
Monochromatic trees in random tournaments

Matija Bucić∗ Sven Heberle† Shoham Letzter‡ Benny Sudakov§

Abstract

We prove that, with high probability, in every 2-edge-colouring of the random tournament on

n vertices there is a monochromatic copy of every oriented tree of order O(n/
√

log n). This

generalises a result of the first, third and fourth authors who proved the same statement for

paths, and is tight up to a constant factor.

1 Introduction

Ramsey theory consists of a considerable amount of mathematical results, which, roughly speaking,

say that there is no completely chaotic structure, i.e. any sufficiently large structure is guaranteed

to have a large well-organised substructure. For instance, the famous theorem of Ramsey [15] states

that for any fixed graph H, every 2-edge-colouring of a sufficiently large complete graph contains a

monochromatic copy of H. The smallest order of a complete graph with this property is called the

Ramsey number of H.

In this paper we study an analogous phenomenon for oriented graphs. An oriented graph is a directed

graph G obtained by orienting the edges of a simple undirected graph, which is called the underlying

graph of G.

A tournament is an oriented graph whose underlying graph is complete. Given oriented graphs

G,H,K we write G → (H,K) whenever in every 2-colouring of the edges of G there is a blue copy

of H or a red copy of K. In the special case that H = K, we write G → H. The oriented Ramsey

number of H is defined to be the smallest N for which every tournament G on N vertices satisfies

G→ H.

Note that unlike the standard Ramsey numbers which are always finite, in the oriented setting if H

contains a directed cycle then its oriented Ramsey number may be infinite. To see this consider the

following colouring: fix an ordering of the vertices and colour all forward edges blue and all backward

edges red. This 2-coloured tournament does not contain any monochromatic directed cycles. In

particular, it does not have a monochromatic copy of H if H contains a directed cycle. Moreover, it is

∗Department of Mathematics, ETH Zurich, Switzerland; e-mail: matija.bucic@math.ethz.ch.
†Department of Mathematics, ETH Zurich, Switzerland; e-mail: heberle.sven@gmail.com.
‡ETH Institute for Theoretical Studies, ETH Zurich, Switzerland; e-mail: shoham.letzter@math.ethz.ch. Re-

search supported by Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zurich Foundation.
§Department of Mathematics, ETH Zürich, Switzerland; Email: benjamin.sudakov@math.ethz.ch. Research sup-

ported in part by SNSF grant 200021-175573.

1

ar
X

iv
:1

80
9.

07
08

9v
2

 [
m

at
h.

C
O

]
 1

 J
ul

 2
01

9

mailto:benjamin.sudakov@math.ethz.ch

easy to see that every 2-edge-coloured tournament on N vertices contains a monochromatic transitive

tournament on roughly log4N vertices, from which it follows that it contains a monochromatic copy

of every acyclic graph on at most log4N vertices. Hence, the oriented Ramsey number is finite if

and only if H is acyclic.

Let us start by investigating Ramsey numbers of directed paths. Denote the directed path on n

vertices by
−→
Pn, where by a directed path we mean an oriented graph obtained from a path by orienting

all its edges in the same direction. The celebrated Gallai-Hasse-Roy-Vitaver theorem [10, 14, 17, 19]

says that any directed graph, whose underlying graph has chromatic number at least n, contains a
−→
Pn

as a subgraph. It follows that G→ −→Pn for every tournament G of order at least (n− 1)2 + 1; indeed,

given a red and blue colouring of G, either the graph of red edges or the graph of blue edges has

chromatic number at least n, implying the existence of a monochromatic path on at least n vertices.

This statement is sharp. To see this, consider a transitive tournament on (n − 1)2 vertices. We

partition the vertices into sets Ai, each of size n− 1, while preserving the order. We colour all edges

inside some set Ai blue, and all other edges red. It is easy to see that there is no monochromatic path

on n vertices in this colouring. This shows that the oriented Ramsey number of
−→
Pn is (n− 1)2 + 1.

It is interesting to consider oriented Ramsey numbers of further acyclic graphs, and the natural next

example are trees. It turns out that oriented trees behave similarly to paths in terms of their oriented

Ramsey numbers: it was proved by Bucić, Letzter and Sudakov [4] that given any (oriented) tree T

on n vertices and any tournament G on cn2 vertices (where c is a positive constant), we have G→ T ,

i.e. the oriented Ramsey number of any tree of order n is at most cn2.

This result resolves (up to a constant factor) the question of, given n, finding the smallest N such that

every 2-colouring of every tournament of order N is guaranteed to have a monochromatic copy of T for

any tree T of order at most n. However, intuitively it seems that examples of tournaments for which

the bound is tight are close to being transitive. Therefore, it is natural to ask whether in tournaments

that are ‘far from being transitive’ larger monochromatic trees are guaranteed; this question was asked

implicitly, for paths, by Ben-Eliezer, Krivelevich and Sudakov [2]. A natural candidate for such a

tournament is the random tournament, in which the orientation of each edge is chosen independently

and uniformly at random. They showed that, with high probability, every 2-colouring of a random

tournament on N vertices contains a monochromatic directed path of length at least cN
logN . They

also showed that every tournament of order N can be 2-coloured without creating monochromatic

paths of length 3N√
logN

, using the following 2-colouring of a given tournament G of order N . It is

well known and easy to see that any tournament of order N has a transitive subtournament of order

logN . Using this we can partition the vertices of G into transitive subtournaments Ai of order logN
2

and a remainder A0 of at most
√
N vertices. We now 2-colour each of Ai, as described above, to

ensure that the longest monochromatic path within Ai is of length
√
|Ai|, and we colour the edges

in A0 arbitrarily. We then colour all edges from Ai to Aj blue if i < j and red if i > j. In this

colouring, the longest monochromatic path has length at most 2N
logN

√
logN
2 +

√
N ≤ 3N√

logN
.

In a later paper Bucić, Letzter and Sudakov [5] showed that, with high probability, any 2-colouring

of a random tournament on N vertices contains a monochromatic directed path of order at most
cN√
logN

, which is tight up to a constant factor, due to the above upper bound from [2]. They also

showed that the same result holds for oriented paths, which are paths in which edges are not required

to follow the same direction. Following up in this direction, they asked whether the same holds for

general oriented trees. The main result of this paper answers this question in the affirmative.

2

Theorem 1.1. There is a constant c > 0 such that, with high probability, a random tournament G

on N vertices satisfies G→ T , where T is any oriented tree on at most cN√
logN

vertices.

Note that unlike for the standard Ramsey numbers, where the ground graph is complete on N

vertices, the oriented Ramsey numbers allow any tournament on N vertices as a ground graph. This

suggests that taking the ground graph to be the complete directed graph is perhaps a more natural

directed analogue of the standard Ramsey theory, where the complete directed graph on n vertices,

denoted by
←→
K N , is the graph in which between any two vertices i 6= j both directed edges, ij and

ji, are present. Harary and Hell [13] and Bermond [3] introduced the notion of the directed Ramsey

number of an oriented graph H, which is defined to be the least N such that every 2-edge-colouring

of
←→
K N contains a monochromatic copy of H. The directed Ramsey numbers of directed paths were

determined by Gyárfás and Lehel [12], based on a result of Raynaud [16], and, independently, by

Williamson [20]. Bucić, Letzter and Sudakov [4] generalised these results to oriented trees, and also

to the r-coloured variant. This result plays a role in our argument of the proof for Theorem 1.1.

Note that while the problem for random tournaments is seemingly more similar to the oriented

Ramsey numbers, as the base graphs in both cases are tournaments, it turns out the directed Ramsey

numbers are more relevant for our arguments. The main reason is that for random tournaments and

complete directed graphs between any two not-too-small sets of vertices A and B there are many

edges from A to B. However, because this does not hold for smaller sets (i.e. of order at most about

logN), the bound for random tournaments is somewhat worse than for complete graphs. Our proof

of Theorem 1.1 relies only on a property of this kind, so the conclusion of Theorem 1.1 actually holds

for any sufficiently pseudorandom tournament; we refer the reader to Section 3 for more details.

1.1 Organisation of the paper

In the next section we give an overview of the proof of Theorem 1.1. In Section 3 we introduce

some results that we will need throughout the rest of the paper. We then turn to the proof of the

asymmetric generalisation of Theorem 1.1, which we split into two parts. The first part is presented

in Section 4 and deals with the special case when one of the trees is assumed to be a directed path.

The second part of the argument, presented in Section 5, shows how to use this special case to obtain

the general result.

We do not make any effort to optimise the constants presented in this paper. We also neglect rounding

whenever it is not relevant for the argument. Given a 2-colouring of a graph, we call the colours red

and blue. When we consider paths and trees we always assume they are oriented, i.e. between two

vertices there is at most one directed edge. Logarithms are always taken in base 2, unless stated

otherwise.

2 Overview

In this section we give an overview of our arguments. Our aim is to prove that given n and m, a

random tournament G on N vertices satisfies G→ (T, S) for every oriented trees T and S of order n

and m, respectively, where N ≥ c(n+m+
√
nm log(n+m)) and c is an absolute positive constant.

Our proof is divided into two main parts: in the first, we prove it under the assumption that one of

3

T and S is a directed path, and in the second we deduce the general result. In the remainder of this

section, we outline the arguments we use in each of these cases.

Tree vs. path

This is the longest and a more difficult part of the proof, here T is assumed to be a directed tree

(i.e. its edges are directed from a root or vice versa) on m vertices, and S is a directed path
−→
Pn. We

first prove the desired result under the assumption that T has not-too-many leaves (namely, at most

m1/6 leaves). Our aim is to find a red copy of T or a blue copy of
−→
Pn.

We distinguish three types of cycles: long cycles (length at least bm1/3), short ones (length at most

am1/3), and medium ones (all remaining cycles). We now consider two cases: when there exists many

pairwise vertex-disjoint medium or long blue cycles, or when there is a large set spanning no medium

or long blue cycles; it is easy to see that one of these cases holds.

Case 1. many disjoint medium or long blue cycles. In this case we aim to find a spe-

cific structure, which we call red-blue pairs. This structure consists of many pairwise disjoint sets,

A1, B1, . . . , At, Bt, of suitable size, such that all Ai − Bi edges are red and each set Ai is contained

in a blue path Pi, where the Pi’s are pairwise vertex-disjoint (see Figure 4).

We show how to use this structure to find the red tree or the blue path of desired length. To this

end, we construct a 2-edge-coloured auxiliary complete directed graph, where the edge ij is coloured

blue if there are many blue edges going from Ai to Aj in G and red otherwise. Applying the directed

Ramsey result for trees from (see Theorem 4.5) to this auxiliary graph we find a long blue path

or a certain carefully chosen red tree (this is obtained from a suitable split of the tree into smaller

subtrees which we call a tree-split ; see Subsection 4.1 and Figure 1).

If we find a blue path, we lift it to a blue
−→
Pn in G making use of the blue paths Pi from our structure.

If, instead, we find the red tree, we make use of the red bipartite graphs G[Ai, Bi] to embed a subtree

of T within it and connect these embeddings in an appropriate fashion to obtain the full T .

Finally, we explain how to find red-blue pairs by exploiting assumptions on the blue cycle structure

in each of the following two cases.

(1a) Many disjoint medium blue cycles.

We define an auxiliary 2-coloured complete directed graph H, whose vertices are medium blue

cycles, and for cycles C1 and C2, edge C1C2 is blue if a constant fraction of the vertices in C1

have a blue out-neighbour in C2, and otherwise the edge is red.

