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2Laboratório Nacional de Computação Cient́ıfica - LNCC,
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Abstract

The spatial search problem consists in minimizing the number of steps re-
quired to find a given site in a network, under the restriction that only oracle
queries or translations to neighboring sites are allowed. We propose a quantum
algorithm for the spatial search problem on a triangular lattice with N sites
and torus-like boundary conditions. The proposed algorithm is a special case of
the general framework for abstract search proposed by Ambainis, Kempe and
Rivosh [Kempe et al. 2005] (AKR) and Tulsi [Tulsi 2008], applied to a trian-
gular network. The AKR-Tulsi formalism was employed to show that the time
complexity of the quantum search on the triangular lattice is O(

√

N logN).

1 Introduction

The spatial quantum search problem consists of using local unitary operations to
search for one (or more) nodes within a set of N spatially arranged sites with an
implicit notion of distance between them. The search nodes are identified by the
non-zero values of a binary function (the oracle), as usual. The spatial search prob-
lem [Ambainis and Aaronson 2003] incorporates the restriction that, in one step, one
can either query the oracle at the current site or advance to a neighboring site. It
has been pointed out by Benioff [Benioff 2002] that in a two-dimensional network
under this restriction, Grover’s search [Grover 1996], [Grover 1997] provides no ad-
vantage in terms of running time over a classical search due to the intrinsic non-
locality of Grover’s symmetrization. Ambainis et al. proposed a generalized formal-
ism for quantum walk (QW) based spatial search algorithms and worked out the
specific case of a two-dimensional cartesian network, obtaining a O(

√
N logN) algo-

rithm [Kempe et al. 2005], to which we shall refer to as AKR. Tulsi has proposed an
improvement to AKR which requires an ancilla qubit and leads to an O(

√
N logN)
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algorithm in two dimensions [Tulsi 2008]. However, it is not known whether the op-
timal solution is O(

√
N) for the two-dimensional spatial search problem. In contrast,

it is known that the optimal solution is achieved in higher dimensions, such as 3D-
grid [Kempe et al. 2005] and the SKW algorithm [Shenvi et al. 2003], which searches
an item within N = 2n sites arranged in an n–dimensional (n > 2) hypercube.

There are three ways to cover the plane with regular polygons: squares, hexagons
and triangles. The resulting regular networks differ in their degree d (number of
connections per node) which is 4, 3 and 6 respectively. As mentioned before, for
the rectangular grid (d = 4) the AKR search algorithm finds a marked vertex
in time O(

√
N logN). A QW-based spatial search algorithm of time complexity

O(
√
N logN) has recently been implemented for a two-dimensional hexagonal net-

work (d = 3) [Abal et al. 2010]. Both algorithms can be improved to O(
√
N logN)

with Tulsi’s modification. These results suggest that the degree or connectivity of a
regular network does not affect the performance of a QW-based search algorithm.

In this work, a new search algorithm for the case of a triangular network is pro-
posed and analyzed. The proposed algorithm is a special case of the general framework
for abstract search [Kempe et al. 2005, Tulsi 2008], so we employ the AKR-Tulsi for-
malism to show that the time complexity of the quantum search on the triangular
lattice is O(

√
N logN). This provides further evidence that the degree of the under-

lying network does not affect the performance of the quantum algorithm.
The paper is organized as follows. In Section 2 we discuss the implementation

of a QW on the triangular network. In Section 3 we analyze the time complexity of
this search algorithm. In Section 4 we perform a numerical analysis of the algorithm.
Finally in Section 5 we present our conclusions.

