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Abstract

I consider the problem of integrating a function f over the d-dimensional unit cube.

I describe a multilevel Monte Carlo method that estimates the integral with variance at

most ǫ2 in O(d + ln(d)dtǫ
−2) time, for ǫ > 0, where dt is the truncation dimension of f .

In contrast, the standard Monte Carlo method typically achieves such variance in O(dǫ−2)

time. A lower bound of order d + dtǫ
−2 is described for a class of multilevel Monte Carlo

methods.

Keywords: multilevel Monte Carlo, Quasi-Monte Carlo, variance reduction, effective dimension,

truncation dimension, time-varying Markov chains

1 Introduction

Monte Carlo simulation is used in a variety of areas including finance, queuing systems, machine

learning, and health-care. A drawback of Monte Carlo simulation is its high computation cost.

This motivates the need to design efficient simulation tools that optimize the tradeoff between

the running time and the statistical error. This need is even stronger for high-dimensional

problems, where the time to simulate a single run is typically proportional to the dimension.

Variance reduction techniques that improve the efficiency of Monte Carlo simulation have been

developed in the previous literature (e.g. (Glasserman 2004, Asmussen and Glynn 2007)).

This paper studies the estimation of
∫

[0,1]d f(x) dx, where f is a real-valued square-integrable

function on [0, 1]d. Note that
∫

[0,1]d f(x) dx = E(f(U)), where U = (U1, . . . , Ud) and U1, . . . , Ud

are independent random variables uniformly distributed on [0, 1]. The standard Monte Carlo

method estimates E(f(U)) by taking the average of f over n random points uniformly dis-

tributed over [0, 1]d, and achieves a statistical error of order n−1/2. The Quasi-Monte Carlo

method (QMC) estimates E(f(U)) by taking the average of f over a predetermined sequence

of points in [0, 1]d, and achieves an error of order (log n)d/n for certain sequences when f has

finite Hardy-Krause variation (Glasserman 2004, Ch. 5). Thus, for small values of d, QMC can

substantially outperform standard Monte Carlo. Moreover, numerical experiments show that

QMC performs well in certain high-dimensional problems where the importance of Ui decreases

with i (Glasserman 2004, Ch. 5). Caflisch, Morokoff and Owen (1997) use the ANOVA de-

composition, a representation of f as the sum of orthogonal components, to define the effective
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dimension in the truncation sense: the truncation dimension is low when the first variables are

important. Sloan and Woźniakowski (1998) prove that QMC is effective for a class of functions

where high dimensions have decaying importance. The connection between QMC and various

notions of effective dimension is studied in (L’Ecuyer and Lemieux 2000, Owen 2003, Liu and

Owen 2006, Wasilkowski 2021). Methods that reduce the effective dimension and improve the

performance of QMC are described in (Wang and Sloan 2011, Wang and Tan 2013, Xiao and

Wang 2019). Owen (2019) gives a recent survey on the effective dimension. Kahalé (2020b) stud-

ies the relationship between the truncation dimension and the randomized dimension reduction

method, a recent variance reduction technique applicable to high-dimensional problems.

A major advance in Monte Carlo simulation is the multilevel Monte Carlo method (MLMC),

a variance reduction technique introduced by Giles (2008). The MLMC method significantly

reduces the time to estimate functionals of a stochastic differential equation, and has many

other applications (e.g. (Rosenbaum and Staum 2017, Pisaroni, Nobile and Leyland 2017, Goda,

Hironaka and Iwamoto 2020, Kahalé 2020a, Blanchet, Chen, Si and Glynn 2021)). This paper

examines the connection between the MLMC method and the truncation dimension. Section 3

describes a MLMC method that, under suitable conditions, estimates E(f(U)) with variance

at most ǫ2 in O(d + ln(d)dtǫ
−2) time, for ǫ > 0, where dt is the truncation dimension of f . In

contrast, the standard Monte Carlo method typically achieves variance at most ǫ2 in O(dǫ−2)

time. My approach is based on fixing unessential variables and on approximating f(U) by

functions of the first components of U . Fixing unessential variables is analysed by Sobol (2001)

in the context of the ANOVA decomposition. Section 4 considers a class of MLMC estimators

that approximate f(U) by functions of the first components of U . Under general conditions,

it gives a lower bound of order d+ dtǫ
−2 on the time required by these estimators to evaluate

