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Abstract: Gait recognition has emerged as an attractive biometric technology for the identification of people by analysing the
way they walk. However, one of the main challenges of the technology is to address the effects of inherent various intra-class
variations caused by covariate factors such as clothing, carrying conditions, and view angle that adversely affect the recognition
performance. The main aim of this survey is to provide a comprehensive overview of existing robust gait recognition methods.
This is intended to provide researchers with state of the art approaches in order to help advance the research topic through an
understanding of basic taxonomies, comparisons, and summaries of the state-of-the-art performances on several widely used
gait recognition datasets.

1 Introduction
Recently, a large number of surveillance cameras have been
deployed in public areas and significant research efforts have been
proposed to develop smart systems capable to capture and analyse
visual data in order to extract information relating to suspicious
human behaviour and identity. Gait is one of the most suitable
behavioural biometric modalities for recognising people especially
for video telesurveillance applications [1]. For example, in
monitoring scenarios, subjects are usually captured at a distance
from the cameras, thus making large part of physiological
biometric characteristics not appropriate. The main limitations
relate to the viewing angle variations and occlusions which
inherently result in the difficulty to capture the whole biometric
features. Consequently, physiological traits cannot provide
acceptable performances in practical situations. On the other hand,
gait, as a behavioural biometric modality, includes individual
appearance (i.e. limb and leg length) and dynamic information of
the person's walk. Compared to other physiological biometric
modalities such as speech, gait can be captured at a distance while
still being difficult to imitate or circumvent.

Gait can be defined as the coordinated, cyclic combination of
the movements resulting in human locomotion. The coordination
and the cyclic nature of the motion make a person's gait unique.
Gait recognition can be carried out by extracting some salient
properties relating to the coordinated cyclic motions that result in
human locomotion. Unfortunately, despite the advantages of gait
recognition, it has also some limitations. For examle, it has been
demonstrated that gait recognition performances are drastically
influenced by different covariates (i.e. intra-class variations)
related to the subject itself, such as clothing and carrying

conditions; or related to the environment such as view angle
variations, walking surface, occlusions, shadows, and segmentation
errors [2–4]. Fig. 1 shows an example of intra-class distortions
caused by clothing variations of the same subject recorded at
instants t and t + 1. 

A considerable amount of interesting reviews related to gait
recognition has been proposed [5–11]. However, to the best of our
knowledge, none of these surveys paid a particular attention to
robust gait recognition dealing with intra-class variations caused by
various conditions. This paper aims to give comprehensive survey
of recent works on robust gait recognition. The remaining part of
this paper is organised as follows. Section 2 summarises the main
steps of a gait recognition system. Section 3 explains the model-
based approach. Section 4 presents a model-free approach. Section
5 details robust cloth, view angle, and occlusion gait recognition
approaches. Section 6 focuses on the main available gait
recognition datasets, related state-of-the-art results, and
discussions. Finally, Section 7 concludes the paper.

2 Gait recognition systems
Independently of any adopted approach, a gait recognition system
consists of three main steps: feature extraction, representation, and
classification. While a large variety of features have been proposed
by the research community (and which will be introduced later in
this survey), the feature representation and classification steps will
be discussed in this paper.

2.1 Feature representation

The performance of any recognition system heavily depends on
finding a good and suitable feature representation space. However,
finding such a suitable representation adapted for data
classification is a challenging problem which has taken a huge
interest by the machine learning community. Among the existing
state-of-the-art feature representation techniques, dimensionality
reduction and especially principal component analysis (PCA),
linear discriminant analysis (LDA), as well as their combination
which have shown their efficiency in tackling the gait recognition
problem are widely used.

• Given n d -dimensional samples {xi}i = 1
n  in matrix X ∈ ℝd × n and

a dimensionality choice r < d, PCA is an unsupervised linear
dimensionality reduction technique formulated as the

Fig. 1  Example of intra-class variations caused by clothing variations of
the same subject recorded at instant t and t + 1. Image c is the difference of
a and b
(a) Instant t, (b) Instant t + 1, (c) Intra-class
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minimisation of the residual errors between the original and the
projected data

min
M ∈ ℝd × r

∥ X − MMTX ∥F
2 s . t MTM = I (1)

where ∥ ⋅ ∥F is the Frobenius norm and I is the identity matrix.
The solution M corresponds to the r leading principal
eigenvectors of XXT and we get the projection matrix P = MT.

• LDA is a supervised technique which aims to project the data
into a lower subspace where the data from different classes are
well separated. In other words, the LDA seeks to minimise the
intra-class variations and to maximise the between class
variations

max
M ∈ ℝd × r

tr(MTΣBM)
tr(MTΣWM)

s . t MTM = I (2)

where ΣW and ΣB represent the within and between class scatter,
respectively, and tr stands the matrix trace.

2.2 Classification

It can be seen in the gait recognition literature that nearest-
neighbour (NN) and support vector machine (SVM) have been
widely and successfully used.

• NN achieves good performance, without a priori assumption
about the training data distribution. A new sample is assigned to
the class label of the training sample with the lowest distance.

• Let us define ℋ a Hilbert space induced by the kernel k( . , . ).
The decision function of a binary SVM problem is given by
h(a) = h0(a) + b with h0 ∈ ℋ, b ∈ ℝ and ∥ h ∥ℋ

2 = ∥ h0 ∥ℋ
2

and is obtained as the solution of [12]

min
h0, b

1
2 ∥ h ∥ℋ

2 + Csvm ∑
n = 1

N
ξn

s . t ynh(an) ≥ 1 − ξn, ξn ≥ 0 ∀n = 1, …, N
(3)

where {(an, yn) ∈ A × { − 1, + 1}}n = 1
N  are the labelled training

samples. ξn and Csvm represent slack variables and tuning
parameter. To solve our C-class problem one-against-all strategy
is mainly applied. It consists of constructing C binary SVM,
each one separates a class from all the rest.

3 Model-based gait recognition
In model-based approaches, the feature representatives of a gait are
derived from a known structure or fitted model which mimics the
human skeleton. Consequently, model-based approaches are based
on prior knowledge and often require both a structural and a
motion model to capture both static and dynamic information of
the gait. The structural models describe the body topology of a
person such as stride length, height, hip, torso, and knee. This can
be made up of primitive shapes (cylinders, cones, and blobs), stick
figures, or arbitrary shapes describing the edge of these body-parts.
In the other side, a motion model attempts to describe the dynamics
of the motion of each body-part (see Fig. 2). 

Existing works in model-based approaches can be broadly
divided into two types: those based on the estimation of the body
parameters (length, width, cadence etc.) directly from the raw
videos and those trying to fit a model to capture the evolution of
these parameters over time. In the body parameters estimation
approach, Bobick and Johnson [16] proposed to recover static body
and stride parameters of a subject's body. Tanawongsuwan and
Bobick [17] used the trajectories of joint angles from the body
motion. BenAbdelkader et al. [18] extracted stride and cadence
characteristics of the walking person. Boulgouris and Chi [19]
proposed to separate the human body into different components in
order to describe the similarity between silhouettes with respect to

a certain body component. Cunado et al. [20] obtained the angular
information during the walking process from the upper leg using
Fourier series. Zeng et al. [21] exploited the lower limb joint
angles of the side silhouette to characterise the dynamic gait part.
Bouchrika et al. [22] described a subject's angular motion for both
the knee and hip at different phases of the gait cycle. Yeoh et al.
[23] extracted five joint angular trajectories. Khamsemanan et al.
[24] exploited the posture-based features. Recently, Deng et al.
[25] combined both spatio-temporal and kinematic features.

