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A note on skewness in regenerative simulation

Søren Asmussen ∗ and Tobias Rydén †

University of Aarhus and Royal Institute of Technology

Abstract

The purpose of this paper is to show, empirically and theoretically, that performance

evaluation by means of regenerative simulation often involves random variables with dis-

tributions that are heavy-tailed and heavily skewed. This, in turn, leads to the variance of

estimators being poorly estimated, and confidence intervals having actual coverage quite

different from (typically lower than) the nominal one. We illustrate these general ideas

by estimating the mean occupancy and tail probabilities in M/G/1 queues, comparing

confidence intervals computed from batch means to various intervals computed from re-

generative cycles. In addition we provide theoretical results on skewness to support the

empirical findings.

AMS 1991 classification. Primary 00A72, 65C05. Secondary 68M20, 90B05, 90B22.

Keywords: ABC interval, batch means, busy cycle, busy period, coverage probability, Fieller

test, jackknife, M/G/1 queue, regenerative process, regenerative simulation, skewness.

1 Introduction

Let X = (X(t))t≥0 be a stochastic process which is regenerative with independent cycles.

That is, there exists a renewal process (Sk)
∞
k=0 such that the regenerative cycles

(X(t))Sn−1≤t<Sn
, n = 1, 2, 3, . . . ,

are i.i.d., and not dependent on the process up to S0 (cf. Asmussen, 2003, p. 169). If S0 = 0

the renewal process is pure, while it is delayed if S0 > 0. The renewal epochs Sn are referred

to as the regeneration times of X. Typical examples of regenerative processes are found in

queueing and storage theory, with the canonical example being the GI/GI/1 queue which

regenerates every time a customer arrives to an empty system.

∗Department of Mathematical Sciences, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
†Corresponding author. Department of Mathematics, Royal Institute of Technology, 100 44 Stockholm,

Sweden. Phone +46-8-790 8469; fax +46-8-723 1788.
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Now write E0 for the conditional expectation given S0 = 0 (i.e., given that the process is

initialised by a regeneration), τ = S1 for the first subsequent regeneration time and µ = E0τ

for the mean inter-renewal time. Then, provided that µ is finite, the distribution of τ is

non-lattice, and that X has right-continuous paths, it holds that X(t) has an asymptotic

distribution, Pe say, defined by

Ee[f(X(·))] =
1

µ
E0

∫ τ

0
f(X(s)) ds (1.1)

for any real measurable bounded function f of X (Asmussen, 2003, Theorem VI.1.2).

Regenerative simulation amounts to simulating i.i.d. copies of (τ, C), with C being the

integral in (1.1), and using these for estimating the ratio of means on the right-hand side

of (1.1). A difficulty with regenerative simulation however, that we want to highlight in

this paper, is that such methods may suffer from distributions being heavy-tailed and heav-

ily skewed. Our canonical example will be that of estimating the mean number of cus-

tomers in an M/GI/1 queue; then X(t) is the number of customers in the system at t, f is

the identity function, and C is the area under X during a busy cycle. It has been estab-

lished that for the M/M/1 queue with unit service rate, this variable has tail probabilities

of the form P(C > x) ∼ (1 − ρ)/(ρ
√

2πγ) × x−1/4e−γ
√

x, where ρ is the system load and

γ = 2
√

−2(1 − ρ) − (1 + ρ) log ρ; see Guillemin and Pinchon (1998, Eq. (5.20)) and Kearney

(2004, Eq. (24)). This tail is subexponential, implying that although a central limit theorem

(CLT) for the sample mean of i.i.d. copies of C holds, convergence will be slow. For extensions

of these results to GI/GI/1 queues and regularly varying service times, see Kulik and Pal-

mowski (2005). We will also show that as ρ ↑ 1, the distributions of τ and C become totally

unbalanced in the sense that asymptotically the probability that they exceed their means

tend to zero. From a simulation perspective this means that simulating the expectation of C

for instance is difficult for large ρ, since one must take a sufficient number of replications to

pick up a few very large values of C before the sample mean becomes a good estimate of its

expectation.

The outline of the paper is as follows. First in Section 2 we review the estimators that will

be used in the paper (for recent surveys about of the general state-of-the-art in the areas, see

e.g. Alexopoulos, 2007, and Law, 2007). Then in Section 3 we give some numerical examples,

in which the method of batch means performs better than regenerative simulation. We also

illustrate, by means of simulation, the skewness discussed above, and Section 4 provides

proofs of this asymptotic unbalancedness.

