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Deep Learning in Robotics: A Review of Recent Research

Advances in deep learning over the last decade have led to a flurry of research in 

the application of deep artificial neural networks to robotic systems, with at least 

thirty papers published on the subject between 2014 and the present.  This review

discusses the applications, benefits, and limitations of deep learning vis-à-vis 

physical robotic systems, using contemporary research as exemplars.  It is 

intended to communicate recent advances to the wider robotics community and 

inspire additional interest in and application of deep learning in robotics.

Keywords: deep neural networks; artificial intelligence; human-robot interaction 

1.  Introduction

Deep learning is the science of training large artificial neural networks.  Deep neural 

networks (DNNs) can have hundreds of millions of parameters [1, 2], allowing them to 

model complex functions such as nonlinear dynamics.  They form compact 

representations of state from raw, high-dimensional, multimodal sensor data commonly 

found in robotic systems [3], and unlike many machine learning methods, they do not 

require a human expert to hand-engineer feature vectors from sensor data at design time.

DNNs can, however, present particular challenges in physical robotic systems, where 

generating training data is generally expensive, and sub-optimal performance in training

poses a danger in some applications.  Yet, despite such challenges, roboticists are 

finding creative alternatives, such as leveraging training data via digital manipulation, 

automating training, and employing multiple DNNs to improve performance and reduce

training time.

Applying deep learning to robotics is an active research area, with at least thirty 

papers published on the subject from 2014 through the time of this writing.  This review

presents a summary of this recent research with particular emphasis on the benefits and 

challenges vis-à-vis robotics.  A primer on deep learning is followed by a discussion of 
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how common DNN structures are used in robotics and in examples from the recent 

literature.  Practical considerations for roboticists wishing to use DNNs are also 

provided.  Finally, limitations of and strategies that mitigate these as well as future 

trends are discussed.

2.  Deep learning

2.1 A brief history of deep learning

The basic principles of linear regression were used by Gauss and Legendre [4], and 

many of those same principles still cover what researchers in deep learning study.  

However, several important advances have slowly transformed regression into what we 

now call deep learning.  First, the addition of an activation function enabled regression 

methods to fit to nonlinear functions.  It also introduced some biological similarity with 

brain cells [5].

Next, nonlinear models were stacked in “layers” to create powerful models, 

called multi-layer perceptrons.  In the 1960s a few researchers independently figured 

out how to differentiate multi-layer perceptrons [6], and by the 1980s, it evolved into a 

popular method for training them, called backpropagation [7, 8].  It was soon proven 

that multi-layer perceptrons were universal function approximators [9], meaning they 

could fit to any data, no matter how complex, with arbitrary precision, using a finite 

number of regression units.  In many ways, backpropagation marked the beginning of 

the deep learning revolution; however, researchers still mostly limited their neural 

networks to a few layers because of the problem of vanishing gradients [10, 11].  

Deeper neural networks took exponentially longer to train.

Neural networks were successfully applied for robotics control as early as the 

1980s [12].  It was quickly recognized that nonlinear regression provided the 
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functionality that was needed for operating dynamical systems in continuous spaces [13,

14], and closely related fuzzy systems seemed well suited for nominal logical control 

decisions [15].  Even as early as 1989, Pomerleau’s ALVINN [16] famously 

demonstrated that neural networks were effective for helping vehicles to stay in their 

lanes.  However, neural networks were still generally too slow to digest entire images, 

or perform the complex tasks necessary for many robotics applications.

In the 2000s, researchers began using graphical processing units (GPUs) to 

parallelize implementations of artificial neural networks [17].  The largest bottleneck in 

training neural networks is a matrix-vector multiplication step, which can be 

parallelized using GPUs.  In 2006, Hinton presented a training method that he 

demonstrated to be effective with a many-layered neural network [18].  The near-

simultaneous emergence of these technologies triggered the flurry of research interest 

that is now propelling deep learning forward at an unprecedented rate [19].

As hardware improved, and as neural networks began to become more practical, 

they were increasingly found to be effective with real robotics applications.  In 2004 

RNNPB showed that neural networks could self-organize high-level control schema that

generalized effectively with several robotics test problems [20].  In 2008, 

neuroscientists made advances in recognizing how animals achieved locomotion, and 

were able to extend this knowledge all the way to neural networks for experimental 

control of robots [21].  In 2011, TNLDR demonstrated that deep neural nets could 

effectively model both state and dynamics from strictly unsupervised training with raw 

images of a simulated robot [22].  Another relevant work is Pomerleau’s 2012 book 

surveying applications for neural networks in perception for robot guidance [23].

In hindsight, we see that chess was considered in the early years of artificial 

intelligence to be representative of human intelligence over machines [24].  After 
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machines beat world-class chess players [25], a new emblematic task was needed to 

represent the superior capabilities of human intelligence.  Visual recognition was largely

accepted to be something easy for humans but difficult for machines [26].  But now, 

with the emergence of deep learning, humans will not be able to claim that as an 

advantage for much longer.  Deep learning has surged ahead of well-established image 

recognition techniques [27] and has begun to dominate the benchmarks in handwriting 

recognition [28], video recognition [29], small-image identification [30], detection in 

biomedical imaging [31-33], and many others.  It has even achieved super-human 

accuracy in several image recognition contests [27, 34, 35].  Perhaps agility or dexterity 

will be a forthcoming achievement where machines will begin to demonstrate human-

like proficiency.  If so, it appears that deep neural networks may be the learning model 

that enables it.

2.2 Common DNN structures

The idea of using machine learning in controlling robots requires humans to be willing 

to relinquish a degree of control.  This can seem counterintuitive at first, but the benefit 

for doing so is that the system can then begin to learn on its own.  This makes the 

system capable of adapting, and therefore has potential to ultimately make better use of 

the direction that comes from humans.

