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Abstract. 'We continue the study of the following general problem on vertex
colorings of graphs. Suppose that some vertices of a graph G are assigned to
some colors. Can this “precoloring” be extended to a proper coloring of G
with at most k colors (for some given k)? Here we investigate the complexity
status of precoloring extendibility on some classes of perfect graphs, giving good
characterizations (necessary and sufficient conditions) that lead to algorithms
with linear or polynomial running time. It is also shown how a larger subclass
of perfect graphs can be derived from graphs containing no induced path on
four vertices.

1. Introduction

We consider finite undirected graphs G = (V, E') with vertex set V' and edge
set . The clique number or mazimum clique size and the chromatic number of
G are denoted by w(G) and x(G), respectively. The independence number (i.e.,
the clique number of the complementary graph) is denoted by a(G). For any
vertex set W C V', Gy denotes the subgraph induced by W. By definition, for
a given integer k > 1, a (proper) k-coloring is a function f:V — {1,2,... k}
such that uv € E implies f(u) # f(v).

The problem we investigate in this paper was initiated in [1, 2] and is
called the PRECOLORING EXTENSION problem, or PrEzt in short. It can
be formulated as follows.

Instance. An integer k > 1, a graph G = (V, E) with |V| > k, a vertex subset
W C V, and a proper k-coloring ¢ of Gy .

Question. Can ¢ be extended to a proper k-coloring of the entire graph G?

For an instance of PrExt we say that k is the color bound, and G is a
precolored or a partially k-colored graph. The vertices of W and of V — W
are called precolored and precolorless, respectively. The precolored classes are
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the sets W; = {x € W : f(z) =i}, i = 1,2,..., k. The number of nonempty
precolored classes, |f(W)|, is called the precolor number. We note that the
extendibility of a precoloring with color bound k£ = 1 simply means that the
graph has no edge and the precolor number is at most one. One can also see
that PrExt is slightly less general than LIST-COLORING [30]; namely, in
PrExt, the list of admissible colors of a precolorless vertex is {1,2, ..., k}, while
that of a precolored one has length just one.

Restricted instances. The MONOCOLORING PROBLEM is the special
version of PrExt where the precolor number is one. Moreover, given a nonneg-
ative integer d, the subproblem d-PrEzt is defined as the problem in which
the instances of PrExt are restricted to those partially k-colored graphs where

the size of each precolored class is at most d. Note that 0-PrExt is equivalent
to the usual CHROMATIC NUMBER problem, i.e., “Is x(G) < k 7.

1.1. Background and summary

Many important problems in graph theory and combinatorial optimization,
and some practical problems as well, can be formulated as certain instances of
PrExt. We refer the reader to the papers [2, 3, 15, 20, 28] where, beside the
original motivation coming from scheduling and potential applications in VLSI
theory, several connections with a number of interesting and extensively studied
concepts (such as e.g. bipartite matchings, partial Latin squares, integer-valued
multicommodity flows, coloring games) are discussed.

In this paper we concentrate on the solvability of PrExt on various types
of perfect graphs, including trees, bipartite graphs and their complements, split
graphs, cographs, interval graphs, and complements of Meyniel graphs. Some
particular instances of PrExt on the entire class of perfect graphs also are
considered.

One reason justifying the study of PrExt on those particular classes is
that the general problem is surprisingly hard to solve. Namely, even 1-PrExt
is NP-complete on bipartite graphs, as well as 2-PrExt on interval graphs (see
[20] and [2], respectively). Our general aim can be summarized as follows.

Problem 1.1. Let G be a given class of graphs.

(1) Decide whether PrExt (or d-PrExt, for some given d > 1) is NP-complete,
or polynomially solvable, or is solvable even by a linear algorithm on the
precolorings of the graphs G € G.

(2) Find easy-to-check necessary and sufficient conditions for a precoloring of
G € G to be extendible.

The paper is organized in a way strongly motivated by Problem 1.1. In
Section 2 we present several conditions that are necessary (in every graph or
in some particular classes) for the extendibility of precolorings. In Section 3,
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classes of graphs are considered for which the conditions in question are not
only necessary but also sufficient. One of them, namely the “core condition”
(cf. Section 2.2) leads to a further observation (Theorem 4.1), interesting on its
own as well, that enables us to derive a wider subclass of perfect graphs from
the class of cographs. The algorithmic consequences of the characterization
theorems of Section 3 are discussed in Section 8.

The proofs of the characterizations (Sections 5 through 7) are grouped
according to the conditions involved. On the other hand, the algorithmic re-
sults are ordered by time complexity: Section 8.1 presents linear algorithms,
Section 8.2 deals with polynomial-time algorithms of a purely combinatorial
nature, while Section 8.3 gives some applications of the ellipsoid method.

Some open problems are mentioned in the concluding section.

1.2. Notation and terminology

We apply the usual notation K,,, C),, P, for the complete graph, the cycle, and
the path on n vertices, respectively. Here n is the length of C,, and of P, 41,
and if n is an odd number, we say that a graph isomorphic to C,, (P,41) is
an odd cycle (odd path). We also use the notions line graph, bipartite graph,
cograph, interval graph, chordal graph, split graph, Meyniel graph, and perfect
graph in the usual sense. Let us recall that the class of cographs is the smallest
class that contains the one-vertex graph and is closed under vertex-disjoint
union and complementation. (Thus the complement of any connected cograph
is disconnected.) Equivalently, this is the class of graphs containing no induced
4-path. A split graph is a chordal graph whose complement is also chordal.
Equivalently, a graph is a split graph if and only if a 4-cycle or a 5-cycle is
induced neither in the graph nor in its complement. In a split graph one clique
and one independent set together cover all vertices (cf. [8, 14]). A Meyniel
graph is a graph in which every odd cycle of length at least five contains at least
two chords (i.e., edges joining nonconsecutive vertices on the cycle). Deleting
all edges of an induced subgraph of a Meyniel graph, a slim graph is obtained
(which is also known to be perfect [16]).

Given a graph G = (V, F) and a subset U C V', N(U) denotes the set of
those vertices of V' — U which have at least one neighbor in U.

2. Obstacles for non-extendibility of a precoloring

Given a partially k-colored graph G = (V, E) with precolored vertex set W,
it is obvious that x(G) < k is a necessary condition for the extendibility of
the precoloring. However, even if this condition is fulfilled, there can be other
obstacles, too.

2.1. Integer combinations of cliques
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We shall consider sets of characteristic vectors over V for a graph G = (V, E).
For any U C V, by the characteristic vector of U over V we mean the |V|-
dimensional column vector u with 0 or 1 in each component such that, con-
sidering the elements of V' in a fixed order, the ith component of u is 1 (0) if
the ith element of V' is (is not) in U, i = 1,2,...,|V|. Also, for any set IC of
characteristic vectors over V', let XK denote the sum of the vectors of K.