2 Estimators of steady state expectations

A straightforward approach to estimating θ = Ee[f(X(·))], is through the empirical average

θ̂TA = T−1

∫ T

0
f(X(t)) dt (2.1)

2
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for some large T (TA stands for time average). If the simulated X is not stationary the

distribution of X(t) will however be different from Pe for any t > 0, although approaching

Pe as t → ∞. Such a transient will induce a bias in θ̂TA. The standard way of addressing

this problem is to first simulate X(t) during a burn-in period of length T0, and then use the

sample path over [T0, T0 + T ] to compute the empirical average. However, deciding on what

is a sufficiently large value for T0 is not always easy.

Another difficulty with time averages concerns the computation of confidence intervals.

Often a CLT with rate T 1/2 holds for θ̂TA, i.e. T 1/2(θ̂TA − θ) →d N(0, σ2). The asymptotic

variance σ2, often referred to as the time average variance constant (TAVC), is then given

by

σ2 =

∫ ∞

−∞
Cove[X(0),X(s)] ds, (2.2)

with Cove denoting covariance under the stationary regime. Estimating the TAVC is a

non-trivial task, so that computing a confidence interval for θ is not straightforward. See

Asmussen and Glynn (2007, Section IV.3) for further reading.

An alternative method is that of batch means. This amounts to splitting [0, T ] into B

equally long subintervals, and letting θ̂(k) = (T/B)−1
∫ kT/B
(k−1)T/B f(X(t)) dt be the average over

the k-th subinterval. If the process X is sufficiently weakly dependent, then the θ̂(k) will be

roughly Normally distributed and independent. Thus a (two-sided) confidence interval for θ

with approximate coverage 1−α, is given by θ̂TA ± t1−α/2(B − 1)sB/
√

B with s2
B the sample

variance of the θ̂(k) and t1−α/2(B − 1) being the (1−α/2)-quantile of the t-distribution with

B − 1 degrees of freedom.

We now turn to regenerative simulation, and let ((τk, Ck))
n
k=1 be i.i.d. copies of (τ, C).

The standard estimator of θ = EC/Eτ is

θ̂REG =

∑n
k=1 Ck

∑n
k=1 τk

=
Cn

τn
, (2.3)

where τn = n−1
∑n

1 τk and Cn = n−1
∑n

1 Ck. That this estimator is consistent is evident

from (1.1). It is not unbiased however, because θ̂REG is a ratio estimator. Provided that τ

and C both have finite second moment, the CLT n1/2(τn −Eτ, Cn −EC)⊤ →d N(0,Σ) holds

for some covariance matrix Σ. Using the delta method one finds that θ̂REG is asymptotically

Normal at rate n1/2, with asymptotic variance η2 that can be estimated as

η̂2 =
1

n − 1

n
∑

k=1

(Ck − θ̂REG τk)
2
/

τ2
n; (2.4)

see e.g. Asmussen and Glynn (2007, Proposition IV.4.1). Thus a (two-sided) confidence

interval can be constructed as θ̂REG ± z1−α/2η̂/
√

n, where z1−α/2 is the (1−α/2)-quantile of

the standard Normal distribution.

Another standard approach to constructing confidence intervals is through the jackknife

3
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(e.g. Ripley, 1987, pp. 158–160). This estimator is

θ̂JACK = nθ̂REG − (n − 1)θ̂(−) with θ̂(−) = n−1
n

∑

k=1

θ̂(k) and θ̂(k) =

∑

i6=k Ci
∑

i6=k τi
,

and the corresponding variance estimator is s2
JACK = (n − 1)/n ×∑n

k=1(θ̂(−) − θ̂(k))
2. Confi-

dence intervals are usually computed as θ̂JACK ± z1−α/2sJACK.

The appealing features of regenerative simulation are thus that the method avoids dealing

with transient periods (burn-in) and dependence. The fact that θ̂REG is a ratio estimator

however hints that even if (τn, Cn) is Normal distributed with reasonable accuracy, it is not

obvious that the same conclusion may be drawn about θ̂REG itself. One purpose of this

paper is indeed to compare confidence intervals computed using batch means, to intervals

computed using regenerative simulation. In addition to the standard delta method intervals

and jackknife intervals, we will also study three other methods described below.