DNNs are well suited for use with robots because they are flexible, and can be 

used in structures that other machine learning models cannot support.  Figure 1 

diagrams four common structures for using DNNs with robots.  

Structure A (in Figure 1) shows a DNN for regressing arbitrary functions.  It is 

typically trained by presenting a large collection of example training pairs:

{ <x1, y1>,<x2, y2>, … , <xn,yn> }.  An optimization method is applied to minimize the
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prediction loss.  For regression problems, loss is typically measured with sum-squared 

error,  , and for classification problems it is often measured with cross-

entropy,  , particularly when a softmax layer is used for the output layer 

of the neural network [36].  Traditionally, the most popular optimization method for 

neural networks is stochastic gradient descent [37], but improved methods such as 

RMSProp [38] and Adam [39] have recently garnered widespread usage.  Some other 

considerations for training them effectively are given in Section 2.4.  After training is 

finished, novel vectors may be fed in as x to compute corresponding predictions for y.

Structure B is called an autoencoder [40].  It is one common model for 

facilitating “unsupervised learning.”  It requires two DNNs, called an “encoder” and a 

“decoder.”  In this configuration, only x needs to be supplied by the user.  s is a 

“latent” or internal encoding that the DNN generates.  For example, x might represent 

images observed by a robot’s camera, containing thousands or even millions of values.  

The encoder might use convolutional layers, which are known to be effective for 

digesting images [35, 41, 42].  s might be a small vector, perhaps only tens of values.  

By learning to reduce x to s, the autoencoder essentially creates its own internal 

encoding of “state.”  It will not necessarily use an encoding that has meaning for 

humans, but it will be sufficient for the DNN to approximately reconstruct x.  How are 

autoencoders useful in robotics?  Sometimes, the robot designer may not know exactly 

what values are needed by the robot.  Autoencoders enable the system to figure that out 

autonomously.  This becomes especially useful when a hybrid of supervised and 

unsupervised learning is used.  For example, the user can impose certain values in s 
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(perhaps, positional coordinates or joint angles) and the DNNs will learn to work with 

those values, using the other free elements in s for its own encoding purposes.  

Autoencoders may also be used to initialize some parts of Structure C [22].  Generative 

models are closely related to autoencoders.  They utilize just the decoder portion of the 

model to predict observations from an internal representation of state.

Structure C is a type of “recurrent neural network,” which is designed to model 

dynamic systems, including robots.  It is often trained with an approach called 

“backpropagation through time” [43, 44].  Many advances, such as “long short-term 

memory units,” have made recurrent neural networks much stronger [27, 45].  In this 

configuration, u represents a control signal.  u may also contain recent observations.  s

is an internal representation of future state, and x is a vector of anticipated future 

observations.  The transition function approximates how the control signal will affect 

state over time.  Just as with autoencoders, the representation of state can be entirely 

latent, or partially imposed by the user.  (If it were entirely imposed, the model would 

be prevented from learning.)  If x includes an estimate of the utility of state s, then this 

configuration is used in “model-based reinforcement learning” [46].

Structure D learns a control policy.  It can facilitate “model-free” reinforcement 

learning.  It uses a DNN to evaluate the utility or quality, q, of potential control vectors.

s is a representation of state, and u is a control vector.  (Gradient methods can find the 

values for u that maximize q.  In cases with discrete control vectors, u may be omitted 

from the input-end and q augmented to contain an evaluation of each control vector.)  

Configurations like this are used when an objective task is known for the robot to 

perform, but the user does not know exactly how to achieve it.  By rewarding the robot 

for accomplishing the task, it can be trained to learn how to prioritize its own choices 
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for actions.  As one prominent example, reinforcement learning was used to teach a 

machine to play a wide range of Atari video games [47].

Figure 1.  Diagram of some common structures for using neural networks with robots. 

A: Function approximating models are trained to approximate the mappings represented

in a training set of pair-wise examples. B: Autoencoders can reduce complex or high-

dimensional observations to a simple feature representation, often extracting intrinsic 

information from images. C: Recurrent models specialize in dynamics and temporal 

predictions. D: Policy models trained with reinforcement learning seek to plan the best 

decisions to make under possible future conditions.

2.3 Convolutional layers

Each of the various types of deep learning models are made by stacking multiple layers 

of regression models.  Within these models, different types of layers have evolved for 

various purposes.  One type of layer that warrants particular mention is convolutional 

layers [48].  Unlike traditional fully connected layers, convolutional layers use the same

weights to operate all across the input space.  This significantly reduces the total 

number of weights in the neural network, which is especially important with images that

typically have hundreds of thousands to millions of pixels that must be processed.  
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Processing such images with fully connected layers would require more than (100K)2 to 

(1M)2 weights connecting each layer, which would be completely impractical.  

Convolutional layers were inspired by cortical neurons in the visual cortex, which 

respond only to stimuli with a receptive field.  Since convolution approximates this 

behavior, convolutional layers may be expected to excel at image processing tasks.

The pioneering works in neural networks with convolutional layers (CNNs) 

applied them to the task of image recognition [48, 49].  Many subsequent efforts built 

on these, but widespread interest in convolutional layers surged around 2012, when 

Krizhevsky used them to dominate in the ImageNet image recognition competition [41],

and they were able to achieve super-human recognition on other notable image 

recognition benchmarks and competitions [27, 34, 35].  A flurry of research quickly 

followed seeking to establish deeper models with improved image processing 

capabilities [50, 51].

Now, CNNs have become well established as a highly effective deep learning 

model for a diversity of image-based applications.  These applications include semantic 

image segmentation [52], object localization within images [53], scaling up images with

super resolution [54], facial recognition [55, 56], scene recognition [57], and human 

gesture recognition [58].  Images are not the only type of signal for which CNNs excel.  

Their capabilities are also effective with any type of signal that exhibits spatio-temporal 

proximity, such as speech recognition [59], and speech and audio synthesis [60].  

