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Quantum error detection has always been a fundamental challenge in a fault-tolerant quantum
computer. Hence, it is of immense importance to detect and deal with arbitrary errors to efficiently
perform quantum computation. Several error detection codes have been proposed and realized
for lower number of qubit systems. Here we present an error detection code for a (2n + 1)-qubit
entangled state using two syndrome qubits and simulate it on IBM’s 16-qubit quantum computer
for a 13-qubit entangled system. The code is able to detect an arbitrary quantum error in any one
of the first 2n qubits of the (2n+ 1)-qubit entangled state and detects any bit-flip error on the last
qubit of the (2n+ 1)-qubit entangled state via measurements on a pair of ancillary error syndrome
qubits. The protocol presented here paves the way for designing error detection codes for the general
higher number of entangled qubit systems.

I. INTRODUCTION

Quantum errors are the inevitable obstacles for real-
izing a fault-tolerant quantum computer [1–3]. Quan-
tum systems show much more pronounced noise effects on
them through quantum errors. While classical comput-
ers are only affected by bit-flip errors, quantum comput-
ers exhibit mainly three types of errors such as bit-flip,
phase-flip and arbitrary phase-change error [4, 5]. Thus
fault tolerant quantum computation projects a daunt-
ing task to accomplish. In order to run quantum algo-
rithms with large time complexity, improvement needs to
be done using quantum error correction protocols [6, 7]
and fault tolerant schemes [8, 9]. Several experiments
have already been performed to demonstrate the use-
fulness of quantum error correcting codes to protect a
quantum memory [10]. To implement an error correction
code, detection of error is needed, hence becoming an
important part of error correction scheme. Several error
detection as well as correction codes have been proposed
[11–18]. The pioneering work on error detection as well
as correction had been started by Shor [19] and Steane
[20–22]. Since then quantum error detection and error
correction have been a subject of intense study.

Recently, Corcoles et al. [23] proposed a quantum er-
ror detection code for one of the Bell states using two
ancillary syndrome qubits and demonstrated it experi-
mentally using a square lattice structure of four super-
conducting qubits. In the proposed error detection code,
they used a two-by-two lattice structure i.e., the square
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lattice of superconducting qubits. They verify the non-
demolition nature of the protocol by demonstrating the
preservation of entangled state through high fidelity syn-
drome measurements in the presence of an arbitrary ap-
plied error. The surface code (SC) [24, 25] has emerged
as a promising candidate for quantum computers based
on superconducting qubits due to its nearest-neighbour
qubit interaction and high fault-tolerant error thresholds
[8]. In recent times, superconducting qubits have become
potential candidates for the realization of SC [26, 27]
with continuous improvement in coherence times [28–30]
and quantum errors [31]. A highly efficient new quantum
computer has been developed by IBM which uses super-
conducting transmon based qubits for computing. IBM
quantum computer has become a completely new candi-
date for the implementation of SC. Qubits of the IBM
quantum computers are placed at the vertices of a two
dimensional array. A large number of works have been
performed by researchers using IBM quantum computers.

Recently Debjit et al. [5] experimentally realized an
error correction code for Bell state and GHZ state on IBM
5-qubit quantum computer and generalized it to n-qubit
case. IBM quantum experience from its inception has
gained a lot of popularity in the research community since
the cloud based access provided by IBM has been used
to accomplish various tasks [32–52]. Thus testing and
implementing error detection codes using IBM quantum
computers opens up new horizons of research. It has
been shown that error detection is very useful on IBM
5Q chips [53]. Error detection and correction remains a
challenging problem for arbitrary entangled states with
large number of qubits. Although several error detection
codes have made good amount of progress in the pursuit,
still much progress needs to be made.

We take the study a step forward and propose an error
detecting code for a (2n + 1)-qubit entangled state pre-
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pared from a 2n-qubit entangled state possessing a kind
of “complementarity” property which will be explained
in detail in Section II. Simply, an entangled state has
the complementarity property if for every term appear-
ing in the state there is another term in the state com-
plementary to it, where the complementary state is ob-
tained by a modular sum with 1 to each of the qubit. For
example |11101〉 is the complementary state to |00010〉.
The entangled states with this complementarity prop-
erty are general and cover the maximally entangled state
Bell states and all the generalized GHZ states. The pro-
posed protocol is useful as it can be used to detect errors
in generalized GHZ states with even number of qubits
and all Bell states which are used in many quantum al-
gorithms as quantum teleportation [54], quantum cryp-
tography [55], quantum key distribution [56], quantum
secret sharing [57], superdense coding [58] etc.

In our protocol, we first take any 2n-qubit entangled
state with complementarity property and add another
qubit to the state using CNOT operations as the result
of which we get a (2n+ 1)-qubit entangled state depend-
ing on the terms in the state of the 2n-qubit state taken.
We then add two error syndrome qubits to the state pre-
pared above in a way such that they remain in a product
state. Then measurement is performed on the syndrome
qubits and depending on the result of the measurement,
we conclude the type of error present in the (2n + 1)-
qubit entangled state. Our protocol detects any arbitrary
single-qubit phase-change error or bit-flip or phase-flip
error on any of the 2n qubits and detects only bit-flip
error in the last qubit of the (2n + 1)-qubit state. To
demonstrate the usefulness of the protocol, we perform
a simulation with a 13-qubit entangled state on the IBM
16-qubit quantum computer and compare the results for
various types of errors. We implement the errors on the
qubits using different gates provided by IBM quantum
experience. We design the quantum circuit using QASM
language and simulate it using QISKit.