In the case of fitting model approaches, Lee and Grimson [26]
exploited the appearance and dynamic traits of gait by analysing
the parameters of fitted ellipses to regions of a subject's silhouette.
Dockstader et al. [27] defined a 3D model to extract various joint
angles. Wang et al. [15] modelled human body as 14 rigid parts
connected to one another at the joints. Zhang et al. [28] introduced
a non-rigid 2D body contour using a Bayesian graphical model
whose nodes correspond to point positions along the contour.
Zhang et al. [29] suggested a five-link biped human locomotion
model to allow for the extraction of the joint position trajectories.
Lu et al. [30] adopted a full-body layered deformable model to
capture information from the silhouette of a walking subject.
Ariyanto and Nixon [31] introduced a new 3D model approach
using a marionette and mass-spring model. Yoo et al. [32]
proposed to extract nine coordinates from the human body contours
using human anatomical knowledge in order to build a 2D model.
Tafazzoli and Safabakhsh [33] combined active contour models
and Hough transform to model the movements of the articulated
parts of the body. Table 1 summarises the captured features as well
as the classifiers of the aforementioned model-based techniques. 

Model-based methods seem to be a very attractive concept and
are promising since they have the ability to deal with the various
intra-class variations caused by different covariates such as
clothing, carrying, and view angle which affect the subjects
appearance. However, the complexity of the models and the
extraction of their components from the video stream is not a trivial
task. Consequently, model-based techniques are preferred in
practical applications.

4 Model-free gait recognition
Model-free approaches, which can be seen as image measurement
methods, exploit the moving shape of the subject to derive the gait
characteristics. Therefore, they do not require to rebuild a model of
human walking steps. Recently, a number of feature types have
been introduced in the context of model-free gait recognition. The
features can either be solely based on the moving shape (i.e. no
prior shape information is explicitly taken into consideration) or
integrated in the shape aspect within the feature representation.
Model-free features are categorised as temporal and spatial.
However, they can be further organised into four sub-categories:
contours, silhouettes, energy, and depth.

• Contours: they have low computational cost but suffer from
intra-class variations. Symmetry operators introduced by
Hayfron Acquah et al. [1] are an example of gait recognition-
based contour features which are able to form a robust feature
representation from a few training samples.

• Silhouettes: a whole silhouette is taken into consideration per
subject. This can be advantageous because the errors of

Fig. 2  Example of body models
(a) Nixon et al. [13], (b) Wagg et al. [14], (c) Wang et al. [15]
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silhouette segmentation are avoided. An example of gait
recognition based on person silhouette is the self-similarity
method based on the silhouettes correlation introduced by
BenAbdelkader et al. [34].

• Energy: energy features attempt to extract the spatial and
temporal information of the gait using a single and robust
signature. The average image representation along a gait cycle is
a good example [35]. In the following, we review the main
works in the context of model-free approach.

• Depth: instead of using solely colour images, some works tried
to exploit depth information based on devices such as Microsoft
Kinect [36–38] in order to capture 3D dynamic features.
Motivated by its ability to infer the motion of different body-
parts, depth features have been combined with other types of
features such as colour for more accurate gait recognition [39].

Early on, researchers were more focused on features based on
silhouettes and contours [40]. Kale et al. [41] utilised the contour
width of binarised silhouettes and an entire binary silhouette, too.
Liu and Sarkar [42] trained a hidden Markov model (HMM) using
manually extracted silhouettes. Kale et al. [43] combined the outer
contour width of binarised silhouettes with HMMs. Collins et al.
[44] matched 2D silhouettes extracted from key frames based on
correlation. Wang et al. [45] introduced a gait signature called
‘eigenshape’ using Procrustes analysis [46]. The similarity between
signatures is measured by Procrustes mean shape distance. Lee et
al. [47] suggested a shape variation-based frieze pattern signature
to capture both horizontal and vertical motion of the walking
subject over time. For the recognition phase, a cost function for
matching is adopted. Hayfron Acquah et al. [1] analysed the
human motion symmetry. Discrete Fourier Transform of the
signature and NN were adopted for classification. Choudhury and
Tjahjadi [48] captured the spatio-temporal shape and dynamic
motion information. The matching was carried out through phase-
weighted magnitude spectra. Zeng et al. [49] approximated the gait
dynamics using radial basis function (RBF) networks. Zhang et al.
[50] represented the extracted silhouettes using sparse and
discriminative tensor to vector. Ioannidis et al. [37] assigned depth
data to the binary silhouettes to enhance accuracy. Lam et al. [51]
presented static silhouette templates representation to extract both
the dynamic and static information. Choudhury and Tjahjadi [52]
extracted the features from the silhouette contours using Procrustes
shape analysis. Lee et al. [53] introduced a novel Fourier
descriptor-based gait modelling using the periodic deformation of
contours. Deng et al. [54] combined silhouette features via
deterministic learning. Bengua et al. [55] introduced a matrix
product state decomposition to compress multidimensional

silhouette data represented by higher-order tensors. Tsuji et al. [56]
proposed a silhouette transformation method. Recently El-Alfy et
al. [57] encoded both body shapes and boundary curvatures into a
novel feature descriptor named normal distance map.

On the other side, some works tried to find an efficient and
suitable representation spaces for the extracted features (for both
contours and silhouettes) based on supervised and unsupervised
representation learning techniques. For example, Wang et al. [58]
combined 1D normalised distance with PCA in order to reduce the
resulting high dimensionality of the feature vectors. Benabdelkader
et al. [59] captured 3D information (XYT) of the patterns by
computing image self-similarity plot corresponding to the images
correlation. The combination of PCA and LDA with a NN strategy
was adopted for classification. Kobayashi and Otsu [60] extended
higher-order local auto-correlation [61] to obtain cubic higher-
order local auto-correlation. The classification was carried out
using LDA and NN. Lu and Zhang [62] extracted discriminative
features from the silhouettes based on Fourier and wavelet
descriptors. Independent component analysis with genetic fuzzy
SVM classifier was used for recognition. Lu et al. [63] applied
multilinear PCA combined with LDA to the extracted silhouettes.

Despite the good results of the contour/silhouette features, gait
energy image (GEI) representation suggested by Han and Bhanu
[4] seems to be more efficient. The technique is based on
computing the silhouettes average over a complete gait cycle. It
makes a good trade off between the computational complexity and
the recognition performance. For the recognition process, it was
initially combined with canonical discriminant analysis. It actually
corresponds to PCA followed by LDA combined with a NN. PCA
aims to retain the most representative information while
suppressing noise, whereas LDA tries to determine a set of features
that can best distinguish various objects. Following the work of Yu
et al. [3] which applied a template matching on GEIs, a
considerable amount of works in the literature tried to find a good
and suitable feature representation space for classification.
Motivated by the problem caused by the vectorisation of the
feature vectors when using conventional dimensionality reduction
techniques which leads to under sample problem, tensor-based
dimension reduction methods have been introduced. Xu et al. [64]
adopted two supervised and unsupervised subspace learning
methods: coupled subspaces analysis (CSA) and discriminant
analysis with tensor representation (DATER) in order to efficiently
represent GEIs. Tao et al. [65] used Gabor filters to extract
discriminative features from GEI templates. general tensor
discriminant analysis (GTDA) is applied instead of the PCA
technique. Influenced also by the advantages of tensor-based
dimensionality reduction, Xu et al. [66] presented an extension of

