TheHi-NooN NeuralSimulatorandits Applications

R.l. Dampet, R.L.B. French andT.W. Scutf

*Image,Speechandintelligent SystemdResearclGroup,
Departmenbf ElectronicsandComputerScience,
Universityof Southampton,
Southamptors0171BJ, UK.

TCoreDesignlLtd.,
55 AshbourneRoad,
Derby DE223FS, UK.

Abstract

This paper describesthe Hi-NOON neural simula-
tor, originally concevedasa general-purposebject-
orientedsoftware systemfor the simulationof small
systemsof biological neuronsasan aid to the study
of links betweenneurophysiologyand behaiour in

lower animals. As such, the artificial neuronsem-
ployed were spiking in nature: to effect an appro-
priate compromisebetweencomputationacomplex-

ity andbiologicalrealism,modellingwasatthetrans-
membranepotential level of abstraction. Further
sincereal neuralsystemsincorporatedifferenttypes
of neuronsspecialisedto somavhat different func-
tions,the softwarewaswrittento accommodatanon-
homogeneoupopulationof neurons.The efficacy of

thesimulatoris illustratedwith respecto somerecent
applicationgo situatedsystemsstudies.

1 Introduction

In recentyears,a corvergenceof two initially dis-
paratethreadof researcltexploring thelinks between
neurophysiologyandbehaiour hasoccurred.In one
particularlyvibrantline of researchso-calledparallel
distributed processindg13], grosslysimplified, artifi-
cial modelsof neuralnetworks have beendefinedand
studied, fuelled by the discovery of powerful learn-
ing algorithmssuchas error back-propagation.The
otherthreadhasbeenthecarefulstudyof thefunctions
of individual neuronswithin manageablgmallneural
circuitsin loweranimals suchastheseasnail Aplysia
with a simple repertoireof behaiours [8, 9]. The
two threads- paralleldistributed processingdPDP or
‘connectionism’)andsystemaieuroscience meetin
therelatively newerparadignof computationaheuro-

sciencd16], which attemptsto exploit their different
strengthsy linking someof the principlesof connec-
tionismwith datafrom experimentaheurophysiology
Suchan approachallows an appropriatetradeto be

made betweenbiological fidelity and computational
expedieng.

This paperdescribes programoriginally designed
to simulatesmallsystemsf neuronswithin thecom-
putationalneurosciencearadigmandits morerecent
developmentandapplications.The programis called
Hi-NOON, which standsfor HierarchicalNetwork of
Object-OrientedNeurons. As the namesuggestsin
Hi-NOON, synapseseuronsandnetworksarein prin-
ciple representedsobjectswithin an object-oriented
hierarchy[14, 15] at various levels of abstraction.
The lowest suchlevel usesthe membranepotential
(strictly, transmembran@otential difference)as the
obsenable parameteiin the network model. This is
a much lower-level approachthan the use of acti-
vation valuesroughly correspondingo the spike or
action potentialrate of individual neuronsor collec-
tions of neuronsas in PDP models. By contrast,
Hi-NOON retainsdetails of individual spike genera-
tion which is lost in the traditional connectionistp-
proach.As well, Hi-NOON facilitatessimulationof a
non-homogeneougopulationof neurons. In princi-
ple, this allows different, higherlevels of abstraction
to be usedalsoin a ‘mixed mode’. Most obviously,
PDP-typeneuronsmodelledat the level of activation
could be mixedwith morebiologically-realisticspik-
ing neurons,n which spike generations stochastic.
Thus, althoughone would be exercisingonly a pro-
portionof its flexibility andpower, onecouldevenuse
Hi-NOON asthe simulatorfor a highly conventional
PDP-typeatrtificial neuralnetwork.

Sincethe latter is a well-worn path, however, we



concentraten this paperon the lessusualsimulation

of spikingbehaiour. Onemightreasonablyaskwhat

adwantageghis might offer, i.e. what cana simula-

tion basedon spiking neuronsachieve that cannotbe

achievedusingmoregrossPDP-typemodelneurons?
This is currently a vexed questionin computational
neuroscienceanda fully definitive answercannotbe

given at this stage. Clearly, detailedtiming informa-

tion for individual spikes,andrelative timing between
spikes, offers an additional dimensionto the neural

code,asdoesthe stochastia@aspect. Thereis sugges-
tive evidencethat this sort of informationis indeed
importantin biology. Citing Rieke etal.[12, p.279]:

. undermary conditions,behaioral de-

cisions are madewith of order one spike

per cell, ... individual spikes can corvey

several bits of informationaboutincoming
sensorystimuli ... precisediscriminations
could... bebasedonthe occurrenceof in-

dividual spikes...”