II. RESULTS

Our circuit consists of a entangled state of (2n + 1)
number of qubits and two syndrome qubits. We
first prepare a 2n qubit entangled state of a spe-
cial form as outlined here. Let An be the set of
computational basis states for 2n qubits, that is,
An = {|a1a2 . . . a2n〉 ; ai = 0, 1 ∀ i = 1, 2, . . . 2n , n ∈ N}
of state vectors, where the first number in the ket
represents the first qubit, the second number represents
the second qubit and so on. Let Bn be a nonempty
subset of An with the property that if |a1a2 . . . a2n〉 ∈ Bn
then |(a1 ⊕ 1)(a2 ⊕ 1) . . . (a2n ⊕ 1)〉 ∈ Bn, where ⊕ is
addition modulo 2. For brevity, we call the ket
|(a1 ⊕ 1)(a2 ⊕ 1) . . . (a2n ⊕ 1)〉 complementary to
|a1a2 . . . a2n〉 ∈ Bn and the set Bn a set with “compli-

Measurement result Type of error

|00〉 No error
|10〉 Bit-flip in any one qubit.
|01〉 Phase-flip in any one qubit.
|11〉 Bit-flip and phase-flip in any one qubit.

TABLE I. Measurement results of syndrome qubits
and type of errors

mentarity property”. Now consider the sum

|ψ〉Bn
=

1√
|Bn|

∑
|a1a2...a2n〉∈Bn

± |a1a2 . . . a2n〉 (1)

where |Bn| is the cardinality of the set Bn. We call
such states as states with “complementarity property”.
We will prove later that |ψ〉Bn

is entangled when Bn is
a proper subset of An (Theorem III.1). For example one
state of the above form with 4 qubits could be |ψ〉 =
1√
6

(
|0000〉+ |1111〉+ |1010〉+ |0101〉+ |0111〉+ |1000〉

)
.

Note that An trivially has the complementarity property.
So in case An = Bn, there are special states called “graph
states” which are also entangled (see Section III for de-
tails). We then add another qubit to this 2n qubit state
by CNOTs as shown in Fig. 1. The resultant state is
still entangled (see Theorem III.2 for proof) depending
on the terms in the sum. If the (2n+1)th qubit does not
get entangled to starting 2n-qubit entangled state then
the detection of error in the 2n-qubit entangled state is
trivially done by the circuit. Thus, the protocol detects
any quantum error in Bell states and generalized GHZ
states as one of the special cases. After the preparation
of (2n + 1)-qubit entangled state, two syndrome qubits
are added in the circuit as shown in the Fig. 1. Then
measurement is done on the error syndrome qubits to
detect errors. The above Table I summarizes the results
of measurement and the type of error (for a detailed dis-
cussion on measurement results, Methods section can be
checked).

The circuit presented here detects any quantum error
present in any single qubit from qubit 1 to qubit 2n and
detects any bit-flip error in (2n+ 1)th qubit.

A. Implementation of the error detection protocol.

We demonstrate the quantum error detection protocol
by simulating the circuit in Fig. 1 for a 13-qubit
entangled state prepared using a 12-qubit graph state
and adding another qubit using CNOT operations on
the ibmqx5 quantum computer (see Section III for
details). We apply single-qubit rotations to first qubit
in the 13-qubit entangled state with the form ε = Rθ
where R defines the rotation axis and θ is the angle of
rotation. We choose to apply the error on the first qubit
but errors can also be introduced in any of the 12 qubits
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|0〉1 ε

|0〉2

|0〉3 |ψ〉

|0〉2n−2

|0〉2n−1

|0〉2n

|0〉2n+1

|0〉 ↗

|0〉 H H ↗

FIG. 1. Quantum circuit for quantum error detection in a (2n + 1)-qubit entangled state. The blue box
generates 2n-qubit entangled state. The red box contains the additional qubit to be added to the 2n-qubit entangled
state. The smaller yellow box depicts the circuit used to entangle an additional qubit to the 2n-qubit entangled state
to prepare a (2n + 1)-qubit entangled state. The orange box contains two syndrome qubits to be used to detect
quantum errors in the (2n + 1)-qubit entangled state. The larger yellow box depicts the circuit used to add the
syndrome qubits to the (2n+ 1)-qubit entangled state for error detection. The green box contains two measurement
operations to be made on the two syndrome qubits. The error ε is introduced in qubit 1 and detected from the results
of the measurement on the two syndrome qubits. The circuit works equally well for any arbitrary error introduced in
any single qubit from 1 to 2n and bit-flip error in qubit 2n+ 1.

with the exception of 13th qubit where only bit-flip
error can be detected. In the first case, we introduce no
error i.e., we apply ε = R0 on the first qubit. In this
case, both the syndrome qubits are measured to be in
their ground state |0〉. Next, for bit-flip error we apply
ε = Xπ on the first qubit. In this case, the first error
syndrome qubit gets excited to |1〉. In case of phase-flip
error, ε = Zπ is applied on the first qubit and the first
and the second ancillary syndrome qubit is measured to
be in |0〉 and |1〉 state respectively. The measurement
results remain the same irrespective of the 12 qubits on
which the error is applied. In case of a bit-flip error on
the 13th qubit, the measurement result remains same
i.e., |10〉 where it is understood that the first number in
the ket represents the first qubit and the second number
represents the second qubit. Thus the simulation result
confirms Table I.

