
HAL Id: hal-00558523
https://hal.science/hal-00558523v1

Submitted on 22 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Web Services- based Automation for the Control and
Monitoring of Production Systems

Punnuluk Phaithoonbuathong

To cite this version:
Punnuluk Phaithoonbuathong. Web Services- based Automation for the Control and Monitoring of
Production Systems. International Journal of Computer Integrated Manufacturing, 2010, 23 (02),
pp.126-145. �10.1080/09511920903440313�. �hal-00558523�

https://hal.science/hal-00558523v1
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly
 

 
 

 
 

 
 

Web Services- based Automation for the Control and 
Monitoring of Production Systems 

 
 

Journal: International Journal of Computer Integrated Manufacturing 

Manuscript ID: TCIM-2009-IJCIM-0011.R2 

Manuscript Type: Special Issue Paper 

Date Submitted by the 
Author: 

15-Jul-2009 

Complete List of Authors: Phaithoonbuathong, Punnuluk; Loughborough University, 
Mechanical and Manufacturing Engineering 

Keywords: 

AGILE MANUFACTURING, DISTRIBUTED MANUFACTURING 
CONTROL, COLLABORATIVE MANUFACTURING, MANUFACTURING 
CONTROL SYSTEMS, RECONFIGURABLE MANUFACTURING 
SYSTEMS, WEB-BASED MANUFACTURE 

Keywords (user): component-based design, Device Profile for Web Services  

  
 
 

 

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

International Journal of Computer Integrated Manufacturing, Vol. X, No. X, Month 200X, 000–000 

      

   

Web Services- based Automation for the Control and Monitoring of Production Systems 

Punnuluk Phaithoonbuathong
*
, Radmehr Monfared,

 
Thomas Kirkham, Robert Harrison, and Andrew West 

Wolfson School of Mechanical and Manufacturing, Loughborough University, Leicestershire, UK 
 

Autonomous and intelligent control devices within the context of factory automation are seen as an essential 

ingredient in making time and cost savings in factory automation environments. In moving to mass 

customisation scenarios where production lines are subjected to frequent changes and mix types of products, 

the agility and reconfigurability of automation systems is a prime requirement to support changes in 

manufacturing’s lifecycles. In addition, intelligent functionalities including process monitoring, diagnostics 

and process reconfiguration are also desirable factors to facilitate an effective production unit with 

competitive costs and an ease of use and maintain. In this context, the adoption of Web Services on the 

distributed embedded control devices to enhance reconfigurability and integrability with supported 

manufacturing and business applications is proposed. 

 

This paper demonstrates the use of Web Services (WS) both in building device control functionality of control 

components and business application integration. This WS approach presents the ability to integrate pervasive 

enterprise applications (e.g., process monitoring and planning systems) as well as the ability to reconfigure 

and manage lower level devices from higher manufacturing and business control levels through unifying Web 

Services interface and neutral Simple Object Access Protocol (SOAP) message communication between 

control systems and business applications. 

 

Keywords: component-based design; Device Profile for Web Services (DPWS); distributed control system 

 

1. Introduction   

Traditional manufacturing automation systems are often constructed in a rigid, centralised, hierarchical, and 

also proprietary manner. These factors have contributed to implementation complexity, result in an often 

time-consuming and error-prone processes for automation system alteration and validation. These factors also 

have a direct impact on increasing the process ramp-up time and often lead to process performance 

degradation. Specifically, current automation systems are deemed to require experts in order to be 

commissioned and maintained. This is often due to complex and unstructured programming, and use of 

vendor specific technology. It is therefore difficult for end users to support and optimise their automation 

systems effectively (Phaithoonbuathong et al. 2007). 

 

 

_____________________ 

*Corresponding author. Email: P.Phaithoonbuathong@lboro.ac.uk  

 

Page 1 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

It has been reported by Colombo (2004) that the centralised and sequential manufacturing planning, 

scheduling and control mechanism are increasingly being found insufficient for the current market 

environment. This is mainly due to a lack of agility in the control system to respond to changes from new 

product specification and dynamic variations in the product. In response to these rapid, continuous and 

unpredictable changes, organisations need to embrace more adaptive, collaborative, and responsive 

automation paradigms. A number of works have been proposed solutions toward this problem as outlined in 

section 4. Out of these paradigms developed in the recent years the concept of the agile and collaborative 

manufacturing approach as reported by several authors (Gunasekaran 1998, Colombo et al. 2004, Wang 2004) 

has gained considerable attention from many research institutions and organisations. Efforts to explore and 

develop a new manufacturing environment (Molina et al. 2005) in various domains such as shop floor 

automation control, enterprise control, and global control (e.g. the supply chain and outsourcing companies) 

are now evident. According to Büyüközkan (Büyüközkan et al. 2004), the key enabler of the agile and 

collaborative paradigm is to enable the easy integration of automation systems with other business entities 

(including marketing, engineering, product design, business process management and personnel) that support 

the lifecycle of the business. The approach aims to reduce the cost of product changeovers, time to market, 

machine down time, and machine ramp-up time through the utilisation of appropriate and effective solutions 

for the reconfigurable automation system as well as for the shop-floor to business system integration. In 

relation to this collaborative enterprise development, it was addressed by Weston (1999) that a fragmented 

and heterogeneous design of the industrial system has impeded interoperability among manufacturing and 

business entities. This problem has posed major difficulty and complexity in developing enterprise systems in 

this context. 

 

Recently, the development of Service Orientated Architectures (SOA) is intrinsically linked to the growth of 

e-Businesses. Many current e-Business computing models rely on the presentation of applications and access 

to data by common standards based on Web Services. Using these services composite applications can be 

developed that span computing domains and organisational boundaries. For businesses, this added 

pervasiveness in terms of data management and utilisation has yielded greater accessibility and wider 

integratablity to supply chains and business collaborators. It is not just e-Business systems are become more 

comprehensive in the “business-to-business” application level. A similar trend is now beginning to establish 

itself at the factory floor device level. Applying Web Services (WS) to define machine control components 

and how they interact as the neutral platform is attractive both to the manufacturers and enterprise system 

vendors. New engineering method for reconfiguration based on Web Services enabled technologies will save 

manufacturers time and resources in developing manufacturing systems for new products. Web services 

enabled control devices can facilitate device installation, reconfiguration and integration to higher control 

applications both in manufacturing and business contexts.  

 

The implemented Web Services approach in this research is based on a discrete event-driven and control 

device interlocking machine application.  The research aims to build the foundation that could be applied with 

further development to handle more complex applications (e.g. CNC, CMM machines). The authors’ work in 

this paper is in line with the ongoing works within the SOCRADES EU project framework and in 

collaboration with Ford Motor Company to address reliability, robustness and error recovery of the engine 

assembly line control systems. In this paper, a SOA capable of supporting reconfiguration of production lines 

and Enterprise level device management is presented and the results and findings of developments on a 

prototype system at Loughborough University are presented. This research has created an engineering 

environment for reconfigurable component-based control in a distributed environment that aims to support 

agile manufacturing systems. 

Page 2 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

 

The following section describes the modular design of the component-based automation architecture, 

reconfigurable manufacturing systems. The motivation and the related work in the field of collaborative and 

agile automation systems are presented in section 3 and 4 respectively. Section 5 describes the core 

implemented technologies and methodologies employed by Web Services which will be integrated into 

control devices. In section 6, the implementation of a Web Services- based distributed embedded controller is 

presented. Finally, the early results related to network performance and I/O reaction speeds are presented and 

the plan for future work and conclusion is discussed.     

 

2. A modular component-based design approach  

There is an earlier attempt proposed by McLean (McLean et al. 1982) to solve the problem in rigid 

manufacturing system by introducing the virtual cell to monitor, control and manage machine tools in 

distributed manufacturing environment. The cell function (reporting, scheduling, dispatching and monitoring) 

is defined as an abstract object, organised by the higher cell control, to enable dynamic changes of 

manufacturing process. Additionally, the early work at the authors’ institution proposed by Weston (Weston 

et al. 1989) on modular design of distributed manipulator system demonstrated the decomposition and 

composition of machine functions for flexible design of the control system. 