Let W be any subset of V' with characteristic vector w over V, and let
L (M) denote the set of the characteristic vectors of all mazimal (maximum,)
cliques of G. A subset K C M is called a W-knot if there exist strictly less
than |W|+ |K| (not necessarily distinct) vectors in £ such that their sum (as a
column vector) is at least w + 3X/C. Observe that the existence of any W-knot
implies |W| > 2 and that M is also a W-knot. We can formulate the following
condition.

Knot condition. No W-knot exists for any precolored class W.

Given two vertices v; € V with characteristic vectors v; of {v;} over V,
i = 1,2, we say that some (not necessarily distinct) vectors x;; € M, i =1, 2,
J=12,....m, spanvi andvy if vi +x11+ ...+ X1 = Vo +Xo1 + ...+ Xom.

Span condition. Any two spanned precolored vertices have the same color.

A special case of the following lemma was first observed by Sebd [29] in
connection with the monocoloring problem on perfect graphs.

Lemma 2.1. If G is a partially k-colored graph and k = w(G), then both the
knot and span conditions are necessary for the precoloring extendibility.

This lemma will be proved in Section 7.

2.2. Local constraints

Considering an arbitrary partially k-colored graph G = (V, E') with precolored
classes W;, i = 1,...,k, a subset U C V consisting of pairwise adjacent pre-
colorless vertices is called a g-core if 1 < |U| < ¢ and the number of those
precolored classes W; for which U C N (W;) is at least g — |U|. If |U| = 1, then
we call U an elementary q-core.

Core condition. In a partially k-colored graph no (k + 1)-core exists.
Obviously, the core condition is stronger than the assumption k& > w(G).

Starting with a partial k-coloring of G = (V, E), we repeat the following
procedure until it terminates. Test whether G contains a (k + 1)-core. If this
is the case then stop. Also stop if G contains no elementary k-core. Otherwise
choose an elementary k-core {u}. Then there is a unique color i for which

4



u & N(W;). Color u with i, and repeat these steps in the new partial k-
coloring.

Sequence condition. In a partially k-colored graph no sequence described
above terminates with a (k + 1)-core.

Obviously, the sequence condition is stronger than the core condition.

Since the colors of the vertices involved in the sequence condition are
uniquely determined within the given color bound, the following observation is
valid.

Lemma 2.2. If G = (V,E) is a partially k-colored graph, then both the
core condition and the sequence condition are necessary for the precoloring
extendibility. O

2.3. Vertex decompositions

Consider an arbitrary partially k-colored graph G = (V| E) with precolored
classes W;, i = 1,...,k. For any U C V, let o;(U) be 0 if U C N(W;);
otherwise let it denote the independence number of the subgraph induced by
U— N(W;).

Independence condition. In a partially k-colored graph, |U| < a1 (U)+...+
a(U) holds for every set U of precolorless vertices.

The following lemma is a natural generalization of an observation of Mar-
cotte and Seymour [28]; its validity is an easy consequence of the definitions.

Lemma 2.3. The independence condition is necessary for the precoloring
extendibility. O

2.4. Menger path systems

Let G = (V,E) be a partially k-colored interval graph with precolored
classes W;, i = 1,..., k; for simplicity assume that V = {1,...,n}. Let k' <k
denote the precolor number; without loss generality we may assume that i € W;
fori=1,...,k', and that W; = 0 for i = k' +1,...,k. Since G is an interval
graph, it contains at most n maximal cliques, and the vertex sets of those
cliques can be listed as C',...,C™ such that for each vertex z the cliques
containing z are consecutive. For each i € V, let a; (b;) denote the smallest
(largest) subscript j for which i € C7.

Having fixed such an ordering of the maximal cliques, define an acyclic
multidigraph on the vertex set {—1,0,1,...,m} containing four types of arcs:
(1) an arc from —1 to b; fori =1,... k';

(2) k — k' copies of the arc from —1 to 0;
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(3) an arc from a; — 1 to b; fori =k +1,...,k;
(4) k — |C7] copies of the arc from j — 1 to j for any j € {1,2,...,m} with

|C7] < k.

Let M;, j = 1,2,3,4, denote the multiset of the arcs of type (j). Any
proper k-coloring of G defines the partition of each C7 into its elements. Con-
sidering the heads b of the arcs of our multidigraph as elements of C®, we gain a
natural partition of M;U M3 into k classes. Therefore, using the additional arcs
of M5 U My, one can easily find k pairwise arc-disjoint oriented paths from —1
to m. Applying the trivial half of the famous Menger theorem for our acyclic
multidigraph, we obtain the following necessary condition for the precoloring
extendibility.

Menger condition. For any D C {0,1,...,m — 1}, the total number of arcs
from {—1,0,...,m — 1} —D to DU {m} is at least k.

Lemma 2.4. The Menger condition is necessary for the precoloring extendibil-
ity on a precolored interval graph. O

3. Good characterizations

For some graph classes, the necessary conditions studied in Section 2 provide us
with good characterizations (i.e., necessary and sufficient conditions that can
be tested in polynomial time) for the precoloring extension problem. In this
section we just formulate these results; the proofs can be found in Sections 5
through 7.

Let G = (V, E) be a partially k-colored graph with precolored classes W,
1 =1,...,k. We begin with the simplest nontrivial case, k = 2. Certainly, it
is necessary to exclude odd cycles; therefore, assume for the moment that G is
bipartite.

Proposition 3.1. For precolored bipartite graphs, if the color bound is 2, the
following properties are equivalent.

(1) The precoloring is extendible.

(2) Both the knot and span conditions are satisfied.

(3) The sequence condition is satisfied.

From now on, the color bound can be arbitrarily large.

Proposition 3.2. In a partially k-colored forest, a precoloring is extendible
if and only if the sequence condition is satisfied.

If the color bound is 2, then P5 with endpoints precolored with distinct
colors is the simplest forest for which the core condition alone is not sufficient
for the precoloring extendibility. If the color bound is three, a simple example
is shown in Fig. 1. (The numbers indicate the colors of the precolored vertices.)
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For any integer m > 2, by a P,,-free graph we mean a graph not containing
P,, as an induced sugraph. The Ps-free graphs are the edgeless graphs, the Ps-
free graphs are those whose connected components are cliques, and the Py-free
graphs are the cographs. The Ps-free graphs were also investigated in many
papers, e.g., in [4] and [19].

Theorem 3.3. In a Ps-free bipartite graph, a precoloring is extendible if and
only if the core condition is satisfied.