One way of circumventing the ratio estimator is to construct a linear test procedure based

on a t-test. Forming Zk(θ) = Ck − θτk it is clear from (1.1) that EZk(θ) = 0; testing θ = θ0

can thus be done by testing if EZk(θ0) = 0. By inverting a t-test, a (two-sided) confidence

interval for θ with approximate coverage 1 − α is obtained as

{θ : |Zn(θ)/sZ(θ)| ≤ t1−α/2(n − 1)}, (2.5)

where Zn(θ) and s2
Z(θ) are the sample mean and variance, respectively, of {Zk(θ)}n

k=1. This

interval was originally derived by Fieller; see e.g. Fieller (1954) or Roy and Potthoff (1958,

Section 4), who both considered it as an exact test for a bivariate Normal distribution. In

the appendix we show that this procedure is also equivalent to several tests in multivariate

analysis of variance (MANOVA). A point estimate can be obtained as the mid-point of the

interval, or as the θ that maximises the p-value of the test. The latter is the θ such that the

test statistic has minimum absolute value, which occurs when Zn(θ) = 0 and is attained for

θ̂REG. The interval is in general not symmetric around θ̂REG however.

Further refinements of the above methods will be done by means of ABC (approximate

bootstrap confidence) intervals, introduced by DiCiccio and Efron (1992). Their basic purpose

is to provide confidence intervals whose end-points are correct up to order O(n−1), rather than

O(n−1/2) as for the standard intervals, and this is done by including third-order properties

(i.e., skewness) of the observed variables. In the present setting the ratio estimator θ̂REG =

Cn/τn and the Fieller statistic Z(θ) = Cn − θτn are non-parametric estimators, and they

are both functions of the sample means τn and Cn. The influence function for the i-th cycle

(τi, Ci) is given by ℓi = Ci/τn −Cn/τ 2
n × τi for the ratio estimator and by ℓi = Zi(θ)−Zn(θ)

for the Fieller statistic, where Zi(θ) = Ci − θτi as above. The remaining steps of the ABC

procedure are given e.g. in Davison and Hinkley (1997, Eq. (5.46)). For the Fieller statistic the

expressions become particularly simple; the upper end-point of the one-sided ABC interval

for the mean of Z(θ) with approximate coverage 1−α is Zn +(a+z1−α)/(1−a(a+z1−α))2×
n−1/2sZ(θ) with a = ŝkew(Z(θ))/(6

√
n) and ŝkew(Z(θ)) the sample skewness of the Zi(θ),

4
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and a two-sided confidence interval is obtained by computing end-points for approximate

coverage 1 − α/2 and α/2, respectively.

3 Numerical examples

This section contains numerical comparisons of confidence intervals computed using the meth-

ods discussed above. For the numerical results we used the M/GI/1 queue with unit mean

service time and X being the number of customers in the system. The function f was chosen

either as the identity, so that θ becomes the mean number of customers in stationarity, or as

the indicator I(X(t) ≥ b), so that θ becomes the probability Pe(X(·) ≥ b). In the following

we chose b = 3. We studied three types of queues: the M/M/1 queue, the M/D/1 queue, and

the queue with service time density

b(x) =

√
3

π

1

1 + x6/27
for x > 0. (3.1)

The corresponding distribution has unit mean and variance 1/2, so that its variance is in-

termediate between that of the exponential distribution, with unit variance, and that of the

constant unity with no variance. We will denote this queue as M/HT/1 (HT for heavy tail).

The three cases are meant to represent light tail, no tail, and heavy tail, respectively, of the

service time distribution. For each case we studied the two loads ρ = 0.5 and ρ = 0.8.

For the case of the number of customers in the system (i.e., f is the identity function), the

Pollaczek-Khintchine formula (e.g. King, 1990, Eq (5.6)) yields the mean number of customers

ρ/(1 − ρ), ρ(1 − ρ/2)/(1 − ρ), and ρ(1 − ρ/4)/(1 − ρ) respectively, for the three queues. We

also remark that the TAVC σ2 in (2.2) is finite even for the M/HT/1 queue. This follows

as σ2 is finite provided that C has finite second moment (e.g. Asmussen and Glynn, 2007,

Proposition 4.2), and Daley and Jacobs (1969, Eq. (8.7)) show that so is the case if the service

time distribution has finite fourth moment. Obviously this holds true for the density (3.1).