It is easy to see that there is either a large red-red matching in H, which translates into the

desired red-blue pairs structure; or there is a long blue path, which translates into a blue
−→
Pn

in the original tournament.

(1b) Many disjoint long blue cycles that span no medium blue cycles.

In this case we observe that we can find many disjoint blue cycles with no long blue chords.

This allows us to obtain a red-blue pairs structure, by letting the sets Ai and Bi be intervals

of the long blue cycles.

4

Case 2. a large set of vertices spanning no medium or long blue cycle. We first show

that, in this case, there exist many pairwise disjoint sets U1, . . . , U` of suitable size such that very

few of the edges from Ui to Uj , with i < j, are blue. Using the version of Theorem 1.1 for paths,

which was proved in [5], each set Ui contains many pairs of vertices joined by a long blue path in

Ui, or many pairs joined by a long red path; in the former case we say that the set Ui is blue, and

otherwise we say that it is red. We now consider two cases.

(2a) Most of the sets are red.

In this case we consider a split of the tree T into subpaths (in Subsection 4.1 we show how to

obtain such a path-split). We embed each subpath within a specific Ui, where we exploit the

fact that we have many options for both start and end vertex of the subpath and the fact that

most of the forward edges between the Ui’s are red, to embed and connect the paths and obtain

a red T .

(2b) Most of the sets are blue.

We define an auxiliary 2-coloured complete directed graph K whose vertices are the blue Ui’s,

and an edge UiUj is coloured blue if i > j and if there is a blue edge from every large subset of

Ui to every large subset of Uj , and red otherwise.

As before, we note that K contains either a large red-red matching, or a long blue directed

path. In the latter case we lift the path to a blue
−→
Pn in G. If the former holds, we find many

large bipartite graphs, corresponding to edges of the matching, such that almost all of their

edges are red. We use these graphs and the fact that almost all forward edges between sets Ui
are red to embed a red T , similarly to the first case.

Removing the restriction on the number of leaves. Throughout Subsection 4.2 we were

assuming that T has at most m1/6 leaves, which was necessary in order to control the number of

subtrees we obtain in various splits of T . In Subsection 4.3 we show how to remove this assumption.

For this we introduce another kind of split of T which we call the core-split (see Subsection 4.1 for

details) which splits T into not too many subtrees, each of which has at most m1/6 leaves. Assuming

there is no blue
−→
Pn we find a short sequence of large sets such that each has a large number of red

out-neighbours in the next set of the sequence. This we can do because otherwise we show there is a

set which has a lot of blue edges which allow us to find the blue
−→
Pn. Finally, we iteratively find parts

of the core-split (or find a blue
−→
Pn) within these sets using the result from the previous subsection,

where we use the large red out-degree towards the next set to ensure we can join all the pieces into

a red copy of T .

Tree vs. Tree

The rest of the argument consists of three intermediate steps, which generalise the result obtained

in the previous section, with the final goal being a version of Theorem 1.1 for general trees T and S.

Step 1. directed tree vs. directed tree with O(1) leaves. Let T be out-directed with O(1)

leaves, and let S be a directed tree. We observe that if we remove paths from a directed tree T , that

5

start at any leaf and stop right before a branching vertex or the root, then the resulting tree T ′ has

at most half the number of leaves of T . We iterate a procedure which reduces the search for a red T

or a blue S to a search of red T ′ or blue S, using the previous case of path vs. tree.

Step 2. directed tree vs. directed tree. Let T and S be out-directed trees. Our aim is to

iterate a procedure that reduces the search of a red T or a blue S to a search for a red T1 or a blue

S1, where the order of T1 and S1 is smaller than the order of T and S by at least a constant factor.

To that end, we consider the k-core of a tree T , which is the subtree T ′ consisting of vertices whose

number of descendants is at least |T |/k. One can show that T ′ has at most k leaves and that the trees

in the forest T \ V (T ′) have order at most |T |/k (see Definition 3.4). We make use of the previous

step which tells us that we can find a red T ′ or a blue S, if T ′ is the k-core of T , where k = O(1).

Subsequently, we try to embed the trees in T \ V (T ′) within the correct out-neighbourhoods. If we

succeed we found a red T , otherwise the tree at which we fail is our T1. We repeat in blue to obtain

S1 and iterate until one of the trees drops to constant size when we once again appeal to the previous

result.

Step 3. tree vs. tree. Here we rely on the following idea: if A and B are sets such that every

vertex in A has large out-degree in B and the vertices in B have large in-degree in A, then given a

general tree in T , we can aim to embed in-directed subtrees of T in A and out-directed subtrees of T

in B, using the large degrees between the two sets to connect such subtrees. This idea allows us to

go from the previous step, where we search for monochromatic directed trees, to a search for a red

directed tree or a blue general tree. We then apply this idea again to obtain the desired result for

two general trees.

3 Prerequisites

In this section we mention some useful facts which we shall use throughout the proof. First, we

introduce the notion of pseudorandomness. Let G be an oriented graph. For two disjoint subsets

A,B of the vertices we denote by eG(A,B) the number of edges directed from A towards B; when

the graph G is clear from the context, we omit the subscript G. For a vertex v we denote the out

and in-degree of v by d+(v) and d−(v).

Definition 3.1. Let 0 < ε < 1
2 and let k be an integer. An oriented graph G is (ε, k)-pseudorandom

if for any disjoint sets A,B ⊆ V (G) of size at least k we have e(A,B) ≥ ε|A||B|.

It is easy to see, e.g., by Chernoff’s inequality, that a random tournament is pseudorandom with high

probability, as stated in the following lemma (see Lemma 6 in [5]). In fact, this is the only property

of a random tournament that we shall use in our argument.

Lemma 3.2. Let 0 < ε < 1
2 . There exists a constant σ such that a random tournament T is

(ε, σ log |T |)-pseudorandom, with high probability.

We shall investigate 2-colourings of graphs, where the colours are called red and blue. Therefore,

we extend the notation related to edges by an index b for blue and r for red edges. E.g., er(A,B)

6

denotes the number of red edges going from A to B and similarly d+b (v) is the blue out-degree of

vertex v.

The following lemma gives a lower bound on the number of blue edges in a subset of the vertices

which contains no red copy of a particular tree. This will allow us to find large sets where every

vertex has many red neighbours.

Lemma 3.3. Let G be an (ε, σ logN)-pseudorandom 2-coloured tournament on N vertices. Suppose

that U ⊆ V (G) has the following properties.

(i) the induced graph G[U] has at most ε2

32 |U |2 blue edges and

(ii) ε
4 |U | ≥ σ logN .

Then the graph G contains a red copy of any tree of size ε
4 |U |.

Proof. Let us consider two sets

X+ =

{
v ∈ U

∣∣∣ d+r (v) <
3ε

4
|U |
}

and X− =

{
v ∈ U

∣∣∣ d−r (v) <
3ε

4
|U |
}
,

where the degrees are with respect to the induced subgraph G[U]. We are going to show that both

sets have size at most ε
4 |U |. If this is the case then the induced graph G[U \(X+∪X−)] has minimum

red in and out-degree at least 3ε
4 |U |− 2ε

4 |U | = ε
4 |U | and then we can greedily find any red tree of size

at most ε
4 |U |.

So let us assume that |X+| ≥ ε
4 |U |; the argument for X− is analogous. Let us pick any ε

4 |U | vertices

from X+ and denote this set by Y . Then

er(Y, U \ Y) < |Y | · 3ε

4
|U | = 3ε2

16
|U |2.

By the first assumption on U , we have

e(Y,U \ Y) ≤ er(Y,U \ Y) + eb(Y, U \ Y) <

(
3

16
+

1

32

)
ε2|U |2 =

7ε2

32
|U |2. (1)

However, by pseudorandomness and the lower bound on |U |, we have

e(Y,U \ Y) ≥ ε|Y |(|U | − |Y |) ≥ ε2

4

(
1− ε

4

)
|U |2 ≥ 7ε2

32
|U |2,

where the last inequality follows as ε < 1/2. This is a contradiction to (1), which implies that

|X+| < ε
4 |U |, as required.

A rooted tree is a tree with a special vertex which we call the root. By removing a vertex v in a

rooted tree T we obtain a forest F . The descendants of v are the vertices of T that are not in the

tree in F which contains the root; note that each vertex is a descendant of itself.

Definition 3.4. Let T be a rooted tree on n vertices and let k > 1. The k-core of T is the subtree

of T consisting of vertices that have more than n/k descendants in T .

7

Observation 3.5. Let T be a tree on n vertices and let T ′ be its k-core for k > 1. Then T ′ has at

most k leaves and every tree of the forest T \ V (T ′) has order at most n/k.

Proof. Suppose that T ′ has k non-root leaves (the root of T ′ is the root of T). The sets of descendants

in T of each leaf of T ′ are disjoint and have size greater than n/k. This implies that T has order

greater than n, a contradiction. Therefore, T ′ has at most k− 1 non-root leaves, so in total it has at

most k leaves.

Let S be a tree in the forest T \ V (T ′). Suppose |S| > n/k, then the root v of S has more than n/k

descendants, but then v should be in T ′, a contradiction.

The next result makes it possible to bound the number of vertices with degree at least 3 in the

underlying graph; we call such vertices branching. Note that a tree is a path if and only if it has no

branching vertices. Let lf(T) be the number of leaves in a tree T .

Lemma 3.6. The number of branching vertices is at most lf(T)− 1.

Proof. We argue by induction on the number of leaves k := lf(T). If k ≤ 2 the tree is a path and

paths do not have any branching vertices.

For the induction step we assume that the statement holds for all trees with k − 1 leaves. Let v be

any leaf of T and P a path from v to the first vertex adjacent to a branching vertex w, which exists

as k ≥ 3. Then T \ V (P) is a tree with k − 1 leaves and by induction has at most k − 2 branching

vertices. It follows that the number of branching vertices in T is at most k − 1 (as w is the only

vertex that is branching in T but need not be branching in T \ V (P)).

We call an oriented tree T out-directed, if there is a vertex v, which we call the root of T , such that

all the edges in T are directed away from v. Similarly we define an in-directed tree to have all edges

directed towards v. A directed tree is an out-directed tree or an in-directed tree.

Observation 3.7. Let T be a directed tree on n vertices. Then it is a subgraph of any transitive

tournament G on at least n vertices.

Proof. We assume, without loss of generality, that T is out-directed. Let N = |G|. Since G is

transitive there exists an ordering of the vertices u1, u2, . . . , uN , such that all edges are directed

towards the higher index. Let v1, v2, . . . , vn be an ordering of the vertices of T obtained by a depth

first search algorithm starting at the root v of T . Since T is out-directed, the ordering has the

property that all edges of T are directed towards a higher index and we can embed vi in ui for every

i ∈ [n].

A leaf of an oriented tree is an out-leaf if its out-degree is 0 and an in-leaf if its in-degree is 0. Note

that for an out-directed tree the only in-leaf is the root and all other leaves are out-leaves. In fact

every out-leaf is a leaf itself.

8

4 Tree vs. path

In this section we prove a special case of Theorem 1.1 for a directed tree vs. a directed path; here

the random tournament is replaced by a pseudorandom tournament.

Theorem 4.1. Given 0 < ε < 1
2 and σ > 0, there exists a constant c > 0 such that the following

holds. Let G be a tournament on N vertices which is (ε, σ logN)-pseudorandom. Then G→ (
−→
Pn, T),

where T is any directed tree on m vertices, as long as n, m ≤ N/c and nm ≤ N2

c2 logN
.