   

Previous work leading up to the research presented in this paper has been conducted on reconfiguration 

modular automation systems for powertrain assembly machines at Ford Motor Company. This research has 

applied a component-based design approach for the distributed automation system presented by Harrison 

(2004). The main characteristic of the proposed modular systems was the design of generic hardware and 

control software components that could be reconfigured to form new machine configurations to suit different 

production types (Harrison et al. 2004). The modular component-based architecture enables efficient machine 

build and re-use of designs in order to optimise the machine’s lifecycle throughout supply chain partners. 

 

As depicted in figure 1, the typical component-based (CB) layout of the assembly machine system for this 

research is built from various machine subsystems. These include hopper unit, buffering unit, processing 

index table unit, and handling arm unit, which are linked together via Ethernet communication systems to 

form the completed work process. These subsystems are constituted from sets of components which contain 

mechanical units, electrical units (sensors, actuator, I/O interface) and control software. 

 

 
 

Page 3 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

Figure 1. A distributed CB design of a powertrain assembly machine  

 

In the previous research at Loughborough University, a machine component is defined with the constitution 

of: (1) controller unit which includes network communication, hardware configuration, and control 

application, (2) electronic interface, and (3) physical inputs and outputs. The physical view of the control 

component is defined in figure 2. 

 

The required functionalities of the component for manufacturing tasks i.e. device network communication, 

operating mode, device behaviour, local control application logic and error information are encapsulated in 

the controller unit.  

 

Within this CB design approach, the low-level control functionality has been encapsulated as a black box and 

exposed to the developers via the process engineering tool to define machine configuration data for the 

machine application.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Physical constituent of a component (based on Lee et al. 2004a) 

 

In this distributed control application, a machine application (e.g., a manufacturing function) is a combination 

of distributed services on components for execution in a specific order. The driving state is achieved by 

formulating a behaviour model for each machine component. The reconfiguration of the process can therefore 

be oriented to the higher level alteration of the machine application/function design.  

 

In the CB design architecture, these components are pre-built with the required functional and integration 

capabilities to enable effective composition into instances of machines based on the required specification of 

machine end-users. To provide the flexibility and reconfigurability, user applications are composed by a 

higher level engineering tool (process definition editor tool previously developed for the COMPAG project 

presented in Harrison et al. 2004). The development and reconfiguration of component-based automation 

systems at the abstract level allows a large number of I/O systems and communication functions to be realised 

by independently developed components.  

Page 4 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

In addition to the CB approach, the control system can be seen as a set of mechatronic components and each 

device is responsible for a basic operation, then the more complex manufacturing tasks can be created from 

the combination of basic components (Harrison et al. 2006). It can be observed that the complexity of the 

control system in relation to build and reconfiguration is reduced by managing the decomposition of the 

machine system accommodated by the process engineering tool.  

 

3. Need for Web Services in automation 

The CB approach is valued in enabling flexible and reconfigurable automation systems to more effectively 

support manufacturing lifecycles. However with the new perspective of manufacturing system toward agile 

and collaborative manufacturing system enabled by mass customisations as discussed by various research 

groups (Tseng et al. 1997, Gunasekaran 1998, Colombo et al. 2004, Harrison et al. 2006, Assen et al. 2000), 

the new automation system and integrated engineering approaches need to capture a broader view of the 

system integration in enterprise, supply-chain and machine and process control dimensions throughout the 

manufacturing lifecycle.    

 

The utilisation of the CB approach within manufacturing is somewhat limited in terms of its ability to deliver 

the agile and collaborative engineering environment required. This is because integration from higher level 

systems to production lines is limited due to differing technologies and the complexity of integrating diverse 

automation peripherals. In addition, this integration is still reliant on proprietary solutions from different 

vendors preventing effective inter- and intra enterprise integration.  

 

From this viewpoint, it has been discussed in Jammes and Smith (2005) and SOCRADES. EU project (2006) 

that the use of Service-Orientated Architectures (SOA) implemented through Web Service technologies can 

facilitate the adoption of a unifying technology for all level of the enterprise. Web Services are based on 

common communication standards such as HTTP, XML and SOAP, thus enabling homogenous linkage from 

the control levels to enterprise business processes. The use of SOA-Web Services technologies with the 

modular CB manufacturing approach can provide an open, standard approach for non vendor specific control 

systems as well as enabling seamless enterprise integration.  

 

4. Related work 

In recent years a number of projects have proposed open modular solutions suitable for manufacturing 

automation plants. ESPRIT III OSACA (Sperling 1997) in the area of Controls within Automation systems, 

proposed an objected-oriented architecture to develop independent modular software structure within controls. 

The recent ITEA SIRENA project (Jammes and Smith  2005) has proposed a new approach using Web 

Services based on DPWS (Device Profile for Web Services standards) to support “plug-and-play” devices. In 

more recent projects, the SOCRADES project (SOCRADES.EU project 2006) is developing an open-platform 

for automation systems using this technology. The project has created the middleware technology presented in 

a SOA to enable interoperability between heterogeneous devices deployed on various platforms, as well as 

seamless integration into enterprise systems. 

 

Page 5 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

5. Web Services methodology and integration approach 

This section presents the core technology of Web Services in the context of the assembly machine control 

system that is being applied to.  

 

5.1 Serviced-Oriented Architecture (SOA)  

Barry (2000) defined the conceptual definition of SOA as:  

“A service-oriented architecture is essentially a connection of services. These services communicate with 

each other. The communication can involve either simple data passing or it could involve two or more 

services coordinating some activity. Some means of connecting services to each other is needed.” 

where as Nickull (2005) describes SOA as: 

 
“SOA is an architectural paradigm for components of a system and interactions or patterns between them. A 

component offers a service that waits in a state of readiness. Other components may invoke the service in 

compliance with a service contract.”  

 

SOA- based applications are predominantly developed using Web Services, thus providing a standard 

information and communication infrastructure enabling data passing between field devices (Jammes and 

Smith 2005). Many opportunities exist to integrate Web Services enabled devices particularly in the domain 

of high-level enterprise and manufacturing systems. As discussed by Jammes (2005) and Machado (2006), 

SOA can be seen to have evolved the design of control systems into distributed application paradigms, and 

ubiquitous computing environments to enable flexible, reusable, reconfigurable manufacturing systems based 

on self-reliant, interconnected smart embedded devices.  

 

 

5.1.1 Web Services and SOA enterprise integration framework 

 

Extending the SOA focused Web Services approach to low level automation devices has been proposed by a 

number of researches (Harrison et al. 2004, Jammes and Smith 2005, Machado and Mitmann 2006, Harrison 

et al. 2006). The attraction from a business perspective is the inclusion of plant activity into enterprise 

computing applications, to facilitate work synchronisation between the high and low level applications as this 

concept was early introduced by McLean (1982).  

 

In this context, a simplified manufacturing model of SOA and Web Services derived from Nickull (2005), 

Hung et al. (2005), Machado and Mitmann (2006) is illustrated in figure 3. The basic principle of enterprise 

integration and communication based on a consumer-producer model is described below. 

 

Page 6 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

    
      

 

Figure 3.  SOA-Web Services basic integration framework  

 

(1) The service provider publishes (produces) the available services to the services broker which is a 

repository for registered applications from producers.  

(2) The consumer finds the provided services from the broker. 

(3) The broker returns the service descriptions and policies of how to interact with the required services. 

(4) The consumer, then, invokes the remote service on a service provider.  

 

Based on this model, Web Services ensure distributed interoperability across platforms, programming 

languages and applications that enable end-users to operate and maintain the supplied systems easily through 

SOAP, WSDL and UDDI which details as described in Trifa et al. (2008), Liu et al. (2008), Yu and Chen 

(2003), Graham et al. (2004), W3C (2004), Jammes et al. (2007), Cachapa et al. 2007, and Boritz and Gyun 

(2005). Data transfer between distributed components is central to Web Services and is enabled via the use of 

the SOAP standard, and various XML meta-data formats (Hung et al. 2005). 

 

However central to our application of Web Services-based automation system, an approach to the 

development of a Web Services enabled control device is needed in the SOA integration framework. The 

approach is not only considering the solution for enterprise integration but also the need of process 

reconfigurability and delivered performance of the control system to meet end user requirements. The 

implementation, demonstration and assessment works will be presented in this paper.  

