as missing elements. The 
system would suggest to add them to the learner model, indicating their 
relation with the existing elements in the model. In the same way, the terms in 
the learner model that are not present in the reference model could be seen as 
extra elements to be removed from the model. In our example, the entity Fish 
population would be suggested as extra since it does not appear in the reference 
model and could be removed from learner's model. 

5.1.4. Detection of taxonomic discrepancies 

After the ontology matching process, the tool uses semantic reasoning techniques 
(Sirin, Parsia, Cuenca-Grau, Kalyanpur, & Katz, 2007) to detect inconsistencies 
between the taxonomy of the two models. For instance, the entity Habitat cannot be 
subtype of Population in learner's model and subtype of Ecosystem in the reference 
model given that Population and Ecosystem are disjoint classes. 

5.1.5. Detection of structural discrepancies 

Once the equivalences at the schema level have been identified, the system compares 
the models at the instance level. The discrepancies between the instances of 
equivalent concepts point out differences in how these concepts are used in the 
models. The particular semantics of QR models is used, as well as some QR 
modelling rules, to identify common patterns in the models and detect the possible 
discrepancies: 

• Missing and extra instances of existing terms in the learner model: A missing 
instance in the learner model could indicate some missing behaviour in the 
model. Similarly, an extra instance could represent a superfluous or incorrect 
behaviour in the model. Let us assume that the learner has already defined the 
quantity Death in their model, though it is not being used. Then, the system 



suggests that, according to the reference model, an instance of Death should be 
added to the entity Population in their model. 

• Discrepancies in the causal dependencies between quantities: By comparing the 
causal dependencies between equivalent quantities in the reference and the 
learner model, the relations that are missing, extra or different in the learner 
model can be detected. In the example, the quantities Size and Birth in 
learner's model are causally related by a positive proportionality. However, 
according to the reference model they should be related through a positive 
influence, and a positive proportionality only applies in the opposite direction. 

Finally, to scaffold the learners though their zones of proximal development, the 
detected discrepancies are expressed in the form of suggestions, as the actions that 
learner should do to modify their model towards the target model. These suggestions 
are communicated to the learner through a particular interface within the modelling 
tool, indicating the involved terms in the learner model and a little description of the 
detected problem. 

6. Evaluation 

There has been previous work showing the adequacy of DBpedia as a source of 
knowledge for grounding QR models (Gracia et al., 2010), with up to 78% of 
coverage in the domain of environmental science. We focus here on studying the 
effect of the grounding and the other proposed semantic techniques in a real 
learning scenario6. In particular, the research hypotheses to be tested are the 
following: 

HI The system is capable of generating suitable feedback from the comparison 
of a learner model and a reference model. 

H2 The generated feedback supports model development and learning through 
the zone of proximal development. 

6.1. Evaluation 1: adequacy of generated feedback 

To evaluate the adequacy of the generation of feedback, 10 pairs of expert and 
learner models7 were taken in the domain of Natural Sciences, all of them previously 
grounded. The learner models were obtained from two different groups of learners, 
all beginners in QR modelling. Two domain experts participated in the evaluation, 
both experts in QR modelling. 

Each pair of models was used as input for the semantic feedback. A total of 156 
test cases (suggestions) were obtained. For each pair of models, the images of the 
learner and reference model were shown to the evaluators, together with the list of 
suggestions generated as feedback. Then, the evaluators assessed whether they 
agreed or not with the proposed suggestions. Some examples of the generated 
suggestions are: 

• Terminology: The entity "Shallow water" in your model should be renamed as 
"Surface water". 

• Inconsistency: "Osmosis" appears as quantity instead of entity in the reference 
model. 



• Different dependency: The quantity "Population size" of the entity "Fish" 
should have a positive proportionality instead of a positive influence to the 
quantity "Death and sinking rate" of the entity "Fish". 

• Missing term: The entity "Cytoplasm" grounded to http://dbpedia.org/ 
resource/Cytoplasm should be added to your model. 

As a result, 87% of the generated suggestions were considered correct by the 
experts. The Kappa coefficient, that measures the level of agreement between 
evaluators, was 0.68, which indicates an adequate level of agreement. 

