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siman@utia.cas.cz
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ABSTRACT

It is shown in detail how recent advances in multiple-output and projectional quantile regres-

sion open the door to exact computation of many inferential statistics based on projection

pursuit. This is also illustrated on a few examples including new regression generalizations

of multivariate skewness, kurtosis and projection depth.

1 INTRODUCTION

Recently, a new theory of directional (regression) quantiles has been developed, see Paindav-

eine and Šiman (2010b, 2010c) for the algorithms and Hallin et al. (2010a), Paindaveine and

Šiman (2010a), and Kong and Mizera (2008) for the theory. It gives rise to many promising

directional statistics but their directional dependence makes it difficult to exactly compute

their suprema or infima over infinitely many unit directions, which would be very useful

for overall statistical inference. This paper addresses the problem and solves it in some

important cases.

Besides, the projectional quantile regression of Paindaveine and Šiman (2010a, 2010c)
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appears very useful for the exact computation of many statistics based on projection pursuit

methodology where the same problem arises as well; see e.g. Friedman (1987) and Huber

(1985). We illustrate this on a few important examples including multiple-output regression

generalizations of location projection depth, skewness and kurtosis. These concrete multi-

variate regression extensions are obtained quite naturally by means of regression quantiles,

introduced in Koenker and Bassett (1978) and masterly reviewed in Koenker (2005), but

they seem, quite surprisingly, not to have yet been explicitly considered in the literature.

The projection pursuit plays a crucial role in the definitions of various statistical depths

including halfspace depth, weighted halfspace depth and projection depth; see Rousseeuw

and Ruts (1999), Hlubinka et al. (2010) and Zuo (2003) with references therein, respectively.

The projection depth leads the way and beats many of its location depth competitors in nu-

merous respects, see Zuo and Serfling (2000a, 2000b). It has already been generalized even

to regression fits (i.e. hyperplanes) in Zuo and Cui (2004). Finally, it is here extended to

arbitrary points in a general multiple-output regression context, which seems more intuitive,

more useful and more promising for future development; see also Liu et al. (2004), Paindav-

eine and Šiman (2010a), and Rousseeuw and Hubert (1999) for other notions of depth in a

regression framework.

Exact computation of some special forms of location projection depth has already been

briefly outlined in Zuo (2004) for odd numbers of bivariate data points. Besides, there is

another paper dealing with exact computation of bivariate projection depth that is accom-

panied with software implementation in R, see Zuo (2010) and Zuo and Ye (2009). Although

that paper has not yet been published and made available, its title indicates that it deals

only with the bivariate and location case. In other words, the present paper almost surely

brings up some new ideas regarding this computational issue, at least in its treatment of

projection regression depth in spaces of general dimension. Needless to say that the results

presented here can lead to a real breakthrough in the dissemination of projection depth and

related methods.

Skewness and kurtosis of univariate (conditional) distributions can be described by means

2
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of various statistics based on univariate (regression) quantiles, see e.g. Kim and White (2004)

and White et al. (2008). Two of these univariate quantile-based shape characteristics are

considered even here and extended by means of projection pursuit to the multiple-output

context in the same way as their moment-based competitors in Malkovich and Afifi (1973).

These extensions are then shown exactly computable even when the output dimension ex-

ceeds two or three, which may lead to many applications, including new tests for (conditional)

multivariate symmetry or normality.

This paper proceeds as follows. Section 2 introduces one fundamental lemma that is

then heavily applied to the multiple-output quantile regression in Section 3 and to the

projectional quantile regression in Section 4. Its subsections discuss the exact computation

of the multivariate shape statistics and projection depth in a general regression context.

Section 5 concludes with some final remarks.

This brief communication blends so many various theoretical concepts together that

their joint detail presentation in the Introduction would only confuse the reader. This is

why their definitions are left only for the sections where they are employed. Sections 3 and 4

are independent, which explains why they sometimes use the same notation for similar but

different entities.

2 THEORY

Hereafter, we adopt basic terminology of Boyd and Vandenberghe (2004).

