
Learning Qualitative Differential Equation models: a survey of
algorithms and applications

WEI PANG1,2 and GEORGE M. COGHILL2

1Computational Intelligence Group, College of Computer Science and Technology, Jilin
University, Changchun, P.R. China
2Department of Computing Science, School of Natural & Computing Sciences, University of
Aberdeen, Aberdeen, UK

Abstract
Over the last two decades, qualitative reasoning (QR) has become an important domain in
Artificial Intelligence. QDE (Qualitative Differential Equation) model learning (QML), as a
branch of QR, has also received an increasing amount of attention; many systems have been
proposed to solve various significant problems in this field. QML has been applied to a wide range
of fields, including physics, biology and medical science. In this paper, we first identify the scope
of this review by distinguishing QML from other QML systems, and then review all the
noteworthy QML systems within this scope. The applications of QML in several application
domains are also introduced briefly. Finally, the future directions of QML are explored from
different perspectives.

1 Introduction
1.1 Qualitative simulation

Qualitative simulation (Kuipers, 1986, 1994) is one of the fundamental approaches in
qualitative reasoning (QR; Forbus, 1997). It involves predicting the possible qualitative
behaviours of complex dynamic systems, which are described as Qualitative Differential
Equation (QDE) models. A single QDE can be an abstraction of several Ordinary
Differential Equations (ODEs), in the sense that an ODE can be obtained by appropriately
parameterizing and quantizing this QDE, and making the function relations of this QDE of
an appropriate form (Shen & Leitch, 1993; Coghill & Chantler, 1994). A QDE model is the
conjunction of several qualitative constraints. These qualitative constraints link the
qualitative variables in the model and express the relations among these variables. Each
qualitative variable is associated with a quantity space from which it takes its values. In
QSIM (Qualitative SIMulation) (Kuipers, 1994), a quantity space is a finite set of symbols,
which has the following form:

where each symbol above stands for a qualitatively important value, and is termed as a
landmark value. The quantity space can also have other forms; for instance, in FuSim (Shen
& Leitch, 1993), a quantity space is composed of fuzzy numbers, which are in the form of
fuzzy four tuples.

© Cambridge University Press, 2010

pang.wei@abdn.ac.uk, pangwei@jlu.edu.cn, g.coghill@abdn.ac.uk

Europe PMC Funders Group
Author Manuscript
Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

Published in final edited form as:
Knowl Eng Rev. 2010 March ; 25(1): 69–107. doi:10.1017/S0269888909990348.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Some types of the qualitative constraints are derived from arithmetic relations, such as
qualitative addition, subtraction and multiplication; others represent incomplete knowledge
about the function relations under study, for example, in QSIM, there are M+ (monotonically
increasing function) and M− (monotonically decreasing function) constraints, which state
that one variable will monotonically increase with the increase (decrease) of another
variable. Table 1 shows some qualitative constraints used in QSIM and their corresponding
mathematical equations. In the right column of the table, variables X(t), Y(t) and Z(t) are
functions of time t, f is a function that is continuously differentiable over its domain, and f′
is the first derivative of f.

Starting from a QDE model, sometimes together with an initial condition of some qualitative
variables, a qualitative simulation engine will apply the QR algorithm to obtain a global
picture of the dynamics of the system being modelled at a qualitative level. For example, in
the case of QSIM, the output is a behaviour tree, which is composed of several qualitative
states and their transitions. Each qualitative state is a complete assignment of values to all
the qualitative variables, and a qualitative behaviour in QSIM is a path from the root to a
leaf in the behaviour tree.

Qualitative simulation is a practical and essential approach because when we lack
quantitative knowledge, it is impossible to model a dynamic system by a precise ODE and
perform the simulation quantitatively, although it may still be possible to use a QDE. During
the past two decades, several qualitative simulation engines have been proposed, such as
QSIM (Kuipers, 1986), FuSim (Shen & Leitch, 1993), and Morven (Coghill, 1996).

1.2 QDE model learning (QML)
Qualitative simulation can be performed when QDE models of a dynamic system are
available. The QDE models can be obtained either directly from textbooks, for example,
textbooks of physical science and biological science, or from the suggestion of the domain
experts, such as biological scientists, physical scientists, and electrical engineers. However,
for some complex dynamic systems, when little theoretical knowledge is available, even an
appropriate QDE model may not be obtained easily. This makes another subfield of QR,
QML, necessary. QML involves extracting QDE models of dynamic systems from the
available observed data, which can be either quantitative or qualitative. The output of QML
can be a single or several QDE models (in the case of hybrid dynamic systems (Alur et al.,
2000), as described in section 3.3.6). QML is the inverse of qualitative simulation, and it can
be considered as a subfield of system identification (Ljung, 1999), for which the term
qualitative system identification is sometimes used (Say & Kuru, 1996). It can also be
treated as a special case of machine learning (Mitchell, 1997), because some machine
learning algorithms, such as inductive logic programming (ILP; Bergadano & Gunetti, 1996)
can be employed to induce the QDE models. From a model composition point of view,
QML can be seen as the process of building ‘model fragments’ from scratch, or an
individual approach for compositional modelling (Keppens & Shen, 2001).

1.3 Challenges of QML
QML is a vital part of QR and can be effectively applied to study many real-world dynamic
systems. To implement the distinctive characteristics and powerful learning ability of QML,
the designers are confronted with the following four challenges:

1. Learning from sparse data: It is known that experimental data acquired from some
dynamic systems are often sparse. For example, in some biological experiments, it
is often the case that only a few temporal data points can be measured, because of
technical limitations and the nature of biological systems.

PANG and COGHILL Page 2

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

2. Learning from imprecise data: The presence of imprecise data makes it more
difficult for QML to distinguish the target model from other candidate models. This
imprecise data arise because of measurement errors, or because the dynamic system
itself is noisy or imprecise.

3. Learning from positive data alone: There are actually no negative data available for
learning qualitative models, because it is only possible to observe the behaviours
that the dynamic system provides (positive data) and not possible to know the
behaviours that the system cannot achieve. This requires corresponding learning
algorithms, such as the work of Muggleton (1996), to deal only with the positive
data. Although some QML systems, such as GOLEM (Muggleton & Feng, 1990),
did make use of ‘negative data’, these data are obtained based on the assumption
that all the possible behaviours of a system are known, and consequently all the
other behaviours can be seen as ‘negative data’.

4. Learning under the existence of hidden variables: Another important factor that
influences the learning is the existence of hidden variables. Hidden variables are
those variables that are not observed in the experiments. To identify the target
model successfully, we must postulate possible hidden variables in the learning
process. This makes the learning task more challenging.

1.4 The scope and organization of this review
In some literature, the term Learning Qualitative Models is used to cover a set of algorithms,
which includes not only learning QDE models, but also learning models that have other
qualitative representations, for example, qualitative trees (Bratko & Šuc, 2003). In addition,
some model learning systems use qualitative approaches to facilitate the learning task. These
systems are quite similar to QML to some extent, but the final output of these systems are
either ordinary and partial differential equations, for example, PRET (Bradley & Stolle,
1996; Bradley et al., 2001) and the LAGRANGE family (Džeroski & Todorovski, 1993,
1994; Todorovski & Džeroski, 1997; Todorovski et al., 2000; Todorovski, 2003), semi-
quantitative differential equation (SQDE) models, for example, SQUID (Semi-QUantitative
system IDentification) (Kay et al., 2000), the work of Vatcheva et al. (2005) and Khoury et
al. (2007), or fuzzy rule-based systems, for example, the work of Bellazzi et al. (1998).

In this paper, we restrict our scope to learning QDE models. The remainder of this paper is
organized as follows: In section 2, a generalized structure for a QML system is proposed; in
sections 3 and 4, the noteworthy QML systems are examined; in section 5, all the reviewed
QML systems are summarized; in section 6, the applications of QML are briefly introduced;
possible future directions for QML research are suggested in section 7; and finally, some
conclusions are presented in section 8.

2 The generalized structure of QML systems
The generalized structure of a QML system is shown in Figure 1. The rectangles stand for
the basic execution components, and the rounded rectangles stand for the data and
information. Generally speaking, a QML system is composed of the following four abstract
execution components:

1. Data pre-processing: This component will take the original raw data as input, and
produce the processed data. In most cases, this module is a quantitative to
qualitative data transformation (Q2Q) algorithm. In some learning systems, this
module may be a specialized pre-processing algorithm, such as the method used in
QMN (Qualitative Models from Numerical traces) (Džeroski & Todorovski, 1994).

PANG and COGHILL Page 3

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

2. Model space generation: The model space is the set that contains all possible
models. The model space generation will take the processed data as input, which
can be either qualitative or quantitative, and provide a way of listing all models in
the model space. Considering that the size of the model space is often very big, in
most cases the model space generation will only provide a rule for generating all
possible models, rather than actually list all possible models exhaustively. In this
situation, the model space is implicit. For instance, in GENMODEL (Coiera,
1989a), after the execution of model space generation, all qualitative constraints
that are consistent with the given data are generated, and the model space is
indicated as all possible combinations of these qualitative constraints.

3. Model search algorithm: This component will perform the search in the generated
QDE model search space by means of some learning strategy. The output of the
model search algorithm will be all the consistent QDE models, which can
reproduce the observed data and agree with the background knowledge (in this
section).

4. Model verification: This component is called by the model search algorithm to
verify the candidate models and can be a qualitative simulation engine that is
embedded into the learning system, for example QSIM, or other error-based
verification algorithms.

QML systems also need background knowledge, which can reduce the search space, and
make the learning easier. The background knowledge can be problem-independent. For
instance, the QSIM theory (Kuipers, 1994), dimensional information (Bhaskar & Nigam,
1990), and well-posed model assumptions (Coghill et al., 2008) can be encoded into the
background knowledge. The background knowledge can also be problem-dependent. When
learning a QDE model in a specific domain, the domain knowledge can also be part of the
background knowledge. For example, in a typical biochemical reaction system, a plausible
reaction only makes and breaks a few bonds, and it also conserves matter and atom type
(Valdés-Pérez, 1994). The domain knowledge will further narrow down the search space
and reduce the computational complexity. The background knowledge can be used by either
the Model Space Generation or the Model Search Algorithm.

The output of the QML systems is all the QDE models that do not violate the background
knowledge, and that can cover all the given data. When only incomplete data are provided,
the output may be composed of many candidate models, and the target model will be among
them.

Finally, it should be pointed out that some QML systems, such as QSI (Qualitative System
Identification) (Say, 1992; Say & Kuru, 1996), may execute the Model Space Generation
and Model Search Algorithm components in an iterative way, as the dashed arrows indicate
in Figure 1.

3 Symbolic QML systems
All the noteworthy QML systems, which have different implementations of basic
components of QML and different input data, are examined and described in detail in this
and the next sections with reference to the generalized structure proposed in section 2. We
argue that the difference in the search strategies is the main reason for the existence of
various QML systems. Furthermore, all these search strategies fall into the following two
categories: symbolic and evolutionary approaches.

Symbolic approaches tend to explore the search space in a systematic and deterministic
manner. The simplest symbolic approach is the generate-and-test algorithm, which

PANG and COGHILL Page 4

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

straightforwardly generates all possible candidate models and tests them one by one. In the
symbolic approaches, heuristic and pruning techniques can be used to reduce the
computational effort, for instance, the Bayesian scoring function (as the heuristic function)
and the branch-and-bound algorithm (pruning) used in ILP-QSI (Coghill et al., 2008).

Evolutionary approaches employ evolutionary algorithms, such as genetic algorithms
(Goldberg, 1989), to perform the search tasks. Because of the nature of these algorithms,
evolutionary approaches explore the search space in a non-deterministic manner.

In this section, all the QML systems that employ symbolic approaches as search strategies
are introduced in detail. The QML systems that use evolutionary approaches will be
described in the next section.

3.1 A general-purpose system: GOLEM
QML systems can also be coarsely divided into two types: general-purpose systems, such as
GOLEM (Muggleton & Feng, 1990), and special-purpose systems, such as GENMODEL
(Coiera, 1989a). A general-purpose system can fulfil not only the QML tasks, for example,
GOLEM but also used for protein secondary structure prediction (Muggleton et al., 1992),
whereas a special-purpose system is specially designed to fulfil QML tasks only.

Bratko et al. (1991) argued that a general ILP (Muggleton & Raedt, 1994; Bergadano &
Gunetti, 1996) system, such as GOLEM1, can achieve the goal of learning QDE models. An
ILP system can fulfil the following learning task: given background knowledge B, examples
E find a hypothesis H, which satisfies:

(1)

3.1.1 The learning strategy of GOLEM—For learning models with GOLEM, QSIM is
first formulated in first order logic form, that is, several Horn Clauses, and then the
qualitative constraints in QSIM are converted into ground facts, which are the forms that
GOLEM can accept. The learning task becomes to construct a model in terms of Horn
Clauses that can cover the positive examples obtained from given system behaviours and
exclude the hand-generated negative examples:

(2)

GOLEM employs a bottom-up search strategy by iteratively generalizing a most specific
clause. For each iteration, first a certain number of clauses are constructed by relative least
general generalization (Plotkin, 1971), among which the clause that can cover the maximum
number of the positive examples and exclude all the negative examples will be chosen to be
processed for the next iteration (see details in Muggleton & Feng (1990)). Hence, GOLEM
is not a complete algorithm in the sense that it uses this greedy hill-climbing heuristic
search, and cannot guarantee to find the target model if one exists.

3.1.2 Evaluation of GOLEM for learning QDE models—The validity of GOLEM
was tested by learning one of the most commonly used benchmark problems in the QR
community: the U-Tube system, which is described in Appendix A2. It was reported that on

1The source code of GOLEM can be downloaded from http://www.doc.ic.ac.uk/~shm/Software/golem/src.tar
2The experimental data used in GOLEM for learning U-Tube can be accessed from ftp://ftp.cs.york.ac.uk/pub/ML_GROUP/Datasets/
utube/golem/utube.tar.Z

PANG and COGHILL Page 5

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.doc.ic.ac.uk/~shm/Software/golem/src.tar
ftp://ftp.cs.york.ac.uk/pub/ML_GROUP/Datasets/utube/golem/utube.tar.Z
ftp://ftp.cs.york.ac.uk/pub/ML_GROUP/Datasets/utube/golem/utube.tar.Z

learning the U-Tube system, given a behaviour composed of four states, GOLEM can
successfully construct two QDE models in terms of Horn Clauses, both of which are
equivalent to the original U-Tube model. Furthermore, GOLEM is capable of finding hidden
variables by borrowing the name of available variables (atoms in the clauses).