Regarding the tail probability Pe(X(·) ≥ b), the stationary distribution of the number of

customers in the M/M/1 queue is geometric with parameter ρ, so that Pe(X(·) ≥ b) = ρb for

this queue. For the M/D/1 and M/HT/1 queues, let πk be the stationary probability of k

customers in the system. We have π0 = 1 − ρ, and we computed π1 and π2 numerically by

solving the first two global balance equations of the Markov chain embedded after departures

(e.g. Asmussen, 2003, Eq. (5.5)); for the M/HT/1 queue the integrals corresponding to the

probabilities of 0 or 1 arrivals during a service time were evaluated using Maple. In this way

we obtained Pe(X(·) ≥ 3) = 0.0530 and Pe(X(·) ≥ 3) = 0.3655 respectively for ρ = 0.5

and ρ = 0.8 for the M/D/1 queue, and Pe(X(·) ≥ 3) = 0.0914 and Pe(X(·) ≥ 3) = 0.4564

respectively for ρ = 0.5 and ρ = 0.8 for the M/HT/1 queue.

Tables 1–4 show empirical coverage probabilities obtained from regenerative simulation

and time-average simulation. For the regenerative simulation, regeneration epochs were de-

fined as arrivals to an empty queue, and confidence intervals were computed using (i) the

5
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estimator θ̂REG with variance estimate (2.4) and Normal quantiles, (ii) the jackknife estima-

tor with jackknife variance estimator and Normal quantiles, (iii) the Fieller intervals (2.5),

(iv) ABC intervals derived from the ratio estimator θ̂REG (denoted ratio-ABC in the tables),

and (v) ABC intervals derived from the Fieller statistic Zn(θ) (denoted F-ABC in the ta-

bles). Neither the Fieller intervals nor the Fieller-ABC intervals were inverted into confidence

intervals for θ however, since we were only interested in whether these tests rejected the true

θ or not.

For the time-average simulation, confidence intervals were computed using the estimator

θ̂TA, variance estimates obtained by splitting the total simulation time into B = 5, 10 or 25

batches, and t-quantiles (Asmussen and Glynn, 2007, Section IV.5, recommend 5–30 batches).

Alexopoulos (2007) describes elaborate algorithms for adaptively choosing the number of

batches; our aim here is however not to use the most sophisticated algorithms, but rather

to show that even with a simple choice for the number of batches, this approach performs

better than intervals based on regenerative simulation.

Sample sizes were n = 500, 1,000, and 2,000 regenerative cycles for the estimates based

on regenerative simulation. Since a regenerative cycle is a busy period plus a waiting time

until another arrival, its mean value is Eτ = 1/(1 − ρ) + 1/ρ = 1/ρ(1 − ρ) in a queue with

unit mean service time (see e.g. King, 1990, Eq. (8.1)). For the time-average estimator the

total simulation time was chosen as T = nEτ , preceded by a burn-in period of duration

T0 = T/5 for the maximal value of T (corresponding to n = 2,000). All simulations were

done in Matlab.

From Tables 1–2, reporting empirical coverages for the mean number of customers, we can

draw the general conclusions that performance is best, i.e. estimation of θ is easiest, for the

M/D/1 queue and, maybe surprisingly, worst for the M/M/1 queue with the M/HT/1 queue

in between. A possible explanation for this is that the M/M/1 queue has the largest variance

of the service time distribution. Of the five methods based on regenerative simulation, we

see that the jackknife and ABC intervals perform best; this finding is in agreement with

those of Iglehart (1975, Section 5), who found the jackknife intervals to be superior to several

other ones, including the Fieller and the standard delta method intervals. A closer analysis

reveals that the differences towards the other intervals are statistically significant at the 5%-

level (one-sided test) in most cases for ρ = 0.8, but in only a few cases for ρ = 0.5. The

Fieller-ABC intervals perform the best in all cases for ρ = 0.8. For the M/HT/1 queue this is

peculiar, as the cumulative variable C does not have finite third moment for the service time

density (3.1). The ABC intervals involve the empirical skewness, whence these procedures

are highly questionable from a theoretical perspective for the M/HT/1 queue, despite their

better performance in the simulations.

The overall best intervals are however those computed from batch means with 5 batches.