Table 1 Overview of model-based methods (features and classifiers)
Method Features Classification
• Bobick and Johnson [16] length, width, stride NN
• Tanawongsuwan and Bobick [17] joint-angle trajectories NN
• Benabdelkader et al. [18] stride, cadence Bayesian
• Cunado et al. [20] motion upper leg NN
• Boulgouris and Chi [19] body components metric-based body-parts
• Zeng et al. [21] lower limb joint angles RBF neutral network
• Bouchrika et al. [22] angular motion of knee and hip NN
• Yeoh et al. [23] five joint angular trajectories SVM
• Deng et al. [25] width, joint-angle trajectories NN
• Khamsemanan et al. [24] posture features NN
• Lee and Grimson [26] parameters of fitted ellipse model SVM
• Dockstader et al. [27] various joint angles NN
• Wang et al. [15] rigid model (joint angles) NN
• Zhang et al. [28] non-rigid model (deformations) chain-like model
• Zhang et al. [29] 5-link model (joint-trajectories) hidden Markov models
• Lu et al. [30] deformable model (orientations) dynamic time warping
• Yoo et al. [32] 2D model (periodic motion) neural network
• Tafazzoli and Safabakhsh [33] anatomy model (arm movement) NN
• Ariyanto and Nixon [31] 3D model (motion) NN
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marginal Fisher analysis (MFA). Li et al. [67] defined a new
manifold learning technique named discriminant locally linear
embedding. Chen et al. [68] introduced a tensor-based Riemannian
manifold distance-approximating projection (TRIMAP). Huang et
al. [69] introduced an image-to-class distance for comparison.
Zhang et al. [70] combined super resolution (SR) algorithm with
multilinear tensor-based learning without tuning parameters (MTP)
to tackle the problem of low resolution GEIs. Xu et al. [71]
combined the local augmented Gabor GEI features with locality-
constrained group sparse representation (LGSR). Lai et al. [72]
introduced a matrix-based sparse bilinear discriminant analysis
(SBDA) to explore the more powerful discriminant subspaces. Lu
et al. [73] exploited discriminative information by proposing a
sparse reconstruction-based metric learning (SRML) metric to
minimise and maximise intra- and inter- class sparse reconstruction
errors, respectively. Martin and Xiang [74], introduced a bipartite
ranking algorithm for improved generalisation of unseen gait
scenarios. Lishani et al. [75] extracted Haralick features which are
fed to a non-linear SVM classifier. Guan et al. [76] introduced an
efficient ensemble classifier method. Xing et al. [77] introduced
complete canonical correlation analysis (C3A) to tackle the
drawbacks of canonical correlation analysis (CCA). Rida et al. [78]
applied statistical dependency (SD) feature selection followed by
globality-locality preserving projections (GLPP). Lishani et al. [79]
extracted features from GEIs using a bank of Gabor filters, then the
resulting features were combined with spectral regression Kernel
discriminant analysis (SRKDA). Wang et al. [80] projected the
GEI Gabor wavelet features in a new subspace using 2DPCA. Ma
et al. [81] tried to find a discriminative low-dimensional subspace
based on tensor subspace ensemble learning totally corrective
boosting (TSEL_TCB) as well as its kerneled version KSEL_TCB
[82]. Ben et al. [83] presented a novel non-linear coupled
mappings (NCMs) for low resolution GEI-based recognition. Chen
and Xu [84] introduced sparse coding multi-view hypergraph
learning re-ranking (SCMHLRR) for the uncooperative setting.
Lee et al. [85] adopted a probabilistic SVM. Recently, Chhatrala et
al. [86] introduced sparse multilinear Laplacian discriminant
analysis (SMLDA). Table 2 summarises the different features,
transformations and classifiers for GEI-based gait recognition
techniques. 

5 Robust model-free gait recognition

Despite its attractive performances, the GEI images including
features extracted from model-free suffer from intra-class
variations caused by different covariates such as clothing
conditions, carrying, and view angle variations which drastically
influence the recognition performances. Silhouettes segmentation
and view angle variations represent further causes of the
recognition errors [2–4].

5.1 Clothing robust

People wear different clothes depending on days and seasons.
Unfortunately, the intra-class distortions of the static features
caused by the variations of clothing can significantly affect the
accuracy of the recognition process. Matovski et al. [2] have
shown that clothing variations are the main factor that drastically
affects the performance accuracy. Thus, this makes sense to reduce
the effect of clothing distortions in order to improve the
performances. To overcome these limitations resulting from
clothing variations, several approaches have been proposed. They
can be broadly divided in two groups: the first one aims to improve
GEIs by selecting the discriminative gait parts while the second
introduces feature representations based on GEI gaps.

5.1.1 Gait parts feature-based representations: In this
approach, the methods attempt to use some body-parts in order to
perform the recognition. Depending on the employed segmentation
and selection method, the techniques can be organised into four
sub-categories: anatomical-based, self-defined, learning-based, and
cloth-based methods (see Table 3). 

• Anatomical-based methods seek to segment the body into
different parts according to anatomical properties of the human
body [112]. Examples of this type of methods are described in
[87, 89–91]. This approach is easy to implement, however, the
segmentation proportions are anatomical-based and cannot be
modified for different clothing length, leading to lower accuracy
in case of some specific clothes.

• Self-defined methods select a few hand-crafted body-parts based
on human knowledge. The selected parts are presumed to be
robust to clothing variations. Li and Chen [92] used the head
and feet to construct GEIs. Gabriel et al. [94] selected only the
lower part of the human body. Lishani et al. [97] proposed to

Table 2 Overview of GEI-based methods (features, transformations, and classifiers)
Reference Features Transformation Classification
• Han and Bhanu [4] GEI PCA + LDA NN
• Yu et al. [3] GEI — NN
• Xu et al. [64] GEI CSA + DATER NN
• Tao et al. [65] GEI + Gabor GTDA + LDA NN
• Xu et al. [66] GEI MFA NN
• Chen et al. [68] GEI + Gabor TRIMAP NN
• Huang et al. [69] GEI + Gabor — image-to-class distance
• Zhang et al. [70] GEI SR + MTP NN
• Xu et al. [71] GEI + Augmented Gabor — LGSR
• Lai et al. [72] GEI SBDA NN
• Lu et al. [73] GEI SRML NN
• Martin et al. [74] GEI Transfer learning (RankSVM) SVM
• Lishani et al. [75] GEI + Haralick Gaussian SVM
• Guan et al. [76] GEI RSM (2DPCA + 2DLDA) NN
• Xing et al. [77] GEI C3A NN
• Rida et al. [78] GEI SD + GLPP NN
• Lishani et al. [79] GEI + Gabor SRKDA SVM
• Wang et al. [80] GEI + Gabor wavelets 2DPCA SVM
• Ma et al. [81] GEI TSEL_TCB NN
• Ma et al. [82] GEI KSEL_TCB NN
• Ben et al. [83] Low resolution GEI NCMs NN
• Chen and Xu [84] GEI SCMHLRR ranking
• Chhatrala et al. [86] GEI SMLDA LGSR
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divide GEI into horizontal and vertical equal parts and then the
best region of interest is selected. Nandy et al. [96] proposed to
decompose a GEI into vertical and horizontal independent
structural segments. Iwashita et al. [93] divided GEI into
multiple areas according to their invariance to appearance
changes. Islam et al. [95] divided the human body into very
small windows. Unfortunately, such type of methods fails to
predict all possible cases of clothing variations in more
complicated real application scenarios.