B. Detecting arbitrary errors

Apart from single qubit bit-flip, phase-flip and both,
the circuit in Fig. 1 also detects any arbitrary single
qubit errors. The circuit presented here detects any ar-
bitrary error in any single qubit from qubit 1 to qubit
2n. The measurement result of the syndrome qubits can
be tracked as θ is varied slowly between −π and π in an
applied error ε = Yθ. In a 8192 shots simulation of the
circuit in Fig. 2, the probability of different errors is plot-
ted as a function of θ. The probability of different types
of errors is compared (see Fig. 3 and 4) for arbitrary er-
rors ε = Xθ and ε = Zθ varying the values of θ between
−π and π. To demonstrate arbitrary error detection, the
error ε is constructed via combinations of X and Y rota-
tions. A set of eight arbitrary error used in the simulation
are {Yπ/3, Xπ/3, Xπ/3Yπ/3, Xπ/3Y2π/3, X2π/3Yπ/3,
X2π/3Y2π/3, R,H} where R is Yπ/2Xπ/2 and H is the
Hadamard operation. These errors are introduced in the
first qubit of the 13-qubit entangled state and the prob-
abilities of different types of errors is compared on a his-
togram for each of the eight errors (see Fig. 5 - 12).
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FIG. 2. Probability of different types of errors for different Y-error magnitudes. Probability of different types of
errors is extracted from the simulation results of the 13-qubit entangled state with ε = Yθ applied to first qubit (see Section III)
for different values of θ with θ ∈ [−π , π]. Here {0,+}, {1,+}, {0,−} and {1,−} represent the two qubit states |00〉 , |10〉 , |01〉 and
|11〉 respectively, where |+〉 = 1√

2

(
|0〉+ |1〉

)
and |−〉 = 1√

2

(
|0〉− |1〉

)
. |+〉 , |−〉 are the states of the second ancillary syndrome

qubit before the Hadamard operation in the circuit of Fig. 2 in the bit-flip and phase-flip cases respectively. The blue line
represents probability of no-error, the green line represents the probability of bit-flip as well as phase-flip error while the orange
and yellow line represents probability of bit-flip and phase-flip errors respectively. We observe non vanishing error probability
for both bit-flip and phase-flip errors as Yθ can be decomposed as combination of bit-flip and phase-flip errors. Probability of
no error shows a cosine dependence on θ which is expected since the matrix for Yθ is given as Yθ = cos (θ/2)I − i sin (θ/2)σy
where I is 2× 2 identity and σy is the Pauli y matrix.
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FIG. 3. Probability of different kinds of errors for arbitrary errors Xθ. Here {0,+}, {1,+}, {0,−} and {1,−}
represent the two qubit states |00〉 , |10〉 , |01〉 and |11〉 respectively, where |+〉 = 1√

2

(
|0〉+|1〉

)
and |−〉 = 1√

2

(
|0〉−|1〉

)
.

|+〉 , |−〉 are the states of the second syndrome qubit before the Hadamard operation in the circuit of Fig. 2 in the
bit-flip and phase-flip cases respectively. The blue line represents probability of no-error, the green line represents the
probability of bit-flip as well as phase-flip error while the orange and yellow line represents probability of bit-flip and
phase-flip errors respectively. In this figure, non vanishing probability for bit-flip error and no-error is observed. This
is because Xθ can be decomposed as Xθ = cos (θ/2)I − i sin (θ/2)σx where σx is the Pauli x matrix. The identity
matrix in the decomposition is accounted for no-error and the Pauli x matrix introduced bit-flip error.
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FIG. 4. Probability of different kinds of errors for arbitrary errors Zθ. Here {0,+}, {1,+}, {0,−} and {1,−}
represent the two qubit states |00〉 , |10〉 , |01〉 and |11〉 respectively, where |+〉 = 1√

2

(
|0〉+|1〉

)
and |−〉 = 1√

2

(
|0〉−|1〉

)
.

|+〉 , |−〉 are the states of the second syndrome qubit before the Hadamard operation in the circuit of Fig. 2 in the
bit-flip and phase-flip cases respectively. The blue line represents probability of no-error, the green line represents the
probability of bit-flip as well as phase-flip error while the orange and yellow line represents probability of bit-flip and
phase-flip errors respectively. In this figure, non vanishing probability for phase-flip error and no-error is observed
since again Zθ can be decomposed as Zθ = cos (θ/2)I − i sin (θ/2)σz where σz is the Pauli z matrix. The identity
matrix in the decomposition is accounted for no-error and the Pauli y matrix introduced phase-flip error.

III. METHODS

A. Initial entangled state

In this subsection, we discuss the states with compli-
mentarity property. We first show that the 2n-qubit state
of Eq. (1) is entangled when Bn is a nonempty proper
subset of An with the complimentarity property.

Theorem III.1. Let Bn be a nonempty proper subset
of An with the complimentarity property. Then the state
given by Eq. (1) is entangled.

Proof. It suffices to prove that there exists a
|a1a2 . . . ai . . . a2n〉 ∈ Bn such that |a1a2 . . . (ai ⊕
1) . . . a2n〉 6∈ Bn for all 1 ≤ i ≤ 2n. We prove this by
contradiction. Suppose there is no element in Bn with
the above property, then we prove that An = Bn which is
a contradiction. Let |b1b2 . . . bi . . . b2n〉 ∈ An be an arbi-
trary element. By complementarity property of |ψ〉Bn , it
is clear that a basis vector of the form |b1c2 . . . c2n〉 ∈ Bn.
Let 2 ≤ i ≤ 2n be the smallest integer such that ci 6= bi.
Then by assumption there is a basis vector of the
form |b1b2 . . . bi−1(ci ⊕ 1)ci+1 . . . c2n〉 ∈ Bn. Again let
i+ 1 ≤ j ≤ 2n be the smallest integer such that cj 6= bj .
Arguing as above, we see that a basis vector of the form
|b1b2 . . . bi−1bibi+1 . . . bj−1(cj⊕1) . . . c2n〉 ∈ Bn. Proceed-
ing in this way, we see that |b1b2 . . . bi . . . b2n〉 ∈ Bn ⊂ An.
This implies that An = Bn and we are done.