The partially 3-colored graphs exhibited in Fig. 1 and Fig. 2 show that
P5 can be changed neither to C nor to Ps in Theorem 3.3. What is more,
in Section 8 we prove that PrExt is NP-complete on Pg-free bipartite graphs
(Theorem 8.5).

20 0
0 0 o3
1o 0
Figure 2

The graph C5 (with no precolored vertices) shows that, without assuming
bipartiteness, the exclusion of induced Ps is not strong enough to ensure the
sufficiency of the core condition. It will suffice, however, if we exclude Pj.

Theorem 3.4. In a cograph, a precoloring is extendible if and only if the
core condition is satisfied.

In order to have a convenient formulation of the following four results,
without loss of generality we assume that |Wy| > |[Wa| > ... > |W}]| holds for
the precolored classes W;. Note that if |[IW;]| = 1, then PrExt coincides with
1-PrExt, and the assumption |W5| = 0 restricts PrExt to the monocoloring
problem.

Theorem 3.5. If G is the complement of a Meyniel graph and |W;| < 1, then
a precoloring is extendible if and only if the core condition is satisfied.

The following two theorems (although in forms different from ours) were
first noticed by Sebd [29].



Theorem 3.6. If GG is a perfect graph, 3 < k = w(G), and |Ws3| = 0, then a
precoloring is extendible if and only if the knot condition is satisfied.

Theorem 3.7. If G is a perfect graph, 3 < k = w(G), |W1| = |Ws| = 1, and
|W3| = 0, then a precoloring is extendible if and only if the span condition is
satisfied.

We can give a common generalization of the above two good characteri-
zations as follows. Assume that |[W5| < 1. Let r € {1,2,...,k} be the largest
integer for which W, # () and let W; = {w;}, i = 2,...,r. Define a new graph
GY from G by adding a new vertex wg, the new edges wow;, i = 2,...,r, and
for any 2 <1 < j <r, the new edge w;w; if it was not an edge in G.

Theorem 3.8. If G is perfect, 3 < k = w(G) and |Ws| < 1, then the given
partial k-coloring of G is extendible if and only if no ({wg} U W7 )-knot exists
in G°.

We note that if G is perfect and r» < 2, then GV is also perfect. This
is not the case, however, if » > 3, even in the rather simple case G = Ps,
where k = 3, the two endpoints are precolored with colors 2 and 3, and a third
vertex is precolored with color 1. On the other hand, if GG is the complement of a
Meyniel graph, then G is always perfect. This follows from the following facts:
for W = {wg, wa, ..., w,}, Gw is a maximal clique of G°, and the complement
of GY, is a slim graph which is perfect (cf. [16]).

The following theorems show the sufficiency of the core condition for some
further classes of perfect graphs.

Theorem 3.9. In the complements of bipartite graphs, a precoloring is ex-
tendible if and only if the core condition is satisfied.

Theorem 3.10. In split graphs, a precoloring is extendible if and only if the
core condition is satisfied.

The line graph of a multiforest is a (chordal) graph whose vertices are
represented by not necessarily distinct edges of a forest, and two such edges
are adjacent if they share at least one vertex in the forest. The following
theorem was proved by Marcotte and Seymour.

Theorem 3.11. [28] In line graphs of multiforests, a precoloring is extendible
if and only if the independence condition is satisfied. O

Finally, we recall a good characterization for a problem studied by Biré
and the authors.

Theorem 3.12. [2] An instance of 1-PrExt with color bound k is extendible
on an interval graph G if and only if w(G) < k and the Menger condition is
satisfied. O



4. Generating perfect graphs

Let G be a class of graphs such that any induced subgraph of any member of G
is also in G. Now we produce a new class G* from G in the following way. Let
G € G, consider any (proper) partial k-coloring of GG, unite the vertices in each
precolored class, and make the “united” vertices pairwise adjacent. We denote
by G* the graph obtained, and define G* as the set of all graphs G* obtained
from all precolorings of all G € G. Obviously, G* coincides with G if no vertex
is precolored (and also if the precolored vertices induce a complete subgraph in
G), thus G* contains G. It is also straightforward that any induced subgraph
of any member of G* is also in G*.

Theorem. 4.1. If every G € G is perfect, and for every precoloring of every
G € G the core condition is sufficient for the precoloring extendibility, then
every G* € G* is a perfect graph.

A class of perfect graphs which satisfies the assumptions of the above the-
orem will be called PrEuxt-perfect. From the results of the previous section
we obtain that the cographs, the Ps-free bipartite graphs, the complements of
bipartite graphs and the split graphs are all PrExt-perfect. The most inter-
esting class is extracted in the following result which is an easy corollary of
Theorems 3.4 and 4.1.

Theorem. 4.2. If G is a cograph with an arbitrary partial k-coloring, then
G* is perfect. O

5. The sequence condition
In this section we prove Propositions 3.1 and 3.2.

Proof of Proposition 3.1. Observe the following facts for a partial 2-coloring
of a bipartite graph G = (V, E') with at least one edge. The set of all maximum
cliques is the set of all edges. Two vertices are spanned if and only if there
is an even path connecting them. For any W-knot there is an odd path with
endpoints in W.

(1) = (3): By Lemma 2.2.

(3) = (2): Any even path with differently precolored vertices or any odd path
with endpoints precolored with the same color shows that the sequence condi-
tion is not satisfied.

(2) = (1): Assuming (2) and that no proper 2-coloring extension exists, con-
sider a bipartition V' = V; U V5, and consider a connected component for which
the bipartition defines no proper 2-coloring extension. Then there exist distinct
vertices v; and v precolored with colors ¢,d € {1,2}, respectively. Without
loss of generality we may assume that v; € V3 and ¢ = 1. If for any possible

9



choice of vertex v, in the connected component vo € V; holds, then the bi-
partition defines a proper 2-coloring extension; thus there is a vy € V. Since
we are in a connected component of a bipartite graph, between the endpoints
v; and vy we gain either an even path with differently precolored vertices (if
d = 2) or an odd path with precolored vertices of the same color (if d = 1).
This contradiction completes the proof. O

Proof of Proposition 3.2. The necessity of the condition holds by Lemma
2.2. To prove the sufficiency, let G = (V, E) be a partially k-colored forest,
and suppose that the assertion is valid for every forest on fewer than n = |V/|
vertices, and for every forest on n vertices in which the number of precolorless
vertices is smaller than that in G. (If n < k or all vertices are precolored, we
have nothing to prove.)