• Learning-based methods seek to find discriminative body-parts
based on machine learning techniques. Feature selection and
especially wrapper approaches have received a special interest
from the research community. Starting from the original feature
set, all possible feature subsets obtained by search algorithms
are evaluated. The prediction performance serves as a selection
criterion, and the subset that performs the best is retained.
Different techniques have been used including NN [98, 100–
102] and modified phase only correlation [104]. In addition to
previous techniques, random forest rank features [99], group
fused Lasso [105, 106, 113], SD [78], gini impurity [107, 108],
and genetic algorithm [109] have been also investigated.
Another trend is to estimate the position of covariates in order to
remove them. Whytock et al. [103] proposed a novel bolt-on
module enabling to improve the robustness using various single
compact 2D gait representations including GEI. Recently,
Ghebleh and Ebrahimi [110] introduced an adaptive outlier
detection method to address the effects of clothing issue.
Learning methods are robust and able to achieve good accuracy.
However, they have high computation cost and need a
considerable amount of gallery data in various conditions in
order to learn the body-parts.

• Cloth-based methods attempt to segment the body into parts
based on the cloth characteristics. Liang et al. [111] proposed a
golden ratio segmentation method which has shown very
promising results in case of clothing variations. However, the
method strongly depends on cloth and may not cope with the
intra-class variations caused by other conditions.

5.1.2 Clothing robust feature representations: In order to
mitigate the effects of clothing variations in model-free features
and especially GEIs, several variations of GEIs have been

proposed. Liu and Zheng [114] introduced motion history image
representation which is able to capture dynamic gait characteristics.
Ma et al. [115] suggested gait moment image which represents the
probability of an image at each key frame. Yang et al. [116] used a
variation analysis to obtain GEI regions which allow to better
reflect the walking manner. Chen et al. [117] introduced a robust
representation called frame difference energy image capable to
preserve the kinetic information. Bashir et al. [118] suggested gait
flow fields approach using a weighted sum of the optical flow.
While existing works are focused on casual clothes, Shanableh et
al. [119] proposed an accumulated prediction image suitable for
both casual and Gulf clothes. Bashir et al. [120] introduced gait
entropy image by calculating the entropy of each pixel. Wang et al.
[121, 122] proposed a temporal template called chrono-gait image
(CGI). Zhang et al. [123] adopted Active energy image focusing on
dynamic regions by extracting the active regions of a gait
sequence. Lam et al. [124] determined the optical flow field
between two consecutive silhouettes in order to obtain gait flow
image. Roy et al. [125] extracted pose energy image features
corresponding to the average of all the silhouettes. Hofmann and
Rigoll [126] proposed to average the cycles over full gait cycles to
reduce the noise, then histogram of oriented gradient (HOG) is
applied in order to obtain gradient histogram energy image. Huang
and Boulgouris [127] adopted shifted energy image and gait
structural profile. Jeevan et al. [128] encoded the randomness of
the silhouette images using Pal and Pal entropy. Boulgouris and
Chen [129] introduced radon energy image. Lee et al. [130]
calculated the binomial distribution of every pixel in order to
obtain gait probability image. Kusakunniran [131, 132] detected
points of interest, then discriminative features are extracted based
on HOG and histogram of optical flow in the neighbourhood of
each detected point of interest. Arora and Srivastava [133]
proposed a gait period dependent image, which is calculated over a
gait cycle based on Gaussian membership function. Luo et al.
[134] suggested a new class energy image which can reflect the
time characteristics denoted as the accumulated frame difference
energy image. Al Tayyan et al. [135] introduced the concept of
accumulated flow image and edge-masked active energy image
able to produce distinctive features for classification. Lee et al.
[136] proposed a combination of spatio-temporal approach and
texture descriptors to extract discriminative gait features named

Table 3 Overview part-based clothing robust gait recognition
Reference Year Part-based methods
• Hossain et al. [87] 2010 anatomical properties
• Li et al. [88] 2010 anatomical properties
• Choudhury and Tjahjadi, [89] 2015 anatomical properties
• Verlekar et al. [90] 2017 anatomical properties
• Aggarwal and Vishwakarma [91] 2017 anatomical properties
• Li and Chen [92] 2013 self-defined
• Iwashita et al. [93] 2013 self-defined
• Gabriel et al. [94] 2013 self-defined
• Islam et al. [95] 2013 self-defined
• Nandy et al. [96] 2016 self-defined
• Lishani et al. [97] 2017 self-defined
• Bashir et al. [98] 2008 wrapper
• Dupuis et al. [99] 2013 random forest
• Rida et al. [100] 2014 wrapper
• Rida et al. [101] 2015 wrapper
• Rokanujjaman et al. [102] 2015 wrapper
• Whytock et al. [103] 2015 bolt-on module
• Rida et al. [104] 2016 wrapper
• Rida et al. [105, 106] 2016 group fused Lasso
• Rida et al. [78] 2016 SD
• Alotaibi and Mahmood [107, 108] 2016 Gini impurity
• Issac et al. [109] 2017 genetic algorithm
• Ghebleh and Ebrahimi [110] 2017 adaptive outlier detection
• Liang et al. [111] 2016 cloth proportion
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transient binary patterns. Lee et al. [137] applied HOG to time-
sliced averaged motion history image in order to extract
discriminative features. Arora et al. [138] proposed gait
information image with energy feature and gait information image
with sigmoid feature. Choudhury and Tjahjadi [139] computed the
average at each of the key-phases to obtain averaged gait key-
phase image. Atta et al. [140] presented a temporal template
approach based on lifting 5/3 wavelet filters named 5/3 gait image.
Mu and Tao [141] introduced a biologically inspired feature
representation called C1Gait using C1 units corresponding to the
complex cells in human visual cortex. Hu et al. [142] proposed
periodicity feature vector representation to better capture periodic
dynamic information. Chaurasia et al. [143] suggested a robust gait
feature representation called PRWDF GEI using the fusion of static
(not affected by intra-class variations) and dynamic parts of gait
information. Chhatrala and Jadhav [144] proposed Gabor cosine
features representation. Based on the previous idea of silhouettes
difference, Chen and Liu [145] suggested average gait differential
image representation. Verlekar et al. [146] presented the so called
sparse error gait image representation. Medikonda et al. [147]
introduced generalised new entropy representation. Hu et al. [148]
proposed an incremental representation based on optical flow
named LBP Flow. Liu et al. [149] generated multiple HOG
template by applying HOG to GEI and CGI. Arora et al. [150]
introduced a spatial-temporal representation called gradient
histogram Gaussian image. It should be also noted that gait was

combined with face in order to achieve higher accuracy [151–153].
Table 4 summarises the different features, transformations and
classifiers for cloth-robust gait representations. 

5.2 Viewing robust recognition

This section provides a review of research efforts carried out to
address the problems associated with the view changes in gait
recognition. The techniques dealing with view variations can be
broadly divided into five categories: view-transformation, view-
invariant subspace, view-invariant feature, view-angle estimation,
and 3D information.

• View-transformation methods seek to map the features from a
different view angles into a common one using view
transformation model (VTM). A large variety of transformation
models have been proposed through singular value
decomposition (SVD) matrix factorisation [154–158], regression
using support vector regression [159], elastic net [160], and
multilayer perceptron [161]. Muramatsu et al. [162] presented
an arbitrary VTM using a 3D gait volume. In the same context,
Muramatsu et al. [163] proposed a generative approach which is
a VTM-based method using transformation consistency
measures (TCM+).

• View-invariant subspace methods aim to find a transformation
that maps the original gait features into a subspace (usually of
lower-dimension) in order to obtain view-invariant features.