We now discuss graph states which form examples of
states with complimentarity property when Bn = An.
To each undirected graph G = G(V,E) with V the set of
vertices and E the set of edges, we associate an V -qubit
quantum state defined as follows:

|ψ〉G =
1

2|V |/2
∏

(a,b)∈E
Uab |+〉⊗|V | ,

where Uab is the controlled-Z gate acting on qubits a and
b which correspond to the vertices a and b connected by
the edge (a, b) and

|+〉 =
1√
2

(|0〉+ |1〉).

It is clear that |ψ〉G is a superposition of all the 2|V |

basis vectors and hence it trivially has the complemen-
tarity property. These states can be prepared using the
following steps [63]:

1. Initialize the state to |+〉⊗|V | by applying |V |
Hadamard gates to |0〉⊗|V |.

2. For every (a, b) ∈ E, apply a control-Z gate on
qubits a and b; the order can be arbitrary.

It is a nontrivial result that for any general undirected
graph G, |ψ〉G is an entangled state [64]. The particular
graph state that we use to simulate our error-detection
protocol is a 12-qubit graph state corresponding to the
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12 vertex ring graph. The circuit to prepare this state is
shown in the blue box in Fig. 13 and is taken from [63].

Theorem III.2. The state obtained after adding another
qubit |0〉2n+1 to the state in Eq. (1) using the circuit in
Fig. 1 (blue, smaller yellow and red box) is entangled if
and only if there exists a basis vector in the sum of Eq.
(1) with odd number of 1s in it and another basis vector
with even number of 1s in it.

Proof. First suppose that the sum in Eq. 1 has a basis
vector with odd number of 1s and another basis vector
with even number of 1s. Denote by Bodd

n ⊂ Bn be the set
of basis vectors with odd number of 1s and Beven

n ⊂ Bn
be the set of basis vectors with even number of 1s. Then
we can write the state |ψ〉Bn

as

|ψ〉Bn
=

1√
|Bn|

 ∑
x∈Bodd

n

±|x〉+
∑

y∈Beven
n

±|y〉

 .
It is easy to see that after all the CNOT operations on
|0〉 in the circuit in Fig. 1, it remains |0〉 with the terms
containing even number of 1s and becomes |1〉 with the
terms containing odd number of 1s. Thus the new (2n+
1)-qubit state has the form

|ψ〉2n+1 =
1√
|Bn|

 ∑
x∈Bodd

n

±|x〉|1〉+
∑

y∈Beven
n

±|y〉|0〉

 .
Thus the state obtained after adding |0〉 cannot be fac-
tored. Thus the entangled state in Eq. 1 remains entan-
gled after addition of the qubit |0〉. Conversely, suppose
that the sum in Eq. 1 contains only basis vectors with
odd or even number of 1s in it but not both. After all
the CNOT operations on |0〉 as shown in the smaller yel-
low and red box in Fig. 1, it remains |0〉 for the case
when only terms with even number of 1s are there in the
sum and the new (2n+ 1)-qubit state is |ψ〉Bn

|0〉 which
is not entangled. Similarly, when only terms with odd
number of terms are there in the sum of Eq. (1), the new
(2n + 1)-qubit state is |ψ〉Bn

|1〉 which is again not en-
tangled. Thus we have proved the contrapositive of the
converse part of the theorem.

B. Analysis of the Protocol

Here, we verify the measurement results listed in Table
I. Consider a 2n-qubit state given in Eq. (1). We split
the analysis into two cases :

1. The 2n-qubit state contains terms with only
odd or even number of 1s : Arguing as in the
proof of the converse part of Theorem III.2, the
(2n+ 1)-qubit state |ψ〉2n+1 has the form

|ψ〉2n+1 = |ψ〉Bn
|0〉 or |ψ〉Bn

|1〉

depending on whether the terms in |ψ〉Bn
has even

or odd number of 1s. But now it can be easily seen
that every term in |ψ〉2n+1 contains even number
of 1s in both the cases. It can be observed easily
from the circuit that the first syndrome qubit al-
ways remains in the state |0〉 and hence the state
with first syndrome qubit has the form

|ψ〉2n+2 = |ψ〉Bn
|0〉 |0〉s1 or |ψ〉Bn

|1〉 |0〉s1 ,

where s1 denotes the first syndrome qubit. The
second syndrome qubit s2 acts as the control in the
CNOT operation applied on the first 2n-qubits as
shown in Fig. 1. After the first Hadamard opera-
tion on s2, the |0〉 in |+〉 leaves the first 2n-qubits
unchanged while the |1〉 changes each term in |ψ〉Bn

state to its complementary term. Thus we see that
after the second Hadamard operation on s2 and
just before measurement on the syndrome qubits,
the final 2n+ 3 qubit state has the form

|ψ〉2n+3 = |ψ〉Bn
|0〉 |0〉s1 |0〉s2 or

|ψ〉2n+3 = |ψ〉Bn
|1〉 |0〉s1 |0〉s2 ,

• No error: When we introduce no error in any
of the qubits, the measurement result gives
|00〉 as is evident from the form of |ψ〉2n+3.

• Bit-flip error: If we introduce a bit-flip error
in any one of the 2n+1 qubits, then each term
in |ψ〉2n+1 has odd number of 1s and thus after
the CNOT operation on s1 as shown in Fig.
1, it changes to |1〉. Also the second syndrome
qubit remains intact since bit-flip does not de-
stroy the complementarity property of |ψ〉Bn

.
The 2n+ 3 qubit state before is then given by

|ψ〉2n+3 = |ψ〉εBn
|0〉 |1〉s1 |0〉s2 or

|ψ〉2n+3 = |ψ〉εBn
|1〉 |1〉s1 |0〉s2 ,

where |ψ〉εBn
is the state |ψ〉Bn

with error.
Hence, the measurement result turns out to
be |10〉.