Definition. Function F on Rm is directional (or, scale invariant) if F (cu) = F (u) ∀c > 0

∀u ∈ Rm, and is sign-directional if sign(F (cu)) = sign(F (u)) ∀c > 0 ∀u ∈ Rm.

Lemma 1. Let us assume that the whole space Rm, m > 1, can be partitioned into a finite

number of non-degenerate closed convex polyhedral cones Cq with disjunct interiors, say Rm =⋃N
q=1Cq, and let us write Γ := {Cq : q = 1, . . . , N} for this conic segmentation, determined

by its finite vertex set V :=
⋃N
q=1 Vq where Vq := {u ∈ Rm : ‖u‖ = 1,u lies in an edge of Cq}.

1. If F is directional and quasiconvex on each Cq ∈ Γ, then sup‖u‖=1 F (u) = maxu∈V F (u).

3
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2. If F is directional and quasiconcave on each Cq ∈ Γ, then inf‖u‖=1 F (u) = minu∈V F (u).

3. If F is sign-directional and quasiconcave on each Cq ∈ Γ, then F (u) > 0 for all

u ∈ Sm−1 := {u ∈ Rm : ‖u‖ = 1} if and only if minu∈V F (u) > 0.

All these statements hold even when the assumptions are not met by F itself, but only by

a function u 7→ F (u)g(‖u‖) where g is an arbitrary positive function on (0,∞) such as

g(x) = x.

Proof. The surface D of the convex hull of V consists of q closed convex polyhedral facets

Dq := {
∑

i λivi :
∑

i λi = 1, λi ≥ 0,vi ∈ Vq} determined by Cq, D =
⋃N
q=1Dq. If

F is directional, then sup‖u‖=1 F (u) = supu∈D F (u) = maxq=1,...,N supu∈Dq F (u) and also

inf‖u‖=1 F (u) = infu∈D F (u) = minq=1,...,N infu∈Dq F (u). If F is quasiconvex on each Cq,

then it is also quasiconvex on each Dq and supu∈Dq F (u) = maxu∈Vq F (u), see Boyd and

Vandenberghe (2004). This proves the first statement.

If F is quasiconcave on each Cq, then −F is quasiconvex there by definition, which implies

infu∈Dq F (u) = minu∈Vq F (u) and so inf‖u‖=1 F (u) = minu∈V F (u).

It also holds for any sign-directional function F that F (u) > 0 on Sm−1 if and only if

F (u) > 0 on D, which is therefore equivalent to infu∈D F (u) = minq=1,...,N minu∈Vq F (u) > 0

thanks to the quasiconcavity of F on each Cq.

Finally, F (u) and F (u)g(‖u‖) differ on Sm−1 only by a positive multiplicative constant,

which concludes the proof.

Lemma 1 will often be invoked below, but only with either g(‖u‖) = 1 or g(‖u‖) = ‖u‖

(convex in u), which should always be kept in mind. The notation introduced in Lemma 1

will also be used hereinafter, together with the following definition.

Definition. Let us consider some indexed conic segmentations Γ(i), i ∈ I, with their vertex

sets V(i), i ∈ I. Then their common refinement Γ(I) is defined as the conic segmentation

determined by V(I) :=
⋃
i∈I V(i).

All applications of Lemma 1 are likely to use the theory of quasiconvex functions, espe-

cially the following composition rules from Boyd and Vandenberghe (2004).

4
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Note. It holds for arbitrary parameters A, b, c and d of the right dimensions that

1. if g : Rm → R is quasiconvex and h : R → R is nondecreasing, then f = h ◦ g is

quasiconvex

2. if g is quasiconvex, then f(u) := g(Au + b) is quasiconvex

3. if g is quasiconvex, then f(u) := g((Au + b)/(c′u + d)) is quasiconvex on the set

{u ∈ Rm : c′u + d > 0}

4. if g is a convex function, h is a concave function, and both g(u) > 0 and h(u) > 0 on

a convex set C, then f(u) = g(u)/h(u) is quasiconvex on C

where all the compositions are well-defined by assumption.