6.2. Evaluation 2: effect of the feedback in the learners' progress 

To test the second hypotheses, an experiment was set up using the tool 
DynaLearn in a real classroom scenario. The experiment was run simultaneously 
in two European universities: University of Hull (Group 1, seven undergraduate 
students from the department of Biological Science) and Universidad Politecnica 
de Madrid (Group 2, six students from the department of Artificial Intelligence). 
In both cases, students were unfamiliar to QR and received a couple of training 
lessons in QR modelling before the evaluation activity. Then, they were asked to 
elaborate a model about a certain topic which was described in natural language. 
The topic proposed for Group 1 was to study the "interaction of the brine 
shrimp Artemia with a hypersaline environment" (extracted from an under­
graduate physiology book), while for Group 2 was the "physics of the flow of a 
liquid between two communicating vessels". Once the students considered their 
model complete, they grounded the terms in DBpedia and asked for feedback. 
Then, they modified their models by accepting or not each of the given 
suggestions and iterated again until they considered the model finished. 

In a first attempt to evaluate the automatic selection of reference models for the 
generation of feedback, Group 1 was divided into two subgroups. Four of the 
students received feedback from reference models automatically selected among the 
whole pool of models (that contained 190 models at the time of the evaluation). The 
other three students received feedback from a single reference model selected 
beforehand by the teacher, as all the learners from Group 2. 

To assess whether the final models of the students (after feedback) were closer 
than the initial model (before feedback) to the reference models, the opinion of two 
experts in QR were asked. In order to avoid bias, each pair of models to be assessed 
were randomised (the expert did not know which model was generated after/before 
feedback). The experts scored how close the inspected model was to the reference 
one, in terms of the adequate conceptualisation, terminology and representation of 
causal dependencies for a pre-defined list of key concepts related to the system being 
modelled. Tables 1 and 2 show the results. "Improvement/worsening" indicates that, 
according to the evaluator, the model produced after feedback was closer/farther 
than the reference one. "Neutral" means that the changes did indicate neither a 
significant improvement nor worsening. 

In order to evaluate the inter-rate agreement between the evaluators, we 
considered the amount of test cases in which both evaluators detected a correct 
progression or at least stability, thus rating the case as "improvement" or "neutral". 
In that case, the direct agreement between the evaluators was 77% for the cases that 
showed some improvement or at least remained as far from the reference model than 

http://dbpedia.org/


Table 1. Test results for Group 1. 

Evaluator Improvement Neutral Worsening 

Evaluator 1 4 3 0 
Evaluator 2 0 5 2 
Total 4 8 2 

Table 2. Test results for Group 2. 

Evaluator Improvement Neutral Worsening 

Evaluator 1 3 2 1 
Evaluator 2 4 2 0 
Total 7 4 1 

before the feedback. The corresponding Kappa was 0.54, what indicates moderate 
agreement. In fact, Evaluator 2 was much more conservative when considering 
potential improvements than Evaluator 1. When inspecting the cases that really 
presented some improvement (i.e. the cases rated as "improvement" by at least one 
evaluator), the direct agreement was 62%. 

6.3. Discussion 

The first experiment was aimed at confirming the hypothesis HI. As a result of this 
experiment, 87% of the evaluated suggestions were considered adequate by the 
experts, which can be considered as a promising result. The main problems identified 
in the learner models were: 

• Representation of multiple concepts in the same term. For instance, "Water 
concentration in mucus" was represented as one quantity. However, this could 
be split into the individual concepts and represent "Water" and "Mucus" as 
entities and "Concentration" as a quantity of "Water". 

• Representation of concepts using different types of ingredients. For example, 
Osmosis was a quantity in the reference model, though it appeared as entity in 
some learner models. 

• Learners did not fully ground their models. By grounding the terms, some of 
the above problems can be detected, since not satisfactory groundings can be 
found for the term and learners can then reformulate the labels. In addition, 
the grounding facilitates the later alignment with the reference model. 

The strong differences between the learner models and the reference model 
indicate a big gap between the learner's background in QR and very complex 
models. This makes difficult the task of ontology matching, thus obtaining few 
mappings between the models, and hence limits the potential of the feedback. In fact, 
the problem here was that the reference model was too advanced for those learners 
and with different granularity. Some terminology issues can be still detected and 
suggest some changes to the learners, but most of structural problems in the model 



would be hard to detect when the reference model is so distant and with such low 
overlap with the learner model. There are two ways of alleviating this issue: either 
using the feedback mechanism when learners have a better insight of QR or 
introducing simpler reference models in the repository. 