As an intermediate result we prove it first for trees with relatively few leaves (see Subsection 4.2),

we then prove Theorem 4.1 in Subsection 4.3. Before turning to the proofs, we discuss three types

of tree splits, which we shall use in the proofs.

4.1 Tree splits

Our proofs in this section make use of several tree splits; we present them here.

The (c, α)-tree-split

Let T be an out-directed tree and let T ′ be a subtree of T . An extending-leaf of T ′ with respect to

T is an out-leaf (i.e. a non-root leaf) of T ′, which is not a leaf of T . Whenever T is clear from the

context we do not mention it.

Lemma 4.2. Let c ≥ 2 and 0 < α ≤ (2c)−1. Let T be an out-directed tree on m vertices with at most

mα leaves. Then there is a partition of the vertices into subtrees T1, . . . , T` such that the following

properties hold.

(i) For every i ∈ [`] there is at most one in-edge towards a vertex of Ti in T , and if present it is

towards the root of Ti,

(ii) the only vertices with out-edges leaving Ti are extending-leaves of Ti,

(iii) each extending-leaf of Ti lies in an even level (i.e. its distance to the root of Ti is even) and it

has out-degree exactly one in T ,

(iv) |Ti| ≤ 6mcα, for all i ∈ [`], and

(v) ` ≤ 2m1−cα.

Given a partition of T into subtrees T1, . . . , T` as in Lemma 4.2, if we contract each subtree Ti to a

single vertex, the resulting graph T ′ is again an out-directed tree with no multiple edges. We call

this graph a (c,α)-tree-split of T ; note that this split need not be unique. A subtree Ti in such a

split that does not have extending-leaves, i.e. the vertex corresponding to Ti in T ′ is a leaf, is called

a leaf-tree.

9

Figure 1: A tree-split of a tree.

Proof of Lemma 4.2. For each i ≤ 2m1−cα we construct a subtree Ti in two stages. At step i we

assume we have already found T1, . . . , Ti−1 for which the conditions (i)-(iv) hold, and V (T1) ∪ . . . ∪
V (Ti−1) induces a subtree T ′ of T with the same root. In the first stage we choose the root of Ti
and ensure that Ti is big enough (or a leaf-tree), so that we are later able to deduce (v), and in the

second stage we extend Ti further to ensure that it satisfies (i)-(iv). We stop the process when all

the vertices of T are covered by the subtrees T1, . . . , Ti, and for such i we denote ` := i.

Stage 1. First we choose the root v of Ti. For i = 1 we take the root of T and for i > 1 we pick

the only out-neighbour of an extending-leaf (there is only one out-neighbour by (iii)) of T ′ (this is

the subtree of T induced by V (T1) ∪ . . . ∪ V (Ti−1)).

Assume first that v has at most mcα descendants in T . Then we let Ti be the subtree consisting of

all descendants of v in T . In this case Ti is a leaf-tree of order at most mcα+1 and there is no second

stage.

Otherwise, we start with a subtree T ′i consisting only of the vertex v. As long as |T ′i | < mcα we pick

an extending-leaf of T ′i and add all its children to T ′i . Note that such an extending-leaf always exists

because there are more than mcα descendants of v in T and each non-leaf vertex of T ′i has all its

children from T in T ′i . Since the maximum out-degree of T is bounded from above by the number of

out-leaves of T (every out-neighbour eventually leads to a different out-leaf by following out-edges),

in each step of the construction of T ′i we add at most mα vertices. This implies that when we stop

(i.e. right after |T ′i | ≥ mcα holds), we have the following.

mcα ≤ |T ′i | ≤ mcα +mα ≤ 2mcα.

Stage 2. We start with Ti = T ′i , produced by stage 1. Call an extending-leaf contained in Ti bad if

it lies in an odd level or has out-degree not equal to one in T . As long as there is a bad extending-leaf

in Ti, we add all its children to Ti. Eventually there are no bad extending-leaves left, since by going

deep enough we reach a leaf of T which by definition is not an extending-leaf.

Note that during the procedure of both stages (i) is always satisfied by the choice of the root.

Moreover, at the end of the procedure, (ii) and (iii) hold as well, since there are no bad extending-

leaves in Ti.

10

Now let us prove that condition (iv) holds, i.e. that |Ti| ≤ 6mcα. From the first stage we know that

|T ′i | ≤ 2mcα. Furthermore, every vertex in Ti \T ′i is either a leaf in T or it was a bad vertex for some

T ′i . In the latter case such a vertex is either branching or has out-degree 1 in T and is on an odd

level, in the second case its child is either a branching vertex or a leaf of T itself. Recall that there

are at most mα leaves in T so by Lemma 3.6, there are at most mα branching vertices. Finally, as

each vertex has a unique parent the number of vertices of Ti \ T ′i of the last type (i.e. vertices on

odd levels of T whose out-degree is 1) is bounded by the number of leaves of T plus the number of

branching vertices of T . This implies that

|Ti| = |T ′i |+ |Ti \ T ′i | ≤ 2mcα +mα +mα + 2mα ≤ 6mcα.

To see that the last condition (v) holds, we note that each leaf-tree contains at least one out-leaf of

T . Thus, the number of leaf-trees is bounded by mα. In addition to that we can bound the number

of non-leaf-trees by m/mcα, since each one has order at least mcα. This implies that

` ≤ mα +m1−cα ≤ 2m1−cα,

where the last inequality follows from c ≥ 2 and 0 < α ≤ (2c)−1.

The α-path-split

In the following lemma we are interested in a similar split, but this time we want the subtrees in the

split to be paths. The graph obtained by contracting the paths in the following lemma will be called

an α-path-split. We call a vertex of a tree a junction if it is a leaf or a branching vertex.

Figure 2: The path-split of a tree.

Lemma 4.3. Let 0 < α ≤ 1
4 . Let T be an out-directed tree on m vertices with at most mα leaves.

Then there is a partition of the vertices into subpaths P1, . . . , P` such that the following properties

hold.

(i) If Pi contains a junction then |Pi| = 1,

(ii) for every i ∈ [`] there is at most one in-edge towards Pi, which is directed towards the start-

vertex of Pi. Furthermore, unless Pi is a junction, there is at most one out-edge away from Pi
which is directed from the end-vertex of Pi,

(iii) |Pi| ≤ m3α and

(iv) ` ≤ 5m1−3α.

11

Proof. We define the paths in the split as follows. First we let each junction be a separate trivial

path of size 1. We then remove all junctions from the tree, thus we are left with a collection of

disjoint subpaths, which we call long subpaths. Finally, we split each such path into as few smaller

subpaths, called short subpaths, such that each has order at most m3α. We let these shorter paths

be the remaining subpaths of our split. We now show that this split satisfies the desired conditions.

First note that the number of junctions is at most 2mα, since by assumption there are at most mα

leaves and therefore at most mα branching vertices, by Lemma 3.6. If we consider a graph whose

vertex set is the set of junctions and put an edge between a pair of junctions whenever they are

joined by a long subpath, we obtain a forest. Therefore, the number of long subpaths, denoted by d,

satisfies the following.

d ≤ # of junctions − 1 ≤ 2mα.

For i ∈ [d], denote by mi the order of the i-th long subpath. Then we split the i-th long subpath

into ri := d mi
m3α e ≤ mi

m3α + 1 shorter subpaths of order at most m3α each. Hence, the total number of

paths used is bounded from above by∑
i∈[d]

ri + 2mα ≤
∑
i∈d

mi

m3α
+ d+ 2mα ≤ m1−3α + 4mα ≤ 5m1−3α,

as required.

The k-core-split

We now define the k-core-split F1, . . . , F` of a tree T ; this will be used in Subsection 4.3 to remove

the requirement on the number of leaves of T in order to prove Theorem 4.1. Let T ′ be the k-core of

T . We set F1 = T ′. For i > 1, let S1, S2, . . . , S`i be the trees of the forest T \⋃j∈[i−1] Fj . For every

j ∈ [`i] we define Tj to be the k-core of Sj and set the forest Fi :=
⋃
j∈[`i] Tj .

r

F1

F2

F3

Figure 3: The 3-core-split of a tree on 19 vertices.

Proposition 4.4. Let F1, . . . , F` be the k-core-split of a tree T . If T ′ is a tree in the forest Fi then

(i) T ′ has order less than |T |
ki−1 and

(ii) lf(T ′) ≤ k.

Proof. Let us prove (i) by induction over i. The statement is clearly true for i = 1. Let us assume

that it holds for some i < l, then every tree S from Fi has size less than |T |
ki−1 and is a k-core of some

subtree of T . Therefore, every tree in Fi+1 has order at most |T |
ki−1 · k−1 = |T |

ki
, using Observation 3.5,

as desired. Property (ii) follows, because every tree in Fi is a k-core of some subtree of T .

12

4.2 Tree with few leaves

We will make use of the following theorem (Theorem 3.17 in [4]). In fact, we will only use a special

case of this theorem, when one of the trees is a path.

Theorem 4.5. There exists a constant c such that for any oriented trees T1 and T2, in any 2-

colouring of the complete directed graph on c(|T1| + |T2|) vertices there exists a red T1 or a blue

T2.

Furthermore, our proof makes use of the special case of Theorem 4.1 for path vs. path proved in [5]

as Theorem 12.

Theorem 4.6. Given 0 < ε < 1
2 and σ > 0 there is a constant c > 0 such that the following holds.

Let G be an (ε, σ logN)-pseudorandom tournament on N vertices. Then G →
(−→
Pn,
−→
Pm

)
provided

n,m ≤ N/c and nm ≤ N2

c2 logN
.

This theorem is tight up to the constant factor. This result is the main bottleneck for our proof, as

it will rely on this result as a black box.

The following theorem is an intermediate result, leading to the proof of the Theorem 4.1. Its proof

introduces some interesting new ideas about how to deal with trees in place of paths.

Theorem 4.7. Given 0 < ε < 1
2 and σ > 0, there exists a constant c > 0 such that the following

holds. Let G be a tournament on N vertices, which is (ε, σ logN)-pseudorandom. Then G→ (
−→
Pn, T),

where T is any directed tree on m vertices, with at most m1/6 leaves, as long as n, m ≤ N/c and

nm ≤ N2

c2 logN
.

Proof. Let α = 1/6. Without loss of generality we may assume that T is out-directed, because

once we prove this since directed paths are both in-directed and out-directed, we can apply it to the

tournament with opposite orientation of every edge to conclude the other case.

Consider a fixed 2-colouring of G. Write a = 128ε−2, b = 8a and make the following definition.

A cycle C is


short if |C| < am2α,

medium if am2α ≤ |C| ≤ bm2α,

long if bm2α < |C|.

We will prove the theorem under assumptions that N ≥ c2 and n,m ≥ N/(c logN), for some value

of c. We start by arguing how to conclude the theorem in general assuming we know it under

these conditions. To see this with only the first assumption, let n′ = max(n,N/(c logN)) and

m′ = max(m,N/(c logN)). It is easy to see that n′,m′ ≤ N/c and n′m′ ≤ N2

c2 logN
still hold. The

required result for m and n now follows from the result for n′ and m′, which satisfy both assumptions.

So there is a c such that the general result holds, given N ≥ c2. Now if N < c2, then c2 > N ≥ cn, cm
implying n,m < c, so the result follows, with a larger constant, by appealing to the fact that oriented

Ramsey numbers of acyclic graphs are finite.