In the sectionimmediatelyfollowing, we give an
overview of the Hi-NOON implementatiorbeforepre-
sentingdetailsof themodelneuronsandsynapseswe
thenoutline somerecentapplicationsof the simulator
beforeconcluding.

2 An Overview of HI-NOON

The original programwas written in object-oriented
Pascal,but hassubsequenthpeenrewritten in C us-
ing the disciplinesof object-orientedprogramming
(O0P)[2, 5]. C wasused(ratherthan C++ with its
explicit supportof OOPfeatures}o maximizeporta-
bility amongvariousrealisationsn differentapplica-
tions. Thebenefitsof the OOPapproactaretwo-fold.
First, the ability for objectsto inherit propertiesrom
otherobjectsmeanghatit is easyto definemorephys-
iologically exactneuronsn termsof simplerneurons.
Thus,the systemallows a simplethresholdunit asthe
mostbasictype of object. More complex objectsin-
herit certainpropertiesfrom this object(e.g.the fact
thatit hasweightedconnectiongo otherobjects).The
secondbenefitof OOPis polymorphism.This means
thatthe network may containmary differenttypesof
neuronatmary levelsof compleity, withoutthepro-
grammerhaving to be concernedvith this.

Codefor the C versionof Hi-NOON is availableby
anorymousftp to mun. ecs. sot on. uk fromdirec-
tory pub/ user s/ ri d/ hi noon.

2.1 Neuron Parameters

Basicneurophysiologpuggestsheattributesamodel
spiking neuronshould have. The fixed parameters
BaseMP, Thr eshol d andTi meConst correspond
to the resting potential, thresholdand time constant
of the neuron respectiely. Dynamicparameter$/P,
SynPot andfired (a1/0 predicate)modelthe ac-
tual membrangotentialasit variesin time, accumu-
late the weightedsumof synapticinputswhich influ-
encethe updatingof MP at the next time step,andin-
dicateif the objectis in the procesf firing, respec-
tively. This parametesystemallows us easilyto de-
scribedifferencesbetweemeuronsandto keeptrack
of thechangingstatef neuronsvertime. It approx-
imately satisfiesSelerstons[18] “minimum require-
ments”for effective neuralmodelling.

2.2 Hi-NOON Objects

The neuralnetwork is heldasa list of objects,where
eachsuchobjectcorrespondso a single neuronand
holds all the information aboutits state(seebelaw)

andaboutsubsidiaryobjects.Theinformationheldin

theneuronobjectis comprisedof:

e asetof parametersvhich definesheneuron;

e a setof datastructureswhich definesthe ‘axon
terminals’for the neuron,eachof whichis itself
anobjectandhasits own parameters;

e asetof methods- pointersto functions— which
accessand alter parametewaluesand so deter
mine exactly how the neuronfunctions.

The top-level list correspondgo the network ob-
ject. This possessetsvo methodgcalledh_access
and add) for accessingnetwork objectsand adding
further objectsonto the list, respectiely. Simula-
tion run lengthis handledby a global object. This
storesthe simulationand concurrentsoclet interface
‘houseleeping’data,including a counterwhoseorig-
inal valuespecifieghe lengthof simulation. It decre-
mentsaftereachevaluationof the network object,and
the simulationhaltswhenthe counterreachezero.

As synapsesre also objects,they too have fixed
and dynamic parameterssimilar to those of neu-
rons. Thus, BaseWei ght is the default weight of
the synapseand is a constant; Wei ght holds the
presensynapticstrengthandis variableduring simu-
lation; Recover y isaconstan{within eachsynapse)
which determineshow quickly Wi ght returnsto
BaseWei ght . To preventsynapticweightsgrowing
without limit, Wi ght is boundedduringsimulation.
This modelsthefinite storesof neurotransmittein the
synapticterminalsof biologicalneurons.