As indicated by the tables, this method has consistently better coverage than the other

methods, and these differences are significant (5%-level, one-sided) in most cases. (We did

however not attempt to correct for multiple testing.) However, also for this method the

empirical coverage is significantly below the nominal 95% for all queues when ρ = 0.8, and

6
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Table 1: Empirical coverage probabilities for different simulation strategies and confidence intervals

applied to the mean number of customers in an M/GI/1 queue with unit mean service time and load

ρ = 0.5. Top part: M/M/1 queue; middle part: M/D/1 queue; bottom part: M/GI/1 queue with

service time density (3.1). For the time-average estimator, the simulation periods were T = n/ρ(1−ρ),

preceded by a burn-in period of length T0 = T/5 for the maximal T . All confidence intervals and tests

were two-sided with nominal coverage probability 95% (size 5%). The number of replications was

8,000, giving two-sided confidence intervals for the actual coverage probabilities with half-widths of

about 0.007. Figures in italics mark coverages that are significantly smaller, at the 5% level (one-sided

test for difference of probabilities in two binomial distributions), than the coverage (on the same row)

for the time-average estimator and 5 batches.

regenerative simulation batch means

delta jackknife Fieller ratio-ABC F-ABC 5 10 25

n = 500 0.912 0.914 0.908 0.918 0.918 0.934 0.925 0.911

n = 1,000 0.920 0.923 0.918 0.926 0.927 0.945 0.941 0.934

n = 2,000 0.934 0.935 0.933 0.932 0.932 0.944 0.940 0.940

n = 500 0.928 0.928 0.928 0.928 0.926 0.946 0.942 0.938

n = 1,000 0.941 0.941 0.941 0.940 0.939 0.944 0.944 0.940

n = 2,000 0.945 0.946 0.944 0.942 0.942 0.947 0.946 0.944

n = 500 0.920 0.922 0.918 0.925 0.923 0.942 0.932 0.923

n = 1,000 0.932 0.935 0.932 0.932 0.931 0.941 0.937 0.933

n = 2,000 0.945 0.947 0.944 0.943 0.943 0.945 0.940 0.941

Table 2: Empirical coverage probabilities for mean number of customers as in Table 1, but with load

ρ = 0.8.

regenerative simulation batch means

delta jackknife Fieller ratio-ABC F-ABC 5 10 25

n = 500 0.832 0.847 0.808 0.857 0.864 0.899 0.871 0.841

n = 1,000 0.876 0.886 0.861 0.893 0.897 0.916 0.899 0.887

n = 2,000 0.903 0.908 0.892 0.912 0.916 0.929 0.918 0.908

n = 500 0.879 0.888 0.860 0.897 0.903 0.914 0.902 0.880

n = 1,000 0.903 0.910 0.893 0.917 0.921 0.933 0.917 0.904

n = 2,000 0.914 0.917 0.907 0.923 0.925 0.940 0.931 0.921

n = 500 0.855 0.868 0.832 0.878 0.885 0.904 0.884 0.862

n = 1,000 0.883 0.891 0.870 0.898 0.904 0.926 0.911 0.894

n = 2,000 0.907 0.913 0.898 0.916 0.920 0.935 0.927 0.917
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Table 3: Empirical coverage probabilities for tail probability Pe(X(·) ≥ 3) and load ρ = 0.5; simula-

tion set-up is otherwise as described in Table 1.

regenerative simulation batch means

delta jackknife Fieller ratio-ABC F-ABC 5 10 25

n = 500 0.922 0.926 0.921 0.934 0.934 0.938 0.932 0.925

n = 1,000 0.932 0.934 0.930 0.938 0.938 0.948 0.948 0.942

n = 2,000 0.938 0.938 0.938 0.942 0.942 0.950 0.951 0.948

n = 500 0.916 0.917 0.916 0.932 0.932 0.935 0.932 0.926

n = 1,000 0.936 0.937 0.936 0.942 0.942 0.942 0.942 0.939

n = 2,000 0.943 0.943 0.944 0.945 0.945 0.948 0.946 0.939

n = 500 0.922 0.923 0.922 0.939 0.938 0.938 0.932 0.927

n = 1,000 0.939 0.940 0.937 0.940 0.940 0.943 0.937 0.936

n = 2,000 0.946 0.946 0.946 0.949 0.949 0.946 0.944 0.941

Table 4: Empirical coverage probabilities for tail probability Pe(X(·) ≥ 3) as in Table 3, but with

load ρ = 0.8.