So, from now on we assume N ≥ c2 and n,m ≥ N/(c logN). In particular, this implies mα ≥ σ logN.

13

Case 1. many disjoint medium or long blue cycles

We shall consider two subcases.

(1a) There is a collection of vertex-disjoint medium blue cycles covering at least N/4 vertices,

(1b) There is a collection of vertex-disjoint long blue cycles covering at least N/4 vertices, such that

they span no medium blue cycle and all the large blue cycles are as short as possible.

We resolve both subcases by finding the following structure. Given k and t, a (k, t)-red-blue pairs

are a collection of pairwise disjoint subsets of vertices A1, B1, . . . , At, Bt, each of size k, such that for

every i ∈ [t] the following holds.

(i) The bipartite graph G[Ai, Bi] contains only red edges,

(ii) For every i ∈ [t] there exists a blue path Pi that contains all vertices of Ai, such that Pi and

Pj are vertex-disjoint for all j 6= i.

B1

A1

· · ·

B2

A2

· · ·

· · ·

Bt

At

· · ·

Figure 4: Red-blue pairs

We start by showing how to conclude the argument once we find this structure and then we show

how to find it in each of the two cases.

Proposition 4.8. Let 3
4am

2α ≤ k ≤ am2α and t ≥ N
256k . If G contains (k, t)-red-blue pairs then

G→ (
−→
Pn, T).

Proof. Let us define an auxiliary complete directed graph K on vertex set [t]. We colour the edge ij

blue if at least (1− ε
4)k vertices in Ai have at least ε

2k blue out-neighbours in Aj and red otherwise.

Theorem 4.5 implies that in the auxiliary graph K there is a directed blue path of order t
2c1

or any

oriented red tree of order t
2c1

, for some positive constant c1. We claim that the constant c can be

chosen such that the following two inequalities hold.

(1) t ≥ 8c1
εk n,

(2) t ≥ 4c1m
1−2α.

Inequality (1) follows, as, by the assumptions of Proposition 4.8 and Theorem 4.7, t ≥ N
256k and

N ≥ cn ≥ 256 · 8ε−1c1n, where the last inequality holds under the assumption that c ≥ 211c1ε
−1.

Inequality (2) follows from the assumption that N ≥ cm as t ≥ N
256k ≥ N

256am2α ≥ c
256am

1−2α ≥
4c1m

1−2α, given c ≥ 210a.

14

Suppose that there exists a blue path P = i1i2 . . . i` of order ` := t
2c1

in K. We will explain how to

lift this path to a blue path in G by using subpaths of order at least s := ε
4k from each of the blue

paths Pij associated to Aij for j ∈ [`].

For every j ∈ [`] let us denote by Ej ⊆ Aij the set of vertices with at least 2s = ε
2k blue out-neighbours

in Aij+1 . Note that |Ej | ≥ (1− ε
4)k, since the edge ijij+1 is blue in K.

We start with an initial subpath P ′ of the path Pi1 associated to Ai1 which ends in the last vertex

from Pi1 contained in E1. Note that |P ′| ≥ |E1| ≥ s, since Pi1 covers Ai1 , so also E1.

Suppose that we already have a path P ′ of order at least s(j − 1) in
⋃
r∈[j−1]Air whose last vertex

v is contained in Ej−1.

Let Sj be the blue out-neighbourhood of v in Aij and denote by u1, u2, . . . , uk the vertices of the

blue path Pij in Aij ordered according to their order in Pij . We extend P ′ by the path Q consisting

of up, up+1, . . . , uq, where p is the smallest index among the vertices in Sj and q the largest index

among the vertices in Ej . Note that Q has order at least s, since

|Ej ∩ Sj | = |Ej |+ |Sj | − |Ej ∪ Sj |
≥ |Ej |+ |Sj | − |Aij |
≥
(

1− ε

4

)
k +

ε

2
k − k =

ε

4
k = s.

The blue path in K has order t
2c1

, so this process produces a blue path in G of order at least

ts
2c1
≥

8c1n
εk
· εk
4

2c1
= n, where we used inequality (1); this completes the proof of Proposition 4.8 in the

case where K contains a long blue path.

Otherwise, i.e. if K does not have a blue path of order t
2c1

, then K contains a red copy of a (2, α)-

tree-split of T (obtained from Lemma 4.2), since t
2c1
≥ 2m1−2α, by inequality (2). We now explain

how to lift the tree-split from K to a red copy of T in G. We relabel the vertices of K in such a way

that the vertices of the tree-split, we found in K, are [`], for ` being the order of the tree-split, and

vertex i representing a subtree Ti of T . Our aim is to embed the subtrees Ti in Ai ∪Bi. To that end

we pick ‘candidate sets’ Di ⊆ Ai which satisfy some useful properties.

Claim 4.9. Suppose that for each vertex i of the tree-split we have a non-empty set of candidates

Di ⊆ Ai, such that for any v ∈ Di there is a tree T (v) with the following properties.

(i) T (v) is a red copy of Ti embedded in Ai ∪Bi and rooted at v,

(ii) each vertex u in T (v) that corresponds to an extending-leaf w in Ti (as a subtree of T) is in Ai
and has a red out-edge towards Dj if j is such that there is an edge from w to Tj in T .

Then we can find a red copy of tree T inside the tournament G.

Proof. Let us denote by T ′ the subtree of the tree-split containing the root v of T . From the set of

candidates for the root of T ′ we can pick any vertex we want and set T ′ := T (v). By property (ii) we

can choose the roots of the adjacent subtrees in the corresponding candidate sets and by (i) we can

embed the subtrees themselves as well. Note that as all Ai and Bi are disjoint, we do not use any of

the vertices twice. Repeating this argument eventually produces a red copy of T in the tournament

G.

15

We now show how to construct appropriate candidate sets consisting of at least k/2 vertices. For this

we begin with the leaves of the tree-split and then make our way up, in the sense that we deal with

the candidate set of a particular vertex from the tree-split only if we already defined the candidate

sets for all its out-neighbours.

Let us define the candidate set Di, where the out-neighbours of vertex i in the tree-split are js for

s ∈ [h] (if Ti is a leaf-tree then h = 0). Note that by the assumption on the number of leaves of the

tree T and the definition of a tree-split, h ≤ mα. Furthermore, by construction, the candidate sets

Djs have already been defined (this condition also holds, in particular, for leaf-trees).

For each s ∈ [h], let Xs ⊆ Ai be the set of vertices with at least one red out-neighbour in Djs .

These sets will host the extending-leaves and guarantee property (ii) of Claim 4.9. Let Y be the set

of vertices in Bi that send at least |Ti| + σ logN red edges into each set Xs; if there are no such

sets Xs (i.e. Ti is a leaf-tree) we let Y be the set of vertices in Bi with at least |Ti| + σ logN red

out-neighbours in Ai. Finally, let Di be the set of vertices in Ai that send at least |Ti| red edges into

Y .

Claim 4.10. |Di| ≥ |Ai| − σ logN ≥ k/2.

Proof. Firstly, we show that |Xs| ≥ ε
8k for every s ∈ [h]. Indeed, as |Djs | ≥ k/2 ≥ σ logN , by

pseudorandomness, all but at most σ logN vertices of Ai send at least ε|Djs | ≥ ε
2k edges into Djs .

Since ijs is a red edge in the auxiliary graph K, at most (1− ε
4)k of these vertices send at least ε

2k

blue edges into Djs . It follows that there are at least |Ai| − (1 − ε
4)k − σ logN ≥ ε

8k vertices in Ai
with at least one red out-neighbour in Djs , i.e. |Xs| ≥ ε

8k, as claimed.

We now claim that |Y | ≥ k/2. Indeed, since all edges between Ai and Bi are red, by pseudorandom-

ness, all but at most σ logN vertices of Bi send at least ε|Xs| ≥ ε2

8 k ≥ |Ti|+ σ logN red edges into

Xs, for every s ∈ [h]. Hence, |Y | ≥ |Bi| − h · σ logN ≥ k −mα · σ logN ≥ k/2. A similar argument

shows that |Y | ≥ k/2 if Ti is a leaf-tree.

Finally, by pseudorandomness and since all edges from Ai to Bi are red, we find that |Di| ≥ |Ai| −
σ logN ≥ k/2, as required.

Now let us explain why each vertex in Di is a candidate for the root of Ti. Note that the bipartite

graph G[Di, Y] has minimum red out-degree at least |Ti|, allowing us to greedily embed a copy T ′

of the subgraph of Ti obtained by removing its extending leaves. By the property that all extending

leaves lie at even distance from the root of their corresponding subtree, the parent of such a leaf u is

embedded in Y and has at least |Ti| red out-neighbours in the corresponding set Xs. Since we have

not embedded all the vertices of Ti yet, we can embed u in Xs.

These candidate sets Di satisfy conditions of Claim 4.9, so we can find a red copy of the desired tree

in G. This completes the proof of Proposition 4.8.

In order to complete the proof of Theorem 4.7 in Case 1, it now remains to show how to find

(k, t)-red-blue pairs in the Cases (1a) and (1b).

16

Case 1a. many disjoint medium blue cycles

We assume that there is a collection of vertex-disjoint medium blue cycles C1, C2, . . . , Ct′ which cover

at least N/4 vertices. Since the medium cycles have length at most bm2α, we get that t′ ≥ N
4bm2α .

Let H be an auxiliary 2-coloured complete directed graph on vertex set [t′]. We colour the edge ij

blue if at least a
4m

2α vertices in Ci have a blue out-neighbour in Cj and red otherwise. Now we

consider a maximal red-red matching M , namely a matching that consists of edges that are red in

both directions.

First we suppose that the matching M covers at most t′/2 vertices. Since this matching is maximal,

for every two vertices i and j not covered by M at least one of the directed edges ij and ji is blue. In

particular, there is a blue subtournament on at least t′/2 vertices. Since every tournament contains

a directed Hamiltonian path, we thus find a blue directed path of order t′/2 in the auxiliary graph

H. The following claim explains how to lift this path to the tournament G.

Claim 4.11. Let G be an oriented graph with pairwise vertex-disjoint cycles C1, C2, . . . , Ck such that

for each i < k there are at least r vertices in Ci that have an out-neighbour in Ci+1. Then G contains

a directed path of order k · r.

Proof. We start with a path P ′ which begins at an arbitary vertex of C1 and follows the cycle C1

up to the last vertex that sends an edge towards C2. Note that |P ′| ≥ r.
Assume that P ′ is a path of order at least r(i − 1) with vertices in

⋃
j∈[i−1]Cj , such that its last

vertex has an out-neighbour w in Ci. We extend P ′ by the path Q starting at w and following Ci
up to the last vertex which sends an edge to Ci+1, or until the last vertex in Ci if i = k. Note that

|Q| ≥ r and therefore the new path P ′ has order at least r · i.

By applying Claim 4.11 to the induced blue subgraph of G we find a blue path of order at least

a

4
m2α · t′/2 ≥ a

32b
N ≥ N

256
≥ n,

(where the last inequality holds by assuming that c ≥ 256) as desired.

Therefore, we can assume that the matching M covers at least t′/2 vertices of H. This corresponds

to t := t′/4 disjoint pairs of cycles (Cis , Cjs), for s ∈ [t], where at least k := 3
4am

2α vertices in Cis
do not have a blue out-neighbour in Cjs and vice versa. Hence we can find subsets As and Bs of Cis
and Cjs , respectively, of size k each, with only red edges between them. Each As lies in a different

cycle Cis from the original collection of disjoint medium blue cycles. Thus, we can define Ps to be

the cycle Cis minus one edge. This way Ps contains all vertices of As and the paths Ps are pairwise

disjoint.