Table 4 Overview of clothing robust representations for gait recognition (features, transformations, and classifiers)
Reference Year Features Transformation Classification
• Boulgouris and Chen [129] 2007 radon energy image LDA NN
• Liu and Zheng [114] 2007 motion history image LDA NN
• Ma et al. [115] 2007 gait moment image — NN
• Yang et al. [116] 2008 enhanced GEI discriminative common vectors NN
• Chen et al. [117] 2009 frame difference energy image — HMM
• Bashir et al. [118] 2009 gait flow fields PCA + LDA NN
• Shanableh et al. [119] 2009 accumulated prediction image — Polynomial networks
• Bashir et al. [120] 2010 GEI PCA + LDA NN
• Wang et al. [121, 122] 2010 CGI PCA + LDA NN
• Zhang et al. [123] 2010 active energy image 2DLPP NN
• Mu et al. [141] 2010 C1Gait discriminative locality alignment NN
• Lam et al. [124] 2011 gait flow image LDA NN
• Roy et al. [125] 2012 pose energy image PCA + LDA NN
• Hofmann and Rigoll [126] 2012 gradient histogram energy image PCA + LDA NN
• Huang et al. [127] 2012 shifted energy image + gait structural profile LDA NN
• Liu et al. [149] 2012 multiple HOG PCA + LDA NN
• Jeevan et al. [128] 2013 gait pal and pal entropy PCA SVM
• Hu et al. [148] 2013 LBP flow — HMM
• Lee et al. [130] 2014 gait probability image — minimum Kullback–Leibler
• Kusakunniran [131] 2014 histogram of optical flow + HOG — NN
• Kusakunniran [132] 2014 histogram of optical Flow + HOG — SVM
• Lee et al. [137] 2014 time-sliced averaged motion history image — majority voting
• Chen and Liu [145] 2014 gait differential image 2DPCA NN
• Arora and Srivastava [133] 2015 gait Gaussian image — NN
• Arora et al. [150] 2015 gradient histogram Gaussian image — NN
• Lee et al. [136] 2015 transient binary patterns — majority voting
• Luo et al. [134] 2015 accumulated frame difference energy image — NN
• Arora et al. [138] 2015 gait information image with energy feature/

sigmoid feature
— NN

• Choudhury and Tjahjadi [139] 2016 averaged gait key-phase image PCA rotation forest ensemble
• Chhatrala and Jandhav [144] 2016 Gabor cosine features MLDA LGSR
• Medikonda et al. [147] 2016 generalised new entropy — SVM
• Al et al. [135] 2017 accumulated flow image + edge-masked active

energy image
MPCA + LDA NN

• Atta et al. [140] 2017 5/3 gait image PCA NN
• Chaurasia et al. [143] 2017 PRWDF GEI PCA + generalised LDA NN
• Verlekar et al. [146] 2017 sparse error gait image — NN
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Huang and Boulgouris [164] constructed a shared space in
which different weights were assigned based on the importance
of views. Bashir et al. [165] adopted a CCA. Liu et al. [166]
proposed a joint subspace learning method with CCA and PCA.
Xu et al. [167] presented a coupled locality preserving
projections (CLPP) method. Hu [168] exploited regularised
local tensor discriminant analysis. Lu et al. [169] introduced a
supervised manifold learning algorithm called uncorrelated
discriminant simplex analysis (UDSA) in order to project gait
features extracted from different views into a low-dimensional
subspace. Hu [170] adopted uncorrelated multilinear sparse
local discriminant canonical correlation analysis
(UMSLDCCA). Al Mansur et al. [171] proposed to use multi-
view discriminant analysis (MvDA) and its tensor version
(MvDATER) [172]. Connie et al. [173, 174] exploited
Grassmann and Grassmann doubly-kernel manifold. Liu et al.
[175] attempted to exploit more efficiently the discriminative
information from these subspaces by applying marginal CCA.
Hur et al. [176] proposed to tackle the problem of view angle
variations using a manifold learning-based approach.

• View-invariant feature methods seek to extract invariant features
to view angle variations [177]. Jean et al. [178, 179] computed
invariant trajectories. Goffredo et al. [180] estimated joint
positions. Kusakunniran et al. [181] normalised the silhouettes
into a common canonical view. Zeng and Wang [182] combined
silhouette features representing gait dynamics and deterministic
learning theory. Castro et al. [183, 184] used motion descriptors
based on sampled trajectories.

• View-angle estimation methods consist of two main steps. The
first one estimates the pose of the query sample to find the
gallery samples with the similar pose. The second one identifies
the query subject among the gallery samples with the same pose.
Various pose estimation techniques have been used. For
example, Verlekar et al. [90] computed perceptual hash of leg
region combined with Hamming distance. Isaac et al. [109]
applied Bayes' rule to the selected gait part using a genetic
algorithm. Rida et al. applied NN to the discriminative selected
gait parts using group fused Lasso method. Dupuis et al. [99]
adopted a decision tree approach to the lower parts of GEI.
Choudhury and Tjahjadi [89] combined Entropy, 2DPCA and
NN to the lower body-part. Zhao et al. [185] employed
transformation invariant low-rank texture combined with
extreme learning machine.

• 3D information-based methods seek to extract discriminative
information incorporating 3D information from a set of cameras.
Bodor et al. [186] used captured video to build 3D view-
independent representation. Zhao et al. [187] used video
sequences captured by multiple cameras to build a 3D human
model. Zhang and Troje [188] adopted a 3D linear model. Tang
et al. [189] reconstructed a 3D parametric body to tackle large
view angle change. Luo et al. [190] proposed a 3D
reconstruction and virtual posture synthesis. Lopez-Fernandez et
al. [191] introduced a descriptor for the sequences of gait
volumes referred to as gait entropy volume which is robust to
viewpoint changes and unconstrained curved trajectories. In the
same context, Lopez-Fernandez et al. [192] presented a 3D
angular movement of the subject. The different approaches are
summarised in Table 5.

5.3 Occlusion robust recognition

Most approaches in the literature do not treat the quality problem
of silhouettes by assuming the absence of occlusions at the time of
capture of gait or by taking into consideration several cycles where
the non-occluded parts can compensate for the occluded ones.
However, in outdoor real-life applications occlusion is
omnipresent, for instance, several persons can be captured at the
same time leading to occlusions of the subjects. Another cause of
occlusion is the presence of non-living objects such as beams and
cars. This clearly shows the need to pay more research efforts to
tackle this problem. Among the few existing works, Roy et al.
[193] tried to find gait cycles containing occlusions and improve

the corresponding silhouettes using balanced Gaussian process
dynamical model. In the same context, Roy et al. [194] proposed a
model in order to detect the position of occlusions. Ortells et al.
[195] introduced a novel statistical method to tackle the problem of
corrupted silhouettes.

5.4 Towards feature learning approaches

A growing and intensive body of research has recently been
observed with the goal to develop end-to-end recognition systems
from feature extraction, representation, and classification using
deep learning concept. The approaches proceed by using raw data
as input features by stacking more than the usual two neural layers
of conventional artificial neural networks. In this new concept,
each low level layer encodes specific properties of the data as
primitives that are gradually combined by successive higher level
layers in order to produce representative and hopefully more
discriminative representations of the input data thus resulting in
much improved performances.

Among the deep learning models applied to gait recognition,
convolutional neural networks have been proposed to represent gait
with invariance property [196–198], deep Boltzman machine to
provide a generative model [199], bidirectional long short-term
memory to take into account the temporal information [200],
stacked progressive auto-encoders [201] and generative adversarial
networks [202] in order to learn invariant features. To be effective
deep models require a huge amount of data especially for the
training phase in order to provide much improved performances.
As such such models are seen to have complex structures requiring
significant computing power to attain higher performances.