2 QW on a triangular Network

Let us consider N sites arranged in a triangular network covering a two-dimensional
region, as shown in Figure 1. The network is

√
N ×

√
N and periodic boundary

conditions are assumed. A site on the lattice is located by two integers (n1, n2)
according to

r = n1a1 + n2a2, (1)

where a1 and a2 are unit vectors forming a 60o angle, as indicated in Figure 1. These
integers are such that ni ∈ [0,

√
N − 1] for i = 1, 2 and thus each of them takes

√
N

different values.
These sites define an orthonormal set of quantum state vectors, {|n1, n2〉}, which

span an N–dimensional Hilbert space HP . At a given site, there are six possible
directions of motion which we label with an integer j ∈ [0, 5], as indicated in Figure 1.
The orthonormal states {|j〉} span a six-dimensional Hilbert space,HC , which we shall
refer to as the “coin” subspace. The Hilbert space for this problem, H = HC ⊗HP ,
is 6N–dimensional. A generic state vector is expressed as

|Ψ〉 =
5

∑

j=0

√
N−1
∑

n1,n2=0

aj,n̂ |j, n̂〉, (2)
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Figure 1: A
√
N ×

√
N triangular network (here N = 36). The N sites form a Bravais lattice and

the six directions of motion are labelled by an integer j ∈ [0, 5].

where the aj,n̂ are complex amplitudes which satisfy the normalization constraint and
we have introduced the shorthand notation n̂ ≡ (n1, n2).

The standard QW on this network is implemented with a unitary evolution oper-
ator of the form

U = S · (C ⊗ IP ) (3)

where S is a shift operator in H (to be specified below), IP is the identity operation
in HP and C is a unitary coin operation in HC . The useful coin operation for spatial
search problems [Kempe et al. 2005, Shenvi et al. 2003] is Grover’s coin, whose ma-

trix elements for a d–dimensional space are G
(d)
ij = 2

d − δij . For the particular case
d = 6, it is given by

G(6) =
1

3

















−2 1 1 1 1 1
1 −2 1 1 1 1
1 1 −2 1 1 1
1 1 1 −2 1 1
1 1 1 1 −2 1
1 1 1 1 1 −2

















. (4)

Thus we use C = G(6). The shift operator implements single-step displacements
acting on the kets |j;n1, n2〉 in the form

S|0;n1, n2〉 = |3;n1 + 1, n2〉,
S|1;n1, n2〉 = |4;n1 + 1, n2 − 1〉,
S|2;n1, n2〉 = |5;n1, n2 − 1〉,
S|3;n1, n2〉 = |0;n1 − 1, n2〉, (5)

S|4;n1, n2〉 = |1;n1 − 1, n2 + 1〉,
S|5;n1, n2〉 = |2;n1, n2 + 1〉.

Note that S inverts the coin state. This invertion is crucial for the efficiency of the
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search algorithm described in the next section. Finally, the dynamics of the QW is
obtained by applying U repeatedly |Ψ(m)〉 = Um|Ψ(0)〉 for some integer m.

The standard QW is best analyzed in the Fourier-transformed space. Let us
consider the reciprocal lattice vectors {g1,g2}, which satisfy the usual requirements
from condensed matter physics [Kittel 1995]

gi · aj =
2π√
N

δij . (6)

A site in this reciprocal lattice is located by

k = k1g1 + k2g2, (7)

with k1, k2 integers in [0,
√
N − 1]. Let us use the notation k̂ = (k1, k2) and write a

generic state vector in the Fourier representation as

|Ψ〉 =
∑

j,k̂

fj,k̂|j, k̂〉. (8)

The kets |j, k̂〉 and |j, n̂〉 are related by the discrete Fourier transform

|k̂〉 =
1√
N

∑

n̂

e−ik·r|n̂〉 (9)

|n̂〉 =
1√
N

∑

k̂

eik·r|k̂〉 (10)

and one can check that 〈k̂|n̂〉 = ωn̂·k̂/
√
N where ω ≡ e2πi/

√
N and n̂ · k̂ = n1k1+n2k2.