regenerative simulation batch means

delta jackknife Fieller ratio-ABC F-ABC 5 10 25

n = 500 0.917 0.928 0.910 0.926 0.926 0.944 0.935 0.914

n = 1,000 0.935 0.939 0.930 0.936 0.936 0.945 0.945 0.938

n = 2,000 0.943 0.946 0.939 0.944 0.945 0.942 0.944 0.940

n = 500 0.929 0.934 0.919 0.933 0.934 0.939 0.939 0.931

n = 1,000 0.940 0.943 0.935 0.944 0.944 0.947 0.946 0.940

n = 2,000 0.935 0.938 0.935 0.941 0.941 0.948 0.948 0.944

n = 500 0.929 0.934 0.921 0.933 0.933 0.943 0.935 0.921

n = 1,000 0.939 0.943 0.930 0.941 0.941 0.949 0.945 0.936

n = 2,000 0.945 0.948 0.942 0.947 0.947 0.950 0.951 0.948
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for the M/M/1 and M/HT/1 queues also when ρ = 0.5, even for the largest sample size,

although the the differences are small for the M/D/1 queue and for the M/M/1 queue when

ρ = 0.5.

The results for estimating the tail probability Pe(X(·) ≥ 3), reported in Tables 3–4, are

in many respects similar to those regarding the mean number of customers, although the

differences between the two loads are less pronounced. The two types of ABC intervals are

indistinguishable for ρ = 0.5, and for ρ = 0.8 there are no notable differences at all between

these and the jackknife intervals. Again batch means with 5 batches performs best, and often

significantly better than the other methods. The coverage probabilities of all methods are

better than for the mean number of customers, however.

Obviously the Fieller intervals (2.5) do not perform better than the other tests based on

regenerative simulation, which are ratio estimators. This suggests that these methods perform

worse than batch means not because they are ratio estimators, but because the average

(τn, Cn) is not approximately Normal with sufficient accuracy. A Normal probability plot

(not shown) with simulated replications of the Cn for the number of customers in an M/M/1

queue with ρ = 0.8 and n = 2,000, does indeed reveal some deviations from Normality. From

a sample of 250,000 simulated replications of C, we obtained the sample mean 25.00 (the

true value is 25), and the sample standard deviation 155.2. Moreover, the sample skewness

was 20.7, and the fraction of replications larger than 25 was 0.112; these are both numbers

that indicate a large degree of skewness of the distribution of C. An estimate of the density

of C is plotted in Figure 1.

We also simulated, for the same setting, a sample of 250,000 replications of (τ, C) and the

corresponding Z(θ) = C − θτ with the true θ = ρ/(1 − ρ) = 4. The mean of this sample was

0.074 (the true value is 0) and its sample standard deviation was 104.2. Moreover the sample

skewness was 29.3, and the fraction of replications larger than 0 was 0.046. An estimate of its

density is found in Figure 1, and one should note the very sharp decrease of the density just

left of zero. Our conclusion here is that splitting a sample trajectory as is done in regenerative

simulation, implies a way of estimating the TAVC that involves distributions which are both

heavy-tailed and heavily skewed, and that this explains the inferior performance of estimators

built on regenerative simulation. Even the ABC intervals, which do adjust for skewness, are

unable to fully compensate for it and achieve coverage better than for the batch means.

We did also compute the BCa (bias-corrected accelerated) intervals for the Fieller statistic

Zn(θ), which is another method of constructing second-order correct confidence intervals for

the mean of this estimate (see Efron, 1987, Example 2). These intervals did however in fact

perform worse than the Fieller intervals, and we do not report these results.

Regarding the variable τ , its distribution is not heavy-tailed in the M/M/1-setting, be-

cause the busy cycle distribution has an exponential tail; this follows as its Laplace transform

(e.g. Asmussen, 2003, Proposition III.8.10) is finite to the left of the origin. Its distribution is

however asymptotically unbalanced in a sense detailed in the next section; for the sample used

here, a fraction 0.200 of the replications were larger than the true mean 1/ρ(1 − ρ) = 6.25.

These observations may explain why the confidence intervals built on regenerative simulation

9
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Figure 1: Estimates of the densities of the random variables C (left) and Z(θ) (right), for the number

of customers in the M/M/1 queue with ρ = 0.8, and θ set to its true value ρ/(1−ρ) = 4. The estimates

are renormalised histograms computed from 250,000 replications of C and Z(θ) respectively.

perform worse than those built on batch means also for the tail probability Pe(X(·) ≥ 3),

for which the function f(x) = I(x ≥ 3) is bounded, but with smaller differences than for

estimating the mean number of customers.