• Phase-flip error : Now, suppose we in-
troduce a phase-flip error in the ith qubit,
1 ≤ i ≤ 2n. Observe that we can write |ψ〉Bn

as

|ψ〉Bn
= |ψ〉2n−1 |0〉i + |ψ〉c2n−1 |1〉i ,

where |ψ〉2n−1 is some 2n− 1 qubit state and
|ψ〉2n−1 is the same state with its terms being
the complimentary of the terms of |ψ〉2n−1.
After the phase-flip error is introduced, the
state becomes

|ψ〉εBn
= |ψ〉2n−1 |0〉i − |ψ〉

c
2n−1 |1〉i .

Since this error does not destroy the compli-
mentarity property, we see that the 2n + 2
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qubit state is given by

|ψ〉2n+2 = (|ψ〉2n−1 |0〉i − |ψ〉
c
2n−1 |1〉i) |0〉 |0〉s1

or

|ψ〉2n+2 = (|ψ〉2n−1 |0〉i − |ψ〉
c
2n−1 |1〉i) |1〉 |0〉s1 .

Finally s2 acts as control for the CNOT oper-
ations on the first 2n qubits as shown in the
circuit in Fig. 1. The state just before the last
Hadamard gate is then given by

|ψ〉2n+3 =
(|ψ〉2n−1 |0〉i − |ψ〉

c
2n−1 |1〉i) |0〉 |0〉s1 |0〉s2√

2

+
(|ψ〉c2n−1 |1〉i − |ψ〉2n−1 |0〉i) |1〉 |0〉s1 |1〉s2√

2

= (|ψ〉2n−1 |0〉i − |ψ〉
c
2n−1 |1〉i) |0〉 |0〉s1 |−〉s2 .

Hence, it is clear that the measurement result
will be |01〉.

• Bit-flip and Phase-flip error With simi-
lar analysis, it is easy to see that if both the
errors are introduced in one of the 2n-qubits
then the two syndrome qubits have the state
|1〉s1 and |−〉s2 respectively just before the last
Hadamard operation and thus the measure-
ment result is |11〉.

2. The 2n-qubit state contains a ket with odd
number of 1s and another ket with even
number of 1s : In this case the state obtained
after addition of |0〉 to the 2n-qubit state is entan-
gled and every term in this (2n+1)-qubit entangled
state contains even number of 1s. Thus following
the same analysis as done in the above case gives
us the same result.

It is interesting to note that all the maximally entangled
Bell states and GHZ state with even number of qubits fall
under the first case. Thus using the protocol, any single-
qubit phase-change error or phase-flip or bit-flip error can
be detected. A limitation of the protocol is that phase-
flip error on the (2n + 1)th-qubit could not be detected.
To understand this we first write our (2n+1)-qubit state
as

|ψ〉 = |ψ1〉 |0〉+ |ψ2〉 |1〉 (2)

where the normalization constant is absorbed in |ψ1〉
and |ψ1〉 which are 2n-qubit states. An easy observa-
tion shows that |ψ1〉 and |ψ2〉 have the complementarity
property independently. Now a phase-flip error in the
last qubit changes the above state to

|ψ〉 = |ψ1〉 |0〉 − |ψ2〉 |1〉
After applying all the CNOT operations given in the
circuit in Fig. 1, we note that from both the terms in
Eq. (2), the two syndrome qubits factor out as |0〉 and
1√
2
(|0〉 + |1〉) leaving the state in Eq. (2) unchanged.

Thus the protocol fails to detect a phase-flip error in the
(2n+ 1)th-qubit.

C. Simulation of the protocol on the 16-qubit IBM
quantum computer.

We simulate the protocol for a 13-qubit entangled state
on 16-qubit ibmqx5 IBM quantum computer. ibmqx5 is a
16-qubit quantum processor made up of superconducting
qubits based on transmon qubits [60].

A web-based quantum circuit construction is provided
by IBM for Q5 which is run by simulation or real exper-
iment. To compose quantum circuits, QASM language
is needed. These circuits can then be run via simulation
or real experiment using QISKit Python SDK [61, 62].
In our simulation, we first prepare a 12-qubit entangled
state with the complementarity property. For this, we
use the quantum circuit proposed by Yuanhao et al. [63].
Then we entangle another qubit with this 12-qubit entan-
gled state using the CNOT operations as shown in Fig.
13. We write the QISKit code for our circuit and then
run the simulation with 8192 shots and record the num-
ber of times each result in the measurement of the two
error syndrome qubits occur. Using those numbers, we
calculate the probability of each kind of error (For data
see Supplementary Information). Bit-flip and phase-flip
errors are introduced using X gate and U1 gate respec-
tively. Both bit-flip and phase-flip error simultaneously
are introduced by applying X gate and U1 gate simulta-
neously. Arbitrary phase change and axis rotation errors
are introduced using U3 gate. For example, the error
Yθ is introduced by the operation U3(θ, 0, 0) whereas the
errors Xθ and Zθ are introduced using U3(θ, π/2,−π/2)
and U1(θ) respectively. The recorded probabilities are
then compared for different kinds of errors (details in
Sec. II).