The action of S on the kets |j, k̂〉 of the Fourier representation can be obtained from
Eqs. (5) as

S|0, k̂〉 = wk1 |3, k̂〉, S|1, k̂〉 = wk1−k2 |4, k̂〉,
S|2, k̂〉 = w−k2 |5, k̂〉, S|3, k̂〉 = w−k1 |0, k̂〉,
S|4, k̂〉 = w−k1+k2 |1, k̂〉, S|5, k̂〉 = wk2 |2, k̂〉.

(11)

Thus, in the k̂–representation S acts diagonally, i.e. S =
∑

k̂ Sk|k̂〉〈k̂|, where

Sk = 〈k̂|S|k̂〉 is the reduction of S toHC . Therefore, the evolution operator, Eq. (3), is

also diagonal in the Fourier representation and can be expressed as U =
∑

k̂ Uk̂|k̂〉〈k̂|,
where Uk̂ = 〈k|U |k〉 acts in HC . The matrix elements of the reduced operator can be
calculated from Eq. (11), with the result

Uk̂ =
1

3

















w−k1 w−k1 w−k1 −2w−k1 w−k1 w−k1

w−k1+k2 w−k1+k2 w−k1+k2 w−k1+k2 −2w−k1+k2 w−k1+k2

wk2 wk2 wk2 wk2 wk2 −2wk2

−2wk1 wk1 wk1 wk1 wk1 wk1

wk1−k2 −2wk1−k2 wk1−k2 wk1−k2 wk1−k2 wk1−k2

w−k2 w−k2 −2w−k2 w−k2 w−k2 w−k2

















.

(12)
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The characteristic polynomial factors as

P (λ) = (λ− 1)2(λ+ 1)2(λ2 − 2 cos(θk)λ+ 1), (13)

where θk is defined by

cos(θk) ≡
1

3

(

cos(k̃1) + cos(k̃2) + cos(k̃1 − k̃2)
)

, (14)

and k̃i ≡ 2πki√
N

for i = 1, 2. The eigenvalues are ±1, each with multiplicity 2, and e±iθk .

Let us denote by |ν±1〉 and |ν±k〉 the normalized eigenvectors of Uk̂ associated with

the eigenvalues ±1 and e±iθk , respectively. Then |ν±1, k̂〉 and |ν±k, k̂〉 are eigenvectors
of U associated with the same eigenvalues, where |k̂〉 is defined in Eq. (9).

3 Time complexity of the search algorithm

We shall use Tulsi’s version [Tulsi 2008] of the framework of the abstract search al-
gorithm [Kempe et al. 2005] to analyze the time complexity of a search algorithm on
the triangular network. We assume that there is a single marked vertex |t̂〉, which
we want to find. The search algorithm uses a conditional coin operation, which acts
as −IC on the searched site |t̂〉 and as G(6) otherwise. Thus, the modified evolution
operator is U ′ = S · C′, where C′ acts in H as just described, i.e.

C′ = −IC ⊗ |t̂〉〈t̂|+
∑

n̂6=t̂

G(6) ⊗ |n̂〉〈n̂|. (15)

AKR [Kempe et al. 2005] have shown that the evolution of the modified quantum
walk U ′ may be analyzed using the eigenspectrum of the standard QW evolution
operator U . This fact actually reduces the analysis of the search algorithm to a
tractable eigenproblem for the unitary operator U .

The evolution operator U ′ can be written in another form, useful for Tulsi’s modi-
fied algorithm. This modification requires an extra register (an ancilla qubit) used as
a control for the operators Rt̂ and U . Using Eq. (15), one can show that U ′ = U ·Rt̂ ,
where Rt̂ = I6N − 2|uC , t̂〉〈uC , t̂|, U is given by Eq. (3) and |uC〉 is the uniform su-
perposition of the computational basis of the coin space. The operators acting on
the ancilla register are described in Figure 2, where −Z is the negative of Pauli’s Z
operator and

Xδ =

(

cos δ sin δ
− sin δ cos δ

)

, (16)

where cos δ ∝ 1/
√
logN .