Let vi,v9,...,v4 be a longest path of precolorless vertices in G. Then
vy is the unique precolorless neighbor of vy. If {v1} is an elementary k-core,
there is precisely one admissible color, say i, at v;. Assigning color i to vi, we
obtain a precolored graph still satisfying the sequence condition but with fewer
precolorless vertices, implying that the precoloring is extendible. On the other
hand, if {v;} is not an elementary k-core, at most k — 2 colors occur in the
neighborhood of v;. The graph G — {v;} also satisfies the sequence condition,
and has fewer than n vertices, therefore the precoloring can be extended. In
the extension, vy is the unique vertex that can exclude a further color from
v1; hence at least one admissible color remains for vy, and the precoloring is
extendible on G as well. O

6. The core condition

In this section we prove Theorems 3.3, 3.4, 3.5., 3.9, 3.10 and 4.1. For the
theorems of Section 3 the necessity of the core condition is proved by Lemma
2.2; thus we have to show its sufficiency for the precoloring extendibility. This
is also obvious if the precolorless vertices induce no edge. In general, on the
contrary to the sufficiency we may consider a minimal graph G = (V| E) with
precolored vertex set W for which the precoloring is not extendible, the core
condition is satisfied, and for which |V| 4 |E| — |W| is as small as possible.
Among other things this implies that G is connected, for any proper induced
subgraph of GG the precoloring is extendible, and the subgraph induced by the
precolorless vertices is connected.

Proof of Theorem 3.3. Consider a minimal counterexample connected bi-
partite Ps-free graph G = (V, E). Let V = X UY be a bipartition of G with
| X — W] > |Y — W]|. Since the precolorless vertices induce at least one edge,
Y —W| > 0. We shall prove | X —W| = |Y —W| = 1. Assume that | X—-W| > 2;
let 2/, 2" € X —W be two distinct vertices such that |N(z")| < |N(z”)|. Since G
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is a connected Ps-free bipartite graph, we obtain that N(z’) C N(z). Observe
that the nonextendibility of the precoloring is preserved if we delete 2’ (since
in case of extendibility z’ could get the same color as z’’); this is impossible
because of the minimality of G. Therefore | X —W| =1, and also |Y —W| = 1.
Consider the unique x € X —W and the unique y € Y — W. Since neither
{z}, nor {y}, nor {x,y} is a (k + 1)-core, there is an admissible color on each
of z and y, and there are at least two admissible colors on {z,y}; hence the
precoloring is extendible. This contradiction completes the proof. O

Before proving the sufficiency of the core condition for cographs, let us
extend the definition of g-core for the empty set, too, as follows. We say that ()
is a g-core if the precoloring contains at least ¢ distinct colors. (Since we have
assumed that the precoloring uses at most k colors, () cannot be a (k + 1)-core;
therefore the validity of the core condition ramins unchanged.)

Proof of Theorem 3.4. Consider a minimal counterexample connected co-
graph G = (V, E). Note that |V| > 2. Since G is a cograph, there exists some
proper subset U of V such that for any w € U and v € V — U, wv € E. Let
k' (k") denote the smallest integer for which the precoloring of Gy (Gy—_y)
is extendible by using at most &’ (k") colors. By the minimality of G there
is a k’-core in Gy and a k”-core in Gy_y. It is clear that their union is a
(k' + k"")-core in G. Since G contains no (k + 1)-core, k' + k" < k. Therefore,
the precoloring of GG is extendible. O

Proof of Theorem 3.5. Consider a minimal counterexample connected co-
Meyniel graph G = (V, FE). Add an extra edge between any two nonadjacent
precolored vertices. Since we gain the complement of a slim graph (cf. [16]),
the new graph is perfect. The core condition for the original graph means that
the clique number of the new graph is not larger than the color bound for the
original precolored graph. Therefore we are home by the perfectness of the new
graph. O

In the next two proofs we apply the famous Konig theorem [23, 24].
Proof of Theorem 3.9. Consider a minimal counterexample connected graph
G = (V, E) which is the complement of a bipartite graph. Then there exists a
proper subset U of V' for which both Gy and Gy _y are complete subgraphs.
Define a bipartite graph with bipartition U U (V — U) by connecting a u € U
and a v € V — U if they are nonadjacent in GG and either at least one of them
is precolorless or both are precolored with the same color. The core condition
for G implies that this bipartite graph contains no more than k independent
vertices. By the Ko6nig theorem for the new bipartite graph we gain |V| — k
independent edges. For the original graph they give us a proper precoloring
extension. 0O
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Proof of Theorem 3.10. Consider a minimal counterexample connected
split graph G = (V, E)). Then there exists a proper subset U of V for which G
is a complete subgraph and V' — U is an independent set. Let Z C V denote
the set of the precolorless vertices; then Gz contains at least one edge. Since
the core condition is satisfied, we are home by induction if V' —U contains some
precolorless vertex. So we may assume that Z C U.

Define a bipartite graph with bipartition Z U {1,2,...,k} as follows. For
any z € Z and ¢ € {1,...,k} let zi be an edge in the bipartite graph if z has
no precolored neighbor of color ¢ in GG. Observe that the core condition implies
that for any Z/ C Z, if Gz is a complete subgraph then in the bipartite graph
IN(Z")| > |Z'| holds. Therefore, if Z C U, by the Konig theorem we obtain
that there is a matching of size |Z| in the bipartite graph, i.e. the partial
k-coloring of (G is extendible. O

Proof of Theorem 4.1. Observe that if H is an induced subgraph of G, then
H* is also an induced subgraph (more precisely, is isomorphic to an induced
subgraph) of G*. Conversely, any induced subgraph F' of G* can also be ob-
tained as F' = H* for some induced subgraph H of GG. Therefore it suffices to
show that if the conditions of Theorem 4.1 hold then x(G*) = w(G*). To avoid
the trivial cases we may assume that x(G*) > w(G*) > 2. Let k = x(G*) — 1,
and let w;, 1 = 1,2,..., denote those vertices of G* which were obtained as
“united” vertices. Since the united vertices are pairwise adjacent in G*, the
number of vertices w; is at most w(G*) < k. Now in G = (V, E), let us create
a partial k-coloring for which the ith precolored class W, consists of exactly
those vertices w € V which were united to obtain w;, ¢ = 1,2,.... This partial
k-coloring of G is not extendible since x(G*) > k.

Since the core condition is sufficient for the precoloring extendibility in G,
there exists a (k+ 1)-core. However, from this (k 4 1)-core we gain a complete
subgraph on k + 1 vertices in G*. Therefore w(G*) > k+ 1 = x(G*). This
contradiction completes the proof. O

7. Knots and spans

In this section we first prove Lemma 2.1, then Theorems 3.6 and 3.8, and finally
Theorem 3.7. Actually, Theorem 3.8 will be deduced from Theorem 3.6, and
Theorem 3.7 will be deduced from Theorem 3.8.

Proof of Lemma 2.1. Consider a fixed proper k-coloring extension of the
given partial k-coloring of G = (V, E). Since k = w(G), each color occurs in
each maximum clique.