For the time-average estimator, the distribution of concern is the stationary distribution

Pe(f(X(·) ∈ ·)). For the M/M/1 and M/D/1 queues, this is not heavy-tailed for the examples

studied here. The concern is then rather about the dependence over time. This dependence is

however light-tailed (exponentially decaying) both for the M/M/1 queue and for the M/D/1

queue. For these queues there are thus no heavy-tailed phenomena disturbing the time-

average estimator, while there are for the estimators built on regenerative simulation. For the

M/HT/1 queue we however expect heavy-tailed dependence over time and also a heavy-tailed

distribution for the number of customers (although a Bernoulli distribution when using the

indicator function for the tail probability). This however does not have a notable degrading

effect on coverage in the simulations reported here. As noted above, for 5 batches the batch

means intervals perform much better than those built on regenerative simulation. We did not

explore further why coverage is better with 5 batches than with 10 or 25, but two possible

explanations are that (i) with the smaller batch sizes the batch averages are correlated to an

extent that the variance estimate (based on the assumption of no correlation) becomes too

small, or that (ii) with the smaller batch sizes the distribution of the batch means becomes

too far from Normal, so that the distribution of the t-statistic is not well approximated by

the t-distribution. Of course, also both of (i) and (ii) may occur.
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4 Asymptotically totally unbalanced distributions

In this section we address from a theoretical perspective the empirical observations about

skewness made in the previous section. First we make the following definition.

Definition 1 Let (νs) be a family of distributions on R, for s in some index set of integers or

reals, and let ms =
∫

R
x νs(dx) be the mean of νs. We say that this family is asymptotically

totally unbalanced as s ↑ a, where a is a limit point, finite or infinite, if the mean ms is finite

for all s, and νs({x : x > ms}) tends to either 0 or 1 as s ↑ a. For s ↓ a the definition is

analogous.

Consider first the variable C when X is the number of customers in an M/M/1 queue and

f is the identity function. In the Introduction we mentioned that C then has a subexponential

distribution. Write Pρ for the distribution of (X(t))t≥0, when stationary with traffic load ρ,

and Eρ for the corresponding expectation.

Proposition 1 For X = (X(t))t≥0 being the number of customers in an M/M/1 queue with

load ρ, Pρ(C ∈ ·) and Pρ(τ ∈ ·) are asymptotically totally unbalanced as ρ ↑ 1, namely

Pρ(C > EρC) → 0 as ρ ↑ 1 and Pρ(τ > Eρτ) → 0 as ρ ↑ 1.

Proof. We do the proof for C only, as the proof for τ is completely analogous. We first notice

that C is finite P1-a.s., because even for ρ = 1 a busy cycle is of finite duration a.s.; this is

since the embedded X-process, i.e. X observed at arrivals and departures only, is then a null-

recurrent random walk. Second, for ρ < ρ′ ≤ 1 the Pρ′-distribution of C is stochastically larger

than the Pρ-distribution of C. This can be established, for instance, by a coupling argument:

run two queues with identical sequences of service times, with unit mean, and inter-arrival

times constructed as Uk/ρ and Uk/ρ
′ respectively, where (Uk) is an i.i.d. sequence of standard

negative exponential random variables. Letting C and C ′ correspond to the first busy cycle

of the respective queues, it then holds that C ′ ≥ C a.s.

From this stochastic domination result we conclude that

Pρ(C > EρC) ≤ P1(C > EρC) for all 0 ≤ ρ ≤ 1.

Since C is finite P1-a.s., the proof is now completed by letting ρ ↑ 1 and noting that then

EρC → ∞. 2

In the previous section we saw that even for a moderate value like ρ = 0.8, skewness can

be severe.

The above argument also applies to M/GI/1 queues, and also to more general systems like

the GI/GI/1 queue. For the M/GI/1 queue it holds that (again assuming unit mean service

time) EρC = 1/(1−ρ)+(ρb2/2)/(1−ρ)2 with b2 being the second moment of the waiting time

distribution (Daley and Jacobs, 1969, Eq. (8.6)). Moreover, P1(C > x) ∼ Kx−1/3 as x → ∞
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for some constant K (Kearney, 2004, Eq. (17)). These results are however unimportant for

the above argument.

