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Abstract

This paper describesthe Hi-NOON neural simula-
tor, originally conceivedasa general-purpose,object-
orientedsoftwaresystemfor the simulationof small
systemsof biological neurons,asan aid to the study
of links betweenneurophysiologyand behaviour in
lower animals. As such, the artificial neuronsem-
ployed were spiking in nature: to effect an appro-
priatecompromisebetweencomputationalcomplex-
ity andbiologicalrealism,modellingwasat thetrans-
membranepotential level of abstraction. Further,
sincereal neuralsystemsincorporatedifferent types
of neuronsspecialisedto somewhat different func-
tions,thesoftwarewaswrittento accommodateanon-
homogeneouspopulationof neurons.Theefficacy of
thesimulatoris illustratedwith respectto somerecent
applicationsto situatedsystemsstudies.

1 Introduction

In recentyears,a convergenceof two initially dis-
paratethreadsof researchexploring thelinks between
neurophysiologyandbehaviour hasoccurred.In one
particularlyvibrantline of research,so-calledparallel
distributedprocessing[13], grosslysimplified, artifi-
cial modelsof neuralnetworkshavebeendefinedand
studied,fuelled by the discovery of powerful learn-
ing algorithmssuchas error back-propagation.The
otherthreadhasbeenthecarefulstudyof thefunctions
of individualneuronswithin manageablysmallneural
circuitsin loweranimals,suchastheseasnailAplysia,
with a simple repertoireof behaviours [8, 9]. The
two threads– paralleldistributedprocessing(PDPor
‘connectionism’)andsystemsneuroscience– meetin
therelativelynewerparadigmof computationalneuro-

science[16], which attemptsto exploit their different
strengthsby linking someof theprinciplesof connec-
tionismwith datafrom experimentalneurophysiology.
Suchan approachallows an appropriatetradeto be
madebetweenbiological fidelity and computational
expediency.

This paperdescribesaprogramoriginally designed
to simulatesmallsystemsof neurons,within thecom-
putationalneuroscienceparadigm,andits morerecent
developmentandapplications.Theprogramis called
Hi-NOON, which standsfor HierarchicalNetwork of
Object-OrientedNeurons. As the namesuggests,in
Hi-NOON, synapses,neuronsandnetworksarein prin-
ciple representedasobjectswithin anobject-oriented
hierarchy [14, 15] at various levels of abstraction.
The lowest such level usesthe membranepotential
(strictly, transmembranepotential difference)as the
observableparameterin the network model. This is
a much lower-level approachthan the use of acti-
vation valuesroughly correspondingto the spike or
actionpotentialrateof individual neuronsor collec-
tions of neuronsas in PDP models. By contrast,
Hi-NOON retainsdetailsof individual spike genera-
tion which is lost in the traditionalconnectionistap-
proach.As well, Hi-NOON facilitatessimulationof a
non-homogeneouspopulationof neurons. In princi-
ple, this allows different,higher levelsof abstraction
to be usedalso in a ‘mixed mode’. Most obviously,
PDP-typeneuronsmodelledat the level of activation
couldbemixedwith morebiologically-realisticspik-
ing neurons,in which spike generationis stochastic.
Thus,althoughonewould be exercisingonly a pro-
portionof its flexibility andpower, onecouldevenuse
Hi-NOON as the simulatorfor a highly conventional
PDP-typeartificial neuralnetwork.

Sincethe latter is a well-worn path, however, we



concentratein this paperon the lessusualsimulation
of spikingbehaviour. Onemight reasonablyaskwhat
advantagesthis might offer, i.e. what can a simula-
tion basedon spikingneuronsachieve that cannotbe
achievedusingmoregrossPDP-typemodelneurons?
This is currently a vexed questionin computational
neuroscience,anda fully definitive answercannotbe
given at this stage.Clearly, detailedtiming informa-
tion for individualspikes,andrelativetiming between
spikes, offers an additionaldimensionto the neural
code,asdoesthe stochasticaspect.Thereis sugges-
tive evidencethat this sort of information is indeed
importantin biology. Citing Rieke et al. [12, p.279]:

“. . . undermany conditions,behavioral de-
cisions are madewith of order one spike
per cell, . . . individual spikes can convey
several bits of informationaboutincoming
sensorystimuli . . . precisediscriminations
could . . . bebasedon theoccurrenceof in-
dividual spikes. . . ”

In the sectionimmediatelyfollowing, we give an
overview of theHi-NOON implementationbeforepre-
sentingdetailsof themodelneuronsandsynapses.We
thenoutlinesomerecentapplicationsof thesimulator
beforeconcluding.