Note that t ≥ 3N
512k , since t′ ≥ N

4bm2α ≥ N
32am2α = 3N

128k . So Proposition 4.8 applies and concludes the

proof of Theorem 4.7 in this case.

Case 1b. a large set with many disjoint long blue cycles but no blue medium cycle

Suppose Case 1a does not hold, thus there exists a set U of at least 3N/4 vertices which does not

contain any medium blue cycle.

17

Let us consider the following process which starts with U ′ := U . As long as there exists a long blue

cycle in U ′ we pick a shortest one, say C and define U ′ = U ′ \C. This process eventually terminates

and produces a sequence of disjoint long blue cycles C1, C2, . . . , Ct′ . In this case we are going to

assume that these cycles cover at least N/4 vertices. Note that t′ ≤ N
4bm2α , since each long cycle

contains at least bm2α vertices.

Note that for every i ∈ [t′] all chords in Ci of length at least am2α are red, since otherwise we would

find a blue cycle inside Ci which is either a medium cycle, or a shorter long cycle, contradicting our

choice of Ci as the shortest remaining long cycle.

Write Ci = (v1v2 . . . vr) and k := am2α. Define sets

Ai = {v1, v2, . . . , vr/2−2k} and Bi = {vr/2−k, vr/2−k+1, . . . , vr−k}.

By the argument above we have that G[Ai, Bi] spans red edges only. Let Ai,1, . . . , Ai,r(i), where

r(i) = b|Ai|/kc, be pairwise disjoint sets of k consecutive vertices (with respect to Ci) in Ai, and let

Bi,1, . . . , Bi,r(i) ⊆ B be defined similarly. The sets Ai,j , Bi,j cover all but at most 4k vertices of each

cycle Ci, hence they cover at least N/4− t′ · 4k vertices in total. Since the number of sets Ai,j and

sets Bi,j is the same, and each set has size k, it follows that the number t of sets Ai,j satisfies

t ≥ N

8k
− 2t′ ≥ N

8k
− N

2bm2α
=
N

8k
− N

16k
=

N

16k
,

where the first equality follows from the choice b = 8a which implies that bm2α = 8k. Note that

the collection of pairs (Ai,j , Bi,j) forms a (k, t)-red-blue pairs structure, as each set Ai,j contains a

spanning blue path (which is a part of the cycle Ci), which are mutually disjoint. Proposition 4.8

can now be used to complete the proof of Theorem 4.7 in this case as well.

Case 2. a large set of vertices spanning no blue medium or long cycle

In the remaining case, the process of picking the sequence of disjoint long blue cycles in Case 1b

terminated before it covered at least N/4 vertices. Hence, we are left with a set U that covers at

least N/2 vertices and spans neither medium nor long blue cycles.

Let us start this case with an elementary observation.

Observation 4.12. Every directed graph G with minimum out-degree d contains a cycle of length

at least d+ 1.

Proof. Let v1 . . . v` be a longest directed path in G. By the maximality of this path we get that v`
has no out-neighbour outside of this path. Since the out-degree of v` is at least d it has at least d

out-neighbours among v1, . . . , v`−1. Let s be the smallest index among these out-neighbours of v`.

Then (vsvs+1 . . . v`) is a cycle of length at least d+ 1.

This observation allows us to obtain an ordering of the vertices in U with ‘few’ blue edges going

forward.

Claim 4.13. There exists an ordering u1, u2, . . . , u|U | of the vertices in U such that for every i there

exists at most am2α indices j > i such that there is a blue edge from ui to uj.

18

Proof. Suppose that there exists a subgraph of G[U] which has minimum blue out-degree at least

am2α. Then by Observation 4.12 we find a blue cycle of order at least am2α, a contradiction.

Therefore, there exists a vertex u1 ∈ U with blue out-degree at most am2α. Now suppose that

u1, u2, . . . , ui−1 are defined. In a similar way we define ui to be a vertex with blue out-degree at most

am2α in G[U ′], where U ′ = U \ {u1, u2, . . . , ui−1}. We repeat this as long as i ≤ |U |. The resulting

ordering u1, u2, . . . , u|U | satisfies the requirement of the claim.

Let k = N
32m1−3α . We set t := |U |/k and denote Ui = {u(i−1)k+1, . . . , uik} for i ∈ [t]. We claim that

we can choose the constant c such that the following two inequalities hold.

(1) t ≥ 16m1−3α,

(2) k ≥ 128ε−2am3α.

Indeed, inequality (1) follows independently from c, as t = |U |
k ≥ N

2k = 16m1−3α. We obtain inequality

(2) from N ≥ cm, given c ≥ 212ε−2a, as k = N
32m1−3α ≥ cm

32m1−3α = c
25
m3α ≥ 27ε−2am3α.

Let c2 be the constant from Theorem 4.6 with parameters ε and σ
3α . By choosing c ≥ 128c2,

we obtain from N ≥ cn, cm that k/4 = N
128m1−3α ≥ c2

n
m1−3α , c2m

3α. Similarly, we get k/4 ≥
c2
√

n
m1−3αm3α log(k/4), from N ≥ c√nm logN .

Also note that k/4 = N
128m1−3α ≥ N3α so σ log(k/4) ≥ 3ασ logN, implying that any subtournament

of G of order k/4 is (ε, σ3α log(k/4))-pseudorandom. Therefore, Theorem 4.6 applies for paths of order
n

m1−3α and m3α, within any subset of vertices of size at least k/4.

Claim 4.14. One of the following holds, for each set Ui.

(i) There are at least k/8 pairwise disjoint pairs of vertices in Ui that are joined by a blue path,

contained in Ui, of order n
m1−3α ,

(ii) For each 2 ≤ ` ≤ m3α, there are at least k/4 pairwise disjoint pairs of vertices in Ui that are

joined by a red path, contained in Ui, of order `.

Proof. Consider the following process. As long as there is a blue path of order n
m1−3α ≥ 2 in Ui

(where the inequality follows since n ≥ N
c logN and m ≤ N/c) we remove its first and last vertex. If

this process runs for at least k/8 rounds then (i) holds.

Otherwise, there is a subset W ⊆ Ui of size at least 3
4k with no blue path of order n

m1−3α . Consider

the following process. As long as there are k/4 vertices left in W we can apply Theorem 4.6 to find

a red path of order ` (since ` ≤ m3α) and remove its first and last vertex. Since we remove only two

vertices in each round this process runs for at least k/4 rounds. Thus (ii) holds.

If (i) holds, we say that Ui is blue; otherwise, we say that Ui is red. We now distinguish two cases

depending on the majority colour of the sets Ui.

19

Case 2a. most of the sets Ui are red

In this case there are at least t/2 red sets Ui so, while preserving the ordering, we rename t/2 red

sets Ui as V1, V2, . . . , Vt/2. Note that when i < j we have by Claim 4.13 that every vertex in Vi
has at most am2α blue out-neighbours in Vj . Let us view V1, V2, . . . Vt/2 as vertices of a transitive

tournament with edges pointing always towards the bigger index. Let T ′ be an α-path-split of T (see

Lemma 4.3). By Observation 3.7, we can find a copy of T ′ inside this transitive tournament, since

inequality (1) implies that t/2 ≥ 5m1−3α.

We now show that if we define appropriate candidate sets for each start-vertex of a path in the

path-split, than we can greedily find a red copy of T in G, in a similar manner as in Case 1. Let us

denote by Pi the path corresponding to the vertex i of the embedded path-split.

Claim 4.15. Suppose that for each vertex i of the path-split we have a non-empty set of candidates

Di ⊆ Vi, such that for any v ∈ Di there is a subpath P (v) of T which satisfies

(i) P (v) is a red copy of Pi embedded within Vi with start-vertex v,

(ii) the end-vertex u of P (v) has a red out-edge towards Dj for each j which is a child of i in the

path-split.

Then we can find a red copy of tree T inside the tournament G.

Proof. Use a greedy embedding, analogous to the one used in the proof of Claim 4.9.

We now define such candidate sets, each of size at least k/8. We start with the leaves of the path-split

and then move upwards, in such a way that we are always defining the candidate set for the vertex

whose all out-neighbours have already had their candidate sets defined.

If i is a leaf of the path-split, then Pi is a leaf of T , and we can set Di := Vi.

In the case of i being a non-leaf we apply Claim 4.14 with ` = |Pi| and define Ei, Si ⊆ Vi to be the

sets of end and start-vertices of a red path of length |Pi|, such that |Ei| = |Si| ≥ k/4 (note that if Pi
is a singleton, then we can take Ei = Si = Vi). We distinguish two cases for each non-leaf i in the

path-split, depending on whether i is a branching vertex of T ′ or not.

Suppose that Pi corresponds to a non-branching vertex of T ′. Then its end-vertex has out-degree

exactly 1 in T ; denote this out-neighbour by j. Let X be the subset of Ei, consisting of vertices

that have at least one red out-neighbour in the candidate set Dj . We define the candidate set Di

to be the set of vertices in Si that correspond to the vertices in X. In this case it remains to show

that |X| ≥ k/8. Indeed, by pseudorandomness, all but at most σ logN vertices in Ei send at least

ε|Dj | ≥ εk/8 > am2α edges to Dj . Recall that by the choice of the ordering of the vertices, every

vertex in Ei has at most am2α blue out-neighbours in Dj , hence all but at most σ logN vertices in

Ei have a red out-neighbour in Dj , i.e. |X| ≥ |Ei| − σ logN ≥ k/8.

Now suppose that Pi is a branching vertex in the path-split, i.e. it corresponds to a branching vertex

v in T . The maximum out-degree of T is bounded by the number of leaves, so i has at most mα

out-neighbours in T ′; denote them by j1, . . . , jh (so h ≤ mα). Let Di be the set of vertices in Vi which

20

have a red out-neighbour in each of the sets Djs for s ∈ [h]. As before, all but at most σ logN vertices

in Vi have at least one red out-neighbour in Djs for each s. Hence |Di| ≥ |Vi| − h · σ logN ≥ k/8.

We defined candidate sets required by Claim 4.15, so in the case when most of the sets Ui are red,

we find a red copy of T .

Case 2b. most of the sets Ui are blue

In this case we assume that at least t/2 of the Ui are blue; let us now rename t/2 blue Ui’s as

V1, V2, . . . , Vt/2, while preserving the ordering, and let Ei, Si ⊆ Vi be the sets of end and start-vertices

of the (blue) paths given by Claim 4.14; then |Ei| = |Si| ≥ k/8 for every i.

Define an auxiliary complete directed graph K on vertex set [t/2], where vertex i corresponds to Vi.

We define the following 2-colouring of its edges. Every edge ij with i < j is coloured red. We colour

an edge ij with i > j blue if for every choice of subsets Wi ⊆ Vi and Wj ⊆ Vj of size at least k/16,

there is a blue edge from Wi to Wj ; otherwise, we colour the edge red.

Let M be a maximal red-red matching in K. We now distinguish two cases: M covers at least t/4

of the vertices of K; or there is a blue directed path of order at least t/4 (we have seen in Case 1a

that one of these possibilities occurs).

There is a long blue path in K

In this case, we assume that there is a blue path i1i2 . . . it/4 in K. Let us denote by Xj ⊂ Eij the set

of vertices which are end-vertices of blue paths of order at least j · ` in
⋃
r∈[j] Vir , where ` := n

m1−3α .