The new evolution operator is

U ′′ = (−Z ⊗ I) · C(U) · (X†
δ ⊗ I) · C(Rt̂) · (Xδ ⊗ I), (17)

where C(U) and C(Rt̂) are the controlled operations shown in Figure 2 and I is the
identity operator in H. We will show that U ′′ must be iterated O(

√
N logN) times,
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|uP 〉

Xδ X†
δ −Z

R
t̂

t

U

|1〉

|uC〉

t

Figure 2: Tulsi’s circuit diagram for the one-step evolution operator of the quantum
walk search algorithm.

taking |1〉|uC〉|uP 〉 as the initial condition, in order to maximize the overlap with the
search element.

The expression for the controlled Rt̂ is C(Rt̂) = I12N − 2|1, uC, t̂〉〈1, uC , t̂|. Let us
define

|δ1〉 ≡ X†
δ |1〉 = − sin δ |0〉+ cos δ |1〉, (18)

then we define a new reflection operator

R̄t̂ ≡ (X†
δ ⊗ I) · C(Rt̂) · (Xδ ⊗ I) = I12N − 2|δ1, uC , t̂〉〈δ1, uC , t̂|. (19)

The effective target state is
|t̄〉 = |δ1, uC , t̂〉. (20)

Let us define
Ū = (−Z ⊗ I) · C(U). (21)

Note that the eigenspectrum of Ū is determined from the eigenspectrum of U . In
fact, for k̂ 6= 0

Ū |0〉|ν±k, k̂〉 = −|0〉|ν±k, k̂〉, (22)

Ū |1〉|ν±k, k̂〉 = e±iθk |1〉|ν±k, k̂〉. (23)

Eigenvectors |l〉|ν±1, k̂〉, l = 0, 1 will not be used, because 〈uC |ν±1〉 = 0. They are

orthogonal both to the initial condition and to the target. For k̂ = 0, the initial
condition is the only eigenvector with eigenvalue 1 that will be used.

The search algorithm consists in applying U ′′ repeatedly taking the initial condi-
tion as

|Ψ0〉 ≡ |1, uC , uP 〉 =
1√
6N

∑

j,n̂

|1, j, n̂〉, (24)

where |uC〉 and |uP 〉 are the uniform superposition in the coin and position spaces
respectively. The initial condition can be prepared in O(

√
N) time steps. The number

of iterations of U ′′ is given by π/4α, where α is defined in the following way. The
eigenvalues of U ′′ that are different from 1 have the form e±iαj , where 0 < αj ≤ π/2.
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Then α = min{α1, α2, · · · }. AKR have shown that it is possible to estimate α knowing
the eigenspectrum of the evolution operator Ū .

The first step in the analysis of the algorithm is to decompose the target state in
the eigenbasis of Ū , that is, we have to calculate coefficients a0, ak and bk such that

|δ1, uC , t̂〉 =
a0√
N

|Ψ0〉+
1√
N

∑

k̂ 6=0

ak

(

|1, ν+k, k̂〉+ |1, ν−k, k̂〉
)

+

1√
N

∑

k̂ 6=0

bk

(

|0, ν+k, k̂〉+ |0, ν−k, k̂〉
)

. (25)

Coefficients bk are related to the (−1)-eigenspace. Coefficients ak and bk are real. In

order to satisfy these conditions, eigenvectors |l, ν+k, k̂〉 for l = 0, 1 must be chosen
appropriately. The procedure is the following. If 〈uC |ν+k〉 has a non-zero phase eiλ,

then |l, ν+k, k̂〉 must be redefined to e−iλ|l, ν+k, k̂〉. The same procedure must be

performed to |l, ν−k, k̂〉. After those redefinitions, Eq. (25) is valid. For the triangular
network, a straightforward calculation yields

ak = 〈1|δ1〉〈ν±k|uC〉 =
cos δ√

2
(26)

bk = 〈0|δ1〉〈ν±k|uC〉 = − sin δ√
2

(27)

This result is remarkably similar to the result obtained for the 2D grid. Note that
the corresponding expressions for the honeycomb lattice [Abal et al. 2010] are more
complex, because they depend on k.