E(f(U)) with variance at most ǫ2. Section 5 studies MLMC and the truncation dimension

for time-varying Markov chains with d time-steps. Under suitable conditions, it is shown that

certain Markov chain functionals can be estimated with variance at most ǫ2 in O(d + ǫ−2)

time, and that the truncation dimension associated with these functionals is upper bounded

by a constant independent of d. Randomized MLMC methods for equilibrium expectations of

time-homogeneous Markov chains are studied in (Glynn and Rhee 2014).

2 Preliminaries

2.1 The ANOVA decomposition

It is assumed throughout the paper that f is square-integrable with Var(f(U)) > 0. A repre-

sentation of f in the following form:

f =
∑

Y⊆{1,...,d}

fY , (1)

is called ANOVA decomposition if, for Y ⊆ {1, . . . , d} and u = (u1, . . . , ud) ∈ [0, 1]d,

1. fY is a measurable function on [0, 1]d and fY (u) depends on u only through (uj)j∈Y .
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2. For j ∈ Y ,
∫ 1

0
fY (u1, . . . , uj−1, x, uj+1, . . . , ud) dx = 0.

It can be shown (Sobol 2001, p. 272) that there is a unique ANOVA representation of f , that

f∅ = E(f(U)), and that the fY ’s are square-integrable. Furthermore, if Y 6= Y ′,

Cov(fY (U), fY ′(U)) = 0, (2)

and

Var(f(U)) =
∑

Y⊆{1,...,d}

σ2Y , (3)

where σY is the standard deviation of fY (U). For 0 ≤ i ≤ d,

E(f(U)|U1, . . . , Ui) =
∑

Y⊆{1,...,i}

fY (U). (4)

Owen (2003) defines the truncation dimension dt of f as

dt :=

∑

Y⊆{1,...,d},Y 6=∅
max(Y )σ2Y

Var(f(U))
.

For 0 ≤ i ≤ d, let

D(i) :=
∑

Y⊆{1,...,d},Y 6=∅,max(Y )>i

σY
2

be the total variance corresponding to the last d− i components of f (see (Sobol 2001)). The

sequence (D(i) : 0 ≤ i ≤ d) is decreasing, with D(0) = Var(f(U)) by (3) and D(d) = 0.

Proposition 2.1 gives a bound on the variance of f(V ) − f(V ′), when V and V ′ are uniformly

distributed on [0, 1]d and have the same first i components. It is related to (Sobol 2001, Theorem

3).

Proposition 2.1. Let i ∈ {0, . . . , d}. Assume that V and V ′ are uniformly distributed on

[0, 1]d, and that Vj = V ′
j for 1 ≤ j ≤ i. Then Var(f(V )− f(V ′)) ≤ 4D(i).

Proof. As fY (V ) = fY (V
′) for Y ⊆ {1, . . . , i}, we have

f(V )− f(V ′) =
∑

Y⊆{1,...,d},Y 6=∅,max(Y )>i

fY (V )− fY (V
′).

By (2),

Var





∑

Y⊆{1,...,d},Y 6=∅,max(Y )>i

fY (V )



 = D(i),

and a similar relation holds for V ′. Since Var(Z+Z ′) ≤ 2(Var(Z)+Var(Z ′)) for square-integrable

random variables Z and Z ′, this achieves the proof.

Proposition 2.2 gives a lower bound on the variance of the difference between f(U) and a

function of the first i components of U . A similar result is shown in (Sobol 2001, Theorem 1).
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Proposition 2.2. Let g be a real-valued square-integrable function on [0, 1]i, where 0 ≤ i ≤ d.