Page 7 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

  

5.2 Devices Profile for Web Services (DPWS) 
 

In the design of WS for a connecting device, a web capability has driven down to the low level controllers of 

control systems. The core network capability has been implemented with the standard and well defined 

protocol stack- Device Profile for Web Services (DPWS).   

 

 
 

Figure 4. Devices Profile for Web Services (DPWS) protocol stack (Jammes and Smith 2005) 

 

As presented in figure 4, the full descriptions of the Web Services protocol stack are reported by other 

research works in Jammes and Smith (2005), Barry (2000). The introduction of DPWS paves the way for the 

usage of a unifying technology base, via Web Services, across entire heterogeneous enterprise applications, 

from the sensor/ actuator level up to ERP/MES level.  

 

In order to enable Web Services- based automation systems, the typical device logical functionality of the 

control application, such as setting outputs ON/OFF or reading sensors status of the component, is mapped to 

the Web Services logical function presented by the DPWS call function via the creation of DPWS interfaces 

on devices (referred to figure 7 for implemented codes) that enable devices to devices communications for 

state information exchange, and devices to control level and business application integration for services 

invocation and status monitoring. 

      

In the authors’ research, the implementation of DPWS protocol stack for control devices was developed in C 

language. An embedded microcontroller hosts the DPWS stack. The embedded controller in this research is an 

ARM9 based device (for information, please refer to Schneider Electric website on Advantys FTB: System 

user guide) developed and provided by the project collaborator, Schneider Electric, suitable for use in an 

industrial automation environment. The DPWS as well as its associated machine control applications are built 

and uploaded to ARM based control devices by mean of the ARM development suite tool. In addition to the 

control operation, the real-time operating system and the TCP/IP stack are ported to the embedded device 

providing the core control functionality (e.g., control thread, networking and control task scheduling). The 

software architecture for components is shown schematically in figure 5. 

 

Page 8 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

 

 
              

 

Figure 5. WS component software architecture 

 

 

In our approach, predefine component functionality is presented by services to compose manufacturing tasks 

at the higher level in support with process management engineering tools. The hard coding of device 

behaviours (local control application) implemented by the component builder is encapsulated at the low level 

application. The alteration of the process functionality (e.g., process workflow and adding new machine 

components) is only done at the service level without changing the low level device code that makes system 

more flexible and agile.  

 

 

5.3 Web Services integration  
 

Based on the previous work on the component- based (CB) design approach for agile automation completed at 

MSI research institute, Loughborough University (Harrison 2004, Lee et al. 2004a and 2004b), a machine 

component has been defined with the I/O functionality (device state behaviour) of machine elements (sensors 

and actuators). The component is contained with its own independent control application. The operation of 

these distributed components is based on their defined interlocking sequence. The work has provided the 

automation framework for implementation of the reusable and reconfigurable control system described here. 

 

In order to create an effectively integrated Web Services capability on the embedded controller devices in the 

SOA architecture, the development of the Web Services enabled device has complemented the CB approach 

with the capability to build machine components, which provides a manufacturing function (e.g., device 

execution, device information, and present device working state) as services to the business application 

integration through interface of service references.       

 

 

Page 9 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

 
 

Figure 6. A Web Service- based design component 

 

The novel implementation of Web Services-based component is shown in figure 6 as an instance of building a 

Web Services machine component. The hopper component is constituted with elements: Ejector actuator, 

Magazine sensor and MagazineXfer sensor which each contains their own state behaviour. The hopper 

component is represented by the Web Services component (described by WSDL- figure 7/a) which includes 

the information of the component based on contained elements such as Component name, Namespace location 

(reference web location by service domain name), Binding port type (a collection of an abstract set of element 

operations and message exchange methods), and Metadata (component descriptions) required for the devices 

allocation on the network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) WSDL descriptions of the component (figure 6- (v)) 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 

<wsdl:definitions name="Distributer" 

       targetNamespace=http://www.soda-itea2.org/MSI_Lboro/Demonstrator/Distributer 

       …………….   

  <wsdl:types> 

    <xsd:simpleType name="distributerAction"> 

          <xsd:enumeration value="MoveRetracted"/> 

          <xsd:enumeration value="MoveExtended"/> [see figure 7/b-(vi)] 
          ……………. 

    </xsd:simpleType> 

  </wsdl:types> 

  ------------------------------------------------- 

 <wsdl:message name="distributerCmdRequest"> 

    <wsdl:part name="distributerAction" element="tns:distributerActionElement"/> 

  </wsdl:message> 

  <wsdl:message name="distributerNotifyMsg"> 

    <wsdl:part name="DistributerState" element="tns:distributerNotifyElement"/> 

  </wsdl:message>  

  ------------------------------------------------- 

  <wsdl:portType name="DistributerPortType"> 

    <wsdl:operation name="distributerCmd"> 

    …………………………. 

    </wsdl:operation> 

  </wsdl:portType> 

 ------------------------------------------------- 

  <wsdl:binding name="distributerPortType" type="tns:DistributerPortType"> 

    <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>   

    <wsdl:operation name="distributerCmd"> 

    …………………. 

    </wsdl:operation>  

  </wsdl:binding> 

 -------------------------------------------------  

Page 10 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) DPWS command interfaces to the device I/O operations (figure 6- (i) and (iii)) 

 

 

 

 

 

 

 

 

 

c) Device I/O operations (figure 6- (iv)) 

 

 

 

 

 

 

 

 

 

 

d) The I/O device scanning interfaces to DPWS notification (figure 6- (ii) and (iii)) 

 

 

 

 

 

 

/*-------------------------DEVICE I/O OPERATION-----------------------*/ 

int MoveExtend () (vii) 
{ trGPIO_Set(8, FALSE);  //channel 08 Retracted pos 

 trGPIO_Set(9, TRUE);  //channel 09 Extended pos    

 /*Reading input sensor*/ 

 do 

 { 

      sensor1=trGPIO_Get(1); //channel 01 At retracted sensor 

      sensor2=trGPIO_Get(2); //channel 02 At extended sensor 

 }while(!(sensor1==FALSE&sensor2==TRUE));    

      

      return 0; 
} 

/*-------------------------DPWS DEVICE STATE NOTIFICATION------------------------------*/ 

int dpwsDistributerNotify(DistributerStatus1) (viii) 

{  

    switch (DistributerStatus1) 

     { 

       case Extended: 

 distributerNotifyElement.distributerStatus = dst__ distributerStatus__Ejector_Extended; 

       break;      

       ………other cases  

       case EJECTOR_ERROR: 

          distributerNotifyElement. distributerStatus = dst__ distributerStatus__EJECTOR_ERROR; 

       break;     

   

      }        

dpws_notify___dst__distributerNotifyEvent(&event0.dpws, event0.endpointRef0, &distributerNotifyElement); 

return 0; 

} 

/*-----------------HANDLING ARM OPERATION COMMAND-------------------------------------------------------*/ 

int __dst__distributerCmd(struct dpws* dpws, enum dst__distrbuterAction dst__distributerActionElement,  

    struct _dst__ResponseElement *dst__ResponseElement) 

{ 

     //Message received acknowledgement   

     NumOrder++;  

 dst__ResponseElement->OrderID = NumOrder; 

 dst__ResultElement.OrderID = hla__ResponseElement->OrderID; 

dst__ResultElement.allRequestStatus = dst__RequestStatus__ACK; 

     dpws_notify___dst__distributerCmdAck(&pState->dpws, pState->endpointRef0, &dst__ResultElement); 

     switch (dst__distributerActionElement) 

     { 

 case dst__distributerAction__MoveExtended: (vi) 

          MoveExtend(); //Setting output pins [see figure 7/c-(vii)] 

          //Command acknowledgement 

          dst__ResponseElement->allOperationResultStatus = dst__OperationResultStatus__DONE; 

          dpws_end(&pState->dpws); 

 break; 

 …………………other operation commands 

case dst__distributerAction____Reset: 

          Shutdown(); //Cleaning and stopping DPWS and I/O routines   

          //Command acknowledgement 

          dst__ResponseElement->allOperationResultStatus = dst__OperationResultStatus__DONE; 

          dpws_end(&pState->dpws); 

 break;   

 default: 

          //Command failure 

          dst__ResponseElement->allOperationResultStatus = dst__OperationResultStatus__FAILURE; 

          dpws_end(&pState->dpws); 

 break; 

 } 

      return SOAP_OK; 

Page 11 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e) Device I/O state monitoring and fault handling routine (figure 6- (iv)) 

 

Figure 7. Sample fragment codes of WSDL, DPWS component and Device I/O interfaces 

 

 

In respect to device operations, the operations of the component are encapsulated by DPWS call references.  