For the sake of simplicity, only suprema of directional statistics will be discussed here-

inafter (without any significant loss of generality). This is why these composition rules are

formulated only for quasiconvex functions here. They can be used to check or extend all the

claims made below.

Let us consider m-dimensional responses Yi associated with (p+1)-dimensional regressors

Xi = (1,Z′i)
′, i = 1, . . . , n > p + 2, and assume that the random sample (Yi,Zi) ∈ Rm+p,

i = 1, . . . , n, comes from a continuous distribution. Section 3 and 4 discuss the consequences

of Lemma 1 in the empirical regression context with a suitable conic segmentation.

3 MULTIPLE-OUTPUT QUANTILE REGRESSION

Hallin et al. (2010a) introduced a new concept of directional multiple-output regression

quantiles. In the general empirical case, they can be defined for any u ∈ Rm \ {0} by means

of the optimization problem

(a′τu,b
′
τu)′ = argmin

(a′,b′)′

n∑
i=1

wiρτ (b
′Yi − a′Xi) subject to u′b = 1 (1)

5
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where wi > 0, i = 1, . . . , n, are some positive weights, τ ∈ (0, 1) stands for any fixed quantile

level, ρτ (x) = x(τ − I(x < 0)) is the well-known quantile check function and

Ψτu =
n∑
i=1

wiρτ (b
′
τuYi − a′τuXi) (2)

denotes the optimal value of the objective function. Typically, wi = 1, i = 1, . . . , n, as in

Hallin et al. (2010a).

It follows from Paindaveine and Šiman (2010b) that there exists a finite conic segmenta-

tion Γ(τ) = {Cq(τ) : q = 1, . . . Nτ} of Rm almost surely for all but a finite number of τ ’s such

that it meets the assumptions of Lemma 1 and (a′τu,b
′
τu)′ = (aτq

′,bτq
′)′/tτq

′u, Ψτu = ψτq /t
τ
q
′u

and tτq
′u > 0 for any u in any Cq(τ) where aτq , bτq , tτq and ψτq are some constant vectors

or scalars possibly different on each Cq(τ). Paindaveine and Šiman (2010b) also provide an

algorithm (and its Matlab implementation by means of parametric programming) that can

find such conic segmentation Γ(τ), its vertex set V(τ) and corresponding characteristics aτq ,

bτq , tτq and ψτq , q = 1, . . . , Nτ .

Clearly, (a′τu,b
′
τu)′ = −(a′(1−τ)(−u),b

′
(1−τ)(−u))

′ and thus V(τ) = −V(1− τ). Note as well

that Γ(T ) is easy to construct for any finite index set T of τ ’s, at least for m = 2, and that

aτu, bτu and Ψτu can be computed for any u ∈ Rm \ {0} by means of available aτq , bτq , tτq

and ψτq , which may be more effective then their straightforward computation from scratch.

3.1 Simple Inference in Multiple-Output Quantile Regression

Hallin et al. (2010a) already showed that both aτu, bτu and Ψτu can be very useful for sta-

tistical inference and that they can be combined into directional statistics that are constant

on each Cq(τ) and therefore easy to maximize or minimize over Sm−1.

Lemma 1 can be applied in this context to extend these results considerably. For example,

it implies sup‖u‖=1G(u) = maxu∈V(τ)G(u) where G(u) can stand e.g. for ‖aτu‖, ‖bτu‖ and

Ψτu. Similarly, it guarantees for any suitable τ1, τ2 ∈ (0, 1) that Ψτ1u/Ψτ2u has its supremum

over Sm−1 respectively equal to its maximum over the vertex set V(T ) corresponding to

Γ(T ), T = {τ1, τ2}.