Then

D(i) ≤ Var(f(U)− g(U1, . . . , Ui)).

Proof. Define the random-variable

η = f(U)− E(f(U)|U1, . . . , Ui).

By properties of the conditional expectation,

Var(η) ≤ Var(f(U)− g(U1, . . . , Ui)).

Combining (1) and (4) shows that

η =
∑

Y⊆{1,...,d},Y 6⊆{1,...,i}

fY (U).

By (2), Var(η) = D(i). This completes the proof.

Proposition 2.3 provides an alternative characterisation of the truncation dimension.

Proposition 2.3.
d
∑

i=0

D(i) = dtVar(f(U)).

Proof.

d
∑

i=0

D(i) =

d
∑

i=0

∑

Y⊆{1,...,d},Y 6=∅

1{i < max(Y )}σY 2

=
∑

Y⊆{1,...,d},Y 6=∅

max(Y )σY
2

= dtVar(f(U)).

2.2 Work-normalized variance

Let µ be a real number and let ψ be a square-integrable random variable with positive variance

and expected running time τ . Assume that ψ is an unbiased estimator of µ, i.e., E(ψ) = µ. The

work-normalized variance τVar(ψ) is a standard measure of the performance of ψ (Glynn and

Whitt 1992): asymptotically efficient unbiased estimators have low work-normalized variance.

For ǫ > 0, let nǫ be the smallest integer such that the variance of the average of nǫ independent

copies of ψ is at most ǫ2. Thus, nǫ = ⌈Var(ψ)ǫ−2⌉. As (x+ 1)/2 ≤ ⌈x⌉ ≤ x+ 1 for x > 0,

τ + τVar(ψ)ǫ−2

2
≤ T (ψ, ǫ) ≤ τ + τVar(ψ)ǫ−2, (5)

where T (ψ, ǫ) := nǫτ is the total expected time required to estimate µ with variance at most ǫ2

by taking the average of independent runs of ψ.
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2.3 Reminder on MLMC

Let φ be a square-integrable random variable that is approximated with increasing accuracy by

square-integrable random variables φl, 0 ≤ l ≤ L, where L is a positive integer, with φL = φ

and φ0 = 0. For 1 ≤ l ≤ L, let φ̂l be the average of nl independent copies of φl − φl−1, where

nl is an arbitrary positive integer. Suppose that φ̂1, . . . , φ̂L are independent. Since

E(φ) =

L
∑

l=1

E(φl − φl−1),

φ̂ :=
∑L

l=1 φ̂l is an unbiased estimator of E(φ), i.e.,

E(φ̂) = E(φ). (6)

As observed in (Giles 2008),

Var(φ̂) =

L
∑

l=1

Vl
nl
, (7)

where Vl := Var(φl − φl−1) for 1 ≤ l ≤ L. The expected time required to simulate φ̂ is

T̂ :=
L
∑

l=1

nl t̂l, (8)

where t̂l is the expected time to simulate φl − φl−1. The analysis in (Giles 2008) shows that

( L
∑

l=1

√

Vl t̂l

)2

≤ T̂Var(φ̂), (9)

with equality when the nl’s are proportional to
√

Vl/t̂l (ignoring integrality constraints).

3 The MLMC algorithm

Let L = ⌈log2(d)⌉ and, for 0 ≤ l ≤ L − 1, let ml = 2l − 1, with mL = d. For 1 ≤ l ≤ L and

u, u′ ∈ [0, 1]d, let

hl(u, u
′) := f(u1, . . . , uml

, u′ml+1, . . . , u
′
d),

with h0(u, u
′) := 0. Note that hL(u, u

′) = f(u). Let U ′ be a copy of U and, for 1 ≤ l ≤ L, let

(U l,j, 1 ≤ j ≤ nl) be nl copies of U , where nl := ⌈(d/L)2−l⌉. Assume that the random variables