Naturally, they have also started to dominate in signal processing domains used heavily 

in robotics, such as pedestrian detection using LIDAR [61] and micro-Doppler 

signatures [62], and depth-map estimation [63].  Recent works are even starting to 

combine signals from multiple modalities and combine them together for unified 

recognition and understanding [64].
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2.4 High level trajectory of deep learning with robotics

Ultimately, the underlying philosophy that prevails in the deep learning community is 

that every part of a complex system can be made to “learn.”  Thus, the real power of 

deep learning does not come from using just one of the structures described in the 

previous section as a component in a robotics system, but in connecting parts of all of 

these structures together to form a full system that learns throughout.  This is where the 

“deep” in deep learning begins to make its impact – when each part of a system is 

capable of learning, the system as a whole can adapt in sophisticated ways.

Neuroscientists are even starting to recognize that many of the patterns evolving 

within the deep learning community and throughout artificial intelligence are starting to 

mirror some of those that have previously evolved in the brain [65, 66].  Doya identified

that supervised learning methods (Structures A and C) mirror the function of the 

cerebellum, unsupervised methods (Structure B) learn in a manner comparable to that of

the cerebral cortex, and reinforcement learning is analogous with the basal ganglia [67]. 

Thus, the current trajectory of advancement strongly suggests that control of robots is 

leading toward full cognitive architectures that divide coordination tasks in a manner 

increasingly analogous with the brain [68-70].

3.  Deep learning in robotics

The robotics community has identified numerous goal for robotics in the next 5 to 20 

years.  These include, but certainly are not limited to, human-like walking and running, 

teaching by demonstration, mobile navigation in pedestrian environments, collaborative 

automation, automated bin/shelf picking, automated combat recovery, and automated 

aircraft inspection and maintenance, and robotic disaster mitigation and recovery [71-

75].  This paper identifies seven general challenges for robotics that are critical for 
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reaching these goals and for which DNN technology has high potential for impact:  

 

Challenge 1:  Learning complex, high-dimensional, and novel dynamics.  Analytic 

derivation of complex dynamics requires human experts, is time consuming, and poses a

trade-off between state dimensionality and tractability.  Making such models robust to 

uncertainty is difficult, and full state information is often unknown.  Systems that can 

quickly and autonomously adapt to novel dynamics are needed to solve problems such 

as grasping new objects, traveling over surfaces with unknown or uncertain properties, 

managing interactions between a new tool and/or environment, or adapting to 

degradation and/or failure of robot subsystems.  Also needed are methods to accomplish

this for systems that possess hundreds (or even thousands) of degrees of freedom, 

exhibit high levels of uncertainty, and for which only partial state information is 

available.

Challenge 2:  Learning control policies in dynamic environments.  As with dynamics, 

control systems that accommodate high degrees of freedom for applications such as 

multi-arm mobile manipulators, anthropomorphic hands, and swarm robotics are 

needed.  Such systems will be called upon to function reliably and safely in 

environments with high uncertainty and limited state information.

Challenge 3:  Advanced manipulation.  Despite advances achieved over 3 decades of 

active research, robust and general solutions for tasks such as grasping deformable 

and/or complex geometries, using tools, and actuating systems in the environment (turn 

a valve handle, open a door, and so forth) remain elusive – especially in novel 

situations.  This challenge includes kinematic, kinetic, and grasp planning inherent in 

tasks such as these.
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Challenge 4:  Advanced object recognition.  DNNs have already proven to be highly 

adept at recognizing and classifying objects [27, 34, 35].  Advanced application 

examples include recognizing deformable objects and estimating their state and pose for

grasping, semantic task and path specification (e.g., go around the table, to the car, and 

open the trunk), and recognizing the properties of objects and surfaces such as sharp 

objects that could pose a danger to human collaborators or wet/slippery floors.

Challenge 5:  Interpreting and anticipating human actions.  This challenge is critical if 

robots are to work with or amongst people in applications such as collaborative robotics

for manufacturing, eldercare, autonomous vehicles operating on public thoroughfares, 

or navigating pedestrian environments.  It will enable teaching by demonstration, which 

will in turn facilitate task specification by individuals without expertise in robotics or 

programming.  This challenge may also be extended to perceiving human needs and 

anticipating when robotic intervention is appropriate.

Challenge 6:  Sensor fusion & dimensionality reduction.  The proliferation of low-cost 

sensing technologies has been a boon for robotics, providing a plethora of potentially 

rich, high-dimensional, and multimodal data.  This challenge refers to methods for 

constructing meaningful and useful representations of state from such data.

Challenge 7:  High-level task planning.  Robots will need to reliably execute high-level 

commands that fuse the previous six challenges to achieve a new level of utility, 

especially if they are to benefit the general public.  For example, the command “get the 

milk” must autonomously generate the lower-level tasks of navigating to/from the 

refrigerator, opening/closing the door, identifying the proper container (milk containers 

may take many forms), and securely grasping the container.

Loosely speaking, these challenges form a sort of “basis set” for the goals 

mentioned above.  For example, human-like walking and running will rely heavily on 
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Challenges 1 (learning dynamics) and 2 (learning control policies), while teaching by 

demonstration will require advances in Challenges 4 (object recognition), 5 (interpreting

human action), and 6 (sensor fusion).

Table 1 categorizes recent robotics research that utilizes DNN technology 

according to these challenges, as well as the DNN structures discussed in the previous 

section.  From this several observations are made: First is that Structure A is clearly the 

most popular DNN architecture in the recent robotics literature.  This is likely explained

by its intuitive nature, essentially learning to approximate the same function presented 

to it in the form of training samples.  It also requires the least amount of domain 

knowledge in DNNs to implement.  Robotics challenges, however, are not limited to the

sort of classification and/or regression problems to which this structure is best suited.  