Knot condition: For an arbitrary precolored class W; of color ¢, let U O W;
denote the color class with color ¢ in the proper k-coloring extension. Let u
(w;) denote the characteristic vector of U (W;) over V; thus u >w;. Assume
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that for distinct y1,...,y, € M and for fewer than |W;| + ¢ (not necessarily
distinct) x4, ..., %Xy, € £, the relation x; +...+x,, > w; +y;1 +...+Yy, holds.
Multiplying both sides from the left by u™, the transpose of u, we obtain that
ulx;+...+ulx,, > uTw;+uly;+.. .+uly,. Since umw; = |W;| and uTx <1
for any x € £, we have m > |[W;| +uTy; + ...+ uly,. Since m < |W;| + g,
by the pigeonhole principle uy, = 0 holds for some y,, i.e., some maximum
clique of GG contains no vertex colored with ¢ in the assumed proper k-coloring
extension. This contradiction shows the necessity of the knot condition.

Span condition: For differently precolored vertices v; € V with charac-
teristic vectors v; over V, i = 1,2, suppose that there are x;; € M, ¢ = 1,2,
j =12 ...,m, such that vi + x11 + ...+ X1y = Vo +Xo1 + ... + Xo. If
U is the color class with the color of v; in a proper k-coloring of G, then
vo &€ U, and for the characteristic vector u of U over V we gain ulvy, =1
and uTvy, = 0. On the other hand, for any x € M, u'x = 1. Multiplying the
equality vi + X171 + ...+ X1;m= V2 + Xo1 + ... + Xa,, by ul from the left we
obtain that 1 +m = 0 + m. This contradiction completes the proof. O

Proof of Theorem 3.6. By Lemma 2.1 it suffices to prove that if M is not a
Wi-knot, then the given partial k-coloring of G = (V, E) is extendible. Let A
denote the |V| by | M|+ 1 matrix whose first |M| columns are the elements of
M, and whose last column is the characteristic vector wq of W7 over V. Let H
denote the graph whose vertices are the 1-entries of A, and let two 1-entries be
adjacent in H if the corresponding rows of A are distinct and, as the vertices
of G, are adjacent in GG. Thus in H the 1-entries of the jth row of A form an
independent set, denoted I;, j =1,2,...,|V|. Since H is obtained from G by
multiplication of vertices, by the observation of Fulkerson [9] and Lovéasz [27],
H is perfect (cf. Corollary 3.5 in [10]).

Assume that some maximal cliques C*',...,C" of H cover all 1-entries of
A. Let xp, p = 1,2,...,7, denote the |V|-dimensional column vector whose
jth component is the number of the vertices in the intersection of C* and I;,
j=1,2,...,|V]; thus x, € £. On the other hand, x;+...4x, is componentwise

greater than or equal to the sum of all columns of A, that is w; + M.
Assuming that M is not a Wi-knot, r > [W;| + |[M].

Since H is perfect and the last inequality holds for all sequences of maximal
cliques C*,...,C" of H covering all vertices, there is some independent vertex
set I in H of size |[M|+ |W1|. Let u be the characteristic vector of some U C V
over V defined as the set of those vertices of G whose corresponding rows in
A meet I. Thus U is an independent set in G. For the first | M| columns y of
A, by the independence of U we have y'u <1. Moreover, concerning the last
column, wy, the relation w;Tu < |Wy| is obvioius. Taking the sum of these
|M| + 1 inequalities, we gain |I| < |[M|+ |W;|. However, |I| = |M|+ |[Wi];
therefore yTu = 1 holds for the first |[M| columns y € M of A, and we also
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have wiTu = |[Wy|, i.e., Wy CU.

Let all vertices of U be colored with color 1. Since G is perfect and
ytu =1 for all y € M, Gy _y is also perfect with w(Gy_y) = k — 1. Thus
Gy _y is properly (k—1)-colorable with the colors 2, ..., k resulting in a proper
k-coloring extension in G. O

Proof of Theorem 3.8. The given partial k-coloring of GG is extendible if and
only if G admits such a proper k-coloring for which each vertex in {wq} U W}
gets the same color. Thus Theorem 3.6 for G° completes the proof. O

Proof of Theorem 3.7. By Lemma 2.1 we may assume that W, = {w;},
i =0,1,2, and that the given partial k-coloring of G = (V, ') is not extendible.
It suffices to show that w; and wsy are spanned in G. Let W? denote the
characteristic vector of W; over V® = {wo} UV, i =0,1,2, and let £° (MY)
denote the set of the charateristic vectors over VO of all maximal (maximum)
cliques of G°. For any characteristic vector x" over V°, let x denote the vector
obtained from x° by deleting the component which corresponds to wg, and let
x| denote the sum of the components of x°. Note that G° is a perfect graph
whenever so is G.

By Theorem 3.8 for G° there are x9,...,x) € £ and y?,...,y) € M°
such that m < ¢+ 1 and x4+ ... +x), > w) +w) +y) +... +yJ. Since
X)) <k, p=1,....m, |w)| =1,i=0,1,and |y)| =k, r = 1,...,q, we
have m = ¢ + 1. Since the component of w{ corresponding to wg is 1, at
least one x,, say Xy, |, has the same property. The only maximal clique which
contains wo in G is the edge wows, therefore [x), | = 2. By |x}|+... + |x],|
> [wil 4+ [wi| + |y?] + ... +|y)| we gain that each [x)| =k, p=1,...,¢, and
that x{ 4+ ... +x0,; = wi+w) +y? 4+ ... +y0. The latter equation can be
written in the form x?+...+x2—|—w8+w8 = W8—|—W(1)+y(1)+...+y8, thus
X|+...+X+We=w1+y1+...+Yy, Sincex,,y, e M,p=1,...,q, w;
and wy are spanned in G. O

8. Efficient algorithms

To avoid the trivial cases and obvious reductions, in this section we restrict our-
selves to partially k-colored connected graphs G = (V, E') where E is nonempty
and k > 2. We give efficient algorithms which find either a proper k-coloring
extension, or a “reason” why the precoloring is not extendible. By “reason”
we mean that one of the necessary conditions listed in Section 2 fails, and this
fact is proved by the algorithm.

The first variants of the algorithms presented in Sections 8.1 and 8.2 ap-
peared in the technical report [1]. Later, Jansen and Scheffler [22] indepen-
dently proved Theorems 8.1 and 8.3.

8.1. Linear-time algorithms
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Trees
Theorem 8.1. PrExt is solvable on trees in linear time.