IV. COMPARATIVE ANALYSIS OF THE
ERROR DETECTION CODE

In this section, we compare and contrast our proposed
protocol of error detection with the existing error detec-
tion codes. We prominantly compare the computational
cost of our protocol with the results of Corcoles et. al.
[23] and Linke et. al. [12]. From the analysis in previ-
ous section, we conclude that the code is able to detect
an arbitrary quantum error in any one of the first 2n
qubits of the (2n + 1)-qubit entangled state and detects
any bit-flip error on the last qubit of the (2n + 1)-qubit
entangled state via measurements on a pair of ancillary
error syndrome qubits. Thus we only need two ancillary
qubits and are able to detect errors in all of the qubits of
the state. To compare this with the code of Corcoles et.
al., we emphasize that their code requires two ancillary
qubits and can detect error only on two qubit entangled
state. On the other hand, the code proposed by Linke et.
al. detects errors in a four qubit state using one ancillary
qubit but with two qubits acting as stabilizers. Hence,
we see that our code is far more computationally superior
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FIG. 5. Detection of arbitrary errors. The probability for each kind of error, no-error (Id), bit-flip (X), phase-flip (Y ) and
both bit-flip and phase-flip (Z = XY ) is extracted from the measurement results of the syndrome qubits for the applied error
ε = Yπ/3. We observe non zero probability for no error and bit-flip and phase-flip error simultaneously. This is because Yπ/3

can be decomposed as Yπ/3 =
√
3
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FIG. 6. Detection of arbitrary errors. The probability for each kind of error, no-error (Id), bit-flip (X), phase-flip (Y ) and
both bit-flip and phase-flip (Z = XY ) is extracted from the measurement results of the syndrome qubits for the applied error

ε = Xπ/3. We observe non zero probability for no-error and bit-flip error because Xπ/3 can be decomposed as Xπ/3 =
√
3

2
I− i

2
σx.

than the existing codes.

V. DISCUSSION

We have provided an error detection code for a (2n+1)-
qubit entangled system, with a general form which en-
compasses many important entangled states such as max-
imally entangled Bell states and generalized GHZ states,
and simulated its usefulness on IBM Q16 quantum com-

puter. As an immediate consequence of the protocol we
notice that any arbitrary single qubit phase change er-
ror or bit-flip and phase-flip error in GHZ states with
even number of qubits can be detected using the code.
We explicitly checked our code for a 13-qubit entangled
state and concluded that the code works well and detects
any arbitrary single qubit phase-change error or bit-flip
or phase-flip error in any of the first 12 qubits and de-
tects any bit-flip error on the 13th qubit. In conclusion,
we have provided an error detection code which can be
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FIG. 7. Detection of arbitrary errors. The probability for each kind of error, no-error (Id), bit-flip (X), phase-flip (Y ) and
both bit-flip and phase-flip (Z = XY ) is extracted from the measurement results of the syndrome qubits for the applied error
ε = Xπ/3Yπ/3. We observe non-zero probability for all types of error with different amplitudes as Xθ induces bit-flip error and
Yθ induces both bit-flip and phase-flip simultaneously.
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FIG. 8. Detection of arbitrary errors. The probability for each kind of error, no-error (Id), bit-flip (X), phase-flip (Y ) and
both bit-flip and phase-flip (Z = XY ) is extracted from the measurement results of the syndrome qubits for the applied error
ε = Xπ/3Y2π/3. We observe non-zero probability for all types of error with different amplitudes as Xθ induces bit-flip error and
Yθ induces both bit-flip and phase-flip simultaneously.

helpful in manipulating quantum algorithm. This code
can be used by different research groups to generate error
detection codes for their quantum chips. In future, the
work can be extended to the code generalizing all kinds
of entangled states although the entangled state we used
is quite general.

DATA AVAILABILITY

Data are available to any reader upon reasonable re-
quest.
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FIG. 9. Detection of arbitrary errors. For applied error ε = X2π/3Yπ/3, we observe non zero probability for each type of
error due to reasons mentioned in Fig. 7 and Fig. 8.
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FIG. 10. Detection of arbitrary errors. For applied error ε = X2π/3Y2π/3, we observe non zero probability for each type of
error due to reasons mentioned in Fig. 7 and Fig. 8.
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FIG. 11. Detection of arbitrary errors. For applied error ε = R, correspond to a Xπ/2Yπ/2 operation, which maps the
x− y − z axes in the Block sphere to y − z − x, we observe almost equal probability for each type of error.
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FIG. 12. Detection of arbitrary errors. For applied error ε = H which correspond to the Hadamard operation, we observe
equal probability for bit-flip and phase-flip error.
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FIG. 13. Circuit for simulation of error detection protocol in IBM Q16 quantum computer. In the circuit, the
first 12 qubits in box A are the 12-qubit entangled state with complementarity property. The 13th qubit is added to generate
a 13-qubit entangled state. Qubits in box A is the initial state on which the error will be detected. The two qubits in box C
represent the two syndrome qubits. Box B depicts the connection of syndrome qubit with the initial entangled state. The box
with ε is the error to be introduced in the entangled state. The last box (green) represents the measurement operations on the
syndrome qubits.
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VI. SUPPLEMENTARY INFORMATION:
DEMONSTRATION OF A GENERAL

FAULT-TOLERANT QUANTUM ERROR
DETECTION CODE FOR (2n+ 1)-QUBIT
ENTANGLED STATE ON IBM 16-QUBIT

QUANTUM COMPUTER

For simulating the error detection protocol, we used
QISKit to take both simulation results. The QASM code
for the same is as follows:

1 # Import the QISKit SDK
2 from q i s k i t import QuantumCircuit ,

C l a s s i c a l R e g i s t e r , QuantumRegister
3 from q i s k i t import ava i l ab l e backends , execute
4 QX TOKEN=”9 e333de2e3732e2f9b354939a8ea4336c2
5 0 c87403c930a944ed3fd28112a40a594ca0a4165a9f0
6 1878 c8aacdf97af6b42f237048b836a8f8277bfd7d3b
7 3b4663”
8 QX URL = ” https : // quantumexperience . ng . bluemix .

net / api ”
9 q = QuantumRegister (15)