In simple terms, these call references are concerned with services (operations) commands, state propagation 

(element states) of the event state change notification, and operating modes (Auto/Manual). These operations 

are multitasking handled by the RTOS. The implemented Web Services interfaces and I/O operations of the 

control system are shown in figure 7/b-7/e. A Web Service component is defined by a WSDL (Web Services 

Description Language- figure 7/a) file that defines the component specification, a network service, and DPWS 

interfaces for device programming in a XML language structure. In building the Web Services control and 

business application integration, the WSDL file is used for the generation of interface files for a client- server 

service invocation (stub and skeleton files) by the DPWS toolkit (SODA-ITEA Consortium 2007).  

 

In the process of building a machine application enabled by the Web Service components in an event-driven 

control system, components are aggregated into the complete control system according to defined finite state 

transition conditions. To demonstrate the viability of Web Services in automation, the movement of Web 

Services control elements is managed by the PC based upon its control of finite state transition conditions 

(control logic) running in the DPWS application, which invokes/calls the embedded services provided by the 

component. The following section presents the service aggregation methodology for a machine application in 

the control system. 

 

 

 

//*-----Detecting IO changes -------*// 

int IOSPY(void) 

{ 

  ...Initialising initial Distribute state  

 do 

   { 

     ...Reading sensors state 

     /*PARSING HANDLING ARM STATE*/      

       if (sensor1==FALSE&sensor2==TRUE) 

 { 

          DistributerStatus1= Extended;  

 } 

 else if(sensor1==TRUE&sensor2==FALSE) 

      { 

          ...       

} 

…………………conditions 

else 

 {  

          //State unknown (error)               

          DistributerStatus1= EJECTOR_ERROR; 

          //Fail safe routine enabled 

….Safely releases a work piece and return to initial position    

 } 

   //*----------------------DPWS Notification-------------*//  

    if (DistributerStatus1!= Pre_ DistributerStatus1) 

    {      

        ...state change detected  

        dpwsDistributerNotify(DistributerStatus1);  [see figure 7/d-(viii)]    

    } 

      ... 

  }while(1);    

  return 0; 

} 

 

Page 12 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

 

5.4 Service orchestration methodology 
 

Service aggregation allows the formation of complex and business centric composite services/applications 

which are composed by often simpler and elementary services. The manufacture of products can be 

represented by a single abstract service which contains the appropriate stripped down statements for the 

invocation of the required sub-services (Bepperling et al. 2006). Production steps are represented in the 

behaviour of the service functions/operations that would be tied to real configuration in the control device. 

That means the process orientation of control levels is dependant on understandings of the lower level 

processes. The execution / reconfiguration of a production line can be seen as a wider application and the 

device level services in the SOA (Services Oriented Architecture) constitute this wider application.  

 

Central to the success of the applications execution is the composition of the services in terms of execution 

order. The element functionality at the device level needs to be mapped and captured to the device 

management and self organisation Web Services- based application. Particularly in this research, this process 

of composing atomic components’ services, which their execution sequences are initiated by the control logic 

operated outside the control device boundary, is known as “Service orchestration”.    

 

Service functionality of a device in the machine application is defined as a service to represent a more abstract 

production operation which can be created by combining simpler production operations. This process is 

referred to as orchestration and is achieved through the combination of these services to create the process 

application (manufacturing task). From a manufacturing system behavioural perspective, the process can be 

formed by defining a set of internal and external state conditions of distributed components in the control 

system.   

 

 

 
 

Figure 8. Component state transition diagram 

 

As illustrated in figure 8, the state transition of components is a result of current states of internal and external 

elements, including the error state, in control logic applications which command the output of the distributed 

components hosted on controller devices. The simplified example of the control logic can be schematically 

presented by the ladder logic schema which has defined the component state transition condition through the 

Page 13 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

use of Boolean logic of input events in the discrete manufacturing environment. In this case, internal element 

state inputs are local state variables of the component and external element state inputs are state variables of 

other associated components (e.g. interlocking components). These variables change their state in respect with 

the movement of actuators (e.g., state feedbacks).  

       

The composition of this component state transition has formed the machine sequences that determine the build 

of a machine application and a process work flow. In the machine operation of components, the component 

service is dictated by the control logic application known as “Service Orchestration Engine” necessary to 

orchestrate the service on the components to achieve desired manufacturing tasks. 

 
 

Figure 9. A PC- based orchestration engine application 

 

In the distributed Web Services- based control system implementation, the distributed control devices host the 

service of components (e.g. hopper, and swivel arm component) which provide the Web Services operation 

and element state propagation functionality to the service orchestration engines based on a publish and 

subscribe approach in an event- driven architecture. As shown in figure 9, there are 4 service orchestration 

engines running as a client (client 1, 2, 3, and 4). Each one is responsible for controlling each specific station 

hosted by the servers (server 1- server10) of the components to perform manufacturing tasks in the control 

system.   

 

For the control system operation, each client (via the service orchestration engine) subscribes to the specific 

server on the start up for the published state information of components required by the control logic 

application (C in figure 8) as presented earlier in this section. When any I/O (sensor and actuator) state 

changes occur, new I/O states are published to subscribers- clients (A, B and E in figure 8). The component 

operation (i.e., extend or retract the ejector element of the hopper component) as shown by D in figure 8 is 

based upon the state transition behaviour/logic of controlled elements. It should be noted that the movement 

of the control device has resulted in the I/O state changes of associated sensor and actuator elements which 

are propagated back to the clients for the new control event. This process of the service orchestration cycle 

runs repeatedly by the servers and the clients to perform the complete cycle of the machine application.      

 

 

Page 14 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

In addition to the system reliability in concern with safety of the operation on machine components, the 

heartbeat monitoring system and fault recovery routine (see //Fail safe routine in figure 7/e) have been 

implemented within the control system. In case of error occurrence on the device detected by cooperated 

sensors during conditioning process (e.g. EJECTOR_ERROR in figure 7/e), the pre-defined fail safe routine 

will be enabled automatically to safely recover from the hazard condition and then it reports the error state 

condition to the responsible client application to handle the fault by sending the DPWS reset command to 

shutdown the fail device. The periodic heartbeat message (F in figure 8) sent by the components will be used 

to monitor and ensure that all the control device operations (DPWS applications and I/O functions) are 

functioning normally. The heartbeat system is enabled by the DPWS function using a device state notification 

method. This function is planned to implement in the future work.    

 

6. Implementation of the Web Services automation 
 

The FTB (Field Terminal Block) control device which is industrially packaged to IP 67 (please refer to 

MeDiSol™ website for specifications), provides the processing capability local I/O and a standard embedded 

Ethernet connection.     

   

As illustrated schematically in figure 5, the software structure of control devices or components is constructed 

with the layer of Web Services application at the top. The component also requires a suitable RTOS and IP 

stack laid underneath to handle the DPWS task with TCP/IP communication in order to perform the real world 

manufacturing tasks. The RTOS layer is responsible for the real-time task multitask scheduling in the control 

system. However, the research scope here does not include the examination of the methodology and 

techniques for control tasks scheduling. For information on this topic, please refer to Barry (2003).      

 

Based on this architecture, encapsulated services of devices have been implemented using the DPWS toolkit 

provided by Schneider Electric to generate the C stub and skeleton files from the component WSDL file so as 

to build component services on the embedded FTB devices and service invocators (for orchestration). On the 

FTB, each service is interfaced to the actual I/O operation of components defined in the local control 

application layer. This DPWS component code is implemented with Realview debugger tool and ARM suite 

development platform (please refer to ARM
®
 website for information).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Output SOAP message of a DPWS invoked command 

POST /13814002-1dd2-11b2-bc3d-0040af000032 

HTTP/1.1..Host:150.1.0.102:9882..User-Agent: gSOAP/2.7.. 