2 An Overview of Hi-NOON

The original programwas written in object-oriented
Pascal,but hassubsequentlybeenrewritten in C us-
ing the disciplinesof object-orientedprogramming
(OOP) [2, 5]. C wasused(ratherthanC++ with its
explicit supportof OOPfeatures)to maximizeporta-
bility amongvariousrealisationsin differentapplica-
tions.Thebenefitsof theOOPapproacharetwo-fold.
First, theability for objectsto inherit propertiesfrom
otherobjectsmeansthatit is easyto definemorephys-
iologically exactneuronsin termsof simplerneurons.
Thus,thesystemallowsasimplethresholdunit asthe
mostbasictype of object. More complex objectsin-
herit certainpropertiesfrom this object(e.g. the fact
thatit hasweightedconnectionsto otherobjects).The
secondbenefitof OOPis polymorphism.This means
that thenetwork maycontainmany differenttypesof
neuron,atmany levelsof complexity, without thepro-
grammerhaving to beconcernedwith this.

Codefor theC versionof Hi-NOON is availableby
anonymousftp tomun.ecs.soton.uk from direc-
tory pub/users/rid/hinoon.

2.1 Neuron Parameters

Basicneurophysiologysuggeststheattributesamodel
spiking neuronshould have. The fixed parameters
BaseMP, Threshold andTimeConst correspond
to the restingpotential, thresholdand time constant
of theneuron,respectively. DynamicparametersMP,
SynPot andfired (a 1/0 predicate)modeltheac-
tual membranepotentialasit variesin time, accumu-
late theweightedsumof synapticinputswhich influ-
encetheupdatingof MP at thenext time step,andin-
dicateif theobjectis in theprocessof firing, respec-
tively. This parametersystemallows useasilyto de-
scribedifferencesbetweenneuronsandto keeptrack
of thechangingstatesof neuronsovertime. It approx-
imatelysatisfiesSelverston’s [18] “minimum require-
ments”for effectiveneuralmodelling.

2.2 Hi-NOON Objects

Theneuralnetwork is heldasa list of objects,where
eachsuchobjectcorrespondsto a singleneuronand
holds all the information aboutits state(seebelow)
andaboutsubsidiaryobjects.Theinformationheldin
theneuronobjectis comprisedof:

� a setof parameterswhichdefinestheneuron;

� a setof datastructureswhich definesthe ‘axon
terminals’for theneuron,eachof which is itself
anobjectandhasits own parameters;

� a setof methods– pointersto functions– which
accessandalter parametervaluesandso deter-
mineexactlyhow theneuronfunctions.

The top-level list correspondsto the network ob-
ject. This possessestwo methods(calledh_access
andadd) for accessingnetwork objectsand adding
further objectsonto the list, respectively. Simula-
tion run length is handledby a global object. This
storesthe simulationandconcurrentsocket interface
‘housekeeping’data,includinga counterwhoseorig-
inal valuespecifiesthelengthof simulation.It decre-
mentsaftereachevaluationof thenetwork object,and
thesimulationhaltswhenthecounterreacheszero.

As synapsesare also objects,they too have fixed
and dynamic parameterssimilar to those of neu-
rons. Thus,BaseWeight is the default weight of
the synapseand is a constant;Weight holds the
presentsynapticstrengthandis variableduringsimu-
lation;Recovery is aconstant(within eachsynapse)
which determineshow quickly Weight returns to
BaseWeight. To preventsynapticweightsgrowing
without limit, Weight is boundedduringsimulation.
Thismodelsthefinite storesof neurotransmitterin the
synapticterminalsof biologicalneurons.