(U ′, U l,j, 1 ≤ l ≤ L, 1 ≤ j ≤ nl) are independent. For 1 ≤ l ≤ L, set

φ̃l :=
1

nl

nl
∑

j=1

(hl(U
l,j, U ′)− hl−1(U

l,j, U ′)), (10)

and let φ̃ :=
∑L

l=1 φ̃l. The estimator φ̃ does not fall, stricto sensu, in the category of MLMC

estimators described in Section 2.3. This is because the nl summands in the right-hand side

of (10) are dependent random variables, in general. Note that hl(u, u
′) depends on u only
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through its first ml components. Thus, once U ′ is simulated, hl(U
l,j, U ′) and hl−1(U

l,j , U ′) can

be calculated by simulating only the first ml components of U l,j. For 1 ≤ l ≤ L, let t̃l be

the expected time to simulate the first ml components of U and calculate hl(U,U
′), once U ′ is

simulated and f(U ′) is calculated. In other words, t̃l is the expected time to redraw U1, . . . , Uml

and recalculate f(U), without modifying the last d−ml components of U . In particular, t̃L is

the expected time to simulate U and calculate f(U). Let T̃ be the expected time to simulate φ̃.

Theorem 3.1 below shows that φ̃ is an unbiased estimator of E(f(U)). Also, when t̂l is linear

in ml, the work-normalized variance of φ̃ satisfies the bound T̃Var(φ̃) = O(ln(d)dtVar(f(U))),

that depends on d only through ln(d). By (14), E(f(U)) can be estimated via φ̃ with variance

at most ǫ2 in expected time that depends asymptotically (as ǫ goes to 0) on ln(d). In contrast,

assuming the expected time to simulate f(U) is of order d, the work-normalized variance of the

standard Monte Carlo estimator is of order dVar(f(U)) and, by (5), the standard Monte Carlo

algorithm achieves variance at most ǫ2 in O(d+ dVar(f(U))ǫ−2) expected time.

Theorem 3.1. We have

E(φ̃) = E(φ̃|U ′) = E(f(U)), (11)

Var(φ̃) = E(Var(φ̃)|U ′), and

Var(φ̃) ≤ 16
⌈log2(d)⌉

d
dtVar(f(U)). (12)

If, for some constant c̃ and 1 ≤ l ≤ L,

t̃l ≤ c̃ml, (13)

then T̃ ≤ 9c̃d and, for ǫ > 0,

T (φ̃, ǫ) = O(d+ ln(d)dtVar(f(U))ǫ−2). (14)

Proof. By the definition of φ̃l,

E(φ̃l|U ′) = E(∆l|U ′),

where ∆l := hl(U ,U
′)− hl−1(U ,U

′). Summing over l implies that E(φ̃|U ′) = E(f(U)). Taking

expectations and using the tower law implies (11). Conditional on U ′, the nl summands in

the right-hand side of (10) are independent and have the same distribution as ∆l. Thus, for

1 ≤ l ≤ L,

Var(φ̃l|U ′) =
Var(∆l|U ′)

nl
.

Furthermore, conditional on U ′, the random variables φ̃l, 1 ≤ l ≤ L, are independent. Hence,

Var(φ̃|U ′) =

L
∑

l=1

Var(∆l|U ′)

nl
. (15)

As Var(Z) = Var(E(Z|U ′)) + E(Var(Z|U ′)) for any square-integrable random variable Z, us-

ing (11) shows that Var(φ̃) = E(Var(φ̃|U ′)). Similarly, E(Var(∆l|U ′)) ≤ Var(∆l). Conse-
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quently, taking expectations in (15) implies that

Var(φ̃) ≤
L
∑

l=1

Var(∆l)

nl

≤ L

d

L
∑

l=1

2lVar(∆l).