Content-Type: application/soap+xml; charset=utf-8..Content-Length: 773..Connection: close.... 

 

<?xml version="1.0" encoding="UTF-8"?>. 

<SOAP-ENV:Envelope  xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"  

                    xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"  

   xmlns:blt="http://www.soda-itea2.org/MSI-Lboro/Demonstrator/Distributer"> 

  <SOAP-ENV:Header> 

    <wsa:To>http://150.1.0.102:9882/13814002-1dd2-11b2-bc3d-0040af000032</wsa:To> 

    <wsa:Action>http://www.soda-itea2.org/MSI-Lboro/Demonstrator/Distributer/distributer/distributerCmdRequest</wsa:Action> 

    <wsa:MessageID>urn:uuid:41c616ba-3e14-11dd-8430-001c42935fe4</wsa:MessageID> 

    <wsa:ReplyTo> 

 <wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:Address> 

    </wsa:ReplyTo> 

  </SOAP-ENV:Header> 

 

  <SOAP-ENV:Body> 

     <dst:distributerCmd> 

              <dst:DistributerAction>MoveExtended</dst:DistributerAction>  [see figure 7/d-(vi)] 

     </dst:distributerCmd> 

  </SOAP-ENV:Body> 

 

 

 [The DPWS invoked command] 
dpws_call__dst_distributerCmd(&Distributer, ERPDistributer, NULL, dst__distributerAction__MoveExtended,&ResponseDistributer) 

 

Page 15 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

 

The services orchestration engine running the component state transition logic (C in figure 8) is implemented 

with both C and Java language to investigate interoperability of the implemented DPWS control platform. The 

engine is used to manipulate the action on embedded controllers (FTBs) by sending out the DPWS invocation 

command in SOAP message (figure 10) format through Ethernet to the target component using XML 

transport.   

 

 
 

Figure 11. Test rig WS control system use case 

 

The Web Services- based automation system is implemented with the DPWS on the distributed FTB devices 

executed by the distributed DPWS clients on PC- based orchestration of each station. As shown in figure 11, 

the Web Services application of the station 1 is demonstrated.  

 

0: Server applications (S1, S2 and S3) start up; control devices initialise hardware/software configuration 

and DPWS applications of components.   

1: The client application (running DPWS utility) sends probe messages to discover interest components 

hosted by server applications; the match component returns the message with the address. The client 

application keeps the location of component as an endpoint reference based on Universally Unique 

Identifier (UUID) format (i.e. urn: uuid: 13814002-1dd2-11b2-bc3d-0040af000032) in the memory for 

the DPWS application, such as the service subscription, and invocation.   

2-3:  The client (client 1) of the station 1 which contained 2 components subscribes to the DPWS 

components of station 1 (Hopper-S1 and Swivel drive-S2) and station 2 (Conveyor-S3) for the 

contained element states used by the service orchestration engine. The subscriber (the client) 

location/address is saved in the device registry handled by WS-Eventing.   

4-5:  During the machine operation, when the element has changed its state (i.e. work piece present), it 

publishes the state information to the client 1. The message is sent to the receiver addressed (allocated 

at the subscription process) by Uniform Resource Identifier (URI) scheme (i.e. IP: Port/UUID� 

http://150.1.0.201:8873/158cb99e-693b-11dd-8abd-001c42935fe4) in the SOAP Header.  

6-7: Orchestration engine on the client 1 aggregates the action according to the defined state transition 

behaviour. Like state notification method, the addressing scheme for the service invocation is provided 

by URI scheme. Please see figure 10 for a sample of UUID format and URI scheme.  

Page 16 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

In this application, having completed step 1 and 2-3, only step 4-5 and 6-7 have been run repeatedly through 

out a machine cycle. To ensure the system robustness in term of sending and receiving the SOAP message, 

the acknowledgment of the DPWS operation receipt has been implemented in addition to a TCP packet 

synchronisation (see TCP/IP networking and DPWS transaction time in the next section) to guarantee that 

every DPWS message has been successfully received at application level. For the implementation, the 

incremental order ID variable has been defined in the DPWS application to identify and keep track every 

message received by the components (please see //Message received acknowledgement in figure 7). The 

RTOS timer task on the sender (client) will be initiated and expected response from the receiver within a time 

limit. When the client receives this message, it notifies the sender with the SOAP message (i.e., ACK). In this 

case, missing acknowledge messages will result in a timeout after 50 milliseconds to raise a suitable error. 

However, this acknowledgment process has been currently implemented on only one side from the server to 

client application. Acknowledge in both ways will be next implemented.         

 

In addition to the process control and visualisation, the system HMI provides an environment to allow users to 

collate data from and send command to distributed components in the system via a simple browser interface. 

For the visualisation, the HMI application interacts with the test rig through the service orchestration engine 

where live data of components is gathered. The data then has been populated from a state publication utility 

(built in the service orchestration engine) to the HMI application. For the system control, the HMI application 

is able to invoke the service on Web Services components for a machine operation via interface in the service 

orchestration engine that sends the SOAP command message to the component (as shown in figure 9 and 11). 

 

7. Testing and preliminarily result 

 

In this section, Component-based design of intelligent devices as exhibited in section 6 will be preliminarily 

evaluated in the real automation environment to measure the performance in term of communication speed 

and response time. In addition, the reconfiguration of the test rig process is determined to assess the degree of 

complexity in term of activities involved in reconfiguring component configurations, and control logics. An 

assessment on the business application integrability of the approach is also presented.  

 

7.1 TCP/IP networking approach and DPWS transaction time 

 
Based on our implemented Web Services control system, the protocol analyser has been installed to capture 

the network performance during the test rig operation. These analysis data (shown in Table 1 and 2) are 

average values derived from a measurement of around 2,000 packets out of 10 cumulated experiments. In this 

Web Services environment, present SOAP messages of the DPWS operations are state information, service 

call functions, discovery probe and metadata return. These SOAP messages packet size are 750 bytes up to a 

maximum TCP/IP packet size of 1514 bytes. In the DPWS service invocation (Table 1) and the device state 

notification (Table 2), there are 9 packets sent and received between Host A (FTB device as a server) and 

Host B (Orchestration engine application as a client) for each of the DPWS operation. According to a TCP 

byte- oriented sequencing protocol (InetDaemon Enterprise 1996a and 1996b, Bentham 2000), the analysis of 

packet synchronisation as shown in table 1 and 2 is included the TCP connection (3-way handshake) for a 

connection negotiation, the SOAP message, and a connection synchronisation and termination. In order to 

measure the DPWS processing (marshalling and demarshalling) time on the embedded device, the timer in the 

resolution of microsecond has been initiated in the DPWS application. The DPWS processing time on the 

embedded ARM 966 core control device with 96M Hz CPU speed is around 8 to 9 milliseconds.   

 

Page 17 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

 
 

 

 

 

 

 

 

Page 18 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

In the implemented WS control system, the I/O response time (the delay between the occurrence of an input 

event and the corresponding of an output event as described by Denis (2007) is accounted by the summary 

delivery time of: 

 

1. The packet time on a network,  

2. The DPWS processing time  

(2.1. DPWS encoding and decoding on the FTB control device and 2.2. Orchestration Engine),  

3. The local I/O processing time on the FTB and,  

4. Processing time on the orchestration engine.  

 

In the experiment, separated analysis works have been carried out on the server and the client side to measure 

consumption time of each task for the control operation. In this case, Table 1 and 2 have covered the time 

analysis on the server tasks (included 1, 2.1, and 3). The time analysis on the orchestration engine (client) 

application has been captured by setting stopwatch (micro-second resolution) in processing tasks (included 

2.2 and 4). However, the summary of time analysis is presented as followed. The orchestration engine 

application requires component states to process the output command in order to operate the control task 

(Table 2). This is achieved by sending DPWS event messages (when inputs/outputs change states) from 

control devices to subscribers (clients). This process takes approximately 6-7 milliseconds per DPWS 

message (subscription) for a device to detect the I/O state change, encode the DPWS message, and network 

time. The orchestration engine application takes approximately 10-12 milliseconds for decoding received 

message, encoding a DPWS invocation message which occurs after I/O logic scanning time. The DPWS 

command transaction is then initiated by the client (Table 1) which takes around 13- 14 millisecond per 

DPWS command (service invocation) to complete. This process includes time on the network, decoding the 

SOAP message, activating output operation and encoding for the SOAP response message. Therefore, in the 

complete cycle of the control application from an input sensor to initiate the operation on an output drive is 

estimated 29 -33 milliseconds. It is noted that this DPWS time analysis is measured and averaged by a 

number of captured data in fully operating mode of the control test rig which has 4 distributed controller 

nodes of 7 components composed of 21 elements. It is evident that the Web Services- based control system 

implemented in this research performs within the soft real-time constraint (20-250 milliseconds) required by 

the machine end-user.    