10 c = C l a s s i c a l R e g i s t e r (15)
11

12 qc = QuantumCircuit (q , c )
13 from math import p i
14

15 # We are f i r s t prepare our entangled s t a t e
16

17 qc . h( q [ 0 ] )
18 qc . h( q [ 2 ] )
19 qc . h( q [ 3 ] )
20 qc . h( q [ 6 ] )
21 qc . h( q [ 8 ] )
22 qc . h( q [ 9 ] )
23 qc . cx ( q [ 2 ] , q [ 1 ] )
24 qc . cx ( q [ 3 ] , q [ 4 ] )
25 qc . cx ( q [ 6 ] , q [ 5 ] )
26 qc . cx ( q [ 8 ] , q [ 7 ] )
27 qc . cx ( q [ 9 ] , q [ 1 0 ] )
28 qc . cx ( q [ 0 ] , q [ 1 1 ] )
29

30 qc . h( q [ 2 ] )
31 qc . h( q [ 5 ] )
32 qc . h( q [ 8 ] )
33 qc . h( q [ 1 0 ] )

34

35 qc . cx ( q [ 0 ] , q [ 1 ] )
36 qc . cx ( q [ 3 ] , q [ 2 ] )
37 qc . cx ( q [ 5 ] , q [ 4 ] )
38 qc . cx ( q [ 6 ] , q [ 7 ] )
39 qc . cx ( q [ 9 ] , q [ 8 ] )
40 qc . cx ( q [ 1 0 ] , q [ 1 1 ] )
41 qc . h( q [ 1 ] )
42 qc . h( q [ 2 ] )
43 qc . h( q [ 4 ] )
44 qc . h( q [ 7 ] )
45 qc . h( q [ 8 ] )
46 qc . h( q [ 1 1 ] )
47

48 # Addit ion o f another qubit to make 13 qubit
entang led s t a t e

49

50 qc . cx ( q [ 0 ] , q [ 1 2 ] )
51 qc . cx ( q [ 1 ] , q [ 1 2 ] )
52 qc . cx ( q [ 2 ] , q [ 1 2 ] )
53 qc . cx ( q [ 3 ] , q [ 1 2 ] )
54 qc . cx ( q [ 4 ] , q [ 1 2 ] )
55 qc . cx ( q [ 5 ] , q [ 1 2 ] )
56 qc . cx ( q [ 6 ] , q [ 1 2 ] )
57 qc . cx ( q [ 7 ] , q [ 1 2 ] )
58 qc . cx ( q [ 8 ] , q [ 1 2 ] )
59 qc . cx ( q [ 9 ] , q [ 1 2 ] )
60 qc . cx ( q [ 1 0 ] , q [ 1 2 ] )
61 qc . cx ( q [ 1 1 ] , q [ 1 2 ] )
62

63 # Int roduc t i on o f Error
64

65

66 # Addit ion o f f i r s t a n c i l l a r y e r r o r syndrome
qubit

67

68

69 qc . cx ( q [ 0 ] , q [ 1 3 ] )
70 qc . cx ( q [ 1 ] , q [ 1 3 ] )
71 qc . cx ( q [ 2 ] , q [ 1 3 ] )
72 qc . cx ( q [ 3 ] , q [ 1 3 ] )
73 qc . cx ( q [ 4 ] , q [ 1 3 ] )
74 qc . cx ( q [ 5 ] , q [ 1 3 ] )
75 qc . cx ( q [ 6 ] , q [ 1 3 ] )
76 qc . cx ( q [ 7 ] , q [ 1 3 ] )
77 qc . cx ( q [ 8 ] , q [ 1 3 ] )
78 qc . cx ( q [ 9 ] , q [ 1 3 ] )
79 qc . cx ( q [ 1 0 ] , q [ 1 3 ] )
80 qc . cx ( q [ 1 1 ] , q [ 1 3 ] )
81 qc . cx ( q [ 1 2 ] , q [ 1 3 ] )
82

83 # Addit ion o f second a n c i l l a r y e r r o r syndrome
qubit

84

85 qc . h( q [ 1 4 ] )
86

87 qc . cx ( q [ 1 4 ] , q [ 0 ] )
88 qc . cx ( q [ 1 4 ] , q [ 1 ] )
89 qc . cx ( q [ 1 4 ] , q [ 2 ] )
90 qc . cx ( q [ 1 4 ] , q [ 3 ] )
91 qc . cx ( q [ 1 4 ] , q [ 4 ] )
92 qc . cx ( q [ 1 4 ] , q [ 5 ] )
93 qc . cx ( q [ 1 4 ] , q [ 6 ] )
94 qc . cx ( q [ 1 4 ] , q [ 7 ] )
95 qc . cx ( q [ 1 4 ] , q [ 8 ] )
96 qc . cx ( q [ 1 4 ] , q [ 9 ] )
97 qc . cx ( q [ 1 4 ] , q [ 1 0 ] )
98 qc . cx ( q [ 1 4 ] , q [ 1 1 ] )
99

100 qc . h( q [ 1 4 ] )
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101

102

103

104 qc . measure ( q [ 1 3 ] , c [ 1 3 ] ) ; qc . measure ( q [ 1 4 ] , c
[ 1 4 ] )

105 # See a l i s t o f a v a i l a b l e l o c a l s imu la to r s
106 pr in t ( ” Local backends : ” , ava i l ab l e backends ({ ’

l o c a l ’ : True }) )
107

108 # Compile and run the Quantum c i r c u i t on a
s imula to r backend

109 j ob s im = execute ( qc , ” l o ca l qa sm s imu la to r ” ,
shot s =8192 , max cred i t s =10)

110 s i m r e s u l t = job s im . r e s u l t ( )
111

112 # Show the r e s u l t s

113 pr in t ( ” s imu la t i on : ” , s i m r e s u l t )
114 pr in t ( s i m r e s u l t . g e t count s ( qc ) )