For 2 ≤ l ≤ L, we have ∆l = f(V ) − f(V ′), where V = (U1, . . . , Uml
, U ′

ml+1, . . . , U
′
d), and

V ′ = (U1, . . . , Uml−1
, U ′

ml−1+1, . . . , U
′
d). Applying Proposition 2.1 with i = ml−1 yields

Var(∆l) ≤ 4D(ml−1). (16)

Since ∆1 = f(U ′), (16) also holds for l = 1. For 1 ≤ l ≤ L, we have 2l ≤ 4(ml−1−ml−2), where

m−1 := −1. Hence, because the sequence D is decreasing,

2lD(ml−1) ≤ 4

ml−1
∑

i=ml−2+1

D(i).

Thus,

L
∑

l=1

2lVar(∆l) ≤ 4

L
∑

l=1

2lD(ml−1)

≤ 16

L
∑

l=1

ml−1
∑

i=ml−2+1

D(i)

= 16

mL−1
∑

i=0

D(i)

≤ 16dtVar(f(U)),

where the last equation follows from Proposition 2.3. This implies (12).

Assume now that (13) holds. Simulating φ̃ requires to draw U ′ and calculate f(U ′) once

and to simulate hl(U,U
′)− hl−1(U,U

′) for nl independent copies of U , 1 ≤ l ≤ L. As ml ≤ 2l,

given U ′, simulating hl(U,U
′) (resp. hl−1(U,U

′)) takes at most c̃2l (resp. c̃2l−1) expected time.

Thus the expected time to simulate hl(U,U
′)− hl−1(U,U

′) is at most 3c̃2l−1, and

T̃ ≤ c̃d+ 3c̃

L
∑

l=1

nl2
l−1

≤ c̃d+ 3c̃

L
∑

l=1

(1 +
d

L2l
)2l−1

≤ c̃d+ 3c̃2L + 3c̃
d

2
≤ 9c̃d,

where the second equation follows from the inequality nl ≤ 1+d/(L2l). (14) follows immediately
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from (5).

Remark 5.1 in Section 5 shows that (13) holds for a class of Markov chain functionals.

3.1 Deterministic fixing of unessential variables

The estimator φ̃ uses U ′ to fix the unessential variables. This section studies the replacement

of U ′ by a deterministic vector. For v ∈ [0, 1]d and 1 ≤ l ≤ L, set

φ̃l,v :=
1

nl

nl
∑

j=1

(hl(U
l,j, v)− hl−1(U

l,j, v)),

φ̃v :=
∑L

l=1 φ̃l,v. In other words, the random variable φ̃v is obtained from φ̃ by substituting U ′

with v. Let T̃ (v) be the expected running time of φ̃v. For any v ∈ [0, 1]d, the estimator φ̃v falls

in the class of MLMC estimators described in Section 2.3, with φ = f(U) and φl = hl(U, v) for

0 ≤ l ≤ L. Corollary 3.1 shows that φ̃v is an unbiased estimator of E(f(U)) and that there is

v∗ ∈ [0, 1]d such that the variance of φ̃v∗ and its running time are no worse, up to a constant,

than those of φ̃.

Corollary 3.1. For v ∈ [0, 1]d,

E(φ̃v) = E(f(U)). (17)

Moreover, there is v∗ ∈ [0, 1]d such that Var(φ̃v∗) ≤ 3Var(φ̃) and T̃ (v∗) ≤ 3T̃ . For ǫ > 0,

T (φ̃v∗ , ǫ) = O(d+ ln(d)dtVar(f(U))ǫ−2). (18)

Proof. (17) is a special case of (6). For v ∈ [0, 1]d, let ξ(v) := Var(φ̃v). As ξ(U ′) = Var(φ̃|U ′),

it follows from Theorem 3.1 that E(ξ(U ′)) = Var(φ̃). Thus ξ(U ′) ≤ 3Var(φ̃) with probability at

least 2/3. Similarly, T̃ (U ′) ≤ 3T̃ with probability at least 2/3. Hence, there is v∗ ∈ [0, 1]d such

that Var(φ̃v∗) ≤ 3Var(φ̃) and T̃ (v∗) ≤ 3T̃ . Using (5) yields (18).