However, the learning result is based not only on four positive examples, but also six
additional hand-generated ‘negative examples’. As mentioned before, the use of negative
data is not reasonable in practice, because it is not possible to obtain them unless all the
possible behaviours of the system are exactly known. In addition, GOLEM needs a large
number of ground facts as background knowledge to support its learning, which inevitably
limits its scalability. For learning the U-Tube, there are still 5408 ground facts that have to
be generated even after making the following simplifications: (i) the corresponding values3

are assumed empty; (ii) the consistency of infinite values is ignored; and (iii) multiplication
functions are taken out of the constraint repertoire. For dynamic systems that involve long
lists of landmark values, the number of ground facts will increase dramatically.

GOLEM demonstrates that ILP is suitable for QML tasks. The idea of employing ILP in
QML is adopted by many other later special-purpose QML systems, which explicitly or
implicitly employ ILP technology.

3.2 GENMODEL
GENMODEL (Coiera, 1989a, 1989b) is probably the first special-purpose QML system, and
can be viewed as an ILP-based system, which is able to learn from positive examples only.
A later version of GENMODEL (Hau & Coiera, 1993) improves the original version by
adding additional dimensional analysis (Bhaskar & Nigam, 1990), fault tolerance, and a
Q2Q component. In this section, unless otherwise specified, all the descriptions of
GENMODEL are based on this improved version.

3.2.1 Data pre-processing—In contrast to GOLEM, which assumes that the qualitative
states are already available, the updated version of GENMODEL possesses the ability to
deal with raw numerical data by integrating a Q2Q component. The Q2Q component is
made up of two subcomponents: the Front-end Processing module and the Segmenter. The
signals pass through the Front-end Processing module, which is composed of several filters,
then they are transformed to smooth signals with better mathematical properties. The
derivative signals are also obtained by a differentiator. The Segmenter will further divide the
smooth signals and the derivative signals, resulting in a complete set of qualitative states.

3.2.2 Model space generation—The model space generation component of
GENMODEL is intuitive: the input is a set of qualitative variables (system functions), their
dimension information (units), and landmark values. The generation module will
exhaustively generate all the possible combinations of the given qualitative constraints and
variables, then all the dimensionally inconsistent constraints will be taken out of the
constraint set. Under the closed world assumption, the generated model space is complete,
which means that it includes all possible models.

3.2.3 Learning strategy—The learning strategy of GENMODEL is straightforward. For
each qualitative state obtained from the Q2Q component, all the constraints that are
inconsistent with this state will be deleted. After checking all the states, the constraint set is
further examined by the redundancy check, which removes the redundant constraints. The

3In QSIM, corresponding values of a constraint are defined as tuples of landmark values that variables in this constraint can take at the
same time.

PANG and COGHILL Page 6

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

redundant constraints are those describing the same relation; for example, M+(A, B) and
M−(B, A) are redundant, and one of them should be removed. Finally, the rest of the
constraints construct a most specific model that can cover all the qualitative states. To deal
with noise, a fault tolerance mechanism is added; each constraint is assigned a counter,
recording the number of qualitative states that this constraint is inconsistent with. Only a
constraint whose counter exceeds a predefined number can be deleted.

3.2.4 Experimental results—On learning the U-Tube, the early version of GENMODEL
(Coiera, 1989a) produced 14 constraints from two behaviours that include six states. Other
four physical systems described by Kuipers & Kassirer (1984) and Kuipers (1986),
including the bathtub and the spring systems, were also tested by the same version of
GENMODEL. Experimental results showed that this version of GENMODEL was able to
learn these models, but GENMODEL tended to generate overconstrained models when the
given data were insufficient. Furthermore, the updated version of GENMODEL (Hau &
Coiera, 1993) was successfully applied to a real-world application, which will be detailed in
section 6.2.

3.2.5 Evaluation—One of the advantages of GENMODEL is that it does not need
negative examples, and the dimensional information can serve as a form of directed negative
example generation. It also has the following features: (i) It has the ability to handle real-
valued experimental data; (ii) it can deal with noisy data to some extent because
GENMODEL introduces the fault tolerance mechanism described in section 3.2.3; (iii)
unlike GOLEM, it does not need ground facts; and (iv) it is a complete algorithm, which
means that it can guarantee to find the target model if one exists.

The limitations of GENMODEL are as follows: (i) it cannot introduce hidden variables. If
not all the system variables are identified, GENMODEL will terminate at a ‘shallow model’.
(ii) As it tends to find the most specific models, the models obtained are usually
overconstrained, that is, it contains more constraints than necessary to fully characterize the
dynamic system being modelled.

GENMODEL’s primitive idea of generate-and-test is also adopted by later QML systems.
These learning systems also added other techniques based on other considerations. For
instance, the constraint determination stage of QSI (Say & Kuru, 1996) is basically the same
as GENMODEL; MISQ (Richards et al., 1992) also uses the same method as GENMODEL
to generate its initial constraint set.

3.3 MISQ and MISQ-RT
The preliminary version of MISQ (Kraan et al., 1991) is similar to GENMODEL in many
respects. The later version of MISQ (Richards et al., 1992) was re-implemented within a
general-purpose relational learning programme: Forte (Richards & Mooney, 1995). This
version possesses additional features and can work in some complicated situations that
cannot be handled by GENMODEL. There are three phases in MISQ, which correspond to
the three components in the generalized structure in Figure 1 separately.

3.3.1 Data pre-processing—This component is called the Conversion of qualitative data
phase in MISQ. This module can take as input the data from a high-resolution sensor, or
quantitative behaviours directly generated by hand, which are composed of those time points
where some variables reach extreme values or zero. If the inputs are sensor data, they will be
converted to quantitative behaviours by extracting the significant data points. The
quantitative behaviours will further be transformed to qualitative behaviours by constructing

PANG and COGHILL Page 7

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

the landmark values and estimating the derivatives. This phase will be bypassed if the input
data are qualitative behaviours.

3.3.2 Model space generation—The Model Space Generation (Constraint generation
phase in MISQ) is basically the same as GENMODEL, that is, it first generate all the
possible combinations of qualitative constraint type and variables, then use dimensional
information to filter out the inconsistent constraints.

3.3.3 Learning strategy—MISQ will generate one and only one most specific model if
the input qualitative behaviours to this module satisfy the following two conditions: (i)
These qualitative behaviours are consistent. A set of behaviours is consistent if these
behaviours can be achieved by the same real dynamic system. Note that MISQ does not
require complete behaviours. (A set of behaviours is complete if it includes and only
includes all possible behaviours that a real dynamic system can achieve.) Hence, this is a
more relaxed condition than that in GENMODEL, which requires that the input qualitative
behaviours must be complete in order to obtain the right model. (ii) The descriptions of
these behaviours are complete, in the sense that there are no hidden variables in the system,
and there are also no missing values and dimensions for all the qualitative variables.
Considering that condition (i) only requires the consistency of the input qualitative
behaviours, the input can be a subset of the complete behaviours, in this case MISQ may
produce an overconstrained model.

MISQ can also learn models when the above two conditions are not satisfied, that is, (a)
there are hidden variables and (b) there are missing qualitative values or dimensions. In the
case of (a), MISQ will use the relational path-finding algorithm (Richards & Mooney, 1992)
to find the hidden variables. In the case of (b), an inconsistent constraint set may be
generated. All the subsets of this constraint set construct a QDE model search space. MISQ
will search in this space by employing some heuristics, such as ‘the subset must contain at
least one derivative constraint’ (the system being modelled must be dynamic) and ‘form a
connected graph’ (no disjoint models). These heuristics are also adopted in a later system,
ILP-QSI (Coghill et al., 2004, 2008), in which the well-posed models are formally and
completely defined to include more properties that a QDE model should have.

3.3.4 Experimental results—On learning the U-tube, MISQ inferred the right model
from the only one behaviour, which was the same used in GOLEM as positive examples.
Experiments on learning the cascaded tanks (described in Appendix C) were also performed
when given data were at different resolutions (qualitative, quantitative, and high-resolution
data), or had hidden variables. Results from these experiments showed that MISQ could
produce the righ-cascaded tanks model if the dimensional information was complete, and if
there were missing variables, MISQ could also infer the right model by finding the hidden
variables through the relation path-finding approach.

3.3.5 Evaluation—MISQ goes further than GENMODEL by possessing the ability to
process incomplete information and deal with hidden variables. It can work with both
quantitative and qualitative data. One of the characteristics of MISQ is that it allows
partially specified variables in a qualitative state, which is useful when measuring such
variables is not very easy or some points of measurements for them are missing. All of the
above make MISQ an advanced learning system that holds an important position in the field
of QML.

The limitations of MISQ are as follows: (i) Like GENMODEL, even when complete
behaviours are provided, MISQ may produce overconstrained models because it tends to
generate the most specific models. (ii) When dealing with incomplete information (a), the

PANG and COGHILL Page 8

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

heuristics used to reduce the model search space are not completely and formally defined; so
additional heuristics can be added, such as causal ordering (Iwasaki & Simon, 1986), which
is also used in a later learning system ILP-QSI (Coghill et al., 2004, 2008). This can help it
overcome the generation of overconstrained models; (b) no further systematic experiments
were performed to support its learning ability, although some examples such as learning the
cascaded tanks under a few types of input were demonstrated. (iii) It is not apparent from the
descriptions or experimental results of MISQ whether or not it can handle noisy data. The
Correctness and Uniqueness Theorem presented only applies for complete noise-free data.

3.3.6 MISQ-RT (MISQ for region transitions)—MISQ-RT (Ramachandran et al.,
1994) can be seen as an extended version of MISQ, and it can deal with hybrid dynamic
systems (Alur et al., 2000). Briefly, a hybrid dynamic system is composed of several
continuous dynamic systems and the switching conditions among them. In the context of
qualitative modelling, each of these dynamic systems can be modelled by an individual
QDE. Each QDE holds under specific conditions, which are termed operating conditions of
the QDE, and expressed by the values of the variables involved. The operating conditions
specify a ‘region’ within which this QDE holds, and this region is called the operating
region (Kuipers, 1994). If a switching condition is satisfied, a region transition will occur,
which means that the hybrid dynamic system will switch from the operating region of one
QDE to that of another.

MISQ-RT fulfils the task of learning hybrid dynamic systems by executing the following
four consecutive steps: (i) Detecting region transition points by heuristic methods, such as
detecting the discontinuous change of the magnitude and the sign of the derivative. Then,
the behaviours are divided by these transition points into segments. Each segment is an
operating region, or a subset of an operating region. (ii) Learning QDE models within each
segment by MISQ. (iii) Identifying the operating conditions for each region. The operating
condition for an operating region is initially set as the conjunction of the range of all the
qualitative values for each variable within this region. (iv) Unifying the regions to get a
compact description of the model. In the first three steps, for each behaviour segment, a
corresponding QDE is obtained. However, some of the segments may have the same QDE
model. So it is necessary to unify these segments. Two heuristics are used: (a) The identical
constraints heuristic will try to unify two regions with the same QDE model, and the
operating condition for the newly unified region is updated according to those for the
original regions; (b) the identical operating conditions heuristic will try to unify two regions
with the same operating conditions. The QDE model in the new region is the intersection of
the models in the original regions.

As far as we are aware, MISQ-RT is the only QML system that can deal with hybrid
dynamic systems.

3.4 QSI
In this section, we will introduce another important QML system, QSI (Say, 1992; Say &
Kuru, 1996), which is probably the most complicated QML system. It involves several
subtle subfunctions, and constructs a special iterative search space extension and verification
process.

3.4.1 Data pre-processing—There is no explicit description of a Q2Q component in
QSI. However, QSI introduces a not fully implemented qualitative noise filter. This filter
tries to smooth the qualitative behaviours by replacing those qualitative states with
unnecessarily noisy landmarks with a more general qualitative state. A parameter is
specified to indicate the sensitivity of the filter, that is, the length of the qualitative state

PANG and COGHILL Page 9

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

sequence to be smoothed. If within this given length, a sequence is the so-called tooth one,
that is, for one or more than one step a variable increases (or decreases) first, then becomes
steady, and finally decreases (or increases), the filter will replace this sequence with a single
qualitative state.

3.4.2 Initial search space generation—The initial search space generation is
implemented by a subcomponent named constraint determination, which is also reused by
the later search process. Similar to GENMODEL, constraint determination tries to combine
all the input variables and constraint repertoire to generate all the possible qualitative
constraints. In contrast to GENMODEL, first, as QSI can start from a subset of all the
system variables and postulate the missing ones, this subcomponent can take even a small
fraction of all the system variables as input. Second, as QSI assumes that the input states are
complete and noise free, this subcomponent will remove those generated constraints, which
are inconsistent with any of the input states. Third, the newly generated qualitative
constraints, which are the consequences of the existing constraints, are also ignored.

3.4.3 Learning strategy—As mentioned above, QSI employs a unique iterative search
approach over the model space: it will first try to construct the model using only the given
variables. If the given variables are only part of all the variables in the system, the
constructed intermediate model will be more general than the target model, which means
that it will output more behaviours than expected. This model is termed a ‘shallow’ model in
QSI. Then the algorithm will try to find a more specialized model based on this ‘shallow’
model, which can cover a few other behaviours, which are not included in the input
qualitative states, as possible. In order to achieve this, the following three steps are executed
iteratively until a satisfactory model is found:

Step 1: The current intermediate model undergoes the model depth test. The model
depth test employs a slightly modified QSIM simulator to verify the current
intermediate model. If this intermediate model is a ‘shallow’ model, the QSIM
simulator will output more behaviours than those input to QSI. In this case, a model
extension process (Step 3) is necessary.

Step 2: If the current model passes the model depth test, a dimensional consistency
operation will be performed: Additional M+ constraints are added to the model to
eliminate the dimensional inconsistency. In each of these M+ constraints, one argument
is a variable in a dimensionally inconsistent constraint, and another argument is a newly
introduced variable (the so-called ‘buffer parameter’), which has the same quantity
space structure as the other variable in this M+ constraint but has a different dimension.
Lastly, QSI will return the final resulting model.

Step 3: If the current model fails to pass the model depth test, the model extension will
be performed:

• Step 3.1: New hidden variables are postulated. This step can be run in several
postulation modes to control the computational expense. In the worst case, full
postulation mode, which postulates new variables by generating the defining
constraints4 from all combinations of the constraint repertoire (except the
monotonically increasing and decreasing functions) and available variables,
will be employed if no additional knowledge about the model is known. For
example, on learning the U-tube, two new variables may be postulated: PX and

4In QSI, The defining constraint of a variable, say variable A, is defined as the constraint of which variable A appears on the left-hand
side of the corresponding mathematical equation.

PANG and COGHILL Page 10

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

PY, and their defining constraints are as follows: DERIV(amount 1, PX),
ADD(amount 1, amount 2, PY).

• Step 3.2: The newly postulated variables will be assigned behaviours
according to the following two heuristics: the newly assigned behaviour should
have the minimum number of qualitative direction changes, and the postulated
variables should be constant whenever possible. Thus, a wider and bigger
qualitative state set, described by all the variables (including the newly
postulated ones), is obtained.