2.3 Neuron Types

Hi-NoON allows a non-homogeneoupopulation of
neurongo be simulated- reflectingthe factthatneu-
ronshave specializedunctionsin realneurobiological
systems— at the most appropriatelevel of abstrac-
tion. Modeling individual neuronsat the level of
membranepotential allows sub-thresholdand spik-
ing behaviors to be simulatedat low computational
cost. The fixed parametergaterfor differencesbe-
tweenneuronswhich, in this work, areof thefollow-

ing types:

basic: tellsits synapseto fire whenits membrango-
tentialcrosseshresholdfrom below.

noisy: similar to basic, but hasan additionalinter-
nal noise componentdeterminingthe weighted
synapticinput, and henceinfluencingthe mem-
branepotentialatthe next time step.

ramp: similar to noisy, but hasability to ramp up
spike generatiorrate. It is usedasa testsignal
sourcein network development.

burst: similar to noisy but producesa short burst
of spikes when its membranepotential crosses
threshold.

sensor: similarto basic, but actsasa sensoryneuron
in asituatedsystemsuchasamobilerobot.

motor: similarto basic, but actsasa motorneuronin
asituatedsystem.

2.4 Approximate State System

Eachneuronis treatedas beingin one of a number
(or occasionallymorethanone)of six statesdepend-
ing on the presenimembrangotential,cell threshold
andwhetheror not the cell hasjust fired, etc. For ex-
ample,if the membranepotentialof the basiccell is
above threshold,andthe cell hasnot just fired, then
theneuronwill startto generate spike andwill initi-
atesynaptictransmission.

Figurel (takenfrom aHi-NOON simulation)shovs
the statespassedthrough by a neuron during fir-
ing. In the caseillustrated, the minimum, resting
and peak potentialsof the neuronare set at —69,
—60and+45mV respectiely, andthethresholdvalue
was—45mV. Notethatactualvalueswill under/wer-
shootthesesettingsheforestatecanchangeatthenext
iterationof simulation.The statesare:

>

MP above restingpotentialand
below threshold
abovethresholdandbelow peak

atpeak
post-firing
atminimum
hyperpolarised

nmoow

The equationsgoverning the membranepotentialin
eachof thesestatesandthe synapticweightsaregiven
in Section3 below. The statesystemis ‘approximate’
— thereis someoverlapbetweenstates.For instance,
a neuronmay be sub-thresholdbut f i r ed may still
betrue,indicatingthatthe membrangotentialis un-
demgoingits post-firinghyperpolarisation.

The useof a statesystemfor controllingthe mem-
branepotentialfacilitatesthe additionof new features
to the program;it is only necessaryo identify which
of the statesmaytriggerthis featureandto adda pro-
cedurecall at thatparticularstate. This, coupledwith
OOPs5inheritanceallows modelsto bedevelopedand
alteredrelatively easily

2.5 Axonal and Synaptic Transmission

Our neuronsmodel sub-thresholdehaiour but sub-
thresholdpotentialsare not propagatedfrom axon
hillock to terminal fibres) in real neurons,only ac-

tion potentialsare. We do not attemptto model (re-

generatie) spike transmissioralongthe axon. This,

however, is nota seriousconcernbecaus¢he model’s

behaiour dependsentirely on how pre-synapticac-

tivity is transformedinto post-synapticactivity. It

is only in supra-thresholdtatesB, C andD (seeFig-

ure 1 and Section3.2) that synapticcommunication
cantake place. Hence,it is irrelevantthat we are,in

somesensemodelingsub-thresholdehaiour incor

rectly. An alternatieview is thatwe arenotmodeling
axonaltransmissioni.e. we have ‘point’ neuronsasis

commonin neuralmodeling[11, pp.21-4].

2.6 Learningin Hi-NOON

Thereis no specificsupportfor learningin Hi-NOON.
Thus,if PDP-typelearning(e.g.back-propagationjs
to be used,this mustbe implementedaxternalto the
simulator In light of Hi-NOON’s ability to modelat
the level of transmembrangotential, however, there
is implicit supportfor biologically-basedforms of
learning, suchas habituation,sensitisatiorand clas-
sical conditioning[8, 4, 10]. Generally thesesimple
formsof learningareimplementedisingsynapse-on-
synapseonnectionsn Hi-NOON.
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Figure 1: Time evolution of typical action potential (spike) of a basic neuronin a Hi-NOON simulation. See
text for specificationof the states(A..F) passedhroughby a neuronduring firing. Here, the sampleperiodis
approximatelyd ms (this varieswith the machineon which the simulationruns.)

