Stochastic vector quantization of images

Carregant...
Miniatura

Fitxers

Stochastic vector quantization of images.pdf (1.13 MB) (Accés restringit) Sol·licita una còpia a l'autor
El pots comprar en digital a:
El pots comprar en paper a:

Projectes de recerca

Unitats organitzatives

Número de la revista

Títol de la revista

ISSN de la revista

Títol del volum

Col·laborador

Tribunal avaluador

Realitzat a/amb

Tipus de document

Article

Data publicació

Editor

Condicions d'accés

Accés restringit per política de l'editorial

item.page.rightslicense

Creative Commons
Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Llevat que s'hi indiqui el contrari, els seus continguts estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya

Assignatures relacionades

Assignatures relacionades

Publicacions relacionades

Datasets relacionats

Datasets relacionats

Projecte CCD

Abstract

One of the most important steps in the vector quantization of images is the design of the codebook. The codebook is generally designed using the LBG algorithm, that is in essence a clustering algorithm which uses a large training set of empirical data that is statistically representative of the image to be quantized. The LBG algorithm, although quite effective for practical applications, is computationally very expensive and the resulting codebook has to be recalculated each time the type of image to be encoded changes. One alternative to the generation of the codebook, called stochastic vector quantization, is presented in this paper. Stochastic vector quantization (SVQ) is based on the generation of the codebook according to some previous model defined for the image to be encoded. The well-known AR model has been used to model the image in the current implementations of the technique, and has shown good performance in the overall scheme. To show the merit of the technique in different contexts, stochastic vector quantization is discussed and applied to both pixel-based and segmentation-based image coding schemes.

Descripció

Persones/entitats

Document relacionat

item.page.versionof

Citació

Torres, L., Casas, J., Arias, E. Stochastic vector quantization of images. "Signal processing", Novembre 1997, vol. 62, núm. 3, p. 291-301.

Ajut

Forma part

Dipòsit legal

ISBN

ISSN

0165-1684

Altres identificadors

Referències