6
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4 PROJECTIONAL QUANTILE REGRESSION

Alternatively, one can consider projectional regression quantiles from Kong and Mizera

(2008) and Paindaveine and Šiman (2010a). In the general empirical case, they can be

defined for any u ∈ Rm \ {0} by means of the optimization problem

aτu := argmin
a∈Rp+1

n∑
i=1

wiρτ (u
′Yi − a′Xi) (3)

where wi > 0, i = 1, . . . , n, are some positive weights, τ ∈ (0, 1) denotes the quantile level,

ρτ (x) = x(τ − I(x < 0)) is the well-known quantile check function and

Ψτu :=
n∑
i=1

wiρτ (u
′Yi − a′τuXi) (4)

stands for the optimal value of the objective function. Often wi = 1, i = 1, . . . , n, and then

aτu is nothing but the standard sample regression τ -quantile of projections u′Yi’s.

It was shown in Paindaveine and Šiman (2010a, 2010c) that there exists a finite conic

segmentation Γ(τ) = {Cq : q = 1, . . . , Nτ} of Rm almost surely for all but a finite number of

τ ’s such that each Cq is a non-degenerate closed convex polyhedral cone where aτu and Ψτu

are linear in u, i.e. aτu = Aτ
qu,Aτ

q ∈ R(p+1)×m, and Ψτu = ψτ
q
′u,ψτ

q ∈ Rm, for any u ∈ Cq(τ).

Paindaveine and Šiman (2010c) also provide an algorithm (and its Matlab implementation

by means of parametric programming) that can find such a conic segmentation Γ(τ), its

vertex set V(τ) and corresponding matrices Aτ
q and vectors ψτ

q , q = 1, . . . , Nτ .

Clearly, aτu = −a(1−τ)(−u) and thus V(τ) = −V(1 − τ). Note as well that Γ(T ) is easy

to construct for any index set T of τ ’s, at least for m = 2, and that aτu and Ψτu can be

computed for any u ∈ Rm \ {0} by means of available Aτ
q and ψτ

q , which may be more

effective then their straightforward computation from scratch.

4.1 Simple Inference in Projectional Quantile Regression

Paindaveine and Šiman (2010a) already showed that both aτu and Ψτu can be very useful

for statistical inference. Now Lemma 1 makes such inference possible and simple in many

7
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cases. For example, its direct application guarantees for any suitable τ1, τ2 ∈ (0, 1) that

sup‖u‖=1G(u) = maxu∈V(τ1)∪V(τ2)G(u) where G(u) can stand for Ψτ1u/Ψτ2u, ‖aτ1u‖/Ψτ2u, or

1/Ψτ1u, among others.

4.2 Ratios and Inverses of Regression L-Statistics

Lemma 1 can also be applied to ratios Ru(x) of directional regression L-statistics:

Ru(x) =

∑
τ∈TN cτa

′
τux∑

τ∈TD dτa
′
τux

:=
Nu(x)

Du(x)
.

The denominator Du(x) is linear in u on each cone from Γ(TD) and therefore it is positive

for all u ∈ Sm−1 if and only if its minimum over V(TD) is greater than zero, which can be eas-

ily checked. If this is the case, then sup‖u‖=1Ru(x) can be computed as maxu∈V(TD∪TN )Ru(x)

because Ru(x) is then even quasilinear in u on each cone from Γ(TD ∪ TN).

Lemma 1 also implies supu∈S 1/Du(x) = maxu∈V(TD) 1/Du(x) if Du(x) > 0 ∀u ∈ Sm−1.

For example, given x ∈ 1×Rp, we can consider two successful quantile-based shape mea-

sures from Kim and White (2006) adjusted to the general directional regression framework

considered here, namely the skewness coefficient ξu(x) and the kurtosis measure κu(x):

ξu(x) =
(a′(3/4)u − a′(2/4)u)x− (a′(2/4)u − a′(1/4)u)x

(a′(3/4)u − a′(1/4)u)x
,

κu(x) =
(a′(7/8)u − a′(5/8)u)x + (a′(3/8)u − a′(1/8)u)x

(a′(6/8)u − a′(2/8)u)x
.