Additional focus on applying Structures B, C, and D to robotics problems may very 

well catalyse significant advancement in many of the identified challenges.  One of the 

purposes of this paper is to emphasize the potential of the other structures to the robotics

community.  

Somewhat related is the fact that some cells in Table 1 are empty.  In the 

authors’ opinion, this is due to a lack of research focus rather than any inherent 

incompatibilities between challenges and structures.  In particular, the ability of 

Structure B to learn compact representations of state would be particularly useful for 

estimating the pose, state, and properties of objects (Challenge 4) and the state of human

collaborators (Challenge 5).

Table 1.  An overview of how DNN structures are used in the recent literature to address

the seven challenges.

DNN Structure
A B C D

Challenge 1
  (Dynamics)

[76, 78, 81, 85,
115, 127]

 [87, 112, 113,
115

[115, 122] [125, 126]

Challenge 2 [85,115,] [112] [122] [125,128]
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  (Control)
Challenge 3
  (Manipulation)

[79, 82-85, 123] [112] [123] [128]

Challenge 4
  (Object rec.)

[79-81, 88, 123] [123] [128]

Challenge 5
  (Human actions)

[77, 79, 123, 127] [123]

Challenge 6
  (Sensor fusion)

[77, 81, 83, 84,
86, 88]

[87, 116, 117] [114] [116, 117]

Challenge 7
  (high-level planning)

[128]

Table 1 also indicates limited application of DNNs to high-level task planning 

(Challenge 7).  One of the barriers to the application of DNNs is quantifying the quality 

of such decisions.  Standard benchmarks for decision quality are needed.  Once this is 

addressed, DNNs may very well be able to be the tool that allows roboticists to make 

progress on this very significant challenge.

The balance of this section is categorized by DNN structure and is organized as 

follows: 1) a discussion of the structure’s role in robotics, 2) examples from the recent 

literature of how the structure is being applied in robotics, and 3) practical 

recommendations for applying the structure in robotics.

3.1 Classifiers and discriminative models (Structure A) in robotics

3.1.1 The role of Structure A in robotics

Structure A involves using a deep learning model to approximate a function from 

sample input-output pairs.  This may be the most general-purpose deep learning 

structure, since there are many different functions in robotics that researchers and 

practitioners may want to approximate from sample observations.  Some examples 

include mapping from actions to corresponding changes in state, mapping from changes

in state to the actions that would cause it, or mapping from forces to motions.  Whereas 

in some cases physical equations for these functions may already be known, there are 

many other cases where the environment is just too complex for these equations to yield
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acceptable accuracy.  In such situations, learning to approximate the function from 

sample observations may yield significantly better accuracy.

The functions that are approximated need not be continuous.  Function 

approximating models also excel at classification tasks, such as determining what type 

of object lies before the robot, which grasping approach or general planning strategy is 

best suited for current conditions, or what is the state of a certain complex object with 

which the robot is interacting.

The next section reviews some of the many applications for classifiers, 

regression models, and discriminative models that have appeared in the recent literature 

with robotics.

3.1.2 Examples in recent research

Punjani and Abbeel [76] used a function approximating deep learning architecture with 

rectifiers to model the highly coupled dynamics of a radio-controlled helicopter, which 

is a challenging analytic derivation and difficult system identification problem.  

Training data was obtained as a human expert flew the helicopter through various 

aerobatic maneuvers, and the DNN outperformed three state-of-the-art methods for 

obtaining helicopter dynamics by about 60%.

Neverova et al. [77] modeled how the time between a driver’s head movement 

and the occurrence of a maneuver varies with vehicle speed.  The resulting system made

predictions every 0.8 seconds based on the preceding 5 seconds of data and anticipated 

maneuvers about 3.5 seconds before they occurred, with 90.5% accuracy.

A great many works have used function approximating models in the domains of

(1) detection and perception, (2) grasping and object manipulation, and (3) scene 
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understanding and sensor fusion.  The following three subsections describe recent works

in each of these domains.

Detection and Perception.  DNNs have surged ahead of other models in the 

domains of detection and perception.  They are especially attractive models because 

they are capable of operating directly on high-dimensional input data instead of 

requiring feature vectors that are hand-engineered at design time by experts in machine 

learning and the particular application [1].  This reduces dependence on human experts, 

and the additional training time may be partially offset by reducing initial engineering 

effort.

Mariolis, Peleka, and Kargakos [78] studied object and pose recognition for 

garments hanging from a single point, as if picked by a robotic gripper.  Training 

occurred on pants, shirts, and towels with various size, shape, and material properties, 

both flat and hanging from various grasp points.  On a test set of six objects different 

from those used in training, the authors achieved 100% recognition and were able to 

predict grasp point on the garment with a mean error of 5.3 cm.  These results were 

more accurate and faster than support vector machines.  Yang, Li, and Fermüller [79] 

trained a DNN to recognize 48 common kitchen objects and classify human grasps on 

them from 88 YouTube cooking videos.  Notably, the videos were not created with 

training robots in mind, exhibiting significant variation in background and scenery.  

Power and precision grasps, and subclasses of each were classified.  The system 

achieved 79% object recognition accuracy and 91% grasp classification accuracy.  Chen

et al. [80] identified the existence and pose of doors with a convolutional neural 

network and passed this information to a navigation algorithm for a mobile robot.  They 

suggest that navigating by such visual information can be superior to map-building 

methods in dynamic environments.  Gao, Hendricks, Kuchenbecker, and Darrell [81] 
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integrated both vison- and contact-based perception to classify objects with haptic 

adjectives (smooth, compliant, etc.).  If a robot could predict such information before or 

quickly after making contact with the objects, it can take appropriate actions such as 

adjusting its grip on fragile objects or avoiding slippery surfaces.  As with the other 

research studies in this paper, their method did not require manual design of feature 

vectors from domain-specific knowledge.