• Step 3.3: Extended constraint determination will be performed on this
qualitative state set. This will return a new model for the next iteration. Again
because of computational expense considerations, different search modes are
provided; the full search mode will try all the combinations, while half search
mode will only try the combinations involved in at least one old variable.

3.4.4 Learning the U-tube as an example—On learning the U-tube, suppose the given
data contained the information about only two variables, the amount of liquid in tanks 1 and
2, amounts 1 and 2, a model consist of only one constraint M−(amounts 1 and 2) was first
constructed. This model failed to pass the model depth test (Step 1) as it was too ‘shallow’.
Then the model extension (Step 3) was executed. If in Step 3 the half search mode was
applied and only the derivatives of existing variables were postulated, the QDE model after
the execution of Step 3 is shown in Table 2, where P1 and P2 are newly postulated variables.

In the second iteration, the model shown in Table 2 passed the model depth test in Step 1,
and the dimensional consistency (Step 2) was performed subsequently, resulting in a final
output model, which is dimensionally consistent.

3.4.5 Evaluation—Possessing most of the desired features of a QML system, QSI can be
deemed a state-of-the-art QML system. The unique search algorithm makes QSI a
distinctive QML system, and also gives it the ability to deal with hidden variables
effectively.

The limitations of QSI are as follows: (i) Unlike MISQ, QSI is unable to handle incomplete
input behaviours. QSI requires that the input must be correct and complete, otherwise it may
output a wrong model. (ii) It cannot deal with quantitative data. The input must be in
qualitative states. (iii) The noisy data processing is not fully implemented. Although
reasonable, the qualitative noise filter needs further development. (iv) QSI cannot easily
incorporate additional constraints upon the model to guide its search, as ILP-QSI does.

3.5 ILP-QSI
One of the design goals of ILP-QSI (Coghill et al., 2004, 2008) is to retain the abilities of
MISQ and QSI, focusing specifically on non-classical system identification for metabolic
systems. ILP-QSI adopted the framework of ILP, but unlike GOLEM, the ILP system
employed is essentially a modification of C-Progol, which is one of the best-known ILP
instantiations. The general principles underlying the implementation of C-Progol are
detailed in Muggleton (1995). In particular, ILP-QSI uses the same cost function as C-
Progol to evaluate the candidate models, which is computed using a Bayesian posterior
probability estimate that does not require any negative examples of system behaviour
(McCreath, 1999). This means that ILP-QSI can learn only from the positive examples.
Unlike C-Progol, which returns a single model, in ILP-QSI, a set of all models with the
lowest cost is returned. In the search process, only the acceptable models (namely the well-
posed models, which will be described later) are evaluated, and this can reduce the

PANG and COGHILL Page 11

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

evaluation number of the computationally expensive Bayesian estimation. All these
modifications are achieved by using the software environment provided by ALEPH
(Srinivasan, 1999), which is a general-purpose tool that allows the development of
specialized ILP systems by using customized procedures for search and evaluation.

3.5.1 Data pre-processing: Q2Q—The core algorithm of ILP-QSI can learn from only
qualitative data, but quantitative to qualitative conversion is also provided. The central
difference approach (Shoup, 1979) is used to estimate the first and second derivatives of a
quantitative variable. The following simple formulae are used:

(3)

(4)

In the above formulae i=2,3,...,N–1, and N is the number of input time points. Then a
Blackman filter (Blackman & Tukey, 1958) is used to smooth the estimated first and second
derivatives. Finally, a quantitative variable x is converted to a qualitative variable q=〈qmag,
qdir〉, where qmag is generated from x and qdir is generated from dx/dt. The qualitative
derivative of q and q′, is obtained in a similar way, whose qmag and qdir are generated from
dx/dt and d2x/dt2, respectively.

3.5.2 Learning strategy—As mentioned above, the search algorithm of ILP-QSI is
implemented within the ALEPH system, and is a variant of the branch-and-bound algorithm
(Papadimitriou & Steiglitz, 1982). The search strategy is detailed as follows:

• In ILP-QSI, a QDE model is represented as a definite clause.

• Constraints upon the model, for example, the well-posed model constraints
(described in the next section), are assumed to be encoded in the background
knowledge.

• The algorithm starts from an empty set, while maintaining a prioritized queue
Active, which is initially empty and later will store the explored models, which are
sorted by the cost function.

• The cost of function of a model is calculated from

(5)

where P(C|B,E) is the Bayesian posterior probability estimate of clause C, given the
background knowledge B and positive examples E. The model with the maximal
posterior probability is approximated by maximizing the following function
(McCreath, 1999):

(6)

where D is a prior probability, g is the generality of a model, p is the number of
positive examples.H These functions and parameters can be calculated in the
manner of C-Progol (see Muggleton (1996) for details).

PANG and COGHILL Page 12

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

• Successor Function: The unexplored nodes are expanded by a successor function,
which can efficiently enumerate the well-posed models. The successor function is
defined to return a set of all the well-posed models when the current node is empty
and return empty when the current node is not empty. All the returned nodes are
added to the branch set.

• Branching: (i) A node k from the queue active is popped out and evaluated by the
above-defined cost of function. (ii) The cost of the best node so far, best, is updated
if necessary. (iii) Node k is expanded by the above-mentioned successor function.
All the expanded nodes are added to the branch set.

• Bounding: Prune the branch set according to the cost best and obtain a bounded set,
then add the elements in the bounded set to the queue active.

• The branch-and-bound operation executes iteratively until the queue active is
empty or the number of explored nodes exceeds a pre-specified number.

3.5.3 Well-posed models—The concept of the well-posed model was proposed by
analyzing the properties of a class of dynamic systems in depth, and it reveals the internal
mechanism of these systems; on the other hand, well-posed model constraints can reduce the
search space; the branch-and-bound algorithm will only expand and evaluate those nodes,
which satisfy the well-posed model constraints. A well-posed model must satisfy the
following syntactic constraints:

• Size: The size of the model must be specified; this is obtained by counting the
number of qualitative constraints in the model.

• Complete: The model must include all the observed variables.

• Determinate: The model must contain as many qualitative relations as qualitative
variables.

• Language: The number of instances of any qualitative relation in the model must be
below some pre-specified limit. Detailed discussion can be found in Camacho
(2000).

The well-posed model must also satisfy the following semantic constraints:

• Sufficient: The model must adequately explain the observed data.

• Redundant: There are no redundant relations in the model.

• Contradictory: There are no contradictory relations in the model.

• Dimensional: All the constraints in the model must be dimensionally consistent.
The details of dimensional analysis can be seen in Bhaskar & Nigam (1990).

In addition, the following constraints are preferred but not mandatory:

• Single: The model must not contain disjoint models, that is, the target model must
describe the qualitative behaviours of a dynamic system within the same operating
region.

• Connected: All the hidden variables should appear in at least two qualitative
constraints in the model.

• Causal: The model must be causally ordered (Iwasaki & Simon, 1986; Wiegand,
1991).

PANG and COGHILL Page 13

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

3.5.4 Experimental design and results—Using the above-mentioned search strategy,
together with the well-posed model assumption, a series of experiments are tested.

Learning without noise: Noise-free data were provided to the learning system and the
experiments were tested by the following three steps: (i) Obtain the complete envisionment
(Kuipers, 1994) of the system with specified values of exogenous variables5. (ii) Power Set
Experiments: all the non-empty subsets of the qualitative states in the complete
envisionment were treated as training data. If the number of qualitative states was N, the
number of experiments was 2N – 1. For small N, ILP-QSI exhaustively tested on these
training data sets. For large N, a fixed number of experiments was randomly sampled from
the power set of all the qualitative states. (iii) The learning reliability was measured by the
precision of learning from these training data sets. The average precision under different
sizes of training data was obtained and visualized.

Learning in the presence of noise: Non-empty subsets of the states in the complete
envisionment were replaced by randomly generated noisy qualitative states. All the possible
replacements, with the number of 2N – 1, were tested and again the average precision over
different sizes of noisy data was visualized.

Kernel subsets and solution space analysis: With noise-free data, a kernel subset in ILP-
QSI is a subset of the complete qualitative states, and is composed of minimal qualitative
states required for successful learning (i.e. the target model can be successfully identified in
an experiment). The meaning of this is twofold: first, any superset of a kernel subset will
also lead to successful learning; second, any subset of a kernel subset will fail to identify the
target model. For example, on learning the U-Tube, the kernel subsets are eight pairs of
qualitative states. This means that in all the successful experiments, the training data must be
a superset of at least one of these eight pairs.

A further investigation by analyzing the solution space of the U-Tube and coupled tanks
(described in Appendix B) reveals that the qualitative states in the kernel subset include at
least one critical point and these states cover different branches in the envisionment graph
(Coghill et al., 2008).

3.5.5 Evaluation—ILP-QSI is an ILP-based QML system, which retains all the
characteristics of the earlier QML systems, such as MISQ and QSI. In addition, ILP-QSI has
its own new features: (i) the concept of well-posed models is explicitly and completely
defined; (ii) it can learn in the presence of noise; (iii) It can avoid finding overconstrained
models; and (iv) it can be used to learn complex biological systems. The metabolic pathway
of glycolysis was chosen to test the learning ability of ILP-QSI on large systems, and this
will be described in section 6.4. All of the above make ILP-QSI a state-of-the-art QML
system. In addition to the above-mentioned new features, a novel contribution of ILP-QSI to
the QML research is the kernel subset experiments that were performed.

There are, however, a number of ways in which ILP-QSI could be improved: (i) Like many
other QML systems, it has not been tested to deal with the dynamic systems with multiple
operating regions. (ii) Another problem is the computational limitation of ILP-QSI for
learning complex systems. In identifying the pathway of glycolysis, several months of
compute time have to be used. This will also be discussed in section 6.4.

5Exogenous variables are those variables determined from outside the model.

PANG and COGHILL Page 14

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

3.6 Learning directly from numerical data I: QMN
In the previously introduced learning systems, the final training data are qualitative. Even
when the input data are quantitative, a Q2Q component will convert the quantitative data to
qualitative states. Rather than doing this, there are two QML systems that can directly learn
models from quantitative data, without a Q2Q transformation. In this section, we will
introduce one of them, that is, QMN (Džeroski & Todorovski, 1994). In the next section, the
other system, LYQUID (Gerçeker & Say, 2006), will be described.

3.6.1 Data pre-processing—As QMN directly learns the QDE models from numerical
data, the data pre-processing is quite simple; it mainly involves estimating the time
derivatives of the system variables. Given the time series points xi (i=1,2,...,N), the
derivatives are obtained by the following formula from (Bohte, 1991):

(7)

where h is the time interval between two time points. Given the highest order o, QMN will
generate all the o derivatives for a variable using the above formula. Then the time series
points and their derivatives are directly used by QMN. It should be pointed out that there is
no noise processing in the pre-processing.

3.6.2 Learning strategy—The core algorithm of QMN uses the generate-and-test
strategy, and is based on GENMODEL, except that it can introduce new variables in a
simple manner. (i) First, all the variables and their derivatives are added to an initial set V.
(ii) Introduce new variable: Given the model depth d, new variables will be iteratively
introduced by combining the variables and their derivatives in V. Four basic arithmetic
operations: addition, subtraction, multiplication, and division are used to combine any two
elements in V. The newly introduced variables are added into V for the next iteration. (iii)
Generate-and-test: Given two tolerance parameters δ and ε, any possible combination of
QSIM constraints and variables will be generated and tested. All the generated constraints
which are dimensionally consistent are transformed to their equivalent constraints in the
form zero(T), which holds when the term T is considered as a constant zero given the
tolerances δ and ε. For example, add(X,Y,Z) is converted to zero(Z–X–Y), and if zero(Z–
X–Y) holds, the original constraint add(X,Y,Z) also holds. Then the test of the validity of a
constraint is converted to test whether zero(T) holds or not. This is achieved by testing the
validity of P(|T|>δ)<ε, where P is the probability function, which can be approximated by
calculating the percentage of the measurements in which |T|>δ holds over the total number
of measurements.

3.6.3 Evaluation—Instead of learning from qualitative data, QMN can directly handle
numerical data, and this is achieved by introducing two tolerance parameters and the
corresponding test method. The highest order of the system o and model depth d determine
the complexity of the search space. Careful selection of these parameters is very important
for learning.

Like GENMODEL, QMN tends to generate most specific constraints; this often leads to an
overconstrained model. Experiments on the U-Tube and cascaded tanks system (described in
Appendix C) showed that not only redundant constraints, but also some unexpected
constraints were generated. It was reported that for the U-Tube with d=2, there were 362
constraints generated. At this point, a further improvement for QMN is required to reduce
the number of constraints generated. Another limitation of QMN is that it needs a large
amount of high-resolution quantitative data. For learning the U-Tube, 1000 qualitative data

PANG and COGHILL Page 15

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

points had to be provided to QMN. This restricts its learning ability when only sparse data
are available.

3.7 Learning directly from numerical data II: LYQUID
In this section, another learning system which can learn QSIM-like models directly from
numerical data, LYQUID (Gerçeker & Say, 2006), will be discussed. Rather than working
on time series data points in QMN, LYQUID uses orthogonal polynomials, which are
functions of time, to approximate the numerical input data. This approach is taken from
Ralston & Rabinowitz (2001). Then the model discovery process is purely performed on
these polynomials, and the input numerical data points are discarded.

3.7.1 Data pre-processing: interval partition and polynomial approximation—
The data pre-processing is a significant part of LYQUID. For each of the system variables,
given the observed data samples, together with the time points of measurements, the interval
partitioning algorithm will try iteratively to partition the time intervals into subintervals, and
approximate the variable within these intervals by individual orthogonal polynomials. All
the intervals on which the square error of the current polynomial is greater than a specified
parameter Tolerance will be dealt with by the interval partitioning algorithm.

When the interval-partitioning algorithm tries to split a time interval, first it temporarily
splits this interval into two subintervals from the midpoint, then uses two new polynomials
to fit on these two subintervals separately. If the improvement of the precision upon the
original interval is greater than the pre-specified parameter improvement, or the
improvement of precision on either of the two subintervals is greater than the pre-specified
parameter split improvement, this split is accepted; otherwise, the split is rejected and the
original interval will be kept. The precision of the polynomial in an interval is calculated by
the square error of this polynomial for approximating the variable within the interval over
the length of the interval. The newly split intervals will also be recorded for further
processing by the partitioning algorithm. The partitioning algorithm will terminate when no
further intervals can be split.