Tulsi has shown that α can be determined using the expression

1

α
= O







1

a0

√

√

√

√

∑

k̂ 6=0

a2k
1− cos θk

+
∑

k̂ 6=0

b2k
4






, (28)

when N ≫ 1. Eqs. (26) and (27) show that ak and bk do not depend on k̂. The
non-trivial sum inside the above square root may be calculated using

1

2

∑

k 6=0

1

1− cos θk
≈ N

16

1

(π − ε)2

∫∫ 2π−ε

ε

dk̃2dk̃1
1

1− cos θk
, (29)

where we have used
∑

k 6=0 → N
8

1
(π−ε)2

∫∫ 2π−ε

ε
dk̃1dk̃2 with ε = 2π

√

2/N ≪ 1. Using

Eq. (14) and ε ≪ 1, Eq. (29) can be approximated by

3N

16

1

π2

∫ 2π−ε

ε

dk̃2

∫ 2π−ε

ε

dk̃1

k̃21 + k̃22 − k̃1k̃2
∼ N log

(

2π

ε

)

∼ N logN. (30)

Replacing this result in Eq. (28), using that a0 = cos δ, cos δ = Θ
(

1/
√
logN

)

and
Eqs. (26) and (27), we obtain

1

α
= O

(

√

N logN
)

. (31)
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Since the number of iterations of U ′′ is π/4α, we conclude that the time complexity
of the search algorithm is O(

√
N logN). It remains to show that the probability to

find the marked vertex is constant. This is the moment where Tulsi’s method shines.
The overlap of the final state after t = π/4α iterations of U ′′ with the target state

is

|〈δ1, uC , t̂|(U ′′)t|Ψ0〉| = Θ



min







1
√

∑

k̂ 6=0 a
2
k cot

2 θk
4

, 1









 . (32)

The coefficients bk play no role in this overlap as shown by Tulsi. The calculation
at this point for the triangular network is similar to one performed by AKR for the
2D grid, except that ak has the constant factor of cos δ. Using that: (1) cot θk ≤ 1

θ2

k

,

(2) 1
θ2

k

is bounded from below and above by const/(1 − cos θk) and (3) the result of

Eq. (30), we obtain

|〈δ1, uC , t̂|(U ′′)t|Ψ0〉| = Θ
(

min
{

√

cos2(δ) logN, 1
})

. (33)

Using that cos δ = Θ
(

1/
√
logN

)

, we obtain

|〈δ1, uC , t̂|(U ′′)t|Ψ0〉| = Θ(1) . (34)

The probability of finding the marked vertex is constant. We have confirmed this
result with a numerical simulation in Fig. 4.

4 Simulation of the search algorithm

A generic state in the extended space is

|Ψ〉 =
∑

j

∑

n̂

aj,n̂ |0, j, n̂〉+ bj,n̂ |1, j, n̂〉, (35)

where a, b are the amplitudes of the state vector extended to include the 2-dimensional
Hilbert space associated with the ancilla qubit.

It is straightforward to show that the operator U ′′ in Eq. (17) defines the following
map:

ãj,n̂ = −aj,n̂ +
1

3
δn̂,t̂

∑

ℓ

(

aℓ,t̂ sin
2 δ − bℓ,t̂ cos δ sin δ

)

, (36)

b̃j,n̂ =
∑

k,l

G
(6)
k,l

∑

n̂′

Sj,k,n̂,n̂′

[

bl,n̂′ +
1

3
δn̂′,t̂

∑

ℓ

(

aℓ,t̂ sin δ cos δ − bℓ,t̂ cos
2 δ

)

]

where δn̂,t̂ is a Kronecker-delta which selects the searched state. This map allows
the simulation of the abstract search algorithm in a digital computer. The initial
condition is taken to be |1〉|uC〉|uP 〉, and the effective target state is |t̄〉 = |δ1〉|uC〉|t̂〉,
as explained in the last section.
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Figure 3: Left panel: probability of finding the searched state against the number of
time steps for spatial search with (thin line) and without (thick line) Tulsi’s modifi-
cation for N = 400. Right panel: tMAX against

√
N logN using Tulsi’s search. Note

the approximately linear dependence.