We now turn to the Fieller statistic Z(θ) = C − θτ in (2.5), where we again let X be the

number of customers in an M/M/1 queue. Then θ = EeX(·) = ρ/(1 − ρ), and EZ(θ) = 0.

Proposition 2 For X = (X(t))t≥0 being the number of customers in an M/M/1 queue with

load ρ, Pρ(Z(θ(ρ)) ∈ ·) is asymptotically totally unbalanced as ρ ↑ 1, namely

Pρ(Z(θ(ρ)) > 0) → 0 as ρ ↑ 1.

Proof. Consider a busy cycle during which in total d ≥ 1 customers are served. Clearly C is

then maximal when all customers arrive at the very start of the busy cycle, and the maximal

value of C is S1 + 2S2 + . . . + dSd, where Sk is the service time of the k-th customer served

during the busy cycle. The length of the regenerative cycle is S1+ . . .+Sd +A, where A is the

time from the end of the busy cycle to the next arrival (then to an empty queue). Thus, for

such a busy cycle we have Z(θ) ≤ (1− θ)S1 + (2− θ)S2 + . . . + (d− θ)Sd. If ρ is large enough

that θ = θ(ρ) ≥ d, say ρ ≥ ρ(d), the right-hand side of this inequality will be non-positive.

Since θ(ρ) → ∞ as ρ ↑ 1, such a ρ(d) can always be found.

Now write M for the number of customers served during the busy period. Since the

above argument does not involve the actual traffic load, we conclude that for any ρ such that

θ(ρ) ≥ d we have

Pρ(Z(θ(ρ)) > 0) = Pρ(Z(θ(ρ)) > 0 |M ≤ d)Pρ(M ≤ d)

+ Pρ(Z(θ(ρ)) > 0 |M > d)Pρ(M > d)

≤ 0 + Pρ(M > d) ≤ P1(M > d).

When ρ ↑ 1 we can let d → ∞, and hence, because M is finite P1-a.s. (cf. the proof of

Proposition 1), the result follows. 2

This result explains why the Fieller intervals work poorly for ρ close to 1. We however

remark that, again, the numerical results indicate that also for moderate values of ρ these

intervals can suffer substantially from skewness, and that the Fieller-ABC intervals are not

able to fully compensate for this skewness. We also remark that again the above argument

is valid for more general systems, like M/GI/1 and GI/GI/1 queues.

A The Fieller test as a MANOVA test

Consider an 2 × n-matrix Y of random variables, where the columns of Y are i.i.d. random

vectors with some unknown mean vector ξ and unknown covariance matrix. We shall think

of each column as being an independent copy of (τ, C)⊤ from a regenerative cycle. To test

the hypothesis H0 : θξ1 − ξ2 = 0, we compute the quantities

P = CYn−1A⊤AY⊤C⊤,

Q = CY(In − n−1A⊤A)Y⊤C⊤,
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where C = [θ,−1] and A is an 1 × n-vector of ones; see Khatri (1966) or Srivastava and

Carter (1983, Section 6.3.2). These expressions follow from Khatri (1966, Eqs. (17)–(18))

after some simple algebra (in Khatri’s notation, B = I2×2, V = 1, Y1 = Y, A∗ = A). Under

the assumption that each column of Y is bivariate Normal, the likelihood ratio tests rejects

H0 if Q/(Q + P ) is small. Another test, known as Pillai’s trace, rejects H0 if P/(P + Q) is

large. Since P and Q are scalars in this problem and P/(P +Q) = 1−Q/(P +Q), these tests

are equivalent. Pillai’s trace test is known to possess robustness against non-normality (Kotz

and Johnson, 1985, p. 25), which is appealing as in regenerative simulation (τ, C) is in general

not bivariate Normal. It is also immediate that the LR test and the Pillai trace test are both

equivalent to rejecting H0 for large values of P/Q. However, using the notation of (2.5), we

have P = nZ
2
n(θ) and Q = (n − 1)s2

Z(θ), and we find that P/Q is, up to a multiplicative

constant, equal to the Fieller statistic (2.5) squared. Thus the both of the MANOVA test

statistics discussed here, and the Fieller t-test, are all equivalent.
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Estimates of the densities of the random variable Z(θ), for the number of customers in the M/M/1 
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histograms computed from 250,000 replications of Z(θ).  
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