3.7.2 Learning strategy—Like QMN and GENMODEL, LYQUID uses the generate-
and-test strategy; all the possible combinations of qualitative constraints and variables are
tested. Similar to QMN, testing whether a qualitative constraint holds or not is equivalent to
testing whether two polynomials are equal, or strictly speaking, their difference is within a
tolerance interval. LYQUID uses the following formula to measure the difference between
two polynomials p and q on a time interval (a and b):

(8)

If e is less than a specified parameter iTolerance, polynomials p and q are deemed to be
equal. iTolerance is the specified tolerance square error per unit time. As in QMN, the
parameter o specifies the highest order of a model. The derivatives of a variable are
generated by differentiating the corresponding polynomial that represents this variable. As
LYQUID evaluates the validity of a qualitative constraint on many time intervals, and this
qualitative constraint may not hold on all the time intervals, the ratio R=s/k is calculated by
LYQUID, where s is the number of intervals on which the constraint holds, and k is the total
number of intervals. Additional parameters have to be set to determine whether the
constraint holds or not, and if the ratio R falls into the range determined by these parameters,
the qualitative constraint can be considered to hold on all time intervals.

PANG and COGHILL Page 16

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

The steps of the LYQUID core algorithm are as follows: (i) For all the observed variables,
add the corresponding polynomials and the dimensional information into the set of variables
V. (ii) Hidden variable generation: generate the polynomials for the derivatives, sums, and
products of the variables in V. Add these newly generated polynomials into V. (iii) Check
all the possible combinations of QSIM constraints and the variables in V, adding the
consistent constraints into the constraint set C. (A consistent constraint is defined as the
constraint that agrees with the data. More specifically, a consistent constraint in LYQUID is
the constraint in which the difference between its corresponding polynomials on both sides
is within the tolerance interval.) The algorithm will finally return the constraint set C.

3.7.3 Experiments—LYQUID was tested on the U-Tube, cascaded (see Appendix C) and
coupled tanks (see Appendix B), the same physical systems used in ILP-QSI. The algorithm
was tested on both clean and noisy data samples. In addition, the experiments on the data,
which are obtained from irregular sampling frequencies, and the experiments on the missing
data were tested.

3.7.4 Evaluation—LYQUID, as a QML system, which can learn models directly from
numerical data, uses polynomials as a tool to fulfil the learning task. Because of the nature
of polynomial approximation, LYQUID has the following features: (i) it is suitable for
dealing with noisy data; (ii) the variables can be sampled at different frequencies; and (iii) It
can also work on incomplete data, or even arbitrary sampled data.

A major limitation of LYQUID is that many parameters have to be specified properly by the
users. These parameters are even more than those in QMN. Another limitation is that, like
GENMODEL and QMN, LYQUID often generates overconstrained models with
unnecessary constraints.

3.8 Learning simplified models: Abe’s algorithm
In this section, we introduce a simplified QML system developed by Abe (1993). In Abe’s
system, the following assumptions are made:

• There is only one landmark value, zero. Then the qualitative values based on this
quantity space are defined, such as: [0] stands for landmark value zero; [−] stands
for the interval (−∞,0); [0+] stands for [0,+∞]; and [+−] stands for (−∞,0)
(0,+∞).

• There are no hidden variables, and each variable in the target model is a
differentiable function of time defined in Euclidean space.

• Time is quantized, and the input data are in the form of a time series of qualitative
values. For example, for a system with two variables, xi and xj, the possible input
sequence is shown in Table 3, where ti (i=1,2,...) is a time interval or a time point.

• There are no missing or noisy data for any variables in the input sequence.

3.8.1 Data pre-processing—On the basis of the above assumptions, a set of rules has
been established to achieve the following two goals: (i) distinguishing the time intervals and
moments from the input sequence; and (ii) estimating the qualitative states. The latter is
carried out by estimating the possible qualitative derivatives according to the input time
series of qualitative values. Two state estimation rules have been set up, depending on
whether the current quantized time is a time interval or a time point. Table 4 shows part of
the State Estimation Rule 1, when the current quantized time is a time point. Table 5 is part
of the State Estimation Rule 2, when the current quantized time is a time interval.

PANG and COGHILL Page 17

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

In Table 4, [Q(tnow)] stands for the qualitative value at the current time point; [Q(tprev)] and
[Q(tnext)] stand for the qualitative values on the previous and succeeding time intervals
separately. ∂[Q(tnow)] is the estimated derivative. In Table 5, [Q(tnow)] is the qualitative
value within the current time interval, so [Q(tprev)] and [Q(tnext)] are both qualitative values
on time points. ∂[Q(tnow–s)] is the estimated derivative in the interval immediately after the
time point tprev; ∂[Q(tnow–e)] is the value in the interval immediately before the time point
tnext; ∂[Q(tnow–m)] is the value in the time interval between tnow–s and tnow–e and Q(t) is
assumed to be strictly monotonic in tnow–m.

By applying the State Estimation Rules 1 and 2 on the input sequence data, all the possible
qualitative states can be obtained.

3.8.2 Model space generation—All the possible qualitative differential equations,
which are different from those used in QSIM, are represented by the following expressions:

where, ⊂ means ‘subset’. For example, [Q]⊂[0+] means [Q]=[0] or [Q]=[+]. ∑ and ∏
means qualitative addition and multiplication, respectively. order is the highest order of the
polynomial, and [Ck1,...kn,/l,...ln] are the coefficients. All possible qualitative differential
equations indicated by equation (9) are tested for validity by all the estimated qualitative
states, which are obtained by the two state estimation rules described in section 3.8.1.
Finally, the validated constraints that are consistent with the estimated qualitative states
constitute the search space.

3.8.3 Learning strategy—The learning task is to find the so-called Simultaneous
Differential Equations, which are the conjunction of the qualitative differential equations in
the above search space, to construct a model. Abe’s system uses the concept of Entropy
Reduction (Cellier, 1991) as a heuristic function to select the appropriate Simultaneous
Differential Equations. A bigger value for entropy reduction means a stronger forecasting
power. Entropy reduction is defined as:

(10)

where n is the number of variables and k is the number of qualitative states that satisfy the
model. When n is fixed, a smaller k will result in a larger entropy reduction Hr. Then the
models that can generate fewer states will be chosen as the solution models.

3.8.4 Experimental results—A randomly generated input sequence of qualitative values
with two variables is selected as the test example. It is reported that six models are found.
All these models are transformed to QSIM models and simulated by QSIM. They can
reproduce the same data as the input.

3.8.5 Evaluation—Abe’s QML system is based on several assumptions and particular
conditions, and these assumptions and conditions can reduce the complexity of the learning
system and simplify the learning task. On the other hand, because the algorithm restricts
itself to the above conditions, it will encounter some difficulties when applied to some real
applications that do not obey the above conditions. For example, when the given data are

PANG and COGHILL Page 18

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

sparse, incomplete, or there are hidden variables, the algorithm will not be able to learn the
right model.

3.9 An incremental learning approach: QML-IL
In this section, we discuss an incremental approach to QML (Srinivasan & King, 2008).
Again for the sake of description, we term this system as QML-IL, which stands for ‘QML
system using an Incremental Learning approach’. QML-IL is also an ILP-based system and
can be considered as an extension of ILP-QSI, which was introduced in section 3.5.

3.9.1 An incremental decomposition strategy—QML-IL uses a simple incremental
decomposition strategy to decrease the computational complexity of ILP-QSI. The learning
task is divided into several stages and the decomposition is achieved by domain-specific
knowledge. Each stage is provided with the following parameters: (i) the set of variables
involved in this stage; (ii) the number of constraints in this stage.

The background knowledge B and examples E are transformed into a sequence 〈Bm,Em〉,
where m=1,2,...,n, and n is the total number of stages. Each of the elements in this sequence,
〈Bi,Ei〉, is provided to the corresponding stage i. Where Ei contains the observations for the
variables involved from stage 0 to stage i, and Bi is the background knowledge that involves
the corresponding variables in Ei.

In each stage, say, stage i, given 〈Bi,Ei〉, and Hi–1, which is the set of partial models that are
identified in stage (i–1), the learner L will output the set of partial models Hi. This process
can be denoted as the following formula:

(11)

where i=0,1,...,n, and n is the total number of stages; f is the cost function as described in
equation (5). H0 is an empty set, and Hn is the set of final models. ρ is the successor function
defined as follows: Given each element k in Hi–1, ρ(k,Bi,Ei) will return all models that obey
the well-posed model constraints and the number of qualitative constraints in the current
stage.

The implementation within the learner L is exactly the same as ILP-QSI, which uses the
branch-and-bound search strategy. In addition, before the set of partial models, Hi–1, is
submitted to L in stage i, there is an optional operation that performs a limited generalization
on each model in Hi–1. This is implemented by disconnecting some or all components in
each model, but respecting the original constraints provided in this model. In ILP, this is
called removing variable co-references. After the learner L returns a set of models H′i in
stage i, there is another optional operation: randomly selecting a certain number of models
from H′i, and these randomly selected models will compose Hi, which is used for the input
of the next stage.

For example, for learning the coupled tanks system described in Appendix B, the learning
task can be divided into two stages by assuming that tanks 1 and 2 are relatively separated
(domain-specific knowledge): The first stage concerns only the variables related to tank 2,
and tries to identify the models that are consistent with the observations; the second stage
concerns all the variables and tries to learn the final model based on the models found in
stage 1.

3.9.2 Automatic decomposition—In some real-world problems, the decomposition of a
dynamic system may not be made appropriately, and thus the automatic decomposition
algorithm is required. The decomposition task is actually to determine the partition sequence

PANG and COGHILL Page 19

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

(S0, S1, S2,...,Sn) on the set of all the given system variables, namely S, where Si (i=1,2,...,n)
is a subset of S, and S=S0⋃S1⋃S2... ⋃Sn.

A randomized local search algorithm, which is similar to GSAT (Selman et al., 1992), is
used to perform the automatic decomposition. The steps are briefly described as follows:

Suppose the first (i–1) subsets of variables from S for the first (i–1) stages have been
selected: S0, S1, ..., Si–1; S0=ϕ; VarsLeft=S, when i=0; and VarUsed=S0⋃S1... ⋃Si–1. Then
for the selection of Si:

1. First, randomly select a subset V from the unselected variables VarLeft=S-VarUsed
for current decomposition.

2. Determine the cost of this selection c by the incremental learner L. c is the cost of
the model which has the least cost in H′i, and H′i=L(Hi–1, B, E, VarUsed ⋃ V).
Updating the current best cost, bestcos,t by c and current selection, VarsSelected,
by V, if c is lower than bestcost.

3. BestLocal=V.

4. Construct all the possible ‘local moves’ for BestLocal. This is implemented by
removing one variable from V and adding another variable, which is not included
in V.

5. Determine the cost of all these moves and selecting V′, which has the least cost c′.

6. Update bestcost and Varselected with c′ and V′, if c′ is lower than bestcost.

7. BestLocal=V′.

8. 4–7 are executed M times.

9. 1–8 are executed R times.

10. Si=VarsSelected.

In the above steps, M and R are very important parameters. M is the ‘depth’ of the local
moves and R is the number of restarts of the randomized procedure. An initial investigation
of the influence of these two parameters is also provided: both the coupled tanks system and
other three artificial systems are tested by the automatic decomposition algorithm. The
experimental result indicates that (i) generally, the algorithm will perform better if R≥M; (ii)
when the number of variables in the system or the number of stages is increased, R and M
should also be increased.

3.9.3 Experiments and evaluation—Besides the coupled tanks system, the models of
different biological systems were also tested. They are listed as follows: (i) predator–prey
model; (ii) human lung model; and (iii) glycolysis pathway (the same model is used in ILP-
QSI).

QML-IL employs a new approach to QML. It demonstrates that using the incremental
decomposition strategy, the learning efficiency can be improved dramatically. This makes
QML-IL suitable for learning models of complex dynamic systems, such as biological
systems.

A major limitation of QML-IL is that the set of variables and the number of constraints must
be provided to each stage by the decomposition solution, and this is difficult in some cases.
Although some preliminary work has been carried out on automatic decomposition, further
research and experiments are needed to investigate the adaptability and scalability of the

PANG and COGHILL Page 20

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

decomposition algorithm. In addition, the incremental learner uses the same search strategy
as ILP-QSI, so it has the same limitations. This suggests an interesting line of research.

3.10 Advanced experiments on learning QDE models by QML-BKFC
QML-BKFC (Pang & Coghill, 2007b) is part of a QML framework, which is named as
QML-Morven in this paper for the sake of description. QML-Morven uses the Morven
formalism (Coghill, 1996; Bruce, 2007) to represent and verify QDE models, rather than
QSIM. QML-BKFC uses the Backtracking with Forward Checking algorithm (BKFC) as its
search strategy. Another part of QML-Morven, which is termed as QML-CSA (Pang &
Coghill, 2007a), uses the clonal selection algorithm (CSA) as the search strategy. QML-
CSA will be described in section 4.2.

3.10.1 Model representation
Morven and JMorven: Morven (Coghill, 1996) is a state-of-the-art QR engine, which
possesses all the benefits of QSIM and introduces many useful features. The introduction of
differential planes (Wiegand, 1991) and vector envisionment (Morgan, 1988; Coghill, 1992)
makes it convenient to reason about more than two derivatives. By introducing Fuzzy Set
theory (Zadeh, 1965), each qualitative variable in Morven is associated with a fuzzy quantity
space, which makes it possible for Morven to perform fuzzy vector envisionment (Coghill,
1996) and deal with fuzzy qualitative data. JMorven (Bruce & Coghill, 2005; Bruce, 2007)
is a Java implementation and extension of the original framework of Morven.

Models represented in JMorven: The QSIM and JMorven Model (up to two diffrential
planes) for a two-compartment model (described in Figure 2) is shown in Figure 3. In the
figure, c1 and c2 denote the concentrations in compartments 1 and 2, respectively; f12
stands for the flow from compartments 1–2; u and f2o are the input and output flows,
respectively. In a JMorven model, Plane 0 contains the constraints that construct the actual
dynamic system. The constraints in Plane 1 are obtained by differentiating the corresponding
constraints in Plane 0. The quantity spaces of the qualitative variables are composed of
trapezoidal fuzzy numbers, which are represented by four tuples (see Shen & Leitch (1993)
or Coghill (1996) for details of this presentation).

3.10.2 Pre-processing phase—The learning process can be divided into two phases: the
pre-processing and the backtracking search phases. The pre-processing phase is introduced
first.

The pre-processing phase of QML-BKFC includes four steps: (i) Constraint generation: This
is similar to GENMODEL, except that given the maximum number of hidden variables, it
also generates the qualitative constraints for the hidden variables. (ii) Constraint filtering:
All the generated constraints in step (i) are checked for consistency with the input qualitative
data. (iii) Precalculation: In this phase, the dependency and conflict relations of the
remaining constraints are calculated and recorded. (iv) Constraint set partition: The filtered
constraints are divided into several subsets, each of these subsets contains all the defining
constraints6 for the same system variable7. Then the learning task becomes selecting only
one constraint from each of the above subsets to construct a candidate model, then check the
validity of this model. The correctness of this selection is guaranteed by a theorem (Pang &
Coghill, 2007b), which states that under the assumptions being made in ILP-QSI (Coghill et
al., 2004, 2008), a well-posed model as defined in ILP-QSI contains one and only one

6The concept of defining constraint is taken from QSI. In QML-Morven, a defining constraint for a variable is the constraint in which
this variable or its derivatives appear in the leftmost position.
7The system variables are all the endogenous variables in a model.