Grasping and object manipulation.  Yu, Weng, Liang, and Xie [82] used a deep 

convolutional neural network to recognize five known objects resting on a flat surface 

and categorize their orientation into discretized categories.  The study focused on 

recognition and pose estimation, so grasp planning was limited to positioning a parallel 

gripper at the object’s center and aligned with the estimated angle.  Grasping success 

rates exceeded 90%.  Lenz, Lee, and Saxena [83] used deep learning to detect optimal 

grasps for objects from RGB-D (color + depth) images.  The network evaluates 

numerous potential grasps for the object and identifies the one with the highest potential

for success without any prior knowledge of object geometry.  Trials on Baxter and PR2 

robots resulted in successful grasps 84% and 89% of the time, respectively, compared to

31% for a state-of-the art reference algorithm.  Rather than evaluating a set of potential 

grasps, Redmon and Angelova [84] trained a convolutional neural network to detect an 

acceptable grasp directly from RGB-D data in one pass.  They achieved 88% accuracy 

and claim real-time performance, arriving at a solution in under 100 milliseconds.

Levine, Pastor, Krizhevsky, and Quillen [85] trained a convolutional neural 

network to evaluate the potential of a particular robot motion for successfully grasping 

common office objects from image data, and used a second network to provide 

continuous feedback through the grasping process.  Inspired by hand-eye coordination 

in humans, the system was robust to object movement and uncertainty in gripper 

17



mechanics.  While this research may seem similar to visual servoing at first glance, it 

differs in that no hand-designed feature vectors were required for perception, and 

transfer functions for closed-loop control were not modeled analytically.

Scene understanding and sensor fusion.  Extracting meaning from video or still 

scenes is another application where deep learning has made impressive progress.  

Neverova, Wolf, Taylor, and Nebout [77] report on their first-place winning entry in the 

2014 ChaLearn Looking at People Challenge (http://gesture.chalearn.org), which 

challenges entrants to recognize 20 different Italian conversational gestures from 13,858

separate RGB-D videos of different people performing those gestures.  Ouyang and 

Wang [86] simultaneously addressed four independent aspects of pedestrian detection 

with a single DNN: feature extraction, articulation and motion handling, occlusion 

handling, and classification.  They argue that their unified system avoids suboptimal 

interactions between these usually separate systems.  The integrated network was 

trained on over 60,000 samples from two publically available datasets.  Compared to 18 

other approaches in the published literature, the authors’ system outperforms on both 

data sets by as much as 9%.  Wu, Yildirim, Lim, Freeman, and Tenenbaum [87] 

attempted to predict the physical outcome of dynamic scenes by vision alone, based on 

the premise that humans can often predict the outcome of a dynamic scene from visual 

information – for example, a block sliding down a ramp and impacting another block.  

They use both simulations from a physics engine and physical trials for training.

Deep learning has also been found to be effective at handling multimodal data 

generated in robotic sensing applications.  Previously mentioned examples include 

integrating vision and haptic sensor data [81] and incorporating both depth data and 

image information from RGB-D camera data [77, 83].  Additionally, Schmitz et al. [88] 

studied tactile object recognition with a TWENDY-ONE multi-finger hand, which 
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provides a multimodal set of 312 values from distributed skin sensors, fingertip forces, 

joint torques, actuator currents, and joint angles.  The system was trained on a set of 

twenty objects – some deliberately similar and some vastly different – handed to the 

robot in various poses.  The investigators achieved an 88% recognition rate, as 

compared to the 68% using other methods in the literature.

3.1.3 Practical recommendations for working with Structure A

Due to their large numbers of meta-parameters, DNNs have developed somewhat of a 

reputation for being difficult for non-experts to use effectively.  However, these 

parameters also provide significant flexibility, which is a major factor in their overall 

success.  Therefore, training DNNs requires the user to develop at least a basic level of 

familiarity with several concepts.  This section summarizes some of the most important 

concepts involved in training function approximating DNNs.  In particular, applying 

these techniques will help to address Challenge 4 (advanced object recognition), and to 

a lesser extent all of the other challenges as well.

Although recent trends lean toward deeper and bigger models, a simple neural 

network with just one hidden layer and a standard sigmoid-shaped activation function 

will train much faster, and will provide a useful baseline to give meaning to any 

improvements from the use of deeper models.  When deeper models are used, Leaky 

Rectifiers tend to promote faster training by diminishing the effects of the vanishing 

gradient problem [41, 89], and improve accuracy through having a simpler monotonic 

derivative [91, 91].

Since models with more weights have more flexibility to overfit to the training 

data, regularization is important role for training the best model.  Elastic net combines 

the well-established L1 and L2 regularization methods to promote robustness against 
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weight saturation and also promote sparsity in the weights [92].  Newer regularization 

methods, including drop-out [93] and drop-connect [94] have achieved even better 

empirical results.  Several regularization methods also exist specifically to improve 

robustness with autoencoders [95, 96].

Special-purpose layers can also make a significant difference with DNNs.  It is a

common practice to alternate between convolutional and max pooling layers.  The 

pooling layers reduce the overall number of weights in the network and also enable the 

model to learn to recognize objects independent of where they occur in the visual field 

[97].  Batch normalization layers can yield significant improvements in the rate of 

convergence by keeping the gradient in a range where it will affect the weights of all 

neurons [98].  And, residual layers can enable much deeper, and consequently more 

flexible, models to be trained [99].  