6 Datasets, performances, and discussions
The availability of large and public datasets is essential for a
comparative study of the performances including a consistent
evaluation. A comprehensive review of the main free available gait
datasets for evaluation including the comparison of the state-of-
the-art performances arranged in order of publication year is given
in this section.

6.1 Datasets and performances

6.1.1 USF HumanID: USF HumanID is an outdoor dataset
[http://figment.csee.usf.edu/GaitBaseline/] [203]. It contains 122
subjects recorded under several covariates: viewpoints (left and
right), shoes (A and B), surfaces (grass and concrete), carrying
conditions (with and without briefcase), time (May and Nov), and
clothing. There are 12 evaluation experiments summarised in
Table 6. The main obtained results on USF database are shown in
Table 7. 

6.1.2 CASIA dataset B: CASIA dataset B is an indoor multi-
view dataset [http://www.cbsr.ia.ac.cn/english/Gait
%20Databases.asp] [3]. It is constructed to evaluate the ability of
the algorithms/methods to manage the carrying conditions, clothing
and view angles distortions. 124 subjects were recorded from 11
different view angles. Each subject is recorded six times under
normal conditions (NL), twice under carrying bag conditions, and
twice under clothing variation conditions (CL). The gallery
contains the first four normal sequences for each subject and
remaining one as used as a probe. The main results obtained using
this dataset are summarised in Table 8. 

6.1.3 OU-ISIR (dataset B): OU-ISIR (dataset B) was built to
study the effect of clothing [http://www.am.sanken.osaka-u.ac.jp/
BiometricDB/GaitTM.html] [87, 205]. 48 subjects were recorded
on a treadmill under 32 types of clothes listed in Table 9. The
gallery set contains subjects in normal clothes (type 9), whereas the
probe set contains subjects in the other 31 clothes types. Table 8
depicts state-of-art performances using this dataset. 

6.1.4 CMU motion of body (moBo): CMU Motion of Body
(MoBo) consists of 25 subjects [https://www.ri.cmu.edu/
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publications/the-cmu-motion-of-body-mobo-database/] [206]. Each
one was recorded six times in four different conditions: slow/fast
walk, inclined walk, and slow walk holding a ball. The list of
experiments and accuracies are summarised in Tables 10 and 11,
respectively. 

6.2 Discussion

From the works described above, it can be seen that both CASIA B
and Human ID datasets have been widely used for the evaluation.
While very high and competitive accuracies have been obtained
using in the former, Human ID dataset still remains very

challenging. Therefore, more works are required to obtain superior
performances especially in the case of elapsed time which
potentially also includes several covariates such as clothing and
carrying condition.

It should be noted that the segmentation quality of data in
Human ID dataset is poor and needs improvement. Unfortunately,
model-free approaches performance strongly depends upon the
segmentation quality. Consequently, an interesting work to carry
out will be to improve the quality of extracted silhouettes using
advanced segmentation techniques. It can be noticed that low
performances have been obtained in the experiments 11 and 12
(Table 7). This is due to the elapsed time (6 months) between the

Table 5 Overview of view-invariant gait recognition techniques
Reference Year Characteristics Remarks
• Makihara et al. [154] 2006 VTM through SVD of frequency-domain features
• Kusakunniran et al. [155] 2009 VTM through SVD ( + ) robust cross-view capability
• Kusakunniran et al. [159] 2010 VTM using support vector regression (−) low accuracy in large view difference
• Zheng et al. [156] 2011 robust VTM using robust PCA ( + ) no complicated camera setup
• Muramatsu et al. [157] 2012 VTM through SVD (−) prior knowledge target view
• Kusakunniran et al. [161] 2012 VTM through multilayer perceptron
• Kusakunniran et al. [160] 2012 sparse regression VTM using elastic net
• Muramatsu et al. [162] 2015 VTM using 3D gait volume
• Muramatsu et al. [163] 2015 VTM-based with TCM + 
• Muramatsu et al. [158] 2016 incorporating quality measures to VTM
• Huang et al. [164] 2008 shared space with weighted views importance
• Bashir et al. [165] 2010 correlation-based CCA
• Lu et al. [169] 2010 UDSA
• Hur et al. [176] 2010 manifold learning
• Liu et al. [166] 2011 joint subspace learning (CCA + PCA) (−) accuracy affected by occlusion
• Liu et al. [175] 2013 marginal CCA ( + ) no complicated camera setup
• Hu [168] 2013 regularised locally tensor discriminant model (−) require good training data
• Hu et al. [170] 2014 UMSLDCCA ( + ) good accuracy in large databases
• Al Mansur et al. [171] 2014 MvDA
• Makihara et al. [172] 2015 multi-view DATER
• Connie et al. [173] 2016 Grassmann doubly-kernel
• Xu et al. [167] 2017 CLPP
• Connie et al. [174] 2017 Grassmann manifold
• Jean et al. [178, 179] 2009 normalised 2D trajectories
• Goffredo et al. [180] 2010 features-based joint positions ( + ) no complicated camera setup
• Kusakunniran et al. [181] 2013 normalised silhouettes-based invariant low-rank (−) perform better in limited view angles
• Castro et al. [183, 184] 2014 densely sampled short-term trajectories
• Zeng and Wang [182] 2016 ilhouettes with deterministic learning
• Dupuis et al. [99] 2013 decision tree
• Choudhury et al. [89] 2015 entropy + 2DPCA + nearest-neighbor (−) need training data in all angles
• Rida et al. [105] 2016 group fused Lasso + nearest-neighbor ( + ) simple to implement
• Zhao et al. [185] 2016 transformation invariant low-rank texture + extreme learning

machine
• Isaac et al. [109] 2017 genetic algorithm + Bayes' rule
• Verlekar et al. [90] 2017 perceptual hash + hamming distance
• Zhang and Troje [188] 2005 3D linear model of Fourier representations
• Zhao et al. [187] 2006 3D model using multiple cameras
• Bodor et al. [186] 2009 3D model-based combination of views ( − ) require complicated cameras calibration
• Lopez-Fernandez et al. [191] 2015 gait entropy volume ( + ) perform good in large view angles
• Luo et al. [190] 2016 parametric 3D model
• Lopez et al. [192] 2016 3D angular information
• Tang et al. [189] 2017 parametric 3D model
 

Table 6 Experiments on USF dataset
Experiments

1 2 3 4 5 6 7 8 9 10 11 12
# sequences 122 54 54 121 60 121 60 120 60 120 33 33
variation V S VS R RS RV RSV B BS BV TSC RTSC
V: View; S: Shoe; R: Surface; B: Briefcase; T: Time; AND C: clothes.
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recorded gallery and probe gait sequences which affects the
performances in an unpredictable manner. Indeed, the elapsed time
is still a very challenging problem which potentially also includes
the changes of the shoes, carrying status, clothing, lighting
conditions etc. It can also be observed that there is a lack of large
datasets containing outdoor real-life complicated scenarios such as
cluttered background, anthropometric variations, and partial as well
as full occlusions. Thus, the need to build new datasets.

It can also be observed that there is no universal feature
representation for gait recognition but rather a large variety of
features have been proposed and used. Despite their attractive
discriminative ability, most features are highly related to the human
expertise. In order to improve the discriminative power, existing
methods aim to find suitable feature representation spaces where
observations from different classes are well separated. For the
latter, different approaches such as dimensionality reduction and
feature selection have been studied and applied.