Claim 4.16. For every j ∈ [t/4] we have |Xj | ≥ k/16.

Proof. We prove this by induction. In the case j = 1 every vertex in Ei1 is an end-vertex of a path

of order ` in Vi1 . So, let us assume that the statement is true for some j ≥ 1. Let Yj+1 ⊆ Sij+1 be

the set of vertices that have a blue in-neighbour in Xj .

We now show that |Xj+1| ≥ |Yj+1|. Let v ∈ Yj+1 ⊆ Sij+1 and u ∈ Eij+1 be its corresponding end-

vertex of a path Q of order `. Since v ∈ Yj+1, there exists a vertex w in Xj such that the edge wv is

blue in G. By definition of Xj , w is the end-vertex of a path P of order at least j · `. Then PwvQ is

a path of order at least (j + 1) · ` in
⋃
r∈[j+1] Vir , hence u ∈ Xj+1. This shows that |Xj+1| ≥ |Yj+1|.

As there are no blue edges between Xj and Sij+1 \ Yj+1 and since |Xj | ≥ k/16 (by induction) we

have |Sij+1 \ Yj+1| < k/16, by the definition of the auxiliary graph K. This implies that |Yj+1| >
k/8− k/16 ≥ k/16, so |Xj+1| ≥ |Yj+1| ≥ k/16, as required.

By applying Claim 4.16 with j = t/4, we find a blue path of order t/4 · n
m1−3α in G. By inequality

(1) this blue path has order at least n, as desired.

There is a large red-red matching in K.

Now we consider the case where there is a red-red matching M, which covers t/4 vertices of K. Let us

denote the edges of M by (Vi1 , Vj1), (Vi2 , Vj2), . . . , (Vit/8 , Vjt/8), where is < js for every s ∈ [t/8] and

21

i1 < . . . < it/8. By definition of the auxiliary graph K, there are subsets As ⊆ Vis and Bs ⊆ Vjs of size

k/16 each, such that all edges from Bs to As are red; fix such subsets. The vertices i1, . . . , it/8 form a

red transitive tournament that respects this ordering, i.e. isir is an edge if s < r. By Observation 3.7,

we may find within this tournament a copy of a (3, α)-tree-split T ′ of T , since T ′ is an out-directed

tree of size smaller than 2m1−3α ≤ t/8 (by inequality (2)).

It remains to find appropriate candidate sets Di for each vertex i from the tree-split so that we can

find a red copy of T in G, by Claim 4.9. We will construct Di such that they have size at least k/32.

As before, we start with leaf-trees and work our way up the tree, in such a way that when we are

about to define a candidate set Di, the candidate sets of subtrees corresponding to out-neighbours

of the vertex i in the tree-split are already defined.

Let j1, . . . , jh be the out-neighbours in the tree-split of a vertex i. We assume that Djs ⊆ Ajs has

been defined and has size at least k/32. Note that h ≤ mα due to the bound on the number of leaves

of T , and possibly h = 0 if i corresponds to a leaf-tree. Let Xs be the set of vertices in Ai which

have at least one red out-neighbour in Dis , for s ∈ [h]. Let Y be the set of vertices in Bi which have

at least |Ti|+ σ logN red out-neighbours in Xs for every s ∈ [h]; if h = 0 we define Y to be the set

of vertices in Bi that have at least |Ti|+ σ logN red out-neighbours in Ai. Finally, let Di be the set

of vertices in Ai that have at least |Ti| red out-neighbours in Y .

Claim 4.17. |Di| ≥ |Ai| − σ logN .

Proof. Firstly, note that every vertex in Ai has at most am2α blue out-neighbours in Ajs (as js
corresponds to a set that appears later in the ordering V1, . . . , Vt/8 than the set that contains Ai).

It follows from pseudorandomness that all but at most σ logN ≤ k/32 vertices in Ai have at least

ε|Ajs | > am2α out-neighbours in Ajs , at least one of which is red. In particular, |Xs| ≥ k/32.

Secondly, again by pseudorandomness and by the fact that all edges from Bi to Ai are red, all but

at most σ logN vertices in Bi have at least ε|Xs| ≥ |Ti| + σ logN red neighbours in Xs. It follows

that |Y | ≥ |Bi| − h · σ logN ≥ k/32. If h = 0 then, similarly, |Y | ≥ k/32.

Finally, recall that the vertices in Ai have at most am2α blue out-neighbours in Bi. Hence, by

pseudorandomness, all but at most σ logN vertices in Bi have at least ε|Y | out-neighbours in Y , at

least ε|Y | − am2α ≥ |Ti| of which are red. It follows that |Di| ≥ |Ai| − σ logN , as required.

By Claim 4.9 we may find a red copy of T in G. This completes the proof of Theorem 4.7.

4.3 General tree

We are now ready to prove Theorem 4.1, without the constraint on the number of leaves. Our proof

strategy is to consider the m1/6-core-split F1, . . . , F` of a tree on m vertices. Then each tree in the

split has at most m1/6 leaves, so we can use the intermediate result, Theorem 4.7, to find it in the

right neighbourhood.

Proof of Theorem 4.1. Without loss of generality, we assume that T is out-directed, as otherwise

we can look at in-neighbourhoods instead of out-neighbourhoods in G. Suppose that G, together

with a fixed 2-colouring, has no blue copy of
−→
Pn. Let c1 be the constant from Theorem 4.7 for

parameters ε and 2σ. Define δ = ε2

32·6 . We assume that c ≥ max(2c1δ
−1, 4δ−2).

22

Claim 4.18. Let U ⊆ V (G) be a set of size at least δN −m and let T ′ be an out-directed tree on at

most m vertices with at most m1/6 leaves. Then G[U] contains a red copy of T ′.

Proof. Firstly, we claim that G[U] is (ε, 2σ logM)-pseudorandom, where M = |U |. Indeed, note

that

M ≥ δN −m ≥ (δ − 1/c)N ≥ δ

2
N ≥ δ

√
c

2

√
N ≥

√
N,

using N ≥ c and c ≥ 4
δ2

. In particular, 2σ logM ≥ σ logN , so G[U] is (ε, 2σ logM)-pseudorandom,

using (ε, σ logN)-pseudorandomness of G. Next, note that

n,m ≤ N

c
≤ 2

δc
M ≤ M

c1
,

and

nm ≤ N2

c2 logN
≤ 4

c2δ2
M2

logM
≤ M2

c21 logM
,

as c ≥ 2c1
δ . Hence, by Theorem 4.7, U contains either a red T ′ or a blue

−→
Pn; by assumption it follows

that U contains a red T ′, as required.

Let F1, . . . , F` be the m1/6-core-split of T . By Proposition 4.4, ` ≤ 6 and each tree in a forest Fi has

at most m1/6 leaves.

Define U0 = V (G), and for i ≤ 5 let Ui be the set of vertices in V (G) that have at least δN red

out-neighbours in Ui−1.

Claim 4.19. |Ui| ≥ N/6 for i ≤ 5.

Proof. We prove by induction on i that |Ui| ≥ (1 − i/6)N . This holds trivially for i = 0, as

U0 = V (G). Now let 1 ≤ i ≤ 5, and suppose that the statement holds for i − 1. Consider the

set W := Ui−1 \ Ui. Suppose that |Ui| < (1 − i/6)N , then by induction |W | ≥ N/6. Also, by the

definition of Ui, the number of red edges in W is at most |W | · δN ≤ ε2

32 |W |2 (recall that δ = ε2

32·6).

It follows from Lemma 3.3 that W contains a blue
−→
Pn, as ε

4 |W | ≥ max(σ logN,n), a contradiction.

Hence, |Ui| ≥ (1− i/6)N ≥ N/6, as required.

We now show how to find a red copy of T . We first find a red copy of F1 in U5; this is possible due

to Claim 4.18 and the fact that F1 is an out-directed tree on at most m vertices with at most m1/6

leaves. Suppose that we found a red copy of T \ (V (F`) ∪ . . . ∪ V (Fi)) for some 2 ≤ i ≤ `, such that

the vertices corresponding to Fi−1 are in U7−i. We embed the trees in Fi one by one. Let T ′ be one

such tree, and let u be the vertex in U7−i that corresponds to the parent of T ′ in T . Let W be the

set of red out-neighbours of u in U6−i that are still available. By choice of Ui, |W | ≥ δN −m, so by

Claim 4.18 there is a red T ′ in W . Continuing this way, we find a copy of T \ (V (F`)∪ . . .∪V (Fi+1))

such that the vertices corresponding to Fi are in U6−i. Doing this until ` = 6, we find a red copy of

T . This completes the proof of Theorem 4.1.

23

5 Tree vs. tree

In this section we extend Theorem 4.1 to the case of two general (i.e. not necessary directed) trees.

We start by proving it for a directed tree with few leaves vs. any directed tree (see Theorem 5.1); we

then remove the assumption that one of the trees has few leaves (Theorem 5.5); and, finally, we also

remove the assumption that the trees are directed (Theorem 5.8). We will often start by embedding

a subtree T ′ of a tree T , and then attempt to embed the trees in T \ V (T ′) in the neighbourhood of

a suitable vertex in T ′.

5.1 Directed tree vs. directed tree with few leaves

Our first goal is to prove the following theorem.

Theorem 5.1. Given 0 < ε < 1/2 and k, σ > 0 there exists a constant c > 0 such that the following

holds. Let G be a tournament on N vertices which is (ε, σ logN)-pseudorandom, let S be a directed

tree on n vertices, and let T be a directed trees on m vertices with at most k leaves, where m,n ≤ N/c
and nm ≤ N2

c2 logN
. Then G→ (S, T).

Before turning to the proof, we give a definition. Let T be an out-directed tree. The disjoint paths

layer of T , denoted L(T), is the collection of paths of T that end at a non-root leaf u and start one

vertex after the last branching vertex, or root, between the root and u; in the case where T consists

of a single vertex (which is the root), we define instead L(T) = T . In particular, the vertices in L(T),

except for the leaves of T , have degree exactly 2 in T .

Figure 5: The disjoint paths layer of a tree.

Proposition 5.2. The following properties hold for every out-directed tree T .

(i) L(T) is a union of pairwise vertex-disjoint directed paths of T ,

(ii) T \ V (L(T)) is an out-directed tree,

(iii) the number of non-root leaves in T \ V (L(T)) is at most half the number of non-root leaves in

T .

Proof. The first two properties are immediate from the definition. Property (iii) follows as each

non-root leaf in T \ V (L(T)) sends at least two edges to paths of L(T).

Proof of Theorem 5.1. Without loss of generality, suppose that T is out-directed. We assume

that G has no blue S. Let c1 be the constant from Theorem 4.1 with parameters ε and 2σ, set

δ := ε2

32(log k+2) , and pick c such that c ≥ max{2c1/δ, 4(log k + 2)/ε}. We use the following claim.

24

Claim 5.3. Let U be a set of at least δN −m vertices. Then U contains a red
−→
Pm.

Proof. Let M := |U | ≥ δN −m. Then, using c ≥ 2c1/δ ≥ 2/δ,

M ≥ δN − N

c
≥ δ

2
·N ≥

√
N.

Since G, and thus G[U], is (ε, σ logN)-pseudorandom, G[U] is (ε, 2σ logM)-pseudorandom. Using

c ≥ 2c1/δ, we have M ≥ (δ/2)N ≥ (c1/c)N . Thus, by the assumptions on n and m,

n,m ≤ N

c
≤ M

c1
and nm ≤ N2

c2 logN
≤ M2

c21 logM
.