Proof. We suggest the following linear algorithm. During the algorithm we
shall manage an initially empty stack S. We shall put triples onto S; each
triple will consist of a precolorless vertex and two distinct colors. Starting
from a fixed vertex wy, apply breadth-first search for a partially k-colored tree
G = (V, E); this can be performed in linear time (cf. [10]). Let v denote the
last vertex with respect to the breadth-first search. This must be a leaf (i.e.,
degree-1 vertex) of G; let v/ denote its unique neighbor. If v’ is precolored,
then we can assign a color to v simply by choosing any color distinct from the
color of v/. In this case we can cut down v from G, and for the remaining
tree the breadth-first search structure remains unchanged. Therefore for the
remaining graph our method can be applied recursively without affecting the
claimed linearity status.

Suppose that v" is precolorless. In O(|N(v')|) time we check if {v’} is an
elementary (k + 1)-core or an elementary k-core. In more details: we scan all
neighbors u of v/, and if u is precolored with color 7, then we assign the ordered
pair (v’,u) to color i. By scanning the pairs assigned to the colors, we can
decide whether {v'} is an elementary (k + 1)-core, or an elementary k-core, or
we gain two distinct colors i,i" € {1,...,k} such that none of them occurs in
N@"). If IN(v")] > k — 1, then this scanning procedure needs just O(|N(v)|)
time. However, if [N (v)| < k — 2, we just have to check |N(v")| 4+ 2 colors; we
surely obtain ¢ and ’. If we find a (k-+1)-core, we are done since the precoloring
is not extendible (cf. Lemma 2.2). If we find that {v'} is an elementary k-core,
then we color v/ with the unique admissible color, i.e., we actually perform one
step to check the sequence condition. Now there is no difficulty in coloring v
if it was precolorless. Then v can be cut down from G, and our algorithm can
be continued keeping its linear status.

Therefore the only case left is where v’ is precolorless and has precolored
neigbors of at most k& — 2 distinct colors. In O(|N(v’)]) time we gain distinct
colors 4,7 € {1,...,k}, such that none of them occurs in N(v"). Any precol-
orless leaf neighbor of v/ can be cut down from G because no matter what
color finally v’ gets, at least one of 7 and 7’ remains free for all precolorless leaf
neighbors of v'. We put the triple (v, 4,4") onto S. Note that all administra-
tion can be performed in O(|N(v')|) time along with the reconstuction of the
breadth-first search structure of the remaining graph.

Assume that all leaf neighbors of the precolorless vertex v’ are precolored.
Since v was the last with respect to the breadth-first search, there is at most one
non-leaf precolorless neighbor of v’. Thus v’ can be cut down from G with all
its leaf neighbors because at least one of the colors 7 and ' remains admissible

15



for coloring v'. (The reconstuction of the breadth-first search structure of the
remaining graph can be done in O(|N(v')|) steps.)

Finally we either gain an extension of the precoloring (we have to go
through S to decide which of ¢ and i’ should be assigned to v’, and to color
v’ with such an admissible color; this means a scanning of the vertices in the
order as they appear in the breadth-first search procedure) or a proof by the
sequence condition that the precoloring is not extendible. Since the sum of the
O(|N (v")|) complexities occuring in the algorithm is just O(|V]), the algorithm
is linear.

We note that if the precoloring is not extendible, then a minimal non-k-
colorable subtree can also be found. O

Connected bipartite graphs with color bound k = 2

Theorem 8.2. PrExt is solvable on connected bipartite graphs with color
bound k£ = 2 in linear time.

Proof. If G is connected and properly 2-colorable, then the bipartition is
uniquely determined. This bipartition can be computed in linear time (by
applying, for example, breadth-first search starting from a fixed vertex), and
meanwhile one can check whether or not this bipartition is compatible with the
given partial 2-coloring. O

Connected cographs

Cographs (or complement reducible graphs) are defined as the class of graphs
formed from a single vertex under the closure of the operations of vertex disjoint
union and complement. Cographs were independently discovered under various
names and were shown by Lerchs (see [6]) to have a unique tree representation.
This tree, called cotree, forms the basis for fast polynomial algorithms.

In the cotree representation the leaves of the cortree represent the vertices
of the graph. Internal nodes of the cotree are labelled 0 or 1 in such a way
that (0) nodes and (1) nodes alternate along every path starting from the root
which always is a (1) node. The root will have more than one (0)-node child
if and only if the represented cograph is connected. Two vertices x and y of
the cograph are adjacent if and only if the unique path from x to the root of
the tree meets the unique path from y to the root at a (1) node of the tree.
A linear time algorithm for recognizing cographs and constructing their cotree
representations can be found in [7].

Given a partially k-colored connected cograph with its representing cotree,
we shall give a linear algorithm which finds either a proper precoloring extension
or a (k + 1)-core (cf. Theorem 3.4).

Theorem 8.3. PrExt is solvable in connected cographs in linear time.
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Proof. We consider a partially k-colored connected cograph G = (V, E)
with its representing cotree T'. To avoid the trivial cases, we may assume that
k < |V]|. Since G is connected, |V| = O(|E|). Note that T has fewer than
2|V| nodes. In linear time, we can also check whether or not Gy is properly
k-colored. (In case of the negative answer we have nothing to do.)

Let N denote the set of the nodes of T'. For any v € N, let G¥ = (V¥ E")
denote the cograph which corresponds to the subcotree with root v. Observe
that G* is actually an induced subgraph of G. If v is the root of T', then G = G,
and if v is a leaf of T', then G” is just the single vertex v. In our algorihm,
in linear time, we shall find either a (k 4 1)-core, or optimal vertex partitions
(compatible with the precoloring) into independent sets for all G¥, v € N, one
by one according to a “postorder” manner with respect to a breadth-first search
of T' starting from its root.

By color we mean one of the numbers 1, 2,.. ., k; their set will be denoted
by K. We shall manage an auxiliary bipartite graph B with bipartition N U K;
initially B is edgeless. For each v € N we shall also manage a list W?" that
contains one precolored vertex from each color class of V¥.

Here by precolored vertices we mean all vertices of G which were origi-
nally precolored, and also some newly precolored vertices. The latter will be
precolored one by one during our algorithm.

In addition, for each v € N we also manage a partition of the set U" of the
currently precolorless vertices of G into k¥ nonempty independent sets. This
partition will be represented in the form of a list L” consisting of the elements
of U¥ (each element occurs once) and k¥ — 1 copies of a separation sign “;” if
k¥ > 1; the partition classes will be formed by the sublists separated by the
separation sign. We shall require that if U" is nonempty, then x(G"yv) =
k¥. Obviously, the length of L is O(|V¥|), and a sufficient condition for the
precoloring extendibility of the current partial k-coloring of G* is that the
precolor number of G¥ is at most k£ — k”.