PANG and COGHILL Page 21

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

defining constraint for each system variable. By this theorem, the search space can be
reduced from exponential to polynomial size.

3.10.3 Learning strategy—After the constraint set partition in the pre-processing phase,
as described in section 3.10.2, all the remaining constraints construct the refined search
space FCS (Filtered Constraint Set), and these constraints are divided into several subsets,
each of which contains all the defining constraints for the same variable. Let DS be a set that
takes each of these subsets as an element, denoted by DS={S1,S2,...,SN}, where N is the
number of variables (including hidden variables), and for any two elements in DS, |Si|≤|Sj|,
if i≤j (i,j ∈ 1...N).

The learning task also becomes that of selecting only one constraint from a different Si in
DS to construct a candidate model, then checking the validity of this model. The
backtracking algorithm will incrementally add constraints from different subsets in DS. The
subset that has the minimum number of legal constraints will be explored first. The legal
constraints are defined as the qualitative constraints in FCS, which do not conflict with all
the constraints in the current partial model. Once a new qualitative constraint Ci from a
subset, say Si in DS, is added into the current partial model PM, (PM + Ci) will be checked
for validity by the well-posed model constraints; if (PM + Ci) is a full model and passes the
well-posed model check, it will be further simulated by JMorven (Bruce, 2007) to test the
coverage. If (PM + Ci) fails to pass the check, Ci will be excluded in order to avoid
searching for hopeless nodes (the models which include PM + Ci). The algorithm then
backtracks to the previous node (PM), and selects the next legal constraint in the same
subset Si to continue the search. If no further legal constraints can be selected in Si, the
algorithm will further backtrack to the previous node, (PM − Cj), where Cj is the most recent
constraint that was added into PM.

An auxiliary forward checking method is also performed, that is, when a new constraint is
added, all the constraints in FCS that conflict with this new constraint will be ignored in the
later search process, as they are illegal constraints for the current partial model. The
algorithm will not terminate until the search space has been explored exhaustively.

3.10.4 Advanced experiments—On the basis of the proposed algorithm, some advanced
experiments, which extend the experiments in ILP-QSI, were performed to investigate the
learning reliability and kernel subsets (as defined in ILP-QSI) under different experimental
conditions. These conditions are categorized as (i) the specification of the state variables:
8fully, partially, or not specifying the state variables; (ii) different number of hidden
variables: from zero to the number that leads to unsuccessful learning; (iii) different types of
hidden variables, making state or non-state variables become hidden.

Two kinds of two-compartment model were selected for the test: The first model is a closed
system with no input and output, but with bidirectional flows; the second model is the
cascaded compartmental system as shown in Figure 2. QML-BKFC performed the
experiments on these two models under the above-mentioned conditions. The learning
reliability and kernel set were obtained for each condition in each model. Some meaningful
conclusions are obtained according to the experimental result: (i) The state variables are
very important for learning. If some of them become hidden variables, the learning task
becomes difficult. (ii) Partially or not specifying the state variables will result in a large
search space and may lead to unsuccessful experiments. (iii) The non-state variables have

8In a causally ordered model, the state variables are those variables whose magnitudes only appear on the right-hand side of the
qualitative constraints, and whose first derivatives must appear at least once on the left-hand side of some qualitative constraints.

PANG and COGHILL Page 22

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

relatively less influence on learning, compared with the state variables. (iv) Too many
hidden variables can lead to failure to learn.

3.10.5 Evaluation—QML-BKFC performs a systematic search in the model search space,
and is a complete algorithm. It is suitable for small- and medium-size problems. Using this
complete algorithm, some reliable experimental results can be obtained and this helps us
better understand how different factors can influence the QML. Furthermore, as QML-
BKFC uses the Morven framework, it has the potential to deal with fuzzy data.

The major limitation of QML-BKFC is its scalability, compared with QML-CSA to be
described in section 4.2. The systematic search will become time consuming or even
impractical for large-size problems.

4 Evolutionary QML systems
Learning QDE models is essentially a search task, which involves searching in a QDE
model space. This task can be fulfilled by different approaches, not only ILP and other
symbolic ones, but also evolutionary algorithms, such as genetic algorithms (Goldberg,
1989) and genetic programming (Koza, 1992). In this section, we introduce two QML
systems that employ evolutionary approaches to search in the model space: QME
(Qualitative Model Evolution) and QML-CSA (Qualitative Model Learning using a CSA).

4.1 QME
In this section, a genetic algorithm (GA) for learning QDE models, QME (Varšek, 1991), is
discussed. In QME, as there is no description of the data pre-processing, the input data are
assumed to be qualitative. So, we will begin with the introduction of its learning strategy.

4.1.1 Learning strategy—QME employs a modified GA to search in the model space.
The output of QME is a set of QSIM-like models. In order to reduce the complexity, the
QDE models under study are simplified as follows: (i) An additional ‘RANGE’ constraint is
added to the QSIM constraint repertoire. This constraint is to indicate the legal range of the
qualitative variables. (ii) Like GOLEM, the corresponding values are ignored. (iii) In the U-
Tube model, the variable that denotes the difference between two levels, together with its
related monotonically increasing constraint are also ignored. The simplified U-Tube model
is shown in Figure 4. In addition, the following conditions are also assumed: (i) no hidden
variables; and (ii) all the landmark values are known beforehand.

Encoding strategy: QME uses binary trees to encode the individuals (chromosomes): The
leaf nodes denote the qualitative constraints and the branching points represent the
hierarchical structure. This encoding method is quite similar to the approach taken in genetic
programming (Koza, 1992).

Crossover and mutation: The crossover operation is performed on two parents: randomly
choosing the crossover points for both parents and exchanging the subtree below the
crossover point. The mutation is implemented by randomly choosing a mutation node and
replacing the subtree below this node by a randomly generated one.

Fitness calculation: The fitness value for each chromosome is calculated by the following
three steps: (i) Raw fitness calculation: Like GOLEM, QME uses both positive examples
and hand-generated negative examples. The raw fitness function is the sum of the following
two ratios: the ratio of the covered positive examples to all the positive examples, and the
ratio of the excluded negative examples to all the given negative examples. If the above two
ratios are both equal to 1, an additional bonus score, which is a decreasing function of the

PANG and COGHILL Page 23

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

model size, will be added to the raw fitness. (ii) Fitness sharing: In order to prevent the
premature convergence of the population, raw fitness is shared by similar chromosomes.
The phenotype similarity function is used for calculating the shared fitness, that is, the
similarity function for any two models is determined by the number of examples (positive
and negative) that both models can cover. (iii) Linear scaling: After the fitness sharing, all
the fitness values undergo a linear transformation, such that after scaling, the average of
these fitness values remains unchanged and the most fit individual is assigned the value of a
certain multiple (namely the scaling factor) of the average fitness.

On the basis of the above-mentioned operators, the GA will iteratively explore and exploit
the search space in a beam search manner, until the target models are found or the maximum
number of generations is exceeded.

4.1.2 Experiments—It is reported that to learn the U-tube, 17 positive and 78 negative
examples were used, and QME found five equivalent solutions. Other physical systems,
such as the spring system and resistor-capacitor (RC) circuit system, were also tested. In
these experiments, QME always found the model that covered all the positive data and
excluded all the given negative data.

4.1.3 Evaluation—QME is an evolutionary approach that utilizes a GA to fulfil the
learning task. The experimental results show that GA, as a general-purpose searching and
learning method, has potential utility in the field of QML. On the basis of the building block
hypothesis (Goldberg, 1989), some meaningful sets of qualitative constraints (building
blocks) will emerge if appropriate genetic operations are performed, which makes the search
efficient. As the chromosomes vary in size, QME does not need to specify the size of the
target model in advance, and in the search process, the algorithm will find the solution
model with the appropriate size. The inherent parallelism of GA makes the search more
efficient.

Although it benefits from the advantages of GA, QME also suffers from the limitations of
GA: (i) It is not a complete algorithm, this means that QME cannot always guarantee to find
the target model. (ii) Premature convergence of the population may happen if the related
parameters, especially the crossover and mutation probability, are not chosen appropriately.
In addition to the influences of GA, there are also other limitations: Like GOLEM, negative
examples have to be used; the model has to be simplified by, for example, ignoring the
corresponding values.

4.2 QML-CSA
In this section, we will introduce another evolutionary approach, the CSA (de Castro & Von
Zuben, 2000), for learning QDE models—QML-CSA (Pang & Coghill, 2007a). As
mentioned in section 3.10, QML-CSA is another part of the QML-Morven framework. The
Model Presentation and Pre-processing component are the same as QML-BKFC, as
described in sections 3.10.1 and 3.10.2, respectively. The description of QML-CSA will skip
these two components and start from the learning strategy.

4.2.1 Evolutionary search—A CSA (de Castro & Von Zuben, 2000, 2002; de Castro &
Timmis, 2002) is used for searching in the model space. CSA is a population-based
evolutionary algorithm inspired by the clonal selection theory (Burnet, 1959) of the immune
system.

When negative examples are not available and the positive data are complete, the landscape
of the model space may have numerous local optima, each of them satisfying the well-posed
model constraints, but not all of them generating exactly the same data as the given ones

PANG and COGHILL Page 24

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

(this means some of the models are underconstrained and some are overconstrained). In
addition, when only incomplete data are provided, there may be more than one candidate
solution that can cover the incomplete input data. CSA is particularly suitable for dealing
with the above situations, because in the above cases, the search space is highly multi-modal
and CSA has proven to be efficient for searching in the multi-modal problem space.

The basic idea is that each antibody is encoded to represent a potential model, and in the
process of the evolutionary search the antibodies are expected to find the target models.

Encoding strategy: Rather than the binary string encoding used in many conventional
evolutionary algorithms, QML-CSA uses an integer encoding strategy. In QML-CSA, each
antibody is composed of several slots, and each slot corresponds to a subset, which contains
all the defining constraints for the same variable. The value of each slot, which is an integer,
indicates a qualitative constraint selected from the corresponding subset. The correctness of
this encoding strategy is also guaranteed by the same theorem as was used in QML-BKFC
(see section 3.10). In addition, to avoid the antibody getting trapped in a local optimum for
an intolerable length of time, a survival time is associated with each antibody. If an antibody
exceeds its survival time, it will be replaced by a randomly generated antibody. Figure 5
shows an example of antibody encoding for the two-compartment model in Figure 2. In this
antibody, S0, S1, and Si contain all the defining constraints for f12, f2o, and the hidden
variable Hid0, respectively.

Each antibody in the antibody repertoire (population) will be cloned to create several copies
(clonal expansion). All the cloned antibodies, forming a temporary population, will be
submitted to the ‘hyper-mutation’ scheme. The hyper-mutation is correspondingly modified
due to the modification of the antibody encoding strategy. The modified hyper-mutation
operator will replace the value of each slot in the antibody with a randomly generated
integer, and the range of this randomly generated integer is from 1 to N (N is the number of
constraints in the corresponding subset). This means that each constraint in the model will
be replaced by a randomly selected constraint within the same defining subset. In the search
space, each mutated antibody can be considered as a neighbourhood of the original antibody.

The affinity evaluation will consider the following aspects (as in ILP-QSI): model conflict,
dimensional consistency, model language, model connection, model completeness, model
singularity, and causal ordering and coverage. These criteria establish a scoring system for
evaluating the affinities of the antibodies, such that the model satisfying more criteria get a
higher score.

The re-selection process is based on the above scoring system. The antibodies, which have
higher scores and have not exceeded their survival time, will be selected to enter the next
generation’s population (antibody repertoire).

The modules described above, clonal expansion, hyper-mutation, affinity evaluation, and re-
selection, are the basic components of CSA. CSA will iteratively execute these components
until it finds the target model or exceeds the maximum number of generations.

4.2.2 Experimental design and results—Two kinds of experiments were designed to
test the reliability and scalability of QML-CSA.

• Reliability tests: For simple models with small sets of training data, the same two
kinds of two-compartment models as those used in QML-BKFC were selected. The
learning reliability of the algorithm was tested by the power set experiments, as in
ILP-QSI. Thus, the kernel subsets and learning curve, defined by Coghill et al.
(2008; see section 3.5.4), were obtained.

PANG and COGHILL Page 25

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

• Scalability tests: For more complex models, a three-compartment and a four-
compartment model were selected. They are the extensions of the model in Figure
2. The scalability of QML-CSA was tested by providing complete data but with
different hidden variables.

Both of the above experiments were performed by QML-CSA and QML-BKFC9. QML-
BKFC served as a verification algorithm to test the correctness of QML-CSA for small-size
problems, and were also used to compare the efficiency of QML-CSA. The experimental
results showed the following two conclusions: (i) For the same power set experiments on
small-size models, both QML-BKFC and QML-CSA obtained the same results as in ILP-
QSI, that is, the same learning reliability and kernel subsets. (ii) For more complex models,
QML-CSA was much more efficient than QML-BKFC, especially when the number of
hidden variables was increased. For example, for learning the three-compartment model
with three hidden variables, it took QML-BKFC more than 7 days to find the target model,
and for QML-CSA, it was approximately 11 hours, which is a 15-fold improvement10.

4.2.3 Evaluation—QML-CSA is another evolutionary approach to learn QDE models.
Unlike QME, it does not need negative examples, as the dimensional information and well-
posed model constraints serve the function of negative examples to some degree. QML-CSA
can perform the same kernel set experiments as ILP-QSI and obtain consistent results that
demonstrates its reliability. More importantly, compared with QML-BKFC, a major
advantage of QML-CSA is its scalability, which enables it to learn large-scale models more
efficiently. In addition, like QML-BKFC, it also has the potential ability to deal with fuzzy
data because of the adoption of the Morven framework.

The limitations of QML-CSA are as follows: (i) Like ILP-QSI, as it is based on the well-
posed model constraints, it cannot learn a model which does not satisfy all the properties of
well-posed models; for example, it does not deal with hybrid dynamic systems. (ii) Like
QME, QML-CSA is not a complete algorithm; it does not guarantee to find the target model
if one exists.

5 A summary of the QML systems
In this section, we summarize the QML systems introduced above, and provide more
explanations about these systems for the readers.

Table 6 shows the characteristics of all the systems. It should be pointed out that for some
systems, the absence of some functions or modules does not mean that they have worse
performance, as they may focus on solving some particular problems in this field. These
characteristics are listed to provide a global view of the QML systems, and show which
problems have been solved in this field.