2.3 Neuron Types

Hi-NOON allows a non-homogeneouspopulationof
neuronsto besimulated– reflectingthefact thatneu-
ronshavespecializedfunctionsin realneurobiological
systems– at the most appropriatelevel of abstrac-
tion. Modeling individual neuronsat the level of
membranepotential allows sub-thresholdand spik-
ing behaviors to be simulatedat low computational
cost. The fixed parameterscaterfor differencesbe-
tweenneuronswhich, in this work, areof thefollow-
ing types:

basic: tellsitssynapsesto firewhenits membranepo-
tentialcrossesthresholdfrom below.

noisy: similar to basic, but hasan additional inter-
nal noisecomponentdeterminingthe weighted
synapticinput, andhenceinfluencingthe mem-
branepotentialat thenext time step.

ramp: similar to noisy, but hasability to ramp up
spike generationrate. It is usedasa testsignal
sourcein network development.

burst: similar to noisy but producesa short burst
of spikes when its membranepotentialcrosses
threshold.

sensor: similar to basic, but actsasasensoryneuron
in asituatedsystem,suchasa mobilerobot.

motor: similar to basic, but actsasamotorneuronin
a situatedsystem.

2.4 Approximate State System

Eachneuronis treatedas being in oneof a number
(or occasionallymorethanone)of six statesdepend-
ing on thepresentmembranepotential,cell threshold
andwhetheror not thecell hasjust fired,etc. For ex-
ample,if the membranepotentialof the basiccell is
above threshold,andthe cell hasnot just fired, then
theneuronwill startto generatea spike andwill initi-
atesynaptictransmission.

Figure1 (takenfrom aHi-NOON simulation)shows
the statespassedthrough by a neuron during fir-
ing. In the caseillustrated, the minimum, resting
and peak potentialsof the neuronare set at � 69,� 60and+45mV respectively, andthethresholdvalue
was � 45mV. Notethatactualvalueswill under/over-
shootthesesettingsbeforestatecanchangeat thenext
iterationof simulation.Thestatesare:

A: MP aboverestingpotentialand
below threshold

B: abovethresholdandbelow peak
C: atpeak
D: post-firing
E: atminimum
F: hyperpolarised

The equationsgoverning the membranepotential in
eachof thesestatesandthesynapticweightsaregiven
in Section3 below. Thestatesystemis ‘approximate’
– thereis someoverlapbetweenstates.For instance,
a neuronmaybesub-threshold,but fired maystill
be true, indicatingthat themembranepotentialis un-
dergoingits post-firinghyperpolarisation.

Theuseof a statesystemfor controlling themem-
branepotentialfacilitatestheadditionof new features
to theprogram;it is only necessaryto identify which
of thestatesmaytriggerthis featureandto adda pro-
cedurecall at thatparticularstate.This, coupledwith
OOP’sinheritance,allowsmodelsto bedevelopedand
alteredrelatively easily.

2.5 Axonal and Synaptic Transmission

Our neuronsmodelsub-thresholdbehaviour but sub-
thresholdpotentialsare not propagated(from axon
hillock to terminal fibres) in real neurons,only ac-
tion potentialsare. We do not attemptto model(re-
generative) spike transmissionalongthe axon. This,
however, is not aseriousconcernbecausethemodel’s
behaviour dependsentirely on how pre-synapticac-
tivity is transformedinto post-synapticactivity. It
is only in supra-thresholdstatesB, C andD (seeFig-
ure 1 and Section3.2) that synapticcommunication
cantake place. Hence,it is irrelevant that we are,in
somesense,modelingsub-thresholdbehaviour incor-
rectly. An alternativeview is thatwearenotmodeling
axonaltransmission,i.e.wehave‘point’ neuronsasis
commonin neuralmodeling[11, pp.21-4].

2.6 Learning in Hi-NOON

Thereis no specificsupportfor learningin Hi-NOON.
Thus,if PDP-typelearning(e.g.back-propagation)is
to be used,this mustbe implementedexternalto the
simulator. In light of Hi-NOON’s ability to modelat
the level of transmembranepotential,however, there
is implicit support for biologically-basedforms of
learning,suchashabituation,sensitisationandclas-
sical conditioning[8, 4, 10]. Generally, thesesimple
formsof learningareimplementedusingsynapse-on-
synapseconnectionsin Hi-NOON.
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Figure 1: Time evolution of typical action potential(spike) of a basic neuronin a Hi-NOON simulation. See
text for specificationof the states(A..F) passedthroughby a neuronduring firing. Here, the sampleperiod is
approximately4ms(thisvarieswith themachineonwhich thesimulationruns.)