Initially, we consider the leaves of T'. If v is a leaf, we distinguish between
two cases. If v is precolored, we join v and its color in B, and set W" as the
singleton v and L” as the empty list. If v is precolorless, we set W* empty and
L¥ as the singleton v.

The key idea of our algorithm is as follows. Let v be a (0) or a (1) node
of T. We claim that W*" and L" can be constructed from W# and L* of the
childreen p of v in O(|V¥|) time, and that the sum of the |V*| is O(|E)).
Meanwhile we have to manage the above declared properties. Note that |[V"|
is the sum of the numbers |V#| for the children u of v.

First we study the case where v is a (0) node. The procedure consists of
three phases. In the first phase, going through the children p of v, and for each
i going through W*#, we consider the colors 7 of the vertices w of Wy. If iv is
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not an edge in B yet, then we join ¢ and v, and insert w at the end of the list
Wv. Otherwise we take the next element of W,

In the second phase, we deal with the lists L*. For each u, we scan at
most |W#| + |L*| < |[V#| elements of W as follows. For i € W" we check
whether iy is an edge in B. If so, we take the next element of W". Otherwise,
we assign color ¢ to the vertices of the first partition class of L*, and we also
delete them from L* together with the “;” sign following them (if any). We
stop when W" or L* is exhausted.

In the last phase we prepare a two-way list M"* from those children p of
v for which L* remains nonempty after the second phase. Originally, L" is
the empty list. For each yu € M"Y we copy the first segment of L* into L”,
and delete it from L#*. If L* is still nonempty, then we delete “;” from the
beginning of L* and go to the next member of M*. On the other hand, if L
becomes empty, then we delete p from M*, maintaining the two-way structure
of Mu. Reaching the end of M*, we check whether M# is the empty list. If
so, we finish the procedure at v. Otherwise we place a “;” at the end of L”
and go through the elements of M" again.

Second we study the case where v is a (1) node of T'. Considering the lists
WH for all children, any two occuring colors must be distinct. Therefore we just
have to concatenate these list to obtain W¥. As a byproduct, we have |W"|.
Going through this list we join each occuring color to v in B. To obtain L” we
just have to concatenate the lists L* by inserting separation signs between any
two consecutive lists L*. The total time complexity is O(|V"|).

Finally, having completed the above process for the root p of the cotree,
we have to finish the solution of the precoloring extension problem. We go
through K and delete all vertices which are adjacent to p. Then we go through
the list of the remaining colors in K, and in L” we color the vertices with the
these colors such that we change the color after each separation sign.

If we find that the number of distinct colors in K is not enough for coloring
all precolorless vertices, then by Theorem 3.4 we know that there is a (k + 1)-
core. In fact, such a core C'” can also be found recursively: If v is a leaf, then
CY = {v} if v is precolorless, and empty otherwise. If v is a (1) node, then
C" is the union of the cores C* of the children p of v (i.e., their concatenation
when the C* are stored in lists). On the other hand, if v is a (0) node, then we
set C¥ = C* where C* is a k’-core with the largest possible value of £’ among
all children of v.

At the end of the proof we show that the sum of the numbers |V¥| for all
nodes v of the cotree is O(|F|). Recall that two vertices = and y of the cograph
are adjacent if and only if the unique path from x to the root of the tree meets
the unique path from y to the root at a (1) node of the tree. For each (1) node
v, let m” denote the number of those edges of G which are “realized” via node
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v. Thus the sum of those numbers is exactly |E|. We define m” for a leaf node
v as 1 and for a (0) node v as the sum of the numbers m#* for the childreen y
of v. Note that each such p is either a leaf or a (1) node. Therefore the sum of
the numbers m" for the entire cotree is no more than O(|E|). Hence it suffices
to show that if v is either a (0) node or a (1) node, then |[V¥| < 2m”.

We can prove this inequality by induction on the distance of v from the leaf
set V in T'. The statement is obvious if the distance is 1. For larger distances,
we are also done by induction for the (0) nodes. On the other hand, if v is a
(1) node, the graph on V¥ defined by the edges “realized” via v is connected.
Therefore, [V¥| <m” +1<2m"”. O

Connected Ps-free bipartite graphs

The connected Ps-free bipartite graphs are also known as connected differ-
ence graphs and all such graphs G = (V| E) are characterized by the property
that they admit a bipartition V' = V3 U V5 and such an ordering v;1, v;2, . ..
of the vertices in each V; for which N(v;1) O N(vi2) D ... (cf. [4, 19]). We
assume that a connected Ps-free bipartite graph G = (V, E) is given. In linear
time, one can easily find V; and v;1, i = 1, 2.

Theorem 8.4. PrExt is solvable on a connected Ps-free bipartite graph in
linear time.

Proof. We just have to check if {v11} or {ve;} or {v11 Uwve;} is a (k+ 1)-core.
This can be done in linear time. If some of them is a (k + 1)-core, we are done
by Lemma 2.2. Otherwise, all precolorless vertices of V; may get the final color
of v;1, © = 1,2, no matter if v;; is precolored or prelolorless. Therefore, the
precoloring is extendible in linear time. O

A chordal bipartite graph is a bipartite graph that contains no induced
(2s)-cycle for s > 3; such graphs were studied e.g. in [11] and [18]. Note that
the Ps-free bipartite graphs are chordal bipartite. The next theorem shows that
in the previous result the assumption that the graphs are Ps-free is essential.

Theorem 8.5. PrExt is NP-complete in Pg-free chordal bipartite graphs.

Proof. We apply a reduction from 3-SAT (satisfiability of conjunctive normal
forms with three literals per clause), similarly to the NP-completeness proofs
of [22] and [26].

Let ® = C' A ... AC™ be a formula over n variables, with clauses C7 =
yi1 vV yj2 Vyjz, 7 = 1,2,...,m, where each literal y;s is taken from the set
{z1,..., 2} U{~21,..., 2, }. We construct a partially (2n)-colored chordal
bipartite graph Gg on n + m + (2n — 2)n + (2n — 3)m vertices as follows.
The precolorless vertices of G induce a complete bipartite subgraph with
bipartition {z1,...,7,} U{C!,...,C™}. Each “variable-vertex” x; has 2n — 2
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precolored neighbors, each of degree 1, assigned to the colors from the set
{1,...,2n}—{i,n+i}. The “clause-vertices” C? have 2n—3 degree-1 precolored
neighbors each, on which all but 3 colors of the set {1,...,2n} appear; if x;
(—x;) occurs in clause CV, then color i (n+1i) does not occur in the neighborhood
of the clause-vertex C7.