To make effective use of deep learning models, it is important to train on one or 

more General Purpose Graphical Processing Units (GPGPUs) [17].  Many other ways of

parallelizing deep neural networks have been attempted, but none of them yet yield the 

performance gains of GPGPUs [27].  Since DNNs require the use of so many 

specialized techniques, leveraging an existing toolkit that provides ready-made 

implementations is an imperative.  Fortunately, the deep learning community has been 

very helpful in releasing open source implementations of new developments, so many 

well-refined open source deep learning toolkits are now available:

Tensorflow has recently surged in popularity [100].  Theano is a Python-based 

platform that provides General Purpose Graphical Processing Unit (GPGPU)-

parallelization for deep learning [101].  Several popular toolkits build on top of Theano, 

including as Lasagne and Pylearn2 [102].  Keras is a wrapper around Tensorflow and 

Theano that seeks to simplify the interfaces for deep learning [103].  Torch offers a 
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Matlab-like environment written in Lua for deep learning, with particular emphasis on 

convolutional neural networks [104].  In C++, Caffe is one of the more popular toolkits 

for high-performance convolutional neural networks [105].  It also provides Python 

bindings.  Other C++ toolkits with GPU support are available [106, 107].  Some other 

toolkits with deep learning support include GroundHog, Theanets [100], Kaldi [109], 

and CURRENNT [110].  Kustikova gives a survey of many deep learning toolkits for 

image recognition [111].  Toolkits that employ other parallelization methods, besides 

GPGPUs, include Hadoop, Mahout, Spark, DeepLearning4j, and Scala.

3.2 Generative and Unsupervised models (Structure B) in robotics

3.2.1 The role of Structure B in robotics

One of the characteristic capabilities that make humans so proficient at operating in the 

real world is their ability to understand what they perceive.  A similar capability is 

offered in autoencoders, a type of deep learning model that both encodes observations 

into an internal representation, then decodes it back to the original observation.  These 

models digest high-dimensional data and produce compact, low-dimensional internal 

representations that succinctly describe the meaning in the original observations [3].  

Thus, auto-encoders are used primarily in cases where high-dimensional observations 

are available, but the user wants a low-dimensional representation of state.

Generative models are closely related.  They utilize only the decoding portion of

an autoencoder, and are useful for predicting observations.  Inference methods may be 

used with generative models to estimate internal representations of state without 

requiring an encoder to be trained at all.  In many ways, generative models may be 

considered to be the opposite of classifiers, or discriminative models, because they map 
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from a succinct representation to a full high-dimensional set of values similar to those 

that might typically be observed.

3.2.2 Examples in recent research

Finn et al. [112] trained a deep spatial auto-encoder on visual features to extract 

meaning from the observations and ultimately to achieve visuomotor control.  The 

autoencoder learned how robot actions affected the configuration of objects in the work 

envelope, and this model was used in a closed-loop controller.  Tasks included pushing a

block, spooning material into a bowl, scooping with a spatula, and hanging a loop of 

rope on a hook.

Wu et al. [87] used a generative model to anticipate outcomes from physics 

simulations.  Watter, Springenberg, Bodecker, and Reidmiller [113] also applied a 

generative model to model the nonlinear dynamics of simple physical systems and 

control them.  Noda, Arie, Suga, and Ogata [114] developed a novel deep learning 

solution involving both unsupervised methods and recurrent models for integrating 

multi-modal sensorimotor data, including RGB images, sound data, and joint angles.

Another example of Structure B was demonstrated by Polydoros, Nalpantidis, 

and Kruger in modeling the inverse dynamics of a manipulator [115].  The network was 

trained using state variables recorded while operating under standard closed-loop 

control.  A “fading memory” feature allowed the DNN to adapt as dynamics changed 

with payload and mechanical wear.  Analytic dynamic models have difficulty coping 

with such changes, and are difficult to derive for highly compliant serial-elastic 

manipulators such as the new class of collaborative robots.  The authors report that their

system outperforms the state-of-the-art in real-time learning evaluations and converges 

quickly, even with noisy sensor data.
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Günther, Pilarski, Helfrich, Shen, and Diepold [116, 117] designed a DNN to 

automatically create meaningful feature vectors.  The network was able to extract low-

dimensional features from high-dimensional camera images of welds in a laser welding 

process.  These features were subsequently used with other machine learning and 

control strategies to close the loop on the welding process.

3.2.3 Practical recommendations for working with Structure B

Autoencoders and other unsupervised DNN techniques are particularly well suited for 

addressing challenges pertaining to high-dimensional observations (1 and 6).  They both

reduce dimensionality and extract meaningful representations of state, which is the first 

step in effective sensor fusion.

Convolutional layers are well known to be effective for digesting images.  Since 

images are common with robots, autoencoders that use convolutional layers in their 

encoding portion tend to be especially effective for estimating state from images [118].  

For the decoding portion of the autoencoder, convolutional layers offer little advantage. 

A somewhat less-known technique involves training the decoder to predict only a single

pixel and parameterizing the decoder to enable the user to specify which pixel it should 

predict [119].  This approach has many analogies with convolution, and experimentally 

seems to lead to much faster training times.

Regularization is particularly important for achieving good results with 

autoencoders, and specialized regularization methods have been designed particularly 

for autoencoders [120].  However, some experiments have shown that instead of heavily

regularizing the encoder, it may even work better to entirely omit the encoder, and just 

use a standalone decoder [119].  In this configuration, the internal representation of state

is inferred in a latent manner by using gradient descent until the internal representation 
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converges with the decoder.  Nonlinear dimensionality reduction methods have also 

been shown to be effective for pretraining such latent representations [119].

3.3 Recurrent models (Structure C) in robotics

3.3.1 The role of Structure C in robotics

Recurrent models excel at learning to anticipate complex dynamics.  The recurrent 

connections in such models give them a form of “memory” that they can use to 

remember the current state.  This knowledge of state enables them to model the effects 

of time in a changing environment.

3.3.2 Examples in recent research

Jain et al. [121] trained a recurrent architecture to predict traffic maneuvers in a human-

driven automobile in an effort to improve current collision avoidance systems which 

often do not intervene in time to avoid an accident.  Multimodal data inputs included 

video of the driver, video of the road in front of the car, dynamic state of the vehicle, 

GPS coordinates, and street maps of the area around the car.  