Measurement data

We performed all the simulations on QISKit and
recorded the countings of each of the measurement re-
sult over the two ancillary error syndrome qubit in 8192
shots. From the countings, the probability of each error
i.e. bit-flip error, phase-flip error and arbitrary phase-
change error was extracted. The data is shown in the
table V below.
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Error {0,+} {1,+} {0,−} {1,−}
Yπ/3 0.747 0 0 0.253
Xπ/3 0.75 0.25 0 0

Xπ/3Yπ/3 0.56 0.185 0.066 0.188
Xπ/3Y2π/3 0.18 0.063 0.184 0.574
X2π/3Yπ/3 0.19 0.55 0.195 0.063
X2π/3Y2π/3 0.06 0.19 0.56 0.185
R = Xπ/2Yπ/2 0.25 0.252 0.252 0.245

H 0 0.503 0.497 0

TABLE II. Probability of each type of error. Here {0,+}, {1,+}, {0,−} and {1,−} represent the two qubit states
|00〉 , |10〉 , |01〉 and |11〉 respectively. + is the shorthand for |+〉 = 1√

2

(
|0〉+|1〉

)
and − is the shorthand for |−〉 = 1√

2

(
|0〉−|1〉

)
.

|+〉 , |−〉 are the states of the second ancillary syndrome qubit before the Hadamard operation in the circuit of Fig. 2 in the
bit-flip and phase-flip cases respectively.

θ {0,+} {1,+} {0,−} {1,−}
−π 0 1 0 0

−14π/15 0.012 0.988 0 0
−13π/15 0.045 0.955 0 0
−12π/15 0.092 0.908 0 0
−11π/15 0.1644 0.8356 0 0.
−10π/15 0.25 0.75 0 0
−9π/15 0.35 0.65 0 0
−8π/15 0.45 0.55 0 0
−7π/15 0.55 0.45 0 0
−6π/15 0.65 0.35 0 0
−5π/15 0.752 0.248 0 0
−4π/15 0.843 0.157 0 0
−3π/15 0.905 0.095 0 0
−2π/15 0.952 0.048 0 0
−π/15 0.987 0.013 0 0

0 1 0 0 0
π/15 0.99 0.0091 0 0
2π/15 0.957 0.043 0 0
3π/15 0.906 0.094 0 0
4π/15 0.831 0.17 0 0
5π/15 0.75 0.25 0 0
6π/15 0.658 0.342 0 0
7π/15 0.554 0.446 0 0.
8π/15 0.436 0.563 0 0
9π/15 0.34 0.66 0 0
10π/15 0.25 0.75 0 0
11π/15 0.164 0.836 0 0
12π/15 0.094 0.91 0 0
13π/15 0.044 0.956 0 0
14π/15 0.012 0.988 0 0
π 0 1 0 0

TABLE III. Probability of each type of error for applied error ε = Xθ with varying θ.
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θ {0,+} {1,+} {0,−} {1,−}
−π 0 0 0 1

−14π/15 0.011 0 0 0.99
−13π/15 0.044 0 0 0.956
−12π/15 0.098 0 0 0.902
−11π/15 0.166 0 0 0.834
−10π/15 0.251 0 0 0.75
−9π/15 0.35 0 0 651
−8π/15 0.45 0 0 554
−7π/15 0.56 0 0 0.44
−6π/15 0.66 0 0 0.34
−5π/15 0.75 0 0 0.25
−4π/15 0.84 0 0 0.164
−3π/15 0.905 0 0 0.095
−2π/15 0.957 0 0 0.042
−π/15 0.988 0 0 0.012

0 1 0 0 0
π/15 0.989 0 0 0.011
2π/15 0.957 0 0 0.043
3π/15 0.905 0 0 0.095
4π/15 0.831 0 0 0.17
5π/15 0.751 0 0 0.25
6π/15 0.65 0 0 0.35
7π/15 0.56 0 0 0.44
8π/15 0.45 0 0 0.552
9π/15 0.35 0 0 0.65
10π/15 0.25 0 0 0.75
11π/15 0.168 0 0 0.832
12π/15 0.092 0 0 0.908
13π/15 0.039 0 0 0.96
14π/15 0.012 0 0 0.99
π 0 0 0 1

TABLE IV. Probability of each type of error for applied error ε = Yθ with varying θ.
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θ {0,+} {1,+} {0,−} {1,−}
−π 0 0 1 0

−14π/15 0.011 0 0.988 0
−13π/15 0.044 0 0.956 0
−12π/15 0.096 0 0.904 0
−11π/15 0.163 0 0.837 0
−10π/15 0.25 0 0.75 0
−9π/15 0.35 0 0.65 0
−8π/15 0.45 0 0.55 0
−7π/15 0.55 0 0.45 0
−6π/15 0.65 0 0.35 0
−5π/15 0.75 0 0.25 0
−4π/15 0.83 0 0.17 0
−3π/15 0.91 0 0.09 0
−2π/15 0.96 0 0.04 0
−π/15 0.99 0 0.011 0

0 1 0 0 0
π/15 0.99 0 0.01 0
2π/15 0.96 0 0.043 0
3π/15 0.903 0 0.097 0
4π/15 0.831 0 0.17 0
5π/15 0.76 0 0.24 0
6π/15 0.65 0 0.34 0
7π/15 0.55 0 0.45 0
8π/15 0.44 0 0.56 0
9π/15 0.35 0 0.65 0
10π/15 0.25 0 0.75 0
11π/15 0.17 0 0.83 0
12π/15 0.099 0 0.9 0
13π/15 0.04 0 0.96 0
14π/15 0.011 0 0.989 0
π 0 0 1 0

TABLE V. Probability of each type of error for applied error ε = Zθ with varying θ.
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