A few explanations about these systems are given as follows: (i) In theory, all QML systems
can take more than one behaviours as input, although for the following four systems,
GOLEM, Abe’s system, QMN, and LYQUID, there are no explicit experiments to
demonstrate this. The more behaviours input to the QML system, the higher chance we have
to obtain the right model. (ii) The following QML systems are state-based systems, which
means that they can take states as input across different behaviours, rather than individual
behaviours: ILP-QSI, QML-IL, QML-BKFC, and QML-CSA. (iii) Most of the QML

9All the experiments were performed on a computer cluster with eight compute nodes, each of which has two Opteron 850 (2.4 GHz)
CPUs and 4 GB RAM.
10The result is based on the average value of 10 trials.

PANG and COGHILL Page 26

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

systems are not available on the Web except GOLEM. However, the following systems,
QSI, ILP-QSI, and QML-Morven, can be obtained from their authors.

6 Applications of QML
In this section, the application domains of QML will be briefly introduced. Generally
speaking, QML can, in principle, be used to help us better understand, control, or diagnose
any dynamic systems of interest, especially systems for which the data are imprecise or
sparse. In particular, the following application domains are selected and introduced in detail.

6.1 Benchmark physical systems
As early research on QR mainly focused on the study of the de facto benchmark physical
systems, such as the U-Tube (see Appendix A), the coupled tanks (see Appendix B), the
cascaded tanks (see Appendix C), and the spring-mass system (see Coghill et al. (2008)),
QML correspondingly takes these systems as learning objects.

These systems are representative and can be considered as abstractions of the models in
many other disciplines, and they can be highly nonlinear. For example, the coupled tanks
systems can be treated as a high-level abstraction of metabolic systems (Coghill et al.,
2004); the spring-mass system is an abstraction of many oscillatory systems, which exist not
only in mechanical systems, but also biological, electrical, chemical, and even social
systems.

6.2 Clinical applications
Besides the benchmark systems, there are also some other dynamic systems that have been
learnt by QML systems. Hau and Coiera (1993) applied an updated version of GENMODEL
to learn a qualitative cardiovascular (CVS) model. In that CVS model, the following eight
variables are involved:

1. HR: heart rate.

2. ABPM: mean arterial blood pressure.

3. CVPM: mean central venous pressure.

4. SV: stroke volume.

5. CO: cardiac output.

6. VC: ventricular Contractility.

7. ΔT: skin-to-core temperature gradient.

8. RPP: rate pressure product.

And the following qualitative constraints exist:

1. CO=HR×SV

2. RPP=HR×ABPS

3. M+ (CVPM, CO): the Frank–Starling law of the heart.

4. M+ (SV, VC): autoregulation of the heart.

5. M+ (HR,CO) and M+ (HR,VC): under normal heart rate.

6. M− (HR,VC) and M− (HR, SV): when the heart rate exceeds the critical level.

7. M− (CO, ΔT), M− (CO, HR) and M− (CO, VC): when hypovolemia happens.

PANG and COGHILL Page 27

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

The quantitative data segments for the above eight variables were obtained from six patients.
Each of these segments was 1000-second long, and the data points were sampled in every
second. Then these quantitative data were converted to qualitative states by the Q2Q module
of GENMODEL, as described in section 3.2.1. The qualitative data were submitted to
GENMODEL to get the qualitative constraints. The experiments showed that GENMODEL
successfully reproduced the right qualitative constraints. Some spurious constraints were
also generated because of the lack of data.

6.3 Applications in ecology
6.3.1 Plant water-balance system—A plant water-balance system was proposed for
study by Ramachandran et al. (1994). This model describes how the plant balances the
amount of water in its body when the amount of water in its external environment changes.
Four QDE models were used to model this system. In order to learn this model, two
qualitative behaviours, one of which contains 16 qualitative states, were provided to MISQ-
RT.

MISQ-RT initially generated eight QDE models. After the unification module, six QDE
models were obtained. A further analysis showed that these six models were equivalent to
the four QDE models that were generated by the domain experts.

6.3.2 Predator–prey model—Learning the predator–prey model, which is also called the
Lotka–Volterra model (Lotka, 1925), was studied by QML-IL (Srinivasan & King, 2008).
The ODEs of the simplified model are as follows:

(12)

(13)

In the above, N and P are the population of prey and predators, respectively; g(N) is the
growth rate of the prey, which is a linear function with the constant coefficient; c(P) is the
rate of predation upon the prey, and d(P) is the death rate of the predators. If c(P) and d(P)
are assumed to be a monotonically increasing function of P, the above ODE model can be
converted to a QDE model. Then the qualitative data provided to QML-IL are generated by
simulating this QDE model. QML-IL used a one-stage decomposition (which meant not
decomposing the model at all) to learn the model. After running QML-IL, five models were
returned, one of which was the target model.

6.4 Applications in cell biology
6.4.1 Learning the glycolysis pathway—The QDE model of the glycolysis pathway
was learnt by ILP-QSI (King et al., 2005) and QML-IL (Srinivasan & King, 2008). The
glycolysis pathway is one of the most important pathways in biology, which involves 15
metabolites, they are pyruvate (Pyr), glucose (Glc), phosphoenolpyruvate (PEP), fructose 6-
phosphate (F6P), glucose 6-phosphate (G6P), dihydroxyacetone phosphate (DHAP), 3-
phosphoglycerate (3PG), 1,3-bisphos phoglycerate (1,3BP), fructose 1,6-biphosphate
(F16BP), 2-phosphoglycerate (2PG), glyceraldehyde 3-phosphate (G3P), ADP, ATP, NAD,
and NADH. As H+, H2O, and orthophosphate are assumed to be ubiquitous in the cell, they
are not included in the pathway. Figure 6 shows all the reactions involved in the pathway.
The first reaction is taken as an example to illustrate the meaning of these reactions; it

PANG and COGHILL Page 28

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

means that Glc can be converted to G6P, this reaction is catalysed by the enzyme
hexokinase. In this reaction, the ATP will be consumed and ADP will be produced.

Modeling metabolites and enzymes: To model this pathway qualitatively, the enzymes and
the metabolites are modelled as components. An enzyme is assumed to have at most two
substrates and at most two products. If there are two substrates in a reaction, they are
considered to form a substrate complex before the reaction, and the amount of the substrate
complex is proportional to the amount of the two substrates multiplied together. It is similar
with the products. Each enzyme is considered as a component: the ‘flow’ through this
enzyme equals the amount of the substrate complex that enters into it minus the amount of
the product complex that leaves from it. Each metabolite is also considered as a component
correspondingly. Therefore, the ODE and QDE models for the metabolites and the enzymes
are as follows:

Metabolites:

(14)

DERIV(Metabolites, Mdt),

SUM(Flow1, ..., Flown, Mdt).

Enzymes:

(15)

PROD(Metabolite1, ..., Metabolites, S),

PROD(Metabolite1, ..., Metabolitep, P),

M+(S, Ds),

M+(P, Dp),

SUB(Ds, Dp, Flow),

MINUS(Flow, Flowminus),

where S represents the input substrates and P the products. PROD and SUM are the
extensions of MULT and ADD in QSIM, respectively. Based on the above qualitative
constraints, more general constraints can be generated to represent the metabolite and
enzyme components, as shown below:

where in the ENZYME components, S1 and S2, denote the substrates, P1 and P2 are the
products, enzymeFlow is the return value of the component, indicating the flow through this
enzyme, which has been described before. While in the METABOLITE component,
metaboliteConc and metaboliteFlow are the concentration and flow of this metabolite,
respectively, and the third argument denotes all the enzyme flows that can influence this
metabolite. The value of the sign can be ‘+’ or ‘−’, which means increase and decrease of

PANG and COGHILL Page 29

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

this metabolite, respectively. For instance, [enzyme1−Flow,+] means the flow through
enzyme1 will increase this metabolite.

Modeling the glycolysis pathway: These two kinds of general constraints (components) are
finally used to model the glycolysis pathway, as shown in Figure 7. Two constraints are
taken as examples to illustrate the meaning of this model. The first constraint,
ENZYME((Glcc, ATPc),(G6Pc, ADPc),Enz1f), means that the flow through Enz1
(hexokinase), Enz1f, controls the transformation of the concentrations of Glc(Glcc) and
ATP(ATPc) into G6Pc and ADPc. The 17th constraint, METABOLITE(PEPc,PEPf,(Enz9f,
+),(Enz10f, −)), means that the concentration and flow of PEP, PEPc and PEPf, are
controlled by the flow through Enz9 (Enolase), Enz9f, and the flow through Enz10
(Pyruvate kinase), Enz10f. Enz9 will produce PEP (according to the sign ‘+’) and Enz10
will remove PEP (according to the sign ‘−’).

Learning process: First, all the possible ways of combining all the metabolites are
generated. Then the domain knowledge of chemical and biochemical reactions is used to
reduce the search space. Finally, 18 reactions, which are both chemically and biochemically
plausible are selected to construct the initial search space. The qualitative data for learning
the pathway are obtained by simulating the target model.

After several months of compute time on a cluster computer, 35 possible models (out of
more than 27 000 models) of the glycolysis pathway, among which the target model is
included, were returned by ILP-QSI. The long compute time is acknowledged, as it is an
approach that would not be done in practice; the problem would generally be tackled in
stages. It is a proof-of-concept, and shows that ILP-QSI can narrow down the set of the
candidate models to a small scope even when some domain-specific knowledge is omitted.

For QML-IL, the glycolysis pathway was reconstructed in three stages, namely priming,
splitting,and phosphorylation. The priming stage includes the first three reactions shown in
Figure 6; the splitting stage includes the fourth and fifth reactions; and the rest of the
reactions belong to the phosphorylation stage. By this decomposition, QML-IL learnt the
model stage by stage. It was reported that the computation times for different stages were 6
seconds in stage 1135 seconds in stage 2 and 5296 seconds in stage 3. After the three-stage
learning, only two models were returned, one of which is the target model.

6.4.2 Learning the detoxification pathway of methylglyoxal—QML-Morven was
used to learn the qualitative model of the detoxification pathway of methyglyoxal (Pang &
Coghill, 2009). Methylglyoxal is a naturally occurring toxic electrophile, which is harmful
to cells. Its detoxification pathway was initially studied by Ferguson et al. (1998), and
current understanding of this pathway is shown in Figure 8. In this pathway, the first
reaction follows the mass action law, and the second and third are enzymatic reactions,
which are taken to obey Michaelis–Menten kinetics (Michaelis & Menten, 1913).
Glyoxalase I and II are the enzymes that catalyse the second and third reactions,
respectively.

Research on this pathway is still ongoing, and current understanding is based on incomplete
knowledge and limited experimental results. Consequently, the quantitative analysis (de
Almeida et al., 2008) based on current understanding cannot precisely describe the dynamics
of the system. This makes it helpful to reconstruct this pathway at a qualitative level using
QML-Morven.

The converting algorithm: On the basis of the standard assumption that all non-enzymatic
reactions obey the law of mass action and all enzymatic reactions follow Michaelis–Menten

PANG and COGHILL Page 30

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

kinetics, a converting algorithm was proposed to convert a possible pathway comprised of
several biochemical reactions to QDE models.

Learning strategy: Given known species and types of reactions, all possible reactions are
generated. A possible pathway is a subset of all these generated reactions, and all possible
pathways constitute the search space. A search algorithm will list the candidate pathways
and convert these pathways to QDE models by the converting algorithm. Then the converted
QDE models are simulated by JMorven, and the obtained simulation results are compared
with the given qualitative data.

Learning results: Given the complete set of 33 qualitative states obtained from simulating
the target model, QML-Morven significantly narrowed down the number of possible
pathways from 18 772 to 13. The corresponding QDE models for these 13 pathways could
generate exactly the same set of states, which was the same as the given complete set.

To deal with the potential complexity of this pathway, a CSA was used to search the target
pathway. This CSA is different from the one used in QML-CSA, because the search space
for this problem is composed of pathways, rather than qualitative models in QML-CSA. To
perform search in this kind of search space, a scoring system was set up to evaluate a
pathway, and this scoring system served as a heuristic function to guide the search. Three
criteria were used in this scoring system: completeness (the pathway includes all species
involved), consistency (no conflicting relations in the pathway), and coverage (the
corresponding qualitative model of the pathway covers all the given data).

The CSA was tested not only on the original methylglyoxal detoxification pathway, but also
on two more complicated pathways created artificially based on the original one.
Experimental results showed that CSA achieved better performance than the exhaustive and
backtracking search, which indicated a promising way of improving the scalability of QML-
Morven, when learning such complicated systems (Pang & Coghill, 2009).

6.5 Summary and discussion
In this section, several applications of QML were introduced, and they were the major
applications found in the literature. Although it has strong application potentials, QML is a
relatively small research field, and this is why there are not many applications found in this
area. Theoretically speaking, QML can be applied to learning any dynamic system under the
following two circumstances: (i) The training data are qualitative. For example, the available
data for the system are sparse and imprecise, and it is better to represent them qualitatively.
(ii) Not only the quantitative model, but also the QDE model of the system is difficult to
obtain, which is caused by having insufficient knowledge about the system.

We again point out that QML is a general way and powerful tool to understand scientific
theories, perform the engineering applications and even study the social systems. However,
for different problems and applications, customized and specialized QML systems are
needed. There is no QML system that can deal with all the problems. Appropriately
choosing or designing a QML system for a specific problem is a very important issue, and
two factors must be considered: (i) The features of the given data, which includes the
completeness, accuracy, and resolution of the data. For example, for some biological
systems with sparse data, ILP-QSI will be more suitable than QMN. On the other hand, if
the high-resolution data are obtained, QMN can be applied. (ii) The specific nature of the
search space. For instance, for large-scale search space, an evolutionary QML system will
perform better than a symbolic QML system.

PANG and COGHILL Page 31

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Finally, we acknowledge that there is another challenge when applying QML to the real-
world applications. In real-world applications, it is often the case that not all qualitative
states can be obtained, which makes QML tasks more difficult. In this sense, many of the
above-described examples (except GENMODEL for learning the CVS model) are at the
proof-of-concept stage, because in these examples complete qualitative data are required.
Dealing with incomplete data is a very important issue that needs to be solved in order to
make QML practicable. There are two feasible solutions to address this issue: (i) Developing
better data pre-processing components. An appropriate data pre-processing component will
make the best use of the raw quantitative data obtained from real-world applications. (ii)
Better utilization of the domain knowledge. Learning from incomplete data often leads to a
large number of candidate models. To narrow down a set of candidate models, the domain
knowledge related to the real-world applications must be fully utilized to filter out as many
false-positive models as possible. Although in the past two decades the volume of research
carried out to study the above two solutions is relatively small, the progress made for the
number of researchers engaged is very encouraging. In particular, the investigation of kernel
subsets (described in section 3.5.4) gives us very promising results.