Several researchers have used recurrent networks to deduce system dynamics 

directly from full observations.  Lenz, Knepper, and Saxena [122] modeled robotic food

cutting with a knife.  This includes difficult-to-model effects such as friction, 

deformation, and hysteresis.  Food-knife surface contact changes through the cut, and so

do the material properties of the food, as when passing between the peel and the center 

of a fruit.  Data obtained while operating under fixed-trajectory stiffness control was 

used to train the DNN on the system dynamics, and the resulting model was used to 

implement a model predictive control algorithm (a variation of Structure D).  Their 

system outperformed fixed-trajectory stiffness control, increasing mean cutting rate 

from 1.5 cm/s to 5.1 cm/s.
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Hwang et al. [123] demonstrated gesture recognition with a recurrent model, and

coordinated it with attention switching, object perception, and grasping.  The robot 

focused on a human collaborator, who gestured to one of two objects.  The robot then 

switched its focus to the indicated object, recognized the object, and found an 

acceptable grasp.  Their system achieved a successful grasp 85% of the time when 

simulated on an iCub humanoid robot.

3.3.3 Practical recommendations for working with Structure C

Recurrent models are well suited for addressing challenges pertaining to the 

complexities of temporal effects (Challenges 1, 5, and 7).  This section describes some 

recommendations for working effectively with recurrent models.

Unfortunately, recurrent models have a somewhat negative reputation for being 

difficult to train.  One of the biggest problems is that training them with gradient 

methods requires unfolding through time, which effectively makes them behave as 

networks that are much deeper than they already are.  Given so much depth, the training

gradients tend to become vanishingly small [10, 11].  This problem was largely solved 

by the error-carousel idea in LSTM networks [124], so it would be helpful to become 

familiar with that solution before attempting to work with recurrent models.

When observations are very high dimensional, such as occurs when digital 

images are used with robots, a much simpler solution becomes possible.  This solution 

is to simply infer the intrinsic state from the images.  If the state can be inferred 

accurately, then the recurrent essentially goes away, making it possible to train the 

structure with example pairs presented in arbitrary order, just like Structure A [22].  

Even if the internal state can only be inferred with a small degree of accuracy, this still 
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provides useful pre-training, which may significantly reduce the necessary training time 

with a recurrent model [119].

3.4 Policy learning models (Structure D) in robotics

3.4.1 The role of Structure D in robotics

Learning a near optimal (or at least a reasonably acceptable) control policy is often the 

primary objective in combining machine learning with robotics.  The canonical model 

for using deep neural networks for learning a control policy is deep Q-learning [47].  It 

uses a DNN to model a table of Q-values, which are trained to converge to a 

representation of the values for performing each possible action in any state.  Although 

Structure D is quite similar to Structure A in terms of the model itself, they are trained 

in significantly different ways.  Instead of minimizing prediction error against a training

set of samples, deep Q-networks seek to maximize long-term reward.  This is done 

through seeking a balance between exploration and exploitation that ultimately leads to 

an effective policy model.

Ultimately, reinforcement learning models are useful for learning to operate 

dynamic systems from partial state information, and controllers based on deep 

reinforcement learning can be very computationally efficient at runtime [125].  They 

automatically infer priorities based on rewards that are obtained during training.  In 

theory, they provide a complete control policy learning system, but they do suffer from 

extremely slow training times.  Consequently, many of the works in the next section 

combine them with other approaches in order to seek greater levels of control accuracy 

and training speed.

26



3.4.2 Examples in recent research

Zhang, Kahn, and Levine [125] learned a control policy to implement a model 

predictive control guided search for autonomous aerial vehicles.  Reducing 

computational load in mobile robotics translates into power savings that increase range 

and/or improve performance.  Without the need for full state information, fewer onboard

sensors are required, further reducing power consumption, cost, and weight.

Deep reinforcement learning has also been used to control dynamic systems 

from video, without direct access to state information.  Lillicrap, Hunt, and Pritzel [126]

trained a deep reinforcement learner based on pixel data over 20 simulated dynamic 

systems and developed a motion planning system that performed as well or better than 

algorithms that take advantage of the full state of the dynamic system.

Finn, Levine, and Abbeel [127] used video of human experts performing various

tasks to train a DNN to learn nonlinear cost functions (with Structure A).  Once these 

cost functions were learned, they could be used to train a reinforcement learner 

(Structure D) for motion planning.  They demonstrated the ability to complete tasks that

involved complex 2nd-order dynamics and hard-to-model interactions between a 

manipulator and various objects, including 2D navigation, reaching, peg insertion, 

placing a dish, and pouring.  

Visuomotor control requires an even closer integration between object 

perception and grasping, mapping image data directly to actuator control signals.  

Levine, Finn, Darrell, and Abbeel [128] used reinforcement learning (Structure D) to 

show that this can be superior to separate systems for perception and control.  Test 

applications included shape sorting, screwing a cap onto a bottle, fitting a hammer claw 

to a nail, and placing a coat hanger on a rack.  The resulting system could perform the 

tasks reliably, even with moderate visual distractors.
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As mentioned earlier, Günther, Pilarski, Helfrich, Shen, and Diepold [116, 117] 

combined autoencoders with reinforcement learning models to control a laser welding 

system from camera images.

3.4.3 Practical recommendations for working with Structure D

Policy learning models are ultimately the solution to addressing Challenges 2 (learning 

control policies in dynamic environments) and 7 (high-level task planning).  Perhaps, 

the biggest difficulty when working with reinforcement learning models, however, is the

huge amount of computation time necessary to train them.  Although such models are 

highly efficient after training, they tend to require significantly more training pattern 

presentations before they converge to represent reliable control policies.  Taking care to 

find an efficient GPU-optimized implementation, therefore, can make a big difference.  

Another important technique is to train in simulation before attempting to train with an 

actual robot.  This reduces wear on physical equipment, as well reduces training time.  

Even if only a crude simulation is available, a model that has been pre-trained on a 

similar challenge will converge much more quickly to fit the real challenge than one 

that was trained from scratch.