 

7.2 Control system reconfiguration 
In assessing the degree of reconfigurability of the automation system, the test scenarios have been set to 

capture the activities involved in hardware and software reconfiguration based on this Web services based 

automation system. The test scenarios have been considered the real industrial cases in modifying process 

work flows and adding new components to suit the new product types. The component which provides unique 

services is operated according to its internal and external states (interlocking) among devices observed by the 

service invocator.  

 

Control devices are loosely coupled through device services at a higher level where the device working 

behaviours are formulated. Within this approach, there is no direct hard coding of control devices and the low 

level I/O device program. That means in the real automation environment replacing one device will not affect 

the hard coding (encapsulated I/O device programming) of other devices. The change will only occur at the 

interlocking level without any change in the low level I/O program.  

 

Page 19 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

It can be observed that the component’s internal implementation is separated from the application 

specification corresponding to machine tasks. This allows the system integrator to develop and verify the 

control application without requiring to understand the complexity of the low-level implementation details 

since the application is clearly organised and visualised at the higher level. On the other hand, changing of the 

system behaviours in traditional PLC-based systems typically has to be made through an SFC (Sequential 

Function Chart) or the ladder logic program at the PLC code programming level. This requires skill and 

considerable time to ensure that all the low-level implementation code related to the modification has been 

correctly reviewed and changed.  

 

In addition to the implementation of the new installation device for the reconfigured process, introducing new 

components can be done with ease by using Web Service discovery to locate the target devices. Once 

discovered, a device publishes the services it provides to the system. The plug-and-play concept significantly 

reduces the manufacturing life-cycle time associated with machine (re)configuration process. This reduction 

in configuration time facilitates the introduction of new products or product variants, reducing production cost 

and time. 

              

Based on this approach, the reconfiguration of production lines both in term of new application logic and the 

addition of new components is considered to be a relatively easy task which perhaps takes only a couple of 

hours to deploy the new system reconfiguration since it occurs at the system level, avoiding any significant 

changes at the devices operational program. In addition to the design of machine components, the new 

component has been developed by reusing the control code (DPWS interface and low level programming) 

from the existing components. Hence, the flexibility and agility of the automation system is increased.    

 

7.3 Business system integration 
Current business to shop floor integration is tailored to specific control systems with vendor specific sets of 

device drivers acting as a gateway solution to be programmed and configured by the user. In contrast, in the 

implementation of this Web Services- based automation system, no vendors of specific device driver 

interfaces are required for the integration. The integration of the control system is achieved via the common 

DPWS interface (SOA device middleware). The required runtime device information and functionality 

required by the business level are embedded in the Web Services enabled device that provides device 

information and live states to integrate applications throughout the manufacturing control and business 

system. In addition, the state and error information of devices can be directly sourced from devices directly to 

the higher control application by mean of state subscription and publication using a standard DPWS protocol 

via WS-Eventing.  

 

Page 20 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

 
 

 

Figure 12. Business system integration via Service orchestration engine 

 

 

 

 
 

Figure 13. SOA integration middleware 

Page 21 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

In our current implementation, the integration to the control rig is achieved via the service orchestration 

engine application as a mediator to remote HMI and the process visualisation through the application interface 

and TCP/IP connection (figure 12). For the seamless integration enabled by the SOA middleware (figure 13), 

Web Services on the devices via DPWS provide direct communication through the device discovery service 

by broadcasting the Web Services discovery message over the network (WS- discovery) to the inter-

connected applications. The device description service is used as the Meta-data file of the device defined in 

the DPWS protocol stack. This file describes the function/ application services the device provides, including 

the part name, serial number, programme version and etc. In this case, the interaction between automation 

devices and connected applications is loosely coupled and achieved in the same manner as DPWS enabled 

devices and the orchestration engine application. Nonetheless, the business and manufacturing applications 

need to be Web Services enabled to integrate to the control system via the standard Web Services interface in 

the SOA middleware.      

8. Future work plan 

The next step in the project is to extend the current design of the Web Service- based control system to a peer-

to-peer communication approach on the powertrain assembly test rig. Extension of the Loughborough 

University developed suite of engineering tools to support the building of Web Services- based control via 

automated configuration of the embedded devices. Further investigation is also needed to determine the 

reliability of message passing and I/O response times between the control devices in this discrete event-driven 

control environment.    

9. Conclusion 

In this paper the conceptual framework of a SOA in connection with a Web Services- based paradigm has 

been outlined. The implemented Web Services approach for automation systems has been achieved with 

proven soft real-time capability, business and process application integration as well as control system 

reconfigurability. The utilisation of a Web Services protocol stack enables the evolution of an open standard 

for manufacturing automation, which is technology neutral and provides interoperability between various 

device vendors through common SOAP messages. Dynamic configuration of intelligent embedded devices 

using loosely coupled services provides significant advantages for highly dynamic and ad hoc distributed 

applications, as opposed to the use of more rigid technologies such as those based on distributed objects. For 

example, device description is embedded into the components and intelligence is devolved down to the device 

level. This eliminates the need for system integrators to understand completely how the devices are 

programmed. High-level configuration tools to build and reconfigure automation systems from Web Services 

enabled components can be used throughout the system lifecycle.   

 

Based on the results obtained in this research, it is evident that the key functionality in DPWS is the provision 

of online discovery and service invocation for devices based on XML message passing among devices. 

Higher control levels in manufacturing automation systems are able to connect to the DPWS enabled 

automation system via standard Web Services and SOAP applications. Moreover, the Web Services functions 

embedded in the control device provide sufficient performance for industrial use under soft-real time 

constraints. There are, however, some drawbacks of Web Services realised that can be stated as: 

 

 

 

Page 22 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

a) The development of the DPWS component, the DPWS coding and I/O device interfaces, has currently been 

commissioned manually. This task is time consuming, as well as requiring substantial knowledge and 

expertise. The large memory footprint of the DPWS stack (around 240 kbytes) on the controller is another 

concern on embedded devices with limited memory.      

 

b) The large size of a SOAP message (around 1 kbyte) could potentially contribute to high network 

bandwidth/loads that may affect system integrity for large scale automation systems. Further investigations 

into networking performance and optimisation are required.  

 

c) As evident from the DPWS transaction time analysis, the current performance of Web Services is not 

mature enough to be readily utilised in time constrained and precise positioning control applications such as 

CNC, CMM machines, and robotic systems where maximum processing speed and network determinism are 

required. Despite this, the current Web Services could potentially be exploited within these applications for 

higher level process synchronisation and work flow control between machines where the response time is not 

critical to success/ failure.  

 

Research on the process engineering tools for the dynamic deployment of the Web Services to minimise the 

human engineering effort and development time is ongoing. This work will enhance the interoperability and 

scalability of WS-based automation for more complex systems. Furthermore, significant research work and 

industrial evaluation are required for the current implemented Web Services to be achieved a level of maturity 

and be applicable in complicated engineering systems. However, with the fast technological development of 

Web Services in terms of optimising network speeds and reducing the DPWS parsing time using the SOAP 

binary form coupled with more powerful control devices and supported by engineering configuration and 

evaluation tools, it is expected that limitations could be readily resolved. 

 

Acknowledgment 

 

The authors gratefully acknowledge the support of the EU FP6 SOCRADES and the EPSRC, IMCRC, GAIN 

and BDA projects and their collaborators in enabling various aspects of this research. 

Reference 

ARM
®
, RealView Debugger. Available from: http://www.arm.com/products/DevTools/RVD.html (accessed 1 

February 2009).   