Hence, by definition of c1 (according to Theorem 4.1), U contains a red
−→
Pm or a blue S. Since we

assumed that the latter does not hold, U contains a red
−→
Pm, as required.

Our plan is to embed a red copy of T layer by layer. To this end, define T0 := T and, for i ≥ 1,

Ti := Ti−1 \V (L(T)), and let h be the largest i such that Ti is non-empty. Note that Th is a singleton

(as the root is not removed unless the root is the only vertex), and, by Proposition 5.2 (iii), Ti has

at most k · 2−i non-root leaves; in particular, h ≤ log k + 1.

Define U0 := V (G), and for 1 ≤ i ≤ h let Ui be the set of vertices in Ui−1 whose red out-degree in

Ui−1 is at least δN . We shall need the following claim.

Claim 5.4. Uh 6= ∅.

Proof. The proof is essentially identical to that of Claim 4.19. We prove by induction that |Ui| ≥
(1 − i

h+1)N for 0 ≤ i ≤ h. This is trivial for i = 0, as U0 = V (G). Let 0 < i ≤ h, and suppose

that the statement holds for i − 1, i.e. |Ui−1| ≥ (1 − i−1
h+1)N . Set W := Ui−1 \ Ui. Suppose that

|Ui| < (1− i
h+1)N ; so |W | ≥ N/(h+ 1). We now wish to apply Lemma 3.3. To do so, note that, by

definition of Ui, the number of red edges in W is at most |W |·δN = |W |· ε2

32(log k+2) ·N ≤ ε2

32 |W |· Nh+1 ≤
ε2

32 |W |2, using the defintion of δ and the bounds h ≤ log k + 1 and |W | ≥ N/(h + 1). We also have
ε
4 |W | ≥ σ logN (since N ≥ c and we take c large enough, in terms of σ, ε, k). Thus, by Lemma 3.3,

G contains any blue tree on at most ε
4 |W | vertices. Since m ≤ N/c ≤ ε

4 ·N/(h + 1) ≤ ε
4 |W | (using

c ≥ 4(log k + 2)/ε ≥ 4(h+ 1)/ε), it follows that G contains a blue copy of T , a contradiction.

We now show that there is a red copy of Ti in Ui, by induction on 0 ≤ i ≤ h. Since Th is a singleton

and Uh is non-empty, there is indeed a red copy of Th in Uh. Now suppose that for some 0 ≤ i < h,

there is a red copy of Ti+1 in Ui+1. Recall that Ti+1 = Ti \ V (L(Ti)), hence it suffices to show that

the paths in L(Ti) can be embedded in the red out-neighbourhoods of the corresponding vertices in

Ti+1. We embed the paths in L(Ti) one by one. Let P be a path in L(Ti) of order `, let v be its

start-vertex and let u be the vertex in Ui+1 that corresponds to the parent of v in T . Denote by W

the red out-neighbours of u in Ui which are still available. Then, since u is in Ui+1 and at most m

vertices are used, |W | ≥ δN −m. By Claim 5.3, W contains a red P , as required. We are thus able

to embed each of the paths in L(Ti) in Ui so as to obtain a red copy of Ti in Ui. In particular, by

taking i = 0, we see that G has a red copy of T , as required for the proof of Theorem 5.1.

25

5.2 Directed trees

With the next theorem we further generalise the result to the case of any directed trees S and T .

We once again obtain a reduction to the previous result, Theorem 5.1. This time we make use of

k-cores, which we already encountered in the proof of Theorem 4.1 (see Definition 3.4).

Theorem 5.5. Given 0 < ε < 1/2 and σ > 0, there exists a constant c > 0 such that the following

holds. Let G be a tournament on N vertices which is (ε, σ logN)-pseudorandom. Then G → (S, T)

for any directed trees S and T on n and m vertices, respectively, where n,m ≤ N/c and nm ≤ N2

c2 logN
.

Proof. Our goal is to reduce the statement of this theorem to the case when one of the trees has a

constant number of leaves. We iteratively make the trees S and T smaller, using Theorem 5.1, until

one of them becomes a singleton.

Define δ = ε2/64, ` := 8/δ2, k := `2, let c1 be the constant from Theorem 5.1 with parameters ε,

3σ and k, and let c := max{c1`, 8`/ε}. Set h := dlogkNe for 0 ≤ i ≤ h, and write ni := n · k−i,
mi := m · k−i, and Ni := N · `−i. We shall use the following proposition.

Proposition 5.6. The following properties hold.

(i) Let U be a set of at least Ni+1 vertices, let S be a directed tree on ni vertices, and let T be a

directed tree on mi vertices with at most k leaves. Then U contains a blue S or a red T .

(ii) Let U be a set of at least Ni+1 vertices. Then either it contains a blue copy of any tree on ni
vertices, or the set of vertices in U whose red out-degree in U is at least δ|U | has size at least

|U |/2.

Proof. Firstly, note that for every 0 ≤ i ≤ h

Ni ≥ N · `− logk N−1 = N · k− 1
2
logk N · 1

`
=

√
N

`
≥ N1/3.

It follows that every subset U ⊆ V (G) of size at least Ni, where 0 ≤ i ≤ h, is (ε, 3σ log |U |)-
pseudorandom.

Note that ni = nk−i ≤ n`−i ≤ (N/c)`−i = Ni+1`/c ≤ Ni+1/c1 (using c ≥ c1`). Similarly, mi ≤
Ni+1/c1 and nimi ≤ N2

i+1/c
2
1 logNi+1. Property (i) thus follows from the definition of c1 (via Theorem

5.1).

Property (ii) can be deduced from Lemma 3.3 as follows. Suppose that the set X of vertices in U

whose red out-degree is smaller than δ|U | has size at least |U |/2. Then the number of red edges

spanned by X is at most |X| · δ|U | ≤ ε2

32 |X|2. Thus, by Lemma 3.3, G[X] contains a blue copy of

any tree on at most ε
4 |X| ≥ ni vertices, as required, where we used the inequalities ε

4 |X| ≥ ε
8Ni+1 ≥

εc
8`ni ≥ ni (using ni ≤ Ni+1`/c and c ≥ 8`/ε) and ε

4 |X| ≥ ε
8Ni+1 ≥ σ logN .

We complete the proof with the following claim.

Claim 5.7. Let U ⊆ V (G) be a set of size at least Ni, where 0 ≤ i ≤ h, and let S and T be directed

trees of order ni and mi, respectively. Then U contains a blue S or a red T .

26

Proof. We prove the claim by induction on i. Note that when i = h the claim holds trivially as

nh,mh ≤ 1 and Nh ≥ 1. Now suppose that 0 ≤ i < h and the claim holds for i+ 1.

Suppose that U does not contain a blue S or a red T . For convenience, we assume that S and T

are out-directed; the remaining cases follow similarly. Let S′ and T ′ be the k-cores of S and T ,

respectively. Then S′ and T ′ have at most k leaves, S \ V (S′) is a forest of trees of order at most

ni+1, and T \ V (T ′) is a forest of trees of order at most mi+1.

Let X be the set of vertices in U whose red out-degree in U is at least δ|U |. Then, by Proposition

5.6 (ii) and the assumption that U does not contain a blue S, we have |X| ≥ |U |/2 ≥ Ni/2 ≥ Ni+1.

By Proposition 5.6 (i) and the assumption that U does not have a blue S, X contains a red T ′. We

attempt to extend the copy of T ′ to a red T in U by attaching, one at a time, copies of the trees in

T \V (T ′). As U does not have a red copy of T , at some point we fail. Let T ′′ be the tree in T \V (T ′)

that we fail to embed (while T ′ and some of T \ V (T ′) is already embedded). Denote the root of T ′′

by u, and let u′ be the vertex in X in which we embedded the parent of u in T .

Denote by Y the set of red out-neighbours of u′ in U which have not been used yet, so by the failure

to embed T ′′, Y does not have a red T ′′. Let Y ′ be the set of vertices in Y whose blue out-degree in

Y is at least δ|Y |. Then, |Y | ≥ δ|U | −mi ≥ δ
2 |U | ≥ δ

4Ni ≥ Ni+1 hence, by Proposition 5.6 (ii), with

red and blue swapped, |Y ′| ≥ |Y |/2 ≥ δ
8Ni ≥ Ni+1. As Y , and thus Y ′, does not contain a red T ′′,

it follows from Proposition 5.6 (i) that Y ′ contains a blue S′. Again, we try to extend this copy of

S′ to a blue copy of S in Y ′, by attaching one tree of S \ V (S′) at a time. As there is no blue copy

of S in Y ′, at some point we fail; denote by S′′ the tree that we fail to embed. Let v be the root of

S′′, and let v′ be the vertex in Y ′ where we embedded the parent of v in S.

Let Z be the set of blue out-neighbours of v′ in Y ′ which are not used. Then |Z| ≥ δ|Y |−ni ≥ δ
2 |Y | ≥

δ2

8 Ni = Ni+1 and Z does not have a red T ′′ or a blue S′′, contrary to the induction hypothesis. It

follows that U contains a red T or a blue S, as required.

The proof of Theorem 5.5 follows immediately from Claim 5.7 by taking i = 0.

5.3 General trees

Our final aim is to generalise Theorem 5.5 to arbitrary oriented trees, as follows.

Theorem 5.8. Given 0 < ε < 1/2 and σ > 0, there exists a constant c > 0 such that the following

holds. Let G be a tournament on N vertices which is (ε, σ logN)-pseudorandom, and let S and T be

trees of orders n and m, respectively, where m,n ≤ N/c and nm ≤ N2

c2 logN
. Then G→ (S, T).

We will use the next definition and lemma in the proof.

Definition 5.9. Let G be an oriented graph and k a positive constant. We call a pair of disjoint

subsets (A,B) ⊆ V (G)2 a k-mindegree pair if every vertex in A has at least k out-neighbours in B

and every vertex in B has at least k in-neighbours in A.

Lemma 5.10. Let 0 < δ < 1
4 . In every oriented graph G with at least δ|G|2 edges, there is a

δ
4 |G|-mindegree pair.

27

Proof. Let us define a partition (X,Y) of V (G) by putting each vertex independently with prob-

ability 1/2 either in X or in Y . Note that the expectation of e(X,Y) is at least e(G)/4 ≥ δ
4 |G|2.

Thus, there exist disjoint sets X and Y with e(X,Y) ≥ δ
4 |G|2.

Now we consider the underlying subgraph of G whose edges are those going from X to Y . We

remove one by one all vertices with degree less than δ
4 |G| in this underlying graph. Let A ⊆ X and

B ⊆ Y be the sets of remaining vertices. Note that both A and B are non-empty, since otherwise all

vertices would be removed by this process, each contributing less than δ
4 |G| edges. This would imply

e(X,Y) < δ
4 |G|2, a contradiction. Therefore, (A,B) is a δ

4 |G|-mindegree pair in G.

We shall use Theorem 5.5 in our proof of Theorem 5.8. For this we need a suitable split of T .