Every longest induced path in Gg begins and ends at a degree-1 vertex, and
it can contain at most 3 precolorless vertices. Hence, G¢ is Pys-free. Moreover,
since the vertices of degree at least 2 induce a complete bipartite subgraph, G¢
is a chordal bipartite graph. Representing color ¢ at z; by the truth assignment
x; = false and color n + ¢ by x; = true, one can verify that ® is satisfiable
if and only if the precoloring of Gg is extendible. Thus the NP-completeness
follows by the well-known theorem of Cook [5]. O

8.2. Flows and bipartite matchings

Assume that and interval graph G = (V, E) is given on n vertices along with
the numbers a;, b;, i = 1,2,...,n and the cliques C7, j = 1,2,..., m exactly
as it was studied at the end of Section 2. Assume that G is partially k-colored
where each color occurs at most once. We point out that PrExt can be solved
by applying network flow techniques.

The straightforward construction of the multidigraph associated to G can
be performed in O(nk) time. Next we have to check whether or not the Menger
condition holds. Applying standard network flow techniques, in polynomial
time we either find k pairwise arc-disjoint oriented paths form —1 to m or a
proof that the Menger condition does not hold. In the latter case we are home
by Lemma 2.4. In the former case, starting from the k oriented paths, we can
construct a proper precoloring extension. (See [2] for more details.) We can
summarize our results as follows:

Theorem 8.6. 1-PrExt can be solved in polynomial time on interval graphs.
O

Now we turn our attention to the complements of bipartite graphs and to
the split graphs. The proofs of Theorems 3.9 and 3.10 actually show how to
gain polynomial algorithms which solve PrExt on these classes of graphs. The
details of such algorithms can be found in [20].

Given a bipartite graph on n vertices, a maximum matching can be found
in O(n°/?) time [17]. Applying this result, the following theorem can be de-
duced.

Theorem 8.7. [20] If G is a partially k-colored graph on n vertices, and
either G is a split graph or the complement of GG is bipartite, then PrExt can
be solved in O(n°/?) time. O
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As a matter of fact, the time complexity of PrExt on those two classes of
graphs is exactly the same as that of the bipartite matching problem (i.e., any
improvement on the former would improve on the latter as well).

8.3. General perfect graph algorithms

By the famous results of Grotschel, Lovasz and Schrijver [12, 13], the chromatic
number problem can be solved in polynomial time on perfect graphs. Given a
perfect graph G, the polynomial algorithm computes w(G) = x(G) and con-
structs both a maximum clique and a proper coloring with w(G) colors. From
our point of view this result implies the following theorem which can easily be
deduced from the definitions.

Theorem 8.8. PrExt can be solved in polynomial time on PrExt-perfect
graphs. O

We gain similarly the following theorem (cf. Theorem 3.5).

Theorem 8.9. 1-PrExt can be solved in polynomial time on the complements
of Meyniel graphs. O

Consider a partially k-colored prefect graph G for which the class of all
maximum cliques, M is also given. The proofs of Theorems 3.6 through 3.8
show that both the knot and span conditions can be cheched in polynomial
time. Furthermore, we can deduce the following theorem.

Theorem 8.10 Given a partially k-colored perfect graph G where 3 < k =
w(G) and given the class of all maximum cliques, assume that either just 2
vertices are precolored or all precolored vertices have the same color. Then
PrExt can be solved in polynomial time. O

As we already mentioned, 2-PrExt is NP-complete on chordal graphs [2].
On the other hand, the maximum cliques of a chordal graph can be listed in
polynomial time; therefore, PrExt becomes polynomially solvable if the precolor
number is 1 or all but two vertices are precolorless.

9. Concluding remarks and open problems

Since the area of precoloring extensions is quite a new branch in the theory of
graph colorings, it offers lots of interesting open problems for further research.
Below are collected some of those questions which are closely related to the
results of the present note.

First of all, with reference to Section 4, let us say that a graph G* is
a cograph contraction if it is obtained from a cograph G by replacing some
mutually disjoint independent sets Si,...,S; by new vertices x1,...,2; and
joining x; (1 < i < t) to all z; (j # i) and also to all those vertices v €
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V(G) — (S1U...US;) which have at least one neighbor in S;. We have seen in
Theorem 4.2 that every cograph contraction is perfect.

Problem 9.1. Characterize the class of cograph contractions.

Problem 9.2. Characterize PrExt-perfect graphs. In particular, describe
further classes G of perfect graphs such that every G* € G* is perfect.

Problem 9.3. Determine the complexity of PrExt for some further classes of
perfect graphs, e.g. unit interval graphs and permutation graphs.

Note that both on comparability graphs and on co-comparability graphs,
the problem is NP-complete as shown by the classes of bipartite and interval
graphs, respectively.

Problem 9.4. Decide whether 1-PrExt is polynomially solvable on chordal
graphs or on some of their subclasses, e.g. on strongly chordal graphs.

One such particular result related to undirected path graphs will appear
in [21].

We have seen in Theorem 3.6 that precoloring extendibility on perfect
graphs G with color bound w(G) and precolor number 1 has a good charac-
terization. Thus it is natural to ask what happens if the precolor number is
2. Kratochvil (private communication) noticed that the problem becomes NP-
hard in this case. Namely, 1-PrExt with color bound 3 is NP-hard on bipartite
graphs [25, 2], and it is easy to eliminate color 3 by joining the color-3 precol-
ored vertex to two pandent vertices precolored 1 and 2. Obviously, by joining
the two pandent vertices, the clique size becomes 3. Nevertheless, we believe
that £ = w(G) with precolor number 2 admits a polynomial algorithm if some
reasonable structural restriction is imposed on the perfect graph G.

Problem 9.5. In which results of Section 8.3 can the ellipsoid method be
replaced by a purely combinatorial algorithm?

In order to guarantee the linearity of the PrExt algorithm on cographs
(Theorem 8.3) we implicitly assumed that a completely clear memory space of
O(nk) fields is available (n is the number of the vertices, k is the color bound).
More precisely, we need a representation of the bipartite graph B in the proof
of Theorem 8.3 for which we can check the adjacency of any pair of vertices in
constant time, and this can easily be managed, e.g. if B is represented by a
matrix whose rows represent the nodes of the cotree and whose colums represent
the colors, and the ith element of row v is 1 (0) if v is adjacent (not adjacent)
to . However, the representing matrix should be empty at the beginning. The
O(nk) space requirement can be replaced by others, for example that the sum
or difference of binary vectors of lenght k£ can be computed in constant time.
Without such assumptions we can prove a slightly worse upper bound on the
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time complexity, namely O(m+n+/log k), where m denotes the number of edges
of the connected cograph.

Problem 9.6. Decide whether the factor y/log k can be eliminated.

Perhaps the answer is affirmative; to prove this, it would suffice to find a
more concise representation of B that still admits constant-time access to any
edge of B.
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