Both these statistics can be rewritten in the form of Ru(x). Indeed, the former would

lead to TD(ξ) = {1/4, 3/4} and TN(ξ) = {1/4, 2/4, 3/4} while the latter would correspond

to TD(κ) = {2/8, 6/8} and TN(κ) = {1/8, 3/8, 5/8, 7/8}. If their denominators are al-

ways positive, which holds almost trivially in the location case with p = 0, then we can

meaningfully define overall skewness ξ(x) := supu∈S ξu(x) and overall kurtosis κ(x) :=

supu∈S κu(x) by means of projection pursuit and compute them as maxu∈V(TD(ξ)∪TN (ξ)) ξu(x)

and maxu∈V(TD(κ)∪TN (κ)) κu(x), respectively.

8
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4.3 Projection (Regression) Depth

Let us generalize location projection depth, thoroughly investigated in Zuo (2003), to the

points in the general regression setup. In the empirical case discussed here, the projection

regression depth PDn(y,x) of y ∈ Rm given x = (1, z′)′ ∈ 1× Rp may be defined as

PDn(y,x) =
1

1 + sup‖u‖=1 gn(y,x,u)

with

gn(y,x,u) =

∣∣u′y − µu(x)
∣∣

σu(x)

where µu(x) and σu(x) > 0 are some sample suitable regression measures of location and

scatter of u′Y given X, respectively.

In this example, let us consider only µu(x) and σu(x) in the form of regression L-statistics,

µu(x) :=
∑
τ∈Tµ

cτa
′
τux and σu(x) :=

∑
τ∈Tσ

dτa
′
τux,

where cτ ∈ R, τ ∈ Tµ, and dτ ∈ R, τ ∈ Tσ. This restriction does not seem too severe after

considering the close asymptotic relationship between R-, M-, and L-statistics thoroughly

described in Jurečková and Sen (1996).

Generally speaking, the projection (regression) depth is difficult to compute fast and

exactly for m > 1 because the supremum in its definition then involves infinitely many unit

directions. Besides, its regression definition seems reasonable only if σu(x) > 0 for any

u ∈ Sm−1, which need not be true for p > 0 due to the quantile crossing phenomenon.

Nevertheless, Lemma 1 implies that σu(x) > 0 for any u ∈ Sm−1 if and only if

minu∈V(Tσ) σu(x) > 0, which can be easily checked. And if this condition holds, then

gn(y,x,u) is directional and quasiconvex on each Cq ∈ Γ(Tµ ∪ Tσ), which further results

in

PDn(y,x) =
1

1 + maxu∈V(Tµ∪Tσ) gn(y,x,u)
.

Note that this formula can be used for fast and exact computation of projection depth even

in the general regression context and for m > 2. The choice of Tµ and Tσ allows for a
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compromise between robustness and speed as the computational time of finding Γ(τ) and

related quantities grows with decreasing |τ − 0.5|, see Paindaveine and Šiman (2010c).

5 FINAL REMARKS

The minimizers (a′τu,b
′
τu)′ in Section 3 and aτu in Section 4 need not be defined uniquely, not

even in the purely location setup for integer values of nτ , but there is only a finite number

of such exceptional quantile levels with probability one. Besides, this potential ambiguity

is not too worrying because all such minimizers always form a convex polyhedral set that

shrinks towards their unique population limits under very mild conditions, see Hallin et

al. (2010a) and Chapter 4 in Koenker (2005) for a detailed discussion of these asymptotic

properties. Anyway, such an ambiguity can often be fixed easily by a tiny perturbation of τ

or the data points, which can have hardly any impact on practical applications. This is why

these minimizers are considered uniquely defined throughout this paper.

Clearly, the theory presented here is especially useful when the number of cones in the

conic segmentations is quite low. In Sections 3 and 4, this often happens for small n or

extreme τ . Then even the search for approximate extremes on a sampled dense grid of

directions would be much more complicated, in particular for m > 2.

It should also be pointed out that the weights wi’s used in Sections 3 and 4 can be really

useful, both for handling multiple observations and for computing local constant counterparts

to the regression quantiles of Sections 3 and 4, see Hallin et al. (2010b). They would also lead

to interesting local versions of the shape measures and projection regression depth considered

in Section 4.
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