Let v be the root of T . Let F1 be the induced subtree of T containing v and all vertices of T, which

can be reached from v by following in-edges (it is possible that F1 contains only v). Let U2 be the

set of roots of the trees in the forest T \ V (F1). We define F2 to be the forest of induced subtrees

of T consisting of the vertices in U2 and all vertices in T \ V (F1) that can be reached from U2 by

following out-edges. We continue this procedure and eventually we obtain a split of T into layers of

in and out-forests F1, . . . , F`, such that the forest Fi consists of in-directed trees for odd i ∈ [`] and

of out-directed trees for even i ∈ [`]. Moreover, all edges in T are either contained in a forest Fi or

are between consecutive layers Fi and Fi+1, and they are directed from Fi to Fi+1 if i is odd, and

are directed from Fi+1 to Fi if i is even. We call this split the in-out split of T .

v

F1

F2

F3

Figure 6: The in-out split of a tree.

Proof of Theorem 5.8. We first prove the theorem under the additional assumption that S is

directed, using Theorem 5.5, and then we use this to prove the theorem in full generality. In order

to avoid repeating the arguments, we use the Proposition 5.11 below.

Let δ = ε2

32 . Let c1 be the constant from Theorem 5.5 with parameters ε and 2σ. Without loss of

generality c1 ≥ 8/δ, and let c = c31. Let N,n,m be fixed (such that the inequalities in the statement

of the theorem hold), and let G be a 2-coloured tournament on N vertices.

Proposition 5.11. Let N/c1 ≤ M ≤ N . Let U ⊆ V (G) be a set of size M , and suppose that every

subset of U of size at least M/c1 contains a red copy of every directed tree of order at most m. Then

U contains a blue copy of every tree (not necessarily directed) of order n, or a red copy of every tree

of order m.

The same holds with the roles of red and blue, and the roles of n and m, swapped.

Proof. As we have done already several times, by Lemma 3.3 we can assume that U spans at least

δM2 red edges, since otherwise U contains a blue copy of every tree of order (ε/4)M ≥ n. Then by

28

Lemma 5.10 there exist disjoint sets A,B ⊆ U such that (A,B) is a (δ/4)M -mindegree pair in the

red subgraph of G. Let T be a tree on m vertices, consider its in-out split F1, . . . , F`, and denote

by V1, . . . , V` the corresponding partition of vertices of the tree T ; recall that F1 is an in-directed

subtree of T . We will embed every in-directed tree of the in-out split inside A and every out-directed

tree in B.

Claim 5.12. For every i ∈ [`] there is a red copy of T [V1 ∪ · · · ∪ Vi] such that Vi is embedded in A if

i is odd and in B if i is even.

Proof. We prove this by induction. For the basis, note that F1 is a single in-directed tree and

|A| ≥ (δ/4)M ≥M/c1, thus by assumption there is a red copy of F1 inside A.

Now let us assume that the claim holds for 1 ≤ i− 1 < `. For convenience we assume that i is even;

the case where i is odd follows similarly. So, we have found a red copy of T [V1 ∪ · · · ∪Vi−1] such that

Vi−1 is embedded in A. Now we need to show how to embed the trees of the forest Fi. Let T ′ be one

of the trees in the forest Fi and v ∈ A be the vertex corresponding to the parent of the roof of T ′ in

T [V1 ∪ · · · ∪Vi−1]. Since (A,B) is a (δ/4)M -mindegree pair, v has at least (δ/4)M red out-neigbours

in B. So far we embedded at most n vertices of the tree T , so the number of available vertices in the

neighbourhood is at least (δ/4)M − n ≥ (δ/4)M −M/c1 ≥ M/c1. Therefore, by assumption, there

is a red copy of T ′ in B rooted at some vertex w, such that edge vw is red.

This way we can embed all the trees in Fi and extend the red copy of T [V1 ∪ · · · ∪Vi−1] to a red copy

of T [V1 ∪ · · · ∪ Vi] satifying the conditions of the claim.

By Claim 5.12 with i = `, U contains a red T . As T was an arbitrary tree on m vertices, the proof

is complete. An analogous argument can be used to prove the statement of the proposition with the

roles of red and blue, and of m and n, swapped.

We now show how to complete the proof of Theorem 5.8 using Proposition 5.11. Suppose that there

exists a subset U ⊆ V (G) of size at least N/c1, whose subsets of size at least |U |/c1 all contain a red

copy of every directed tree of order m. Then, by Proposition 5.11, U contains a red copy of every

tree of order m or a blue copy of every tree of order n, and we are done. Thus we may assume that

every subset U ⊆ V (G) has a subset WU of size at least |U |/c1 such that WU does not contain a

red TU , for some directed tree TU of order m. But then, by Theorem 5.5, every such WU contains

a blue copy of every directed tree on n vertices (using the definition of c1, and the inequalities

n,m ≤ N/c = N/c31 ≤ |WU |/c1 and nm ≤ N2/c2 logN ≤ |WU |2/c21 log |WU |). In particular, every

set U ⊆ V (G) of size at least N/c1 contains a blue copy of every directed tree on n vertices. By

Proposition 5.11 again (with the roles of red and blue and n and m swapped), either G contains a

red copy of every tree on m vertices, or a blue copy of every tree on n vertices, as required.

6 Concluding remarks and open problems

In this paper we have proved that, with high probability, in every 2-edge-colouring of a random

tournament on Cn
√

log n vertices there exists a monochromatic copy of any tree of order n.

Bucić, Letzter and Sudakov [4] proved tight results for both oriented and directed Ramsey numbers

of trees for the case of more than two colours as well. It seems that the methods used in their proofs

29

do not extend directly to the random tournament setting, so it could be very interesting to extend

our result to k-colours. In the case of paths they showed in [5] that, with high probability, in any

k-edge colouring of a random tournament on Ω(nk−1
√

log n) vertices, there is a monochromatic path

of length n. Moreover, an example by Ben-Eliezer, Krivelevich and Sudakov [2] shows that there

is a k-edge colouring of any tournament on cnk−1(log n)1/k vertices with no monochromatic paths

of length n, for some constant c > 0. We believe the upper bound should be tight, for random

tournaments, but the k-colour case is still open, even for directed paths.

Burr and Erdős [6] initiated the study of Ramsey numbers of bounded degree graphs in 1975. They

conjectured that the Ramsey number of bounded degree graphs is linear in their size. This was

subsequently proved by Chvátal, Rödl, Szemerédi and Trotter [7]. The dependence of the constant

factor on the maximum degree in this bound was later improved, first by Eaton [9], then by Graham,

Rödl and Ruciński [11] and the currently best bound is due to Conlon, Fox and Sudakov [8]. Bucić,

Letzter and Sudakov [4] pose an interesting analogous problem in the oriented and directed Ramsey

settings. They ask if for every d there is a constant c = c(d) such that any tournament on cn

vertices contains any acyclic graph on at most n vertices with maximum degree at most d. This

can be thought of as the one colour version of the more general question of determining the r-colour

oriented Ramsey number of bounded degree acyclic graphs. A similar question arises naturally in

the random setting. Here the one colour version is a simple consequence of the directed version of

the Regularity Lemma of Szemerédi [18] due to Alon and Shappira [1]. However, the question of the

two colours is open and interesting and it seems likely that a result in any setting could also help

with the other settings.

Theorem 1.1 is tight up to a constant factor, as long as the only information we are given on the tree

is its order. However, it is not tight for every tree of order n. For example, if the tree in question

T is a star of order n, then it is not hard to see that the random tournament G is only required to

have order Ω(n) in order to satisfy G → T , as opposed to a bound of Ω(n
√

log n) which is needed

for a directed path on n vertices, or for trees which contain directed subpaths of order Ω(n). With

this in mind, it is natural to ask if the tight bound for a tree T depends only on the order of the tree

and the length of its longest directed subpath, denoted by `(T). More precisely, Bucić, Letzter and

Sudakov [4] ask if the directed Ramsey number of a tree is O(|T | · `(T)); if this holds, it can readily

be seen to be tight. They prove that this holds for oriented paths. It would also be interesting to

tackle this question in the random tournaments setting.

Acknowledgements

We would like to thank the anonymous referee for helpful comments.

References

[1] N. Alon, A. Shapira, Testing subgraphs in directed graphs, J. Comput. Syst. Sci. 69 (2004), no. 3,

354–382.

[2] I. Ben-Eliezer, M. Krivelevich, and B. Sudakov, The size Ramsey number of a directed path, J.

Comb. Theory Ser. B 102 (2012), no. 3, 743–755.

30

[3] J.-C. Bermond, Some Ramsey numbers for directed graphs, Discr. Math. 9 (1974), no. 4, 313–321.

[4] M. Bucić, S. Letzter, and B. Sudakov, Directed Ramsey number for trees, J. Comb. Theory Ser.

B 137 (2019), 145–177.

[5] , Monochromatic paths in random tournaments, Random Struct. Alg. 54 (2019), 69- 81.

[6] S. A. Burr and P. Erdős, On the magnitude of generalized Ramsey numbers for graphs, Colloq.

Math. Soc. János Bolyai 10 (1975), 215–240.

[7] V. Chvatál, V. Rödl, E. Szemerédi, and W. T. Trotter, The Ramsey number of a graph with

bounded maximum degree, J. Comb. Theory Ser. B 34 (1983), no. 3, 239–243.

[8] D. Conlon, J. Fox, and B. Sudakov, On two problems in graph Ramsey theory, Combinatorica

32 (2012), no. 5, 513–535.

[9] N. Eaton, Ramsey numbers for sparse graphs, Discr. Math. 185 (1998), no. 1-3, 63–75.

[10] T. Gallai, On directed paths and circuits, Theory of Graphs (Proc. Colloq., Tihany, 1966) (1968),

115–118.

[11] R. L. Graham, V. Rödl, and A. Ruciński, On graphs with linear Ramsey numbers, J. Graph

Theory 35 (2000), no. 3, 176–192.

[12] A. Gyárfás and J. Lehel, A ramsey-type problem in directed and bipartite graphs, Period. Math.

Hung. 3 (1973), no. 3-4, 299–304.

[13] F. Harary and P. Hell, Generalized Ramsey theory for graphs, V: The Ramsey number of a

digraph, Bull. London Math. Soc. 6 (1974), 175–182.

[14] M. Hasse, Zur algebraischen Begründung der Graphentheorie, I, Math. Nachr. 28 (1965), 275–

290.

[15] F. P. Ramsey, On a Problem of Formal Logic, Proc. London Math. Soc. S2-30 (1929), no. 1,

264.

[16] H. Raynaud, Sur le circuit hamiltonien bi-coloré dans les graphes orientés, Period. Math. Hung.

3 (1973), 289–297.

[17] B. Roy, Nombre chromatique et plus longs chemins d’un graphe, Rev. Française Informat.

Recherche Opérationnelle 1 (1967), no. 5, 129–132.

[18] E. Szemerédi, Regular partitions of graphs, Problèmes combinatoires et théorie des graphes,

Proc. Colloq. Internat. CNRS, vol. 260, Paris, 1978, pp. 399–401.

[19] L. M. Vitaver, Determination of minimal coloring of vertices of a graph by means of Boolean

powers of the incidence matrix, Dokl. Akad. Nauk SSSR 147 (1962), 758–759.

[20] J. E. Williamson, A Ramsey type problem for paths in digraphs, Math. Ann. 203 (1973), 117–118.

31

	1 Introduction
	1.1 Organisation of the paper

	2 Overview
	3 Prerequisites
	4 Tree vs. path
	4.1 Tree splits
	4.2 Tree with few leaves
	4.3 General tree

	5 Tree vs. tree
	5.1 Directed tree vs. directed tree with few leaves
	5.2 Directed trees
	5.3 General trees

	6 Concluding remarks and open problems