Assen, M.F., Hans, E.W., and Velde, S.L., 2000. An agile planning and control framework for customer-order 

driven discrete parts manufacturing environments. In International Journal of Agile Management Systems, 

2(1), 16-23. 

Barry, D. K., 2000. Service-Oriented Architecture (SOA) Definition. Available from: http://www.service-

architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html (accessed 16 

January 2009).  

Barry, R., 2003. Real Time Application Design Using FreeRTOS in small embedded systems. FreeRTOS™. 

Available from: http://www.freertos.org/tutorial/ (accessed 18 January 2009).  

Bepperling, A., et al., 2006. D 2.1 The Mechatronic automation framework and its architectural requirements. 

In Radically Innovative Mechatronics and Advanced Control Systems (RI-MACS) project, Internal 

document, 19-26. 

Bentham, J., 2000. TCP/IP Lean Web Servers for Embedded Systems. Kansas: CMP Books, CMP Media, Inc. 

155-168.  

Page 23 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

Boritz, J.E., and Gyun, W., 2005. Security in XML-based financial reporting services on the Internet. In 

Journal of Accounting and Public Policy, 24(1), 11-35. 

Büyüközkan, G., Derel, T., and Baykasoğul A., 2004. A survey on the methods and tools of concurrent new 

product development and agile manufacturing. In International Journal of Intelligent Manufacturing, 15(6), 

731-751. 

Cachapa, D., et al., 2007. An Approach for Integrating Real and Virtual Production Automation Devices 

Applying the Service-oriented Architecture Paradigm. in IEEE Conference on Emerging Technologies and 

Factory Automation (ETFA), September 2007, 309-314 

Colombo, A.W., et al., 2004. A Collaborative Automation Approach to Distributed Production System. In 2nd 

International Conference on Industrial Informatics (INDIN’04), June 24-26 2004, Berlin, Germany, 27-32.  

Denis, B., et al., 2007.  Measuring the impact of vertical integration on response times in Ethernet fieldbuses. 

In IEEE conference on Emerging Technologies and Factory Automation, 25-28 Sept. 2007, 532-539.  

Engelen, R.V., 2004. Code Generation Techniques for Developing Light-Weight XML Web Services for 

Embedded Devices. In proceeding of the 2004 ACM symposium on Applied computing conference on 

Embedded systems: applications, solutions and techniques (EMBS), March 14-17, 2004, Nicosia, Cyprus. 

ACM: New York, USA, 854-861.  

Graham, S., et al., 2004. Building Web Services with Java: Making Sense of XML, SOAP, WSDL and UDDI. 

2nd ed. Sams publishing. 

Gunasekaran, 1998. Agile manufacturing: enablers and an implementation framework. In International 

Journal of Production Research, 36(5), 1223-1247. 

Harrison, R., Lee, S.M., West, A.A., 2004. Lifecycle Engineering of Modular Automated Machines. In 2nd 

International Conference on Industrial Informatics (INDIN’04), June 24-26 2004, Berlin, Germany, 501-

506.  

Harrison, R., et al., 2006. Reconfigurable modular automation systems for automotive power-train 

manufacture. In Journal of Flexible Manufacturing System, Springer, 18, 175-190. 

Hung, M.H., Cheng, F.T., Yeh, S.C., 2005. Development of a Web-Services- Based e-Diagnostics Framework 

for Semiconductor Manufacturing Industry. In IEEE Transactions on Semiconductor Manufacturing, 18(1), 

122-135.  

InetDaemon Enterprise, 1996a. TCP 3-way Handshake. Available from:  

http://www.inetdaemon.com/tutorials/internet/tcp/3way_handshake.shtml (accessed 18 January 2009). 

InetDaemon Enterprise, 1996b. TCP Connections. Available from: 

http://www.inetdaemon.com/tutorials/internet/tcp/connections.shtml (accessed 18 January 2009). 

Jammes, F., Smith, H., 2005. Service-Orient Paradigms in Industrial Automation. In International Journal of 

Industrial Informatics, 1(1), 62-70.  

Jammes, F., Mensch, A., and Smit, H., 2007. Service-Oriented Device Communications using the Devices 

Profile for Web Services. In 21
st
 International Conference on Advanced Information Networking and 

Applications Workshops (AINAW), Grenoble, France, 1-8. 

Lee, S.M., Harrison, R., West, A.A., 2004a. A Component-based Distributed Control System. In 2nd 

International Conference on Industrial Informatics (INDIN’04), June 24-26 2004, Berlin, Germany, 33-38. 

Lee, S.M., 2004b. A Component-Based Distributed Control Paradigm for Manufacturing Automation System. 

Thesis (PhD). Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University. 

Liu, H., Li, M.L., and Lin, X., 2008. Mapping Web Services Standards to Federated Identity Management 

Requirements for m-Health. In International Conference on Internet Computing in Science and 

Engineering, 459-466. 

Page 24 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review
 O

nly

Machado, G.B., Mitmann, R., 2006. Embedded Systems Integration Using Web Services. In proceeding of 

International Conference on System and International Conference on Mobile Communications and 

Learning Technologies (ICNICONSMCL). IEEE Computer Society.  

McLean, C.R., Bloom, H.M., Hopp, T.H., 1982. The Virtual Manufacturing Cell. In Proceeding of the 

IFAC/IFIP Conference on Information control Problems in Manufacturing Technology, October 1982, 

Gaithersburg. 

MeDiSol™, IP Protection class. Available from: http://www.medisol.org/en/products/knowledge-

technology/ip-protection-classes.html (accessed 1 February 2009). 

Molina, A., et al., 2005. Next-generation manufacturing systems: key research issues in developing and 

integrating reconfigurable and intelligent machine. In International Jouranl of Computer Integrated 

Manufaturing, 18, 25-536. 

Nickull, D., 2005. Service Oriented Architecture. Adobe Systems Incorporated. Available from: 

http://www.adobe.com/jp/enterprise/pdfs/Services_Oriented_Architecture_from_Adobe.pdf (accessed 16 

January 2009).  

Phaithoonbuathong, P., Harrison, R., McLeod, S., 2007.  A Web   Services Based Automation Paradigm for 

Agile Manufacturing.  In 4th International Conference on Responsive Manufacturing (ICRM’2007), 17-19 

September 2007, School of Mechanical, Materials and Manufacturing Engineering, The University of 

Nottingham. 

Weston, R.H., Harrison, R., Booth, A.H., and Moore, P.R., 1989. Universal machine control system 

primitives for modular distributed manipulator systems. In International Journal of Production Research, 

1989, 27(3), 395-410. 

Weston, R.H., 1999. Model-driven, component-based approach to reconfiguring manufacturing software 

systems. In International Journal of Operations &Production Management, 1999, 19(8), 834-855. 

Schneider Electric, Web Services team, Grenoble, France, Advantys FTB: System user guide. Available 

from:http://www.automation.schneider-electric.com/system_user_guides/pdf_files/8/Twido_Altivar_ 

   Magelis_OTB_FTB_EN.pdf (accessed 1 February 2009). 

SOCRADES. EU project, 2006. Service-oriented cross-layer infrastructure for distributed smart embedded 

systems. Available from: http://www.socrades.eu/Project/Presentation/default.html (accessed 16 January 

2009).  

SODA-ITEA Consortium, 2007. Software component: DPWS C stack. Available from:  http://www.soda-

itea.org/Downloads/SoftwareComponents/default.html (accessed 18 January 2009). 

Sperling, W., Lutz, P., 1997. Designing Application for An OSACA Control. In the International Mechanical 

Engineering Congress and Exposition, November 1997, Dallas/USA. 

Trifa, V. M., Guinard, D., and Koehler, M., 2008. Messaging Methods in a Service-Oriented Architecture for 

Industrial Automation Systems. In International Conference on Networked Sensing Systems (INSS), June 

2008, 35-38. 

Tseng, M. M., Lei, M. and Su, C. J., 1997. A Collaborative Control System for Mass Customization 

Manufacturing. In Annals of the CIRP- Manufacturing Technology, 46(1) 373-376. 

Wang, L., 2004. Web-based decision making for collaborative manufacturing. In International Journal of 

Computer Integrated Manufacturing, 22(4), 334-344.  

W3C® World Wide Web Consortium, 2004. XML Schema 1.1. Available from: 

http://www.w3.org/XML/Schema (accessed 16 January 2009). 