The MLMC estimator φ̃v is obtained by approximating f with functions of its first compo-

nents. A lower bound on the performance of such estimators is given in Section 4.

4 The lower bound

This section considers a class of MLMC unbiased estimators of E(f(U)) based on successive

approximations of f by deterministic functions of its first components. In (Kahalé 2020b), a

lower bound on the work-normalized variance of such estimators is given in terms of that of

the randomized dimension reduction estimator. This section provides a lower bound on the

work-normalized variance of these estimators in terms of the truncation dimension.

Using the notation in Section 2.3 with φ = f(U), consider a MLMC estimator φ̂ of E(f(U))

obtained by summing the averages on independent copies of φl − φl−1, 1 ≤ l ≤ L, where L is a

positive integer and the φl’s satisfy the following assumption:

8



Assumption 1 (A1). For 0 ≤ l ≤ L, φl is a square-integrable random variable equal to a

deterministic measurable function of U1, . . . , Uml
, with φ0 = 0 and φL = f(U), where

(ml : 0 ≤ l ≤ L) is a strictly increasing sequence of integers, with m0 = 0 and mL = d.

The proof of the lower bound is based on the following lemma.

Lemma 4.1. Let (νi : 0 ≤ i ≤ d) be a decreasing sequence such that νml
≤ Var(f(U) − φl) for

0 ≤ l ≤ L, with νd = 0. Then
d
∑

i=0

νi ≤
(

L
∑

l=1

√

mlVl

)2

.

Proof. An integration by parts argument (Kahalé 2020b, Lemma EC.4) shows that

L−1
∑

l=0

(
√
ml+1 −

√
ml)

√
νml

≤
L
∑

l=1

√

mlVl.

On the other hand, for 0 ≤ l ≤ L− 1, we have

(
√
ml+1 −

√
ml)

√
νml

=

ml+1−1
∑

i=ml

(
√
i+ 1−

√
i)
√
νml

≥
ml+1−1
∑

i=ml

αi,

where αi = (
√
i+ 1−

√
i)
√
νi. Summing over l ∈ {0, . . . , L− 1} implies that

d
∑

i=0

αi ≤
L
∑

l=1

√

mlVl.

On the other hand,

(

d
∑

i=0

αi

)2

=

d
∑

i=0

αi



αi + 2

i−1
∑

j=0

αj





≥
d
∑

i=0

αi



αi + 2

i−1
∑

j=0

(
√

j + 1−
√

j)
√
νi





=

d
∑

i=0

αi(αi + 2
√
iνi)

=
d
∑

i=0

νi.

This concludes the proof.

Theorem 4.1 provides a lower bound the work-normalized variance of φ̂ that matches, up to

a logarithmic factor, the upper bound in Theorem 3.1.
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Theorem 4.1. If Assumption A1 holds and there is a positive constant ĉ such that t̂l ≥ ĉml

for 1 ≤ l ≤ L, then ĉdtVar(f(U)) ≤ T̂Var(φ̂) and, for ǫ > 0,

T (φ̃, ǫ) = Ω(d+ dtVar(f(U))ǫ−2). (19)

Proof. It follows from (9) that

ĉ

(

L
∑

l=1

√

mlVl

)2

≤ T̂Var(φ̂).

By Proposition 2.2 and Assumption A1, D(ml) ≤ Var(f(U) − φl) for 0 ≤ l ≤ L. Applying

Lemma 4.1 with νi = D(i) for 0 ≤ i ≤ d yields

(

L
∑

l=1

√

mlVl

)2

≥
d
∑

i=0

D(i)

= dtVar(f(U)),

where the second equation follows from Proposition 2.3. This shows that ĉdtVar(f(U)) ≤
T̂Var(φ̂). By (8), the expected running time of φ̂ is lower-bound by t̂L ≥ ĉd. Together with (5),

this implies (19).