7 Future trends of QML
In previous sections, different QML systems have been examined, and parts of their
applications have also been briefly introduced. As an active research field, QML has been
hardly studied and broadly applied to different domains. However, there still remain many
interesting topics and unsolved problems in QML research. In this section, we will explore
the future of QML from the aspects of both its development and applications.

7.1 Integration with semi-quantitative and quantitative system identification
The real-world dynamic systems under study can be highly complex. If the modelling and
learning approaches are restricted to purely qualitative ones, one may suffer from obtaining
incomplete results, because qualitative approaches alone sometimes cannot reveal the
dynamics of a system at more concrete levels, namely the semi-quantitative and quantitative
levels. Consequently, hybrid approaches are required, which can model and learn the system
at different levels of abstraction: quantitative, semi-quantitative, and qualitative levels. This
also raises many questions and suggests several research directions, such as: (i) How can
these approaches at different levels be integrated to better fulfil the learning task? (ii) How
do we choose different hybrid approaches according to different learning tasks? (iii) How do
we present the learning result? It seems that a general framework, which can address the
above problems, is needed.

7.2 Dealing with more complicated QDE models
The currently available QML systems can successfully handle small- and medium-size
problems. However, the size of the real-world dynamic systems can be very large, such as
biological networks. When dealing with these problems, new search strategies, which can
efficiently search the generated model space, are required. There have been already several
attempts in this respect: the evolutionary (QME and QML-CSA) and the decomposition
approaches (QML-IL). The initial investigation of these two strategies shows their potential
abilities to deal with complex dynamic systems, although much work needs to be carried out
in the future.

7.3 Integration with Fuzzy Set and Rough Set theory
Recent research in QR tends to incorporate other theories that can handle uncertain
knowledge, such as the theory of Fuzzy Set (Zadeh, 1965) and Rough Set (Pawlak, 1991).
For example, FuSim (Shen & Leitch, 1993) and Morven (Coghill, 1996) incorporate Fuzzy

PANG and COGHILL Page 32

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Set theory into QR, and in Rebolledo (2006), Rough Set theory is utilized. Correspondingly,
QML research should also explore these directions. In fact, as mentioned before, the QML-
Morven framework has the potential ability to deal with fuzzy data, because the Morven
Framework is a fuzzy qualitative reasoner.

7.4 Utilising parallel computing
The development of computer hardware and distributed computing also makes it possible to
deal with more complex QDE models. For example, ILP-QSI works on a 65-node Beowulf
cluster. QML-Morven tests all its experiments on a cluster with nine nodes. QML systems
need the corresponding modifications and additional software to adapt themselves to the
parallel computing environment, so that they can effectively utilize the computing resources.
Theoretically, all the execution components proposed in section 2 can be parallelized, but
parallelising the following two is practical: (i) Parallelising the model search algorithm. The
model search algorithm is a computationally expensive component in QML. When the
model space is large, parallelising this component will significantly accelerate the whole
computational process. (ii) Parallelising the qualitative simulator. When a qualitative
simulator is used as the model verification component, and the simulation process is time
consuming, it is natural to parallelize the simulator. Some research has already been carried
out to achieve this, for example, the work of Platzner et al. (1997) and JMorven (Bruce &
Coghill, 2005).

7.5 Dealing with hybrid dynamic systems
The modelling of the real-world dynamic systems often involves more than one QDE, and
the system will switch from one QDE to another under certain conditions, that is, they are
hybrid dynamic systems (Alur et al., 2000), or more precisely qualitative hybrid dynamic
systems. Although much work has been carried out on identifying quantitative models of
hybrid dynamic systems (Juloski et al., 2005), there is little research about learning
qualitative structures of complex hybrid systems. Such learning tasks are more challenging
because they involve not only identifying multiple QDEs, but also the complicated
transitions between these QDEs. For example, learning qualitative structures of genetic
regulatory networks modelled by (de Jong et al., 2004) has to fulfil both of the above-
mentioned tasks.

Some preliminary research has been carried out in this field, such as the work of MISQ-RT
(Ramachandran et al., 1994), but there are still a lot of unsolved problems. One problem is
the analysis of the influence of incomplete qualitative data on the learning, which is
analogous to the one performed in learning singular qualitative models. Another problem is
how to detect the switching thresholds of the hybrid dynamic systems, especially hybrid
biological systems. This has been the subject of a preliminary study by Drulhe et al. (2006).

8 Conclusions
In this paper, the research field of QML was comprehensively reviewed: first a general
structure of QML was proposed, then all the prominent QML systems were described in
detail with reference to this structure. Their characteristics were summarized and compared,
and their limitations were also pointed out. Finally, several applications of QML were
briefly introduced, and possible future directions were explored. QML, as a very useful and
powerful tool for the problems in many disciplines, has been an active research field for
more than two decades. As Price et al. (2006) pointed out, the challenges and promises of
QR were greater than ever, and we believe that the future of QML is equally promising.

PANG and COGHILL Page 33

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Acknowledgments
We appreciate the support from the National Natural Science Foundation of China under the Grant nos. 60433020,
60673099 and 60773095. WP is financially supported by a joint scholarship of the University of Aberdeen and
China Scholarship Council. WP and GMP are supported by the CRISP project (Combinatorial Responses In Stress
Pathways) funded by the BBSRC (BB/F00513X/1) under the Systems Approaches to Biological Research (SABR)
Initiative.

Appendix A: The U-Tube system
This system consists of a hollow tube in the shape of a ‘U’ and liquid in the tube, as shown
in Figure 9. In this figure, the left and right tank of the U-Tube are labelled as tanks 1 and 2,
and the levels of the liquid in these two tanks are denoted as h1 and h2, respectively. Δh is
the difference of h1 and h2. Liquid can flow freely from one tank to another, and the flow
from the tank 1 to tank 2 is denoted as qx. The QSIM model for this system is shown in
Figure 10.

Appendix B: The coupled tanks
The coupled tanks system can be seen as a U-Tube (see Appendix A) with an input and
output, as shown in Figure 11. The inflow is denoted by qi and the outflow is denoted by qo.
The QSIM model for this system is shown in Figure 12.

Appendix C: The cascaded tanks
The cascaded tanks system is shown in Figure 13. There are two tanks (labelled as tanks 1
and 2), and tank 1 is located in a higher position than tank 2. Each tank has an inflow and an
outflow, and the outflow of tank 1 is the inflow of tank 2. The QSIM model of this system is
shown in Figure 14. In this figure, qi is the inflow of tank 1; qx is the outflow of tank 1 and
also the inflow of tank 2; qo is the outflow of tank 2.

References
Abe, S. A qualitative system idenditification method. Proceedings of the Seventh International

Workshop on Qualitative Reasoning about Physical Systems; Orcas Island, Washington. 1993. p.
1-10.

Alur, R.; Courcoubetis, C.; Halbwachs, N.; Henzinger, T.; Ho, P.; Nicolin, X.; Olivero, A.; Sifakis, J.
Discrete abstractions of hybrid systems. Proceedings of the IEEE; Philadelphia, PA: Pennsylvania
University; IEEE Press; 2000. p. 971-984.

Bellazzi R, Ironi L, Guglielmann R, Stefanelli M. Qualitative models and fuzzy systems: an integrated
approach for learning from data. Artificial Intelligence in Medicine. 1998; 14:5–28. [PubMed:
9779881]

Bergadano, F.; Gunetti, D. Inductive Logic Programming From Machine Learning to Software
Engineering. MIT Press; 1996.

Bhaskar R, Nigam A. Qualitative physics using dimensional analysis. Artificial Intelligence. 1990;
45:73–111.

Blackman, R.; Tukey, J. The measurement of Power Spectra. Dover Publications Inc; 1958.

Bohte, Z. Numerical Method. The Society of Mathematicaians, Physicists and Astronomers of
Slovenia; 1991.

Bradley E, Easley M, Stolle R. Reasoning about nonlinear system identification. Artificial Intelligence.
2001; 133:139–188.

Bradley E, Stolle R. Automatic construction of accurate models of physical systems. Annals of
Mathematics and Artificial Intelligence. 1996; 17:1–28.

PANG and COGHILL Page 34

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Bratko, I.; Muggleton, S.; VarŠek, A. Learning qualitative models of dynamic systems. In: Birnbaum,
L.; Collins, G., editors. Proceedings of the 8th International Workshop on Machine Learning;
Morgan Kaufmann; 1991.

Bratko I, Šuc D. Learning qualitative models. AI Magazine. 2003; 240(4):107–119.

Bruce, AM. PhD thesis. Department of Computing Science, Univeristy of Aberdeen; 2007. JMorven:
A Framework for parallel non-constructive qualitative reasoning and fuzzy interval simulation.

Bruce, AM.; Coghill, GM. Parallel fuzzy qualitative reasoning. Proceedings of the 19th International
Workshop on Qualitative Reasoning; Graz. 2005. p. 110-116.

Burnet, FM. The Clonal Selection Theory of Acquired Immunity. Cambridge University Press; 1959.

Camacho, R. PhD thesis. University of Porto; 2000. Inducing Models of Human Control Skills using
Machine Learning Algorithms.

Cellier, FE. Qualitative Simulation Modeling and Analysis, Advances in Simulation. Vol. 5. Springer-
Verlag; 1991. General system problem solving paradigm for qualitative modeling; p. 51-71.

Coghill, GM. Master’s thesis. University of Glasgow; 1992. Vector Envisionment of Compartmental
Systems.

Coghill, GM. PhD thesis. Heriot-Watt University; 1996. Mycroft: A Framework for Constraint based
Fuzzy Qualitative Reasoning.

Coghill, GM.; Chantler, MJ. Mycroft: a framework for qualitative reasoning. Second International
Conference on Intelligent Systems Engineering; Hamburg-Harburg, Germany. 1994. p. 43-48.

Coghill, GM.; Garrett, S.; King, RD. Learning qualitative metabolic models. European Conference on
Artificial Intelligence (ECAI’04); Valencia, Spain. 2004. p. 445-449.

Coghill GM, Srinivasan A, King RD. Qualitative system identification from imperfect data. Journal of
Artificial Intelligence Research. 2008; 32:825–877.

Coiera, E. Generating qualitative models from example behaviours. Department of Computer Science,
University of New South Wales; Sydney, Australia: 1989a. Technical Report DCS Report 8901

Coiera, E. Learning qualitative models from example behaviours. Proceedings of the Third Workshop
on Qualitative Physics; Stanford. 1989b. p. 45-51.

de Almeida, C.; Ozyamak, E.; Miller, S.; de Moura, A.; Booth, I.; Grebogi, C. Modelling of
methylglyoxal detoxification pathway in enteric bacteria. Abstract Book of the 9th International
Conference on Systems Biology; Goteborg. 2008. p. 170

de Castro, LN.; Timmis, J. An artificial immune network for multimodal function optimization.
Proceedings of IEEE Congress on Evolutionary Computation (CEC’02); IEEE Press; 2002. p.
674-699.

de Castro, LN.; Von Zuben, FJ. The clonal selection algorithm with engineering applications.
Proceedings of GECCO,Workshop on Artificial Immune Systems and Their Applications; Las
Vegas, USA. 2000. p. 36-39.

de Castro, LN.; Von Zuben, FJ. Learning and optimization using the clonal selection principle. IEEE
Transactions on Evolutionary Computation, Special Issue on Artificial Immune Systems; IEEE
Press; 2002. p. 239-251.

de Jong H, Gouze J-L, Hernandez C, Page M, Sari T, Geiselmann J. Qualitative simulation of genetic
regulatory networks using piecewise-linear models. Mathematical Biology. 2004; 66:301–340.

Drulhe, S.; Ferrari-Trecate, G.; de Jong, H.; Viari, A. Lecture Notes in Computer Science. Vol. 3927.
Springer-Verlag; 2006. Reconstruction of switching thresholds in piecewise-affine models of
genetic regulatory networks; p. 184-199.

Džeroski, S.; Todorovski, L. Discovering dynamics. Proc. Tenth International Conference on Machine
Learning; Morgan Kaufman; 1993. p. 97-103.

Džeroski S, Todorovski L. Discovering dynamics: From inductive logic programming to machine
discovery. Journal of Intelligent Information Systems. 1994; 3:1–20.

Ferguson GP, Totemeyer S, MacLean MJ, Booth IR. Methylglyoxal production in bacteria: suicide or
survival? Archives of Microbiology. 1998; 170(4):209–218. [PubMed: 9732434]

Forbus, KD. The Computer Science and Engineering Handbook. CRC-Press; 1997. Qualitative
reasoning; p. 715-733.

PANG and COGHILL Page 35

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Gerçeker, RK.; Say, ACC. Using polynomial approximations to discover qualitative models.
Proceedings of the 20th Annual Workshop on Qualitative Reasoning (QR06); 2006. p. 64-74.

Goldberg, DE. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley;
1989.

Hau DT, Coiera EW. Learning qualitative models of dynamic systems. Machine Learning. 1993;
26:177–211.

Iwasaki Y, Simon HA. Causality in device behavior. Artificial Intelligence. 1986; 29:3–32.

Juloski, AL.; Heemels, WPMH.; Ferrari-Trecate, G.; Vidal, R.; Paoletti, S.; Niessen, JHG. Comparison
of four procedures for the identification of hybrid systems. In: Morari, M.; Thiele, L.; Rossi, F.,
editors. Proceedings of the Hybrid Systems: Computation and Control (HSCC-05); Springer-
Verlag; 2005. p. 354-369.Lecture Notes in Computer Science

Kay H, Rinner B, Kuipers B. Semi-quantitative system identification. Artificial Intelligence. 2000;
119:103–140.

Keppens J, Shen Q. On compositional modelling. Knowledge Engineering Review. 2001; 16(2):157–
200.

Khoury, M.; Guerin, F.; Coghill, GM. Learning dynamic models of compartment systems by
combining symbolic regression with fuzzy vector envisionment. In: Thierens, D., editor. Genetic
and Evolutionary Computation Conference (GECCO07); ACM Press; 2007. p. 2887-2894.

King RD, Garrett SM, Coghill GM. On the use of qualitative reasoning to simulate and identify
metabolic pathways. Bioinformatics. 2005; 21(9):2017–2026. [PubMed: 15647297]

Koza, JR. Genetic Programming: On the Programming of Computers by means of Natural Evolution.
MIT Press; 1992.

Kraan, I.; Richards, BL.; Kuipers, B. Automatic abduction of qualitative models. Proceedings of the
Fifth International Workshop on Qualitative Reasoning about Physical Systems; 1991. p. 295-301.

Kuipers B. Qualitative simulation. Artificial Intelligence. 1986; 29:289–338.

Kuipers, B. Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge. MIT Press;
1994.