To confirm the hypothesis H2, the second experiment was run. Although 
improvement was detected in 62% of cases after feedback, the results are still 
modest. In particular, the progression of learners was particularly slow for 
participants of Group 1. Analysing the data for this group, we found that the 
models had a very low quality and revealed an important lack of knowledge about 
the domain to be modelled. Although learners from both groups were beginners in 
QR modelling, participants from Group 2 did know the problem better 
(communicating vessels), while Group 1 were new in the domain, since the objective 
of that activity was to learn about it. As a consequence, initial models in Group 1 
were long way away from the reference model. In these cases, the reference model 
could be considered out of their zone of proximal development. Therefore, although 
they made changes it may not have been sufficient to improve. The solution to this 
problem could be either to improve the initial knowledge of the learner (thus 
approaching their user models to the reference one) or generate an easier version of 
the reference model (thus approaching the reference model to the learner models). 

About the comparison between the two different ways to obtain reference 
models, automatically selected by the system or pre-selected by the teacher, there was 
no observable difference in the quality of the feedback generated. However, further 
experimentation will continue in this regard. 

7. Related work 

Currently, there are a range of different modelling tools based on QR that have 
been developed for learning purposes (Bredeweg, Linnebank, Bouwer, & Liem, 
2009; Dehghani & Forbus, 2009; Forbus, Carney, Sherin, & Ureel II, 2004; 
Soloway et al., 1997), though to our best knowledge the approach described in 
this paper has no counterpart in the field of QR modelling. Other modelling and 
simulation tools, such as Betty's brain (Leelawong & Biswas, 2008) or Stella 
(Costanza & Voinov, 2001) neither ground terms to a common vocabulary nor 
get quality feedback from existing models. There exist other modelling tools as 
well based on conceptual modelling in general, beyond QR (Canas et al., 2004; 
Novak & Go win, 1984), though these do not rely on Semantic Web standards to 
maximise their interoperability or not perform an effective grounding with 
external concepts. 

In the field of ontology engineering, there are some works aimed to improve 
an ontology through techniques of ontology debugging (Stuckenschmidt, 2008) 
and ontology evolution (Stojanovic, 2004). These systems analyse the formalisa-
tion and implementation of the ontology to detect the possible inconsistencies. An 
approach to the sequential diagnosis of ontologies is presented in Shchekotykhin 
and Friedrich (2010). Lehmann and Bumann (2010) describe an ontology 
debugging tool to repair inconsistent ontologies and enrich them. However, these 
approaches are mostly based on diagnosis methods (Friedrich & Shchekotykhin, 
2005; Kalyanpur, Parsia, Horridge, & Sirin, 2007) and they do not provide 
recommendations based on run-time discovered shared domain knowledge, as our 
system does. 



8. Conclusions and future work 

In this paper, a novel approach is presented to support learning in problem solving 
environments by the use of semantic techniques, and in the particular scenario of 
using QR models. This approach links the learners' models to common vocabularies 
to facilitate their later alignment, thus easing the comparison of models to detect the 
possible differences between them. These differences are expressed as suggestions and 
communicated back to the learner as feedback, aim to scaffold the learner's progress 
through their zone of proximal development. 

The human-based evaluations run with an early implementation of the feedback 
utilities showed promising results although it is suggested that a more detailed 
scaffolding of naive modellers is needed to ensure first proper terminology, and then 
proper usage of those terms in the model. 

Regarding the grounding of terms to common vocabularies, additional knowl­
edge and resources can be incorporated to the system. For example, DBpedia 
contains rich multilingual textual descriptions, links to pictures and web pages, etc. 
as part of a term description. This information can be imported if the term is 
grounded on that knowledge source, and shown to the user in the modelling tool. 

Finally, we will run more detailed evaluations focused on particular aspects of the 
modelling process and their effect during the generation of feedback. In this context, we 
will study the influence of anchor terms created by learners, as well as the common 
modelling problems that could be taken into for a more specialised feedback. 

Notes 
1. http://dbpedia.org 
2. www.dynalearn.eu 
3. http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/ 
4. http://code.google.eom/p/google-api-spelling-java/ 
5. http://dbpedia.org/resource/Birth/_rate 
6. All the experimental data and more details about the evaluation can be found in www.oeg-

upm.net/files/dynalearn/experiments/2012/Evaluations.rar 
7. Obtained as result of real modelling exercises conducted at University of Hull and in Tel 

Aviv University. 

http://dbpedia.org
http://www.dynalearn.eu
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
http://code.google.eom/p/google-api-spelling-java/
http://dbpedia.org/resource/Birth/_rate
http://www.oegupm.net/files/dynalearn/experiments/2012/Evaluations.rar
http://www.oegupm.net/files/dynalearn/experiments/2012/Evaluations.rar
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