Yu, S.C., and Chen, R.S., 2003. Web services: XML based system integrated techniques. 2003. In Emerald 

Journal Electronic library, 21(4), 358-366. 

 

 

Page 25 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review Only

Figure 1 A distributed CB design of a powertrain assembly machine 

Page 26 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review Only

Figure 2 Physical constituent of a component

Interfacing electronics

Hardware device

(actuator, sensor)

Configuration 

data

Local application controller

I/O controller

Network communication

Diagnostic

and Heartbeat system

Controller

Manufacturing Environment

Application logic

Input/Output

N
e
tw
o
rk
 

c
o
n
fi
g
u
ra
ti
o
n

Distribute network

Page 27 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review Only

Figure3.  SOA-Web Services basic integration framework 

Page 28 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review OnlyFigure 4. Devices Profile for Web Services (DPWS) protocol stack

Page 29 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review OnlyFigure 5. WS component software architecture

Page 30 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review Only
Figure 6. A Web service- based design component

Page 31 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review Only

Figure 7 a)

<?xml version="1.0" encoding="UTF-8" standalone="no "?>
<wsdl:definitions name="Distributer"

targetNamespace=http://www.soda-itea2.org/MSI_Lboro /Demonstrator/Distributer
……………. 

<wsdl:types>
<xsd:simpleType name="distributerAction">

<xsd:enumeration value="MoveRetracted"/>

<xsd:enumeration value="MoveExtended"/> [see figure 7/b-(vi)]
…………….

</xsd:simpleType>
</wsdl:types>
-------------------------------------------------

<wsdl:message name="distributerCmdRequest">

<wsdl:part name="distributerAction" element="tns:dis tributerActionElement"/>
</wsdl:message>
<wsdl:message name="distributerNotifyMsg">

<wsdl:part name="DistributerState" element="tns:dist ributerNotifyElement"/>
</wsdl:message> 
-------------------------------------------------
<wsdl:portType name="DistributerPortType">

<wsdl:operation name="distributerCmd">
………………………….
</wsdl:operation>

</wsdl:portType>
-------------------------------------------------

<wsdl:binding name="distributerPortType" type="tns:D istributerPortType">

<soap:binding style="document" transport="http://sch emas.xmlsoap.org/soap/http"/>

<wsdl:operation name="distributerCmd">
………………….
</wsdl:operation> 

</wsdl:binding>
-------------------------------------------------

/*-----------------HANDLING ARM OPERATION COMMAND-- --------------------------------------------------- --*/
int __dst__distributerCmd( struct dpws* dpws, enum dst__distrbuterAction dst__distributerActionElement,  

struct
_dst__ResponseElement *dst__ResponseElement)
{

//Message received acknowledgement
NumOrder++;

dst__ResponseElement->OrderID = NumOrder;
dst__ResultElement.OrderID = hla__ResponseElement->O rderID;

dst__ResultElement.allRequestStatus = dst__RequestSt atus__ACK;
dpws_notify___dst__distributerCmdAck(&pState->dpws,  pState->endpointRef0, &dst__ResultElement);
switch (dst__distributerActionElement)
{

case dst__distributerAction__MoveExtended: (vi)
MoveExtend(); //Setting output pins [see figure 7/c-

(vii)]
//Command acknowledgement
dst__ResponseElement->allOperationResultStatus = 

dst__OperationResultStatus__DONE;
dpws_end(&pState->dpws);

break ;
…………………other operation commands

case dst__distributerAction____Reset:
Shutdown(); //Cleaning and stopping DPWS and I/O ro utines  
//Command acknowledgement
dst__ResponseElement->allOperationResultStatus = 

dst__OperationResultStatus__DONE;
dpws_end(&pState->dpws);

break ;
default :

//Command failure
dst__ResponseElement->allOperationResultStatus = 

dst__OperationResultStatus__FAILURE;
dpws_end(&pState->dpws);

break ;
}

return SOAP_OK;
}

Figure 7 b)

Page 32 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review Only

/*-------------------------DEVICE I/O OPERATION---- -------------------*/

int MoveExtend () (vii)
{ trGPIO_Set(8, FALSE);  //channel 08 Retracted pos

trGPIO_Set(9, TRUE);  //channel 09 Extended pos

/*Reading input sensor*/
do
{

sensor1=trGPIO_Get(1); //channel 01 At retracted se nsor
sensor2=trGPIO_Get(2); //channel 02 At extended sen sor

} while (!(sensor1==FALSE&sensor2==TRUE));

return 0;
}

/*-------------------------DPWS DEVICE STATE NOTIFI CATION------------------------------*/

int dpwsDistributerNotify(DistributerStatus1) (viii)
{

switch (DistributerStatus1)
{

case Extended:
distributerNotifyElement.distributerStatus = dst__ 

distributerStatus__Ejector_Extended;
break ;     
………other cases
case EJECTOR_ERROR:

distributerNotifyElement. distributerStatus = dst__ distributerStatus__EJECTOR_ERROR;
break ;    

}       
dpws_notify___dst__distributerNotifyEvent(&event0.d pws, event0.endpointRef0, &distributerNotifyElement );
return 0;
}

Figure 7 c)

Figure 7 d)

//*-----Detecting IO changes -------*//
int IOSPY( void )
{

...Initialising initial Distribute state
do

{
...Reading sensors state
/*PARSING HANDLING ARM STATE*/    

if (sensor1==FALSE&sensor2==TRUE)
{

DistributerStatus1= Extended;
}
else if (sensor1==TRUE&sensor2==FALSE)
{

...
}
…………………conditions
else

{ 
//State unknown (error)

DistributerStatus1= EJECTOR_ERROR;
//Fail safe routine enabled

….Safely releases a work piece and return to initia l position 

}
//*----------------------DPWS Notification--------- ----*// 

if (DistributerStatus1!= Pre_ DistributerStatus1)
{     

...state change detected 

dpwsDistributerNotify(DistributerStatus1);  [see figure 7/d-(viii)]
}

...
} while (1);   
return 0;

}

Figure 7 e)

Page 33 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review Only
Figure 8. Component state transition diagram 

Page 34 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review Only
Figure 9. A PC- based orchestration engine application

Page 35 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review Only

POST /13814002-1dd2-11b2-bc3d-0040af000032
HTTP/1.1..Host:150.1.0.102:9882..User-Agent: gSOAP/ 2.7..
Content-Type: application/soap+xml; charset=utf-8.. Content-Length: 773..Connection: close....

<?xml version="1.0" encoding="UTF-8"?>.
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org /2003/05/soap-envelope" 

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/ad dressing" 
xmlns:blt="http://www.soda-itea2.org/MSI-

Lboro/Demonstrator/Distributer">
<SOAP-ENV:Header>

<wsa:To>http://150.1.0.102:9882/13814002-1dd2-11b2- bc3d-0040af000032</wsa:To>
<wsa:Action>http://www.soda-itea2.org/MSI-Lboro/Dem onstrator/Distributer/distributer/distributerCmdReq uest</wsa:Action>
<wsa:MessageID>urn:uuid:41c616ba-3e14-11dd-8430-001 c42935fe4</wsa:MessageID>
<wsa:ReplyTo>

<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/ addressing/role/anonymous</wsa:Address>
</wsa:ReplyTo>

</SOAP-ENV:Header>

<SOAP-ENV:Body>
<dst:distributerCmd>

<dst:DistributerAction>MoveExtended</dst:Distribute rAction>  [see figure 7/d-(vi)]
</dst:distributerCmd>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

[ The DPWS invoked command]
dpws_call__dst_distributerCmd(&Distributer, ERPDist ributer, NULL, dst__distributerAction__MoveExtended ,&ResponseDistributer)

Figure 10. Output SOAP message of a DPWS invoked command

Page 36 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review Only
Figure 11. Test rig WS control system use case

Page 37 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review Only

Figure 12. Business system integration via Service orchestration engine

Page 38 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review Only
Figure 13. SOA integration middleware

Page 39 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review Only

Page 40 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing



For Peer Review Only

Page 41 of 41

URL: http://mc.manuscriptcentral.com/tandf/tcim  Email:ijcim@bath.ac.uk

International Journal of Computer Integrated Manufacturing