Table 7 Accuracy on the human ID gait challenge dataset in per cent
Experiments

1 2 3 4 5 6 7 8 9 10 11 12
Kale et al. [41] 2004 89 88 68 35 28 15 21 85 80 58 17 15
Sarkar et al. [203] 2005 73 78 48 32 22 17 17 61 57 36 3 3
Han and Bhanu [4] 2006 90 91 81 56 64 25 36 64 60 60 6 15
Xu et al. [64] 2006 89 93 80 44 45 25 33 80 79 60 18 21
Liu and Sarkar [42] 2006 85 89 72 57 66 46 41 83 79 52 15 24
Ioannidis et al. [37] 2007 83 86 78 39 34 20 21 43 40 40 16 5
Ma et al. [115] 2007 84 91 70 26 29 14 16 64 64 42 9 6
Xu et al. [66] 2007 89 94 80 44 47 25 33 85 83 60 27 21
Lam et al. [51] 2007 77 83 69 12 13 9 12 38 33 19 39 9
Tao et al. [65] 2007 91 93 86 32 47 21 32 95 90 68 16 19
Yang et al. [116] 2008 90 87 80 41 48 27 28 72 63 63 6 6
Li et al. [67] 2008 90 89 81 40 50 27 26 65 67 57 12 18
Chen et al. [68] 2010 92 94 86 44 52 27 33 78 74 65 21 15
Hu et al. [142] 2010 99 97 94 66 69 52 59 92 91 84 28 35
Guha and Ward [204] 2010 89 85 74 30 22 12 22 87 73 52 6 9
Huang et al. [69] 2010 93 89 81 54 52 32 34 81 78 62 12 9
Mu and Tao [141] 2010 95 92 88 45 47 34 34 78 74 65 25 19
Lam et al. [124] 2011 82 89 76 27 27 10 17 60 57 54 15 3
Roy et al. [125] 2012 85 94 78 49 33 22 26 71 69 47 12 12
Hofmann et al. [151] 2012 93 85 81 56 45 38 31 89 90 82 3 6
Hofmann and Rigoll [126] 2012 98 93 87 94 86 62 50 94 91 85 12 12
Kusakunniran et al. [161] 2012 89 — — — — — — — — — — —
Liu et al. [149] 2012 96 91 83 33 33 18 25 91 82 82 9 6
Xu et al. [71] 2012 95 93 89 62 62 39 38 94 91 78 21 21
Choudhury and Tjahjadi [52] 2012 92 95 84 72 68 29 40 69 60 64 20 18
Wang et al. [122] 2012 91 93 78 51 53 35 38 84 78 64 3 9
Choudhury and Tjahjadi [48] 2013 93 96 86 70 69 39 37 78 71 66 27 22
Hu [168] 2013 93 93 90 56 53 36 30 97 90 72 11 17
Kusakunniran et al. [181] 2013 85 — — — — — — — — — — —
Lu et al. [73] 2014 93 94 85 52 52 37 40 86 85 68 18 15
Martin and Xiang [74] 2014 83 94 82 60 54 48 42 67 61 55 59 27
Lai et al. [72] 2014 93 94 85 51 50 29 36 85 83 68 18 24
Guan et al. [76] 2015 100 95 94 73 73 55 64 97 99 94 42 42
Zhang et al. [50] 2015 95 88 71 41 28 26 24 - - - - -
Choudhury and Tjahjadi [89] 2015 95 96 86 54 57 34 36 91 90 78 31 28
Xing et al. [77] 2016 88 — — — — — — — — — — —
Ben et al. [83] 2016 69.9 66.6 44.7 39.4 34.8 25.8 20.9 51.9 41.7 36.7 6.8 5.8
Choudhury and Tjahjadi [139] 2016 96 96 90 62 63 37 39 94 93 80 41 32
Chhatrala and Jandhav [144] 2016 98 92 85 64 60 45 36 85 92 90 38 38
Chen and Xu [84] 2016 97 98 92 78 76 75 70 84 82 80 78 61
Wolf et al. [197] 2016 89 84 90 83 78 81 83 83 86 78 76 80
El-Alfy et al. [57] 2017 93 89 87 41 43 28 36 83 79 80 3 9
Aggarwal and Vishwakarma [91] 2017 97 96 93 68 64 34 37 96 92 86 27 24
Ma et al. [81] 2017 95 91 78 66 59 46 52 93 88 69 30 27
Xu et al. [167] 2017 85 — — — — — — — — — — —
Wu et al. [196] 2017 96.7 — — — — — — — — — — —
Deng et al. [25] 2017 100 100 100 98 95 88 85 98 100 92 82 79
Ma et al. [82] 2017 91 94 81 45 41 40 38 91 86 64 64 39
Atta et al. [140] 2017 92 91 81 42 35 21 25 87 80 63 9 6
Chaurasia et al. [143] 2017 90 89 84 38 42 22 28 90 80 72 20 18
Chhatrala et al. [86] 2017 100 96 91 72 70 50 45 85 93 91 40 40
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Table 8 Accuracy on CASIA and OU-ISIR dataset B in per cent
CASIA NL CASIA BG CASIA CL OU-ISIR

Wang et al. [45] 2003 77.4 — — —
Yu et al. [3] 2006 97.60 32.70 52.00 —
Han and Bhanu [4] 2006 99.60 57.20 23.80 —
Bashir et al. [98] 2008 99.40 79.90 31.30 —
Rida et al. [118] 2009 97.50 83.60 48.80 —
Shanableh et al. [119] 2009 — — — 66.94
Bashir et al. [120] 2010 100.00 78.30 44.00 —
Hossain et al. [87] 2010 — — — 63.90
Goffredo et al. [180] 2010 86.50 — — —
Li et al. [88] 2010 99.20 80.60 75.80 —
Zhang et al. [123] 2010 98.39 91.94 72.18 —
Lu and Tan [169] 2010 100 — — —
Wang et al. [122] 2012 88.06 43.67 42.98 —
Huang and Boulgouris [127] 2012 99.00 64.00 72.00 —
Dupuis et al. [99] 2013 98.80 73.80 63.70 —
Jeevan et al. [128] 2013 93.36 56.12 22.44 —
Hu et al. [148] 2013 94.00 45.20 42.90 —
Islam et al. [95] 2013 — — — 78.54
Lee et al. [53] 2013 62.03 — — —
Kusakunniran et al. [181] 2013 98.00 — — —
Zeng et al. [21] 2014 91.9 — — —
Zeng and Wang [49] 2014 98.40 93.50 90.30 —
Kusakunniran et al. [131] 2014 95.40 60.90 52.00 —
Kusakunniran et al. [132] 2014 94.50 60.90 58.50 67.00
Lishani et al. [75] 2014 88.70 76.90 83.30 —
Rida et al. [100] 2014 95.97 79.03 80.65 —
Lee et al. [130] 2014 89.50 — — —
Lee et al. [137] 2014 89.50 — — —
Rida et al. [101] 2015 95.97 63.39 72.77 —
Rida et al. [113] 2015 95.56 74.11 86.61 —
Rokanujjaman et al. [102] 2015 97.61 83.87 51.61 72.90
Choudhury and Tjahjadi [89] 2015 100.00 89.00 76.00 —
Arora and Srivastava [133] 2015 98.00 — — —
Lee et al. [136] 2015 96.00 — — —
Luo et al. [134] 2015 88.70 89.90 91.90 —
Guan et al. [76] 2015 — — — 90.70
Arora et al. [138] 2015 98.00 74.50 45.00 61.20
Whytock et al. [103] 2015 98.40 77.40 93.10 —
Arora et al. [150] 2015 — — — 62.50
Rida et al. [104] 2016 93.60 81.70 68.80 —
Chhatrala and Jadhav [144] 2016 100.00 72.10 40.80 —
Deng et al. [54] 2016 94.00 93.00 92.00 —
Rida et al. [105] 2016 98.39 75.89 91.96 —
Rida et al. [78] 2016 98.80 70.10 89.29 —
Lishani et al. [79] 2016 93.55 87.63 89.24 —
Lu et al. [190] 2016 — 92.00 93.00 —
Nandy et al. [96] 2016 — — — 83.30
Liang et al. [111] 2016 99.6 94.76 91.53 —
Alotaibi et al. [108] 2016 98.40 86.70 94.80 53.70
Yeoh et al. [23] 2017 83.70 70.60 76.00 —
Deng al. [25] 2017 96.00 94.00 92.00 —
Verlekar et al. [90] 2017 100.00 87.00 96.00 —
Aggarwal and Vishwakarma [91] 2017 100.00 93.10 81.30 72.70
Lishani et al. [97] 2017 85.36 79.90 74.74 —
Alotaibi and Mahmood [107] 2017 98.40 86.70 94.80 —
Isaac et al. [109] 2017 98.00 95.50 93.00 —
Al Tayyan et al. [135] 2017 99.60 97.58 91.93 60.84
Atta et al. [140] 2017 98.00 73.00 66.0 —
Chaurasia et al. [143] 2017 98.40 88.70 58.90 —
Tang et al. [189] 2017 — 96.30 95.20 —
Ghebleh and Ebrahimi [110] 2017 — — — 82.13
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Hand-crafted or engineering features and especially GEI have
been widely used and have shown attractive recognition
performances in some specific scenarios, however, they fail in
more complicated and unseen ones. Metric learning methods have
shown their efficiency where the learned metric aims to find the
appropriate distance which allows for the minimisation and
maximisation of the intra-class and inter-class variations,
respectively. Another way to address the aforementioned issues is
to resort to domain adaptation with the objective to design a
recognition method based on some training samples while the
testing process is carried out using data with different statistical
and geometrical properties (transport technique can be adapted to
this application problem).