3 Neuronsand Synapses

In this section,we presenimoredetaileddescriptions
of neuronsand synapseswithin Hi-NOON. Since
Hi-NooON is intendedfor (amongstother things) ap-
plicationsin situatedroboticsstudies,thereis provi-
sionfor sensoryandmotor neuronswhich connecto
the ervironment,aswell asfor more prosaic‘basic’
(informationprocessingheurons.

3.1 Neurons

The'basic’ neurontype hasthe statesystemfunction-
ality which is subsequentiembeddedn all deriva-
tives,suchasthe sensoryandmotorcells.

3.1.1 Basic neurons

Updatingequationdor the membraneotential(M P
—in millivolts) for this neurontypeare:

stateA: MP({t +1) = MP(t) — 7 + S(t)
stateB: MP(t +1) = MP(t) — a + S(t)
stateC: MP({t +1) =h+ S(t)

stateD: MP(t +1) = MP() — u+ S(t)
stateE: MP(t +1) =1+ S(t)

stateF: MP({ +1) = MP(t) +

BaseM IT;M P(t) + S(t)
where:

S(t) = ZwiK(MR(t) — BaseMP)

is the synaptic potential (SynPot ), i is a counter
which countsover active pre-synapticells, w; is the
synapticweight from a pre-synapticneuron,t is the

neurontime constanty = 1.5 is the post-undershoot
incrementrate, © = 25 is the post-actionpotential
peak-MPdecrementy = 1/450is a heuristically-set
learning constant,« = 20 is the post-thresholdat-
tack increment,h = 45 is the post-thresholdmaxi-
mum MP, and| = —69 is the pre-undershooinini-
mum MP.

Certain of the above parameterde.g. z, n) are
time-dependenand have beensetempirically to suit
a range of processorspeedsand implementations.
However, they may beinappropriatén somecircum-
stances(as when implementinga real-time robotic
systemusinga fastprocessor).

3.1.2 Sensory and motor neurons

Theseneurontypesareimportantin the specificcase
of a robotic systemwhich needsinput and output
from/to its ervironment. Since,in this paper we are
principally concernedwith more generalprinciples,
we omit detailsof theseneurontypeshere.

3.2 Synapses

Thebasicsynapséwhichis noisefree)hasfunctional-
ity whichis subsequentlgmbeddedn all derivatives
suchas the habituating,sensitisingand conditioning
types usedin our ARBIB robot work (see below).
Theseallow us to implementa simple, biologically-
basedorm of learning.

w(t) — B if w(t) > wpase
w(t) + B if w(t) < woase
w(t) = Wmax if w(t) > wmax
Wmin if w(t) < wmin

Wmin otherwise



where 8 is the MP recovery parameterand wpase iS
the baseweight (typically 0). Theseareindividually
set(togethemwith wmin andwmay, typically +16) for
eachneuron.

3.21 Noise-freesynapse

. TRUE if stateB, C,D
fired® = { FALSE  otherwise
3.22 Noisy synapse
TRUE if condl

fired® = { FALSE otherwise

wherecondl is (stateB, C,D), asfor the noise-free
synapseaNDedwith;

MP, —6
—P P 100> randmodL00
h—6p
and p denotes parent(pre-synapticheuron.

3.23 Habituating type

w) —d if stateC

wt+1) = { w(t) otherwise

whered is a constantlecremengtypically ~ 1).
3.24 Sensitising type

if cond2
otherwise

w(Htag + w(t)sos

Wt Deag = { w(tary

wherecond2 isfired@gAfiredsos ‘targ’ de-
notesthe target synapse(to be sensitised)and ‘sos’
denoteghe synapse-on-synaps#luence.