Kuipers B, Kassirer JP. Causal reasoning in medicine: Analysis of a protocol. Cognitive Science: A
Multidisciplinary Journal. 1984; 8(4):363–385.

Ljung, L. System Identification—Theory For the User. 2nd edition. Prentice Hall; 1999.

Lotka, AJ. Elements of Physical Biology. Williams & Wilkins Co; 1925.

McCreath, E. PhD thesis. University of New South Wales; 1999. Induction in First Order Logic From
Noisy Training Samples and Fixed Sample Sizes.

Michaelis L, Menten M. Die kinetik der invertinwirkung. biochemische zeitschrift. 1913; 49:333–369.

Mitchell, T. Machine Learning. McGraw Hill; 1997.

Morgan, A. PhD thesis. University of Cambridge; 1988. Qualitative Behaviour of Dynamic Physical
Systems.

Muggleton, S. New Generation Computing, Special issue on Inductive Logic Programming. Vol. 1314.
Springer-Verlag; 1995. Inverse entailment and Progol; p. 245-286.

Muggleton S. Learning from positive data. Lecture Notes in AI. 1996:358–376.

Muggleton, S.; Feng, C. Efficient induction of logic programs. Proceedings of the 1st Conference on
Algorithmic Learning Theory; Ohmsma, Tokyo, Japan: 1990. p. 368-381.

Muggleton S, King RD, Sternberg MJ. Protein secondary structure prediction using logic-based
machine learning. Protein Engineering. 1992; 5(7):647–657. [PubMed: 1480619]

Muggleton S, Raedt LD. Inductive logic programming: Theory and methods. Journal of Logic
Programming. 1994; 19–20:629–679.

Pang, W.; Coghill, GM. Modified clonal selection algorithm for learning qualitative compartmental
models of metabolic systems. In: Thierens, D., editor. Genetic and Evolutionary Computation
Conference (GECCO07); ACM Press; 2007a. p. 2887-2898.

Pang, W.; Coghill, GM. Advanced experiments for learning qualitative compartment models. The 21st
Annual Workshop on Qualitative Reasoning; Aberystwhyth. 2007b.

PANG and COGHILL Page 36

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Pang, W.; Coghill, GM. An immune-inspired approach to qualitative system identification of the
detoxification pathway of methylglyoxal. In: Andrews, PS.; Timmis, J., editors. Proceeding of 8th
International Conference on Artificial Immune Systems (ICARIS 2009); Springer-Verlag; 2009. p.
151-164.Lecture Notes in Computer Science

Papadimitriou, CH.; Steiglitz, K. Combinatorial optimization: algorithms and complexity. Prentice-
Hall; 1982.

Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishing;
1991.

Platzner M, Rinner B, Weiss R. Parallel qualitative simulation. Simulation Practice and Theory—
International Journal of the Federation of European Simulation Societies. 1997; 5(7–8):623–638.

Plotkin GD. A further note on inductive generalisation. Machine Intelligence. 1971; 6:101–124.

Price C, Trave-Massuyes L, Milne R, Ironi L, Forbus K, Bredeweg B, Lee M, Struss P, Snooke N,
Lucas P, Cavazza M, Coghill G. Qualitative futures. The Knowledge Engineering Review. 2006;
21(4):317–334.

Ralston, A.; Rabinowitz, P. A first Course in Numerical Analysis. 2nd edition. Dover Publications;
2001.

Ramachandran, S.; Mooney, RJ.; Kuipers, BJ. Learning qualitative models for systems with multiple
operating regions. the Eighth International Workshop on Qualitative Reasoning about Physical
Systems (QR-94); Nara. 1994.

Rebolledo M. Rough intervals: enhancing intervals for qualitative modeling of technical systems.
Artificial Intelligence. 2006; 170:667–685.

Richards, BL.; Kraan, I.; Kuipers, B. Automatic abduction of qualitative models. National Conference
on Artificial Intelligence; AAAI; 1992. p. 723-728.

Richards, BL.; Mooney, RJ. Learning relations by pathfinding. Proceedings of the Tenth National
Conference on Artificial Intelligence (AAAI-92); San Jose. 1992. p. 50-55.

Richards BL, Mooney RJ. Automated refinement of first-order horn-clause domain theories. Machine
Learning. 1995; 19(2):95–131.

Say, ACC. PhD thesis. Boğaziçi University; 1992. Qualitative System Identification.

Say ACC, Kuru S. Qualitative system identification: deriving structure from behavior. Artificial
Intelligence. 1996; 83:75–141.

Selman, B.; Levesque, H.; Mitchell, D. A new method for solving hard satisfiability problems.
Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92); San Jose.
1992. p. 440-446.

Shen Q, Leitch R. Fuzzy qualitative simulation. IEEE Transactions on Systems, Man, and Cybernetics.
1993; 23(4):1038–1061.

Shoup, TE. A Practical Guide to Computer Methods for Engineers. Prentice-Hall; 1979.

Srinivasan, A. The Aleph Manual. 1999. http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/
Aleph/aleph.html

Srinivasan A, King RD. Incremental identification of qualitative models of biological systems using
inductive logic programming. Journal of Machine Learning Research. 2008; 9:1475–1533.

Todorovski, L. PhD thesis. Faculty of Electrical Engineering and Computer Science, University of
Ljubljana; 2003. Using domain knowledge for automated modeling of dynamic systems with
equation discovery.

Todorovski, L.; Džeroski, S. Declarative bias in equation discovery. Proceedings of the 14th
International Conference on Machine Learning; Morgan Kaufmann; 1997. p. 376-384.

Todorovski, L.; Džeroski, S.; Srinivasan, A.; Whiteley, J.; Gavaghan, D. Discovering the structure of
partial differential equations from example behavior. Proceedings of the 17th International
Conference on Machine Learning; Morgan Kaufmann; 2000. p. 991-998.

Valdés-Pérez RE. Conjecturing hidden entities by means of simplicity and conservation laws: machine
discovery in chemistry. Artificial Intelligence. 1994; 65(2):247–280.

Varšek, A. Qualitative model evolution. Proceedings of the Twelfth International Joint Conference on
Artificial Intelligence; Sydney, Australia. 1991.

PANG and COGHILL Page 37

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html

Vatcheva I, de Jong H, Bernard O, Mars NJ. Experiment selection for the discrimination of semi-
quantitative models of dynamical systems. Artificial Intelligence. 2005; 170:472–506.

Wiegand, M. PhD thesis. Heriot-Watt university; 1991. Constructive Qualitative Simulation of
Continuous Dynamic Systems.

Zadeh LA. Fuzzy sets. Information and Control. 1965; 8:338–353.

PANG and COGHILL Page 38

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 1.
Basic components of the Qualitative Differential Equation model learning systems

PANG and COGHILL Page 39

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 2.
A cascaded two-compartment model

PANG and COGHILL Page 40

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 3.
The QSIM and JMorven descriptions of the cascaded two compartment model

PANG and COGHILL Page 41

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 4.
The simplified U-Tube model

PANG and COGHILL Page 42

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 5.
Antibody encoding

PANG and COGHILL Page 43

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 6.
The reactions in the glycolysis pathway (from King et al. (2005))

PANG and COGHILL Page 44

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 7.
The qualitative representation of the glycolysis pathway (from (King et al. (2005))

PANG and COGHILL Page 45

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 8.
The detoxification pathway of methylglyoxal (based on Pang & Coghill (2009))

PANG and COGHILL Page 46

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 9.
The U-Tube system

PANG and COGHILL Page 47

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 10.
The QSIM model for the U-Tube system

PANG and COGHILL Page 48

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 11.
The coupled tanks

PANG and COGHILL Page 49

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 12.
The QSIM model for the coupled tanks

PANG and COGHILL Page 50

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 13.
The cascaded tanks

PANG and COGHILL Page 51

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Figure 14.
The QSIM model for the cascaded tanks

PANG and COGHILL Page 52

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

PANG and COGHILL Page 53

Table 1

Qualitative constraints in QSIM and their corresponding mathematical equations

Qualitative Constraints Mathematical Equations

ADD(X,Y,Z) Z(t) = X(t) + Y(t)

MULT(X,Y,Z) Z(t) = Y(t) × X(t)

DERIV(X,Y) dX(t)/dt = Y(t)

MINUS(X,Y) Y(t) = −X(t)

M+(X,Y) Y(t) = f(X(t)), f′ >0

M−(X,Y) Y(t) = −f(X(t)), f′ >0

QSIM: Qualitative SIMulation.

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

PANG and COGHILL Page 54

Table 2

The U-Tube QDE after the first iteration of QSI

Qualitative Constraints

M−(amounts 1 and 2)

DERIV (amount 1, P1)

DERIV (amount 2, P2)

ADD (amount 1, P1, amount 2)

ADD (amount 2, P2, amount 1)

QDE, Qualitative Differential Equation; QSI, Qualitative System Identification.

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

PANG and COGHILL Page 55

Table 3

Possible input sequence in Abe’s system

Time t 0 t 1 t 2 t 3 t 4

xi(t) [−] [0] [+] [+] [+]

xj(t) [+] [+] [+] [0] [−]

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

PANG and COGHILL Page 56

Table 4

Part of the State Estimation Rule 1 in Abe’s System

[Q(tprev)] [Q(tnow)] [Q(tnext)] ∂[Q(tnow)]

[+] [0] [+] [0]

[+] [0] [0] [0]

[+] [0] [−] [−0]

[0] [0] [+] [0]

...

...

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

PANG and COGHILL Page 57

Table 5

Part of the State Estimation Rule 2 in Abe’s System

[Q(tprev)] [Q(tnow)] [Q(tnext)] ∂[Q(tnow−s)] ∂[Q(tnow−m)] ∂[Q(tnow−e)]

[+] [+] [+] [+0−] [+0−] [+0−]

[+] [+] [0] [+0−] [−0] [−]

[0] [+] [+] [+] [0+] [+0−]

[0] [+] [0] [+] [0] [−]

...

...

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

PANG and COGHILL Page 58

Ta
bl

e
6

A
 S

um
m

ar
y

of
 th

e
ch

ar
ac

te
ri

st
ic

s
of

 d
if

fe
re

nt
 Q

D
E

 m
od

el
 le

ar
ni

ng
 s

ys
te

m
s

A
lg

or
it

hm
P

re
-p

ro
ce

ss
in

g
P

os
it

iv
e

D
at

a
O

nl
y

H
id

de
n

V
ar

ia
bl

e
N

oi
sy

 D
at

a
F

or
m

al
is

m
B

as
ic

 S
ea

rc
h

St
ra

te
gy

K
er

ne
l S

ub
se

ts
H

V
A

a
M

O
R

b

G
O

L
E

M
×

×
✓

3
Q

SI
M

IL
P

×
×

×

G
E

N
M

O
D

E
L

Q
2Q

✓
×

✓
 c

Q
SI

M
R

L
G

G
×

×
×

M
IS

Q
Q

2Q
✓

✓
×

Q
SI

M
G

en
er

at
e-

an
d-

te
st

×
×

×

M
IS

Q
-R

T
Q

2Q
✓

✓
×

Q
SI

M
Se

pa
ra

te
-a

nd
-R

eu
ni

te
×

×
✓

Q
SI

Q
2Q

d
✓

✓
✓

d,
e

Q
SI

M
A

dj
us

ta
bl

e
Po

st
ul

at
io

n
×

×
×

IL
P-

Q
SI

Q
2Q

✓
✓

✓
 e

Q
SI

M
IL

P
an

d
B

ra
nc

h-
an

d-
B

ou
nd

✓
×

×

Q
M

N
N

Pf
✓

✓
✓

 c
Q

SI
M

G
en

er
at

e-
an

d-
te

st
×

×
×

L
Y

Q
U

ID
N

Pf
✓

✓
✓

 c
Q

SI
M

G
en

er
at

e-
an

d-
te

st
×

×
×

Q
M

E
×

×
×

×
Q

SI
M

G
en

et
ic

 a
lg

or
ith

m
×

×
×

Q
M

L
-C

SA
×

✓
✓

×
M

or
ve

n
C

lo
na

l s
el

ec
tio

n
al

go
ri

th
m

✓
×

×

A
be

’s
 s

ys
te

m
Q

2Q
✓

×
×

SD
E

g
E

nt
ro

py
 r

ed
uc

tio
n

he
ur

is
tic

 s
ea

rc
h

×
×

×

Q
M

L
-I

L
×

✓
✓

×
Q

SI
M

IL
P

an
d

in
cr

em
en

ta
l d

ec
om

po
si

tio
n

×
×

×

Q
M

L
-B

K
FC

×
✓

✓
×

M
or

ve
n

B
ac

kt
ra

ck
in

g
w

ith
 f

or
w

ar
d

ch
ec

ki
ng

✓
✓

×

Q
D

E
, Q

ua
lit

at
iv

e
D

if
fe

re
nt

ia
l E

qu
at

io
n;

 I
L

P,
 in

du
ct

iv
e

lo
gi

c
pr

og
ra

m
m

in
g;

 Q
SI

, Q
ua

lit
at

iv
e

Sy
st

em
 I

de
nt

if
ic

at
io

n;
 Q

M
N

, Q
ua

lit
at

iv
e

M
od

el
s

fr
om

 N
um

er
ic

al
 tr

ac
es

; Q
M

E
, Q

ua
lit

at
iv

e
M

od
el

 E
vo

lu
tio

n;
IL

, I
nc

re
m

en
ta

l L
ea

rn
in

g;
 B

K
FC

, B
ac

kt
ra

ck
in

g
w

ith
 F

or
w

ar
d

C
he

ck
in

g;
 R

L
G

G
, R

el
at

iv
e

L
ea

st
 G

en
er

al
 G

en
er

al
iz

at
io

n;
 Q

SM
, Q

ua
lit

at
iv

e
SI

M
ul

at
io

n.

a H
id

de
n

va
ri

ab
le

 a
na

ly
si

s:
 a

na
ly

si
s

of
 th

e
in

fl
ue

nc
e

of
 d

if
fe

re
nt

 n
um

be
r

an
d

ty
pe

s
of

 h
id

de
n

va
ri

ab
le

s.

b M
ul

tip
le

 o
pe

ra
tin

g
re

gi
on

s.

c Q
ua

nt
ita

tiv
e

le
ve

l n
oi

se
 p

ro
ce

ss
in

g.

d N
ot

 f
ul

ly
 im

pl
em

en
te

d.

e Q
ua

lit
at

iv
e

le
ve

l n
oi

se
 p

ro
ce

ss
in

g.

f N
um

er
ic

al
 p

ro
ce

ss
in

g.

g Si
m

ul
ta

ne
ou

s
D

if
fe

re
nt

ia
l E

qu
at

io
ns

.

Knowl Eng Rev. Author manuscript; available in PMC 2013 May 21.