5 Time-varying Markov chains

This section shows that, under certain conditions, the expectation of functionals of time-varying

Markov chains with d time-steps can be estimated efficiently via MLMC, and that the associated

truncation dimension is upper bounded by a constant independent of d.

Let d be a positive integer and let (Xi : 0 ≤ i ≤ d) be a time-varying Markov chain with

state-space F and deterministic initial value X0. Assume that there are independent random

variables Yi, 0 ≤ i ≤ d − 1, uniformly distributed in [0, 1], and measurable functions gi from

F × [0, 1] to F such that Xi+1 = gi(Xi, Yi) for 0 ≤ i ≤ d− 1. Our goal is to estimate E(g(Xd))

where g is a deterministic real-valued measurable function on F such that g(Xd) is square-

integrable. It is assumed that g and the gi’s can be calculated in constant time. For 1 ≤ i ≤ d,

set Ui = Yd−i. An inductive argument shows that there is a real-valued measurable function f

on [0, 1]d such that g(Xd) = f(U), where U = (U1, . . . , Ud). When Xd is mainly determined by

the last Yi’s, the first Ui’s are the most important arguments of f .

Remark 5.1. Redrawing U1, . . . , Ui while keeping Ui+1, . . . , Ud unchanged amounts to keeping

X0, . . . ,Xd−i unchanged and redrawing Xd−i+1, . . . ,Xd. This can be achieved in O(i) time.

Thus (13) holds for f .

Given i ∈ {0, . . . , d}, define the time-varying Markov chain (X
(i)
j : d− i ≤ j ≤ d) by setting

X
(i)
d−i := X0 and X

(i)
j+1 = gj(X

(i)
j , Yj) for d− i ≤ j ≤ d−1. Thus, X

(i)
d is the state of the original

Markov chain X at time-step d if the chain is at state X0 at time-step d− i. Note that g(X
(i)
d )

can be calculated in O(i) time and is a deterministic function of U1, . . . , Ui. Roughly speaking,

10



if Xd is determined to a large extent by the last Yj’s, then X
(i)
d should be “close” to Xd for

large values of i. This motivates the following assumption:

Assumption 2 (A2). There are constants c′ and γ < −1 independent of d such that, for

0 ≤ i ≤ d, we have E((g(Xd)− g(X
(i)
d ))2) ≤ c′(i+ 1)γ .

I now describe a multilevel estimator of E(φ), where φ = g(Xd), using the notation in

Section 2.3. Let L = ⌈log2(d)⌉ and, for 1 ≤ l ≤ L− 1, let ml = 2l − 1. Let φ0 = 0, φL = d and,

for 1 ≤ l ≤ L − 1, let φl = g(X
(ml)
d ). For 1 ≤ l ≤ L, let φ̂l be the average of nl independent

copies of φl − φl−1, where nl = ⌈d2l(γ−1)/2⌉. Suppose that φ̂1, . . . , φ̂L are independent. Set

φ̂ :=
∑L

l=1 φ̂l. By (6), E(φ̂) = E(φ). Let T̂ (resp. t̂l) be the expected time to simulate φ̂ is

(resp. φl −φl−1). Proposition 5.1 shows that, under Assumption A2, φ̂ can be used to estimate

E(φ) with precision ǫ in O(d + ǫ−2) time and, if Var(g(Xd)) is lower-bounded by a constant

independent of d, the truncation dimension dt associated with g(Xd) is upper-bounded by a

constant independent of d. In contrast, the standard Monte Carlo method typically achieves

precision ǫ in O(dǫ−2) time.

Proposition 5.1. Suppose that Assumption A2 holds. Then there are constants c1, c2 and c3

independent of d such that T̂ ≤ c1d, Var(φ̂) ≤ c2/d, and T (φ̂, ǫ) ≤ c3(d+ ǫ−2). Moreover,

dtVar(g(Xd)) ≤ c′
γ

γ + 1
.