Since robots often operate in a space with continuous actions, traditional Q-

learning is not directly applicable.  Actor-critic models, however, address this problem 

nicely.  They regress actions in conjunction with the continuous Q-table, and lead to a 

final model that directly computes the best action given the current observation, which 

is well suited for robotics applications [129].

Another important consideration is the exploration policy.  The traditional 

epsilon-greedy exploration policy leads to much higher computational training 
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requirements than modern approaches [130, 131].  It is, therefore, advantageous to train 

Structure D in an approach that intelligently explores novel states.

4.  Current Shortcomings of DNNs for Robotics

For all of its benefits, deep learning does pose some drawbacks.  Perhaps most 

significant is the volume of training data required, which is particularly problematic in 

robotics because generating training data on physical systems can be expensive and time

consuming.  For instance, Levine et al. [85] used 14 robots to collect over 800,000 grasp

attempts over a period of 2 months.  Jain et al. [121] trained their traffic maneuver 

prediction system on 1180 miles of high- and low-speed driving with 10 different 

drivers.  Punjani and Abbeel [76] required repeated demonstrations of helicopter 

aerobatic maneuvers by a human expert.  Neverova et al. [77] had access to over 13,000

videos of conversations, and Ouyang and Wang [86] had access to 60,000 samples for 

pedestrian detection.  Pinto and Gupta [132] needed 700 hours of robot time to generate 

a data set of 50,000 grasps for the training of a convolutional neural network.

Despite this, the literature does contain clever approaches to mitigating this 

disadvantage.  One approach entails using simulation to generate virtual training data.  

For example, Mariolis et al. 78] pre-trained their garment pose recognition networks on 

a large synthetic data set created in simulation using 3D graphics software.  Kappler, 

Bohg, and Schaal [133] generated a database of over 300,000 grasps on over 700 

objects in simulation, generating physics-based grasp quality metrics for each and using 

this to classify grasp stability automatically.  They validated via human classification of 

grasps and concluded that the computer- and human-generated labeling had good 

correlation.  Another strategy is leveraging training data through digital manipulation.  

Neverova et al. [77] faced the challenge that speed of conversational gestures varies 
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significantly among different people.  They varied video playback speed to simulate this

temporal variance, expanding their training set without the need to acquire additional 

samples.  Still other researchers utilizing reinforcement learning, such as Polydoros et 

al. [115] and Zhang et al. [125], automated training using alternative control systems 

during the learning phase.

Training time is another challenge associated with the sheer size of DNNs.  

Typical models involve up to millions of parameters and can take days to train on 

parallel hardware, which is practical only for frequently repeated tasks that provide 

adequate payback on training time invested.  One way to reduce training time is 

distributing a task among multiple, smaller DNNs.  Mariolis et al. [78] trained two 

DNNs: One performed object classification, and its result was passed to a second 

network for pose recognition.  This multi-step approach sped both training and 

classification at runtime.  Lenz et al. [122] employed a two-stage network design for 

grasp detection.  The first DNN had relatively few parameters.  Sacrificing accuracy for 

speed, it eliminated highly unlikely grasps.  The second stage had more parameters, 

making it more accurate, but was relatively quick since it did not need to consider 

unlikely grasps.  They found the combination to be robust and computationally efficient.

It should be noted, however, that this strategy represents a tradeoff with other 

researchers’ suggestions that integrating multiple functions within a single network 

results in better performance [86, 128].

The work of Zhang et al. [125] highlights two additional challenges.  First, 

unsupervised learning is not practical for robotic systems where a single failure is 

catastrophic, as in aerial vehicles.  Second, providing the necessary computational 

resources for deep learning in a system that is sensitive to weight, power consumption, 

and cost is often not practical.  The authors trained their aerial systems using a ground-
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based control system communicating wirelessly with the vehicle.  This made training 

safe and automatic, and allowed them to use off-board computing resources for training.

5.  Conclusion

Deep learning has shown promise in significant sensing, cognition, and action 

problems, and even the potential to combine these normally separate functions into a 

single system.  DNNs can operate on raw sensor data and deduce key features in that 

data without human assistance, potentially greatly reducing up-front engineering time.  

They are also adept at fusing high-dimensional, multimodal data.  Improvement with 

experience has been demonstrated, facilitating adaptation in the dynamic, unstructured 

environments in which robots operate.

Some remaining barriers to the adoption of deep learning in robotics include the 

necessity for large training data and long training times.  Generating training data on 

physical systems can be relatively time consuming and expensive.  One promising trend

is crowdsourcing training data via cloud robotics [134].  It is not even necessary that 

this data be from other robots, as shown by Yang’s use of general-purpose cooking 

videos for object and grasp recognition [79].  Regarding training time, local parallel 

processing [17] and increases in raw processing speed have led to significant 

improvements.  Distributed computing offers the potential to direct more computing 

resources to a given problem [88] but can be limited by communication speeds [2].  

There may also be algorithmic ways of making the training process more efficient yet to

be discovered.  For example, deep learning researchers are actively working on 

directing the network’s attention to the most relevant subspaces within the data and 

applying biologically inspired, sparse DNNs with fewer synaptic connections to train 

[27].
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Ultimately, the trends are moving toward greater levels of cognition, and some 

researchers even believe that deep learning may achieve human-level abilities in the 

near future [1, 134].  However, deep learning still has many obstacles to overcome 

before achieving such an ambitious objective.  Currently, cognitive training datasets do 

not even exist [134].  Although DNNs excel at 2D image recognition, they are known to

be highly susceptible to adversarial samples [135], and they still struggle to model 3D 

spatial layouts with object invariance [65].  Currently, DNNs appear to be powerful 

tools for practitioners in robotics, but only time will tell whether they can really deliver 

the capabilities that are needed for dexterous adaptation in general environments.
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