Finally, deep learning techniques have emerged as a new
powerful research approach for gait recognition and have shown an
attractive practicality in various application domains thanks to their
impressive results. To be effective, such type of methods require a
vast amount of labelled data in order to train the deep network
architectures. Unfortunately, this is not the case of gait recognition
where the existing datasets remain relatively of small size. A
possible solution to tackle this problem is data augmentation and
transfer learning techniques.

7 Conclusion
Gait recognition suffers from various intra-class variations caused
by different conditions which drastically affect the recognition
performances. In this paper, we have presented a comprehensive

Table 9 Clothing combinations
Experiments

3 4 6 7 8 C X Y N S V 0 2 5 9 A B D E P T Z F G H I J K L M R U
S1 RP RP RP RP RP RP RP RP SP Sk Sk CP RP RP RP RP RP CP CP SP Sk SP CP CP CP BP BP BP BP BP RC Sk
S2 HS HS LC LC LC DJ FS FS HS HS Dj CW HS LC FS Pk Dj HS LC Pk FS FS CP CP CP BP BP BP BP BP RC Sk
S3 Ht Cs Mf Ht Cs Mf Ht Cs — — — — — — — — — — — — — — — — — — — — — — — —
Si stands for ith clothes slot. RP: Regular pants, BP: Baggy pants, SP: Short pants, Sk: Skirt, CP: Casual pants, HS: Half shirt, FS: Full shirt, LC: Long coat, Pk: Parker, DJ: Down
jacket, CW: Casual wear, RC: Rain coat, Ht: Hat, Cs: Casquette cap, Mf: Muffler.
 

Table 10 Experiments in lateral view on CMU MoBo dataset
Experiments

A B C D E F G H I J K L
gallery slow slow slow fast fast fast inclined inclined inclined ball ball ball
probe fast ball inclined slow ball inclined slow fast ball slow fast inclined
 

Table 11 Accuracy on the CMU MoBo database in per cent
Experiments

A B C D E F G H I J K L
Lee and Grimson [26] 2002 64 50 — — — — — — — — — —
Wang et al. [45] 2003 36 — — 48 — — — — — — — —
Benabdelkader et al. [59] 2004 54 — — 32 — — — — — — — —
Liu et al. [35] 2004 72 88 — — — — — — — — — —
Veeraraghavan et al. [207] 2004 80 48 — 84 48 — — — — 68 48 —
Veeraraghavan et al. [208] 2005 80 48 — 84 48 — — — — 68 48 —
Lee et al. [47] 2007 82 77 — 80 61 — — — — 89 73 —
Kusakunniran et al. [209] 2009 92 73 — 92 61 — — — — 75 63 —
Zhang et al. [123] 2010 72 — — 44 — — — — — — — —
Lam et al. [124] 2011 80 — — 72 — — — — — — — —
Choudhury and Tjahjadi [52] 2012 94 93 — 91 84 — — — — 82 82 —
Roy et al. [125] 2012 100 92 60 88 60 72 76 80 48 92 84 76
Huang and Boulgouris [127] 2012 — — — 92 — — — — — — — —
Choudhury and Tjahjadi [52] 2012 94 93 — 91 84 — — — — 82 82 —
Wang et al. [122] 2012 72 — — 76 — — — — — — — —
Choudhury and Tjahjadi [48] 2013 96 92 — 96 92 — — — — 92 87 —
Lee et al. [53] 2013 60 — — 68 — — — — — — — —
Zeng et al. [49] 2014 96 87 — 92 88 — — — — 87 88 —
Kusakunniran [132] 2014 — — 88 92 84 — — — — — — —
Huang et al. [210] 2014 93.36 65.71 47.81 — — — — — — — — —
Lee et al. [137] 2014 — — — 80 — — — — — — — —
Lee et al. [130] 2014 80 — — 88 — — — — — — — —
Lee et al. [136] 2015 96 — — — — — — — — — — —
Huang et al. [211] 2015 96 — — 96 — — — — — — — —
Zeng et Wang [182] 2016 92 — — — — — — — — — — —
Deng et al. [54] 2016 — 99 — 97 98 — — — — — — —
Luo et al. [190] 2016 96 94 88 92 93 88 91 88 86 92 91 86
Wolf et al. [197] 2016 99 100 — 99 100 — — — — 100 100 —
Kusakunniran et al. [212] 2012 92 — — 88 — — — — — — — —
Tang et al. [189] 2017 100 94 92 96 93 94 93 94 91 93 91 92
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study of existing state-of-the art techniques for robust gait
recognition dealing with clothing and view angle covariates. This
is carried out by introducing simple and clear taxonomies,
comparisons, summaries, and discussions of state-of-the-art
recognition methods and algorithms in terms of the recognition
performances using several widely used and publicly available
datasets.

A large variety of hand-crafted features are related to the human
expertise including the widely used GEI approach which offers
different degree of robustness against intra-class variations caused
by different conditions. These engineering features have shown
good accuracy in some limited scenarios while failing when
applied to more complicated ones. In order to attain superior
recognition performances, feature representation and selection
techniques have been combined with different features. A growing
and intensive body of research, with the goal of end-to-end
recognition from feature extraction and representation and
classification, has emerged using the concept of deep learning. To
be effective deep models require a huge amount of data, due to
their complex structure coupled with their computing power to
exhibit striking performances. Unfortunately, this is not the case for
gait recognition problems due the limited size of existing datasets.
To tackle this problem, data augmentation and transfer learning
techniques are possible solutions.
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