Proof. By construction, t̂l ≤ c2l for some constant c independent of d. By (8),

T̂ ≤ c
L
∑

l=1

(1 + d2l(γ−1)/2)2l

≤ cd(4 +
1

1− 2(γ+1)/2
).

By Assumption A2, for 0 ≤ l ≤ L,

Var(g(Xd)− φl) ≤ c′2lγ .

Since Var(Z + Z ′) ≤ 2(Var(Z) + Var(Z ′)) for square-integrable random variables Z and Z ′, it

follows that Vl ≤ 4c′2(l−1)γ for 1 ≤ l ≤ L. Together with (7), this shows that

Var(φ̂) ≤ 4c′
L
∑

l=1

2(l−1)γ

d2l(γ−1)/2

≤ 4c′2(1−γ)/2

d(1− 2(γ+1)/2)
.

Using (5) implies the desired bound on T (φ̂, ǫ).

By Proposition 2.2, for 0 ≤ i ≤ d,

D(i) ≤ E((g(Xd)− g(X
(i)
d ))2)

≤ c′(i+ 1)γ .
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Thus, using Proposition 2.3,

dtVar(f(U)) ≤ c′
d
∑

i=1

iγ

≤ c′(1 +

∫ d

1
xγ dx)

≤ c′
γ

γ + 1
.

5.1 A Lindley recursion example

In this example, F = R and (Xi : 0 ≤ i ≤ d) satisfies the time-varying Lindley equation

Xi+1 = (Xi + ζi(Yi))
+,

with X0 = 0, where ζi, 0 ≤ i ≤ d− 1, is a real-valued function on [0, 1]. Our goal is to estimate

E(Xd). Thus g is the identity function and gi(x, y) = (x+ζi(y))
+ for (x, y) ∈ R× [0, 1]. Lindley

equations often arise in queuing theory (Asmussen and Glynn 2007).

Proposition 5.2. If there are constants θ > 0 and κ < 1 independent of d such that

E(eθζi(Yi)) ≤ κ (20)

for 0 ≤ i ≤ d − 1, then E((Xd − X
(i)
d )2) ≤ θ′κi for 0 ≤ i ≤ d − 1, where θ′ is a constant

independent of d.

Proposition 5.2 shows that, if (20) holds, then so does Assumption A2, hence the conclusions

of Proposition 5.1 hold as well. The proof of Proposition 5.2 is essentially the same as that

of (Kahalé 2020b, Proposition 10), and is therefore omitted. A justification of (20) for time-

varying queues and numerical examples showing the efficiency of MLMC for estimating Markov

chain functionals are given in (Kahalé 2020b).
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Kahalé, N. (2020b). Randomized dimension reduction for Monte Carlo simulations, Management

Science 66(3): 1421–1439.

L’Ecuyer, P. and Lemieux, C. (2000). Variance reduction via lattice rules, Management Science

46(9): 1214–1235.

Liu, R. and Owen, A. B. (2006). Estimating mean dimensionality of analysis of variance de-

compositions, Journal of the American Statistical Association 101(474): 712–721.

Owen, A. (2019). Effective dimension of some weighted pre-Sobolev spaces with dominating

mixed partial derivatives, SIAM Journal on Numerical Analysis 57(2): 547–562.

Owen, A. B. (2003). The dimension distribution and quadrature test functions, Statistica Sinica

13(1): 1–18.

Pisaroni, M., Nobile, F. and Leyland, P. (2017). A continuation multi level Monte Carlo

(C-MLMC) method for uncertainty quantification in compressible inviscid aerodynamics,

Computer Methods in Applied Mechanics and Engineering 326: 20–50.

Rosenbaum, I. and Staum, J. (2017). Multilevel Monte Carlo Metamodeling, Operations Re-

search 65(4): 1062–1077.
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