3.25 Conditioning type

_ w(t)targ + kU)(t)sos if cond2
w(t+ Liag = { w(Dtag otherwise
where:

k = Ee(g)
14

andnT is a countof sampleperiodsinitiated by en-
counteringstate C for the target neuron, vy (= 250)
is anempirically-setscalingfactorand ¢ (= 500)is a
constanthoserto maximisetheeffectof conditioning
whenthe conditioningstimulusprecedesheuncondi-
tionedstimulusby 0.5s.

4 Applications

The Hi-NOON simulatorhasbeenusedto designand
implementthe ‘nervoussystems’of two ratherdiffer-
entsituatedsystems.Oneis the ARBIB autonomous
robot [3] which hasbeenimplementedon a variety
of hardware and software platforms. ARBIB learns
from andadaptgo its ervironment,which consistsof
hardobjectsandlight sourcesastingshadavs. A pri-
mary goal of this work wasto testthe notionthat ef-
fective robot learning can be basedon neuralhabit-
uation and sensitisationso validatingthe suggestion
of Hawkins and Kandel [8] that (associatie) clas-
sical and ‘higher order’conditioningmight be based
on an elaborationof these(non-associatie) forms
of learning. Accordingly, ARBIB’S ‘nervoussystem’
hasa non-homogeneoupopulationof spiking neu-
rons, its drive to explore its ervironmentwas pro-
vided by a simplecentralpatterngeneratoneuralcir-
cuit [17], andlearningwas by modificationof a ba-
sic, pre-«isting (‘hard-wired’) reflex to reverseand
turn on hitting an obstruction. By monitoring fir-
ing ratesof specificneuronsandsynapticweightsbe-
tweenneuralconnectionsas ARBIB learns,we have
confirmedthatboth classicaland higherordercondi-
tioning occur, leadingto the emegenceof interesting
andecologically-walid, obstacle-aoidancebehaviors.

One problemwith the initial ARBIB implementa-
tion was that its learning was almostentirely plas-
tic. Thatis, it rapidly ‘forgot’ what it had learned
aboutits environment,whichthenhadto berelearned.
More recently we have implementeda simple form
of synaptogenesiwithin Hi-NOON [6], accordingto
which new synapsesnay be created. The genera-
tion processwas constrainedby introducing a new
predicateinto Hi-NOON: a new synapsas only cre-
ated parallelto anexisting conditionedsynapsepnce
the conditionedsynapticstrengthreachessomeper
centageof the allowed maximum. The newly-created
synapséhasa strengthcalculatedrom the difference
betweenthe elapsedime of post-synapticell firing
andelapsedime of conditionedsynapsdiring. Ex-
perimentsshowved that this stabilisesthe learningto
a usefuldegree,so offering a practicalremedyto the
stability-plasticitydilemma][7, 1]

Webb and Scutt[19] have usedHi-NOON to sim-
ulate and thenimplementthe auditory systemof the
cricketwithin a mobilerobot,to studythe neurophys-
iological underpinningsf phonotaxisj.e. the move-
mentof the femaletowardsthe male’s mating song.
The robot producesbehaiour closely similar to the
cricket in mostsituations. In their words: “No alter
native modelshave asyet beenpresentedvith acom-
parabledetail or evaluatiori.



5 Conclusions

Hi-NOON is an object-orientecheuronalcircuit sim-
ulator specificallydevelopedfor studyingthe neuro-
physiologicalbasisof behaiour in real animalsand
in situatedartificial systems. It simulateschanges
in membranepotential(including spiking behaiour)
ratherthan usingthe continuousactivation functions
typical of PDP-styleartificial neuralnets. The main
simplificationsarethatit treatseachneuronasa sin-
gle compartmentwith inputsmodelledasaddedvolt-
age.In placeof differentialequationsanapproximate
statesystemis used,alongwith a flexible parameter
systemto caterfor differenceshbetweemeurontypes
andto keeptrackof thechangingstateof eachneuron
overtime. This allows circuits of heterogeneouseu-
rons modelledon real neurophysiologicatlatato be
constructedwvith a minimum of effort and processed
with relative ease.Thesepracticaladvantagesareil-
lustratedby the useof Hi-NOON to simulateandim-
plementthe ‘nervous systems’of the ARBIB mobile
robotandarobot/cricketwhichreproduceshephono-
taxisbehaiour of therealanimal.
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