3 Neurons and Synapses

In this section,we presentmoredetaileddescriptions
of neuronsand synapseswithin Hi-NOON. Since
Hi-NOON is intendedfor (amongstother things) ap-
plicationsin situatedroboticsstudies,thereis provi-
sion for sensoryandmotorneuronswhich connectto
the environment,aswell as for moreprosaic‘basic’
(informationprocessing)neurons.

3.1 Neurons

The‘basic’ neurontypehasthestatesystemfunction-
ality which is subsequentlyembeddedin all deriva-
tives,suchasthesensoryandmotorcells.

3.1.1 Basic neurons

Updatingequationsfor themembranepotential(M P
– in milli volts) for this neurontypeare:

stateA: M P
�
t � 1��� M P

�
t ���
	�� S

�
t �

stateB: M P
�
t � 1��� M P

�
t ���
�
� S

�
t �

stateC: M P
�
t � 1��� h � S

�
t �

stateD: M P
�
t � 1��� M P

�
t ���
��� S

�
t �

stateE: M P
�
t � 1��� l � S

�
t �

stateF: M P
�
t � 1��� M P

�
t ���

BaseM P � M P � t �� � S
�
t �

where:

S
�
t ���

i

�
i � � M Pi

�
t ��� BaseM Pi �

is the synapticpotential (SynPot), i is a counter
which countsover active pre-synapticcells, � i is the
synapticweight from a pre-synapticneuron,	 is the

neurontime constant,��� 1 � 5 is the post-undershoot
incrementrate, ��� 25 is the post-actionpotential
peak-MPdecrement,� � 1� 450 is a heuristically-set
learning constant, ��� 20 is the post-thresholdat-
tack increment,h � 45 is the post-thresholdmaxi-
mum MP, and l ��� 69 is the pre-undershootmini-
mumMP.

Certain of the above parameters(e.g. 	 , � ) are
time-dependentandhave beensetempirically to suit
a range of processorspeedsand implementations.
However, they maybeinappropriatein somecircum-
stances(as when implementinga real-time robotic
systemusinga fastprocessor).

3.1.2 Sensory and motor neurons

Theseneurontypesareimportantin thespecificcase
of a robotic systemwhich needsinput and output
from/to its environment. Since,in this paper, we are
principally concernedwith more generalprinciples,
we omit detailsof theseneurontypeshere.

3.2 Synapses

Thebasicsynapse(whichis noisefree)hasfunctional-
ity which is subsequentlyembeddedin all derivatives
suchas the habituating,sensitisingandconditioning
types used in our ARBIB robot work (see below).
Theseallow us to implementa simple,biologically-
basedform of learning.

� � t ���
� � t � �
! if � � t �#" � base� � t �$�%! if � � t �#& � base�

max if � � t �#" � max�
min if � � t �#' � min�
min otherwise



where ! is the MP recovery parameterand � base is
the baseweight (typically 0). Theseareindividually
set(togetherwith � min and � max, typically ( 16) for
eachneuron.

3.2.1 Noise-free synapse

fired
�
t ��� TRUE if stateB, C,D

FALSE otherwise

3.2.2 Noisy synapse

fired
�
t ��� TRUE if cond1

FALSE otherwise

wherecond1 is (stateB, C,D), asfor the noise-free
synapse,ANDedwith:

M Pp �*) p

h �
) p

+ 100 , randmod100

and p denotesaparent(pre-synaptic)neuron.

3.2.3 Habituating type

� � t � 1��� � � t ��� d if stateC� � t � otherwise

whered is a constantdecrement(typically - 1).

3.2.4 Sensitising type

� � t � 1� targ � � � t � targ � � � t � sos if cond2� � t � targ otherwise

wherecond2 is fired targ . fired sos, ‘targ’ de-
notesthe target synapse(to be sensitised)and ‘sos’
denotesthesynapse-on-synapseinfluence.