Fortran 90 was chosen as programming language because it provides useful tools
for large matrix computations and intrinsic functions for complex vector algebra. A
parallel programming approach using OpenMP was implemented.

We present the results of the simulations in Figures 3 and 4. The left panel in
Figure 3 shows the time evolution of the probability of finding the searched state,
∣

∣〈t̄|Ψ〉
∣

∣

2
, both for an algorithm with Tulsi’s modification (thin curve), based on U ′′

defined in Eq. (17), and without it (thick curve), based on U ′ = S·C′ with the modified
coin operator defined in Eq. (15). Note that Tulsi’s search yields a smoother curve,
the first maximum (tmax) of which is reached later but the maximum probability of
finding the searched element is higher than with the usual spatial search. A change
in the sign of the local derivative was used to find the maximum point. In the right
panel of Figure 3, the time at which the maximum probability is reached for Tulsi’s
search is plotted against

√
N logN . A straight-line fit to this data has a correlation

coefficient R2 = 0.9988.
In order to test whether the overlap with the searched site in Tulsi’s search is con-

stant for large N , in Figure 4 we plot this overlap,
∣

∣〈t̄|(U ′′)tmax |1, uC , uP 〉
∣

∣

2
, against

N . After an initial decay, for N > 2000 the overlap is found to stabilize at approx-
imately 0.773. These simulations show that Tulsi’s search in a triangular network
works as expected.

5 Summary and conclusions

In this work the problem of quantum spatial search on a periodic two-dimensional
triangular network has been considered for the first time. In this problem, a searched
item is to be located in a regular triangular network withN elements. A quantum walk
operator for this network has been defined and its explicit Fourier representation has
been found. Its eigenproblem was solved exactly and these results have been used to
estimate the overlap and running times of the algorithm, according to the generalized
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Figure 4: Probability of finding the marked vertex
∣

∣〈t̄|(U ′′)tmax |1, uC, uP 〉
∣

∣

2
against

N .

search formalism [Kempe et al. 2005]. This formalism gives a powerful insight on
the runtime of the algorithm for large values of N . In order to check our analytical
results and to gain further knowledge on the detailed performance of the spatial
search, we have implemented its simulation on a classical computer, using standard
parallel techniques. This allowed us to obtain results for high values of N and see
how fast the convergence to the theoretical expectations actually is. The simulations
were implemented both for a modified quantum walk search and for Tulsi’s search,
which uses an extra qubit as a control register.

Both spatial search algorithms are found to require O(
√
N logN) steps to reach

the point at which a measurement yields the searched state with constant probability.
However, this result is obtained with a constant overlap with the searched state, in
the case of Tulsi’s search.

Previous work for the spatial search problem in a plane has considered the case
of a square grid [Kempe et al. 2005] and an hexagonal grid [Abal et al. 2010]. For
both quantum algorithms the time complexity is O(

√
N logN). In a sense, this work

completes the program for the spatial search problem, by providing the details of a
search in a triangular grid. Since these regular graphs have different degree (d = 4
for rectangles, d = 3 for hexagons and d = 6 for triangles), this completes the proof
that the degree of a regular graph does not affect the performance of a spatial search
algorithm.

A search algorithm implemented on a real network will have to cope with loss of
symmetry due to imperfections. The issue of how robust these different spatial search
protocols are when it comes to searching when a fraction of the links in the network
is missing is still an important open question which remains for future work.
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