3.2.5 Conditioning type

� � t � 1� targ � � � t � targ � k � � t � sos if cond2� � t � targ otherwise

where:

k � nT/ e

021
nT354

andnT is a countof sampleperiodsinitiated by en-
counteringstateC for the target neuron,

/
(= 250)

is anempirically-setscalingfactorand 6 (= 500) is a
constantchosento maximisetheeffectof conditioning
whentheconditioningstimulusprecedestheuncondi-
tionedstimulusby 0.5s.

4 Applications

The Hi-NOON simulatorhasbeenusedto designand
implementthe‘nervoussystems’of two ratherdiffer-
ent situatedsystems.Oneis the ARBIB autonomous
robot [3] which hasbeenimplementedon a variety
of hardware and software platforms. ARBIB learns
from andadaptsto its environment,which consistsof
hardobjectsandlight sourcescastingshadows. A pri-
marygoalof this work wasto testthenotion thatef-
fective robot learningcan be basedon neuralhabit-
uationandsensitisation,so validatingthe suggestion
of Hawkins and Kandel [8] that (associative) clas-
sical and ‘higher order’conditioningmight be based
on an elaborationof these(non-associative) forms
of learning. Accordingly, ARBIB’s ‘nervoussystem’
hasa non-homogeneouspopulationof spiking neu-
rons, its drive to explore its environment was pro-
videdby a simplecentralpatterngeneratorneuralcir-
cuit [17], and learningwasby modificationof a ba-
sic, pre-existing (‘hard-wired’) reflex to reverseand
turn on hitting an obstruction. By monitoring fir-
ing ratesof specificneuronsandsynapticweightsbe-
tweenneuralconnectionsas ARBIB learns,we have
confirmedthatbothclassicalandhigher-ordercondi-
tioning occur, leadingto theemergenceof interesting
andecologically-valid,obstacle-avoidancebehaviors.

One problemwith the initial ARBIB implementa-
tion was that its learning was almost entirely plas-
tic. That is, it rapidly ‘forgot’ what it had learned
aboutits environment,whichthenhadto berelearned.
More recently, we have implementeda simple form
of synaptogenesiswithin Hi-NOON [6], accordingto
which new synapsesmay be created. The genera-
tion processwas constrainedby introducing a new
predicateinto Hi-NOON: a new synapseis only cre-
ated,parallelto anexistingconditionedsynapse,once
the conditionedsynapticstrengthreachessomeper-
centageof theallowedmaximum.Thenewly-created
synapsehasa strengthcalculatedfrom thedifference
betweenthe elapsedtime of post-synapticcell firing
andelapsedtime of conditionedsynapsefiring. Ex-
perimentsshowed that this stabilisesthe learningto
a usefuldegree,sooffering a practicalremedyto the
stability-plasticitydilemma[7, 1]

Webb and Scutt [19] have usedHi-NOON to sim-
ulateandthenimplementthe auditorysystemof the
cricketwithin a mobilerobot,to studytheneurophys-
iological underpinningsof phonotaxis,i.e. themove-
mentof the femaletowardsthe male’s matingsong.
The robot producesbehaviour closely similar to the
cricket in mostsituations.In their words: “No alter-
nativemodelshaveasyet beenpresentedwith a com-
parabledetailor evaluation”.



5 Conclusions

Hi-NOON is an object-orientedneuronalcircuit sim-
ulator specificallydevelopedfor studyingthe neuro-
physiologicalbasisof behaviour in real animalsand
in situatedartificial systems. It simulateschanges
in membranepotential(including spiking behaviour)
ratherthanusingthe continuousactivation functions
typical of PDP-styleartificial neuralnets. The main
simplificationsarethat it treatseachneuronasa sin-
glecompartment,with inputsmodelledasaddedvolt-
age.In placeof differentialequations,anapproximate
statesystemis used,alongwith a flexible parameter
systemto caterfor differencesbetweenneurontypes
andto keeptrackof thechangingstateof eachneuron
over time. This allows circuitsof heterogeneousneu-
ronsmodelledon real neurophysiologicaldatato be
constructedwith a minimum of effort andprocessed
with relative ease.Thesepracticaladvantagesareil-
lustratedby the useof Hi-NOON to simulateandim-
plementthe ‘nervoussystems’of the ARBIB mobile
robotandarobot/cricketwhichreproducesthephono-
taxisbehaviour of therealanimal.
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