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Abstract

In this work, we introduce two algorithmic frameworks, named Bregman extragradient
method and Bregman extrapolation method, for solving saddle point problems. The proposed
frameworks not only include the well-known extragradient and optimistic gradient methods as
special cases, but also generate new variants such as sparse extragradient and extrapolation
methods. With the help of the recent concept of relative Lipschitzness and some Bregman
distance related tools, we are able to show certain upper bounds in terms of Bregman dis-
tances for gap-type measures. Further, we use those bounds to deduce the convergence rate of
O(1/k) for the Bregman extragradient and Bregman extrapolation methods applied to solving
smooth convex-concave saddle point problems. Our theory recovers the main discovery made
in [Mokhtari et al. (2020), SIAM J. Optim., 20, pp. 3230-3251] for more general algorithmic
frameworks with weaker assumptions via a conceptually different approach.

Keywords. Extragradient method, extrapolation method, Bregman distance, iteration com-
plexity, saddle point problem

AMS subject classifications. 90C25, 90C47

1 Introduction

The extragradient method is a powerful tool for solving smooth convex-concave saddle point prob-
lems. Its original scheme was introduced by Korpelevich as early as 1976 in [14]. During the past
four decades, this method has been extensively developed from several aspects such as extending its
range [7,10,21] and simplifying its iterate [5]. Recently, due to the fact that many game and learn-
ing problems are actually equivalent to finding saddle points of min-max optimization problems,
it has attracted increasing attention in the machine learning, computer science, and optimization
communities.

At the algorithmic level, many works aim to modify the original extragradient method. Remark-
able examples include Popov’s modification of the Arrow-Hurwicz method [23], Tseng’s modified
forward-backward splitting method [27], Nemirovski’s prox-method [21], Malitsky’s reflected pro-
jected method [18] and its generalization in [15, 19]. It should be pointed out that Malitsky’s
reflected projected method covers the optimistic gradient descent-ascent (OGDA) method, which
recently appeared in machine learning for training GANs (see [8]).
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To guarantee convergence, the standard assumptions are monotonicity and the Lipschitz conti-
nuity. However, they are sufficient but not necessary; see e.g. [7, 9, 15]. Very recently, Cohen et al.
in [6] proposed the relative Lipschitzness of operator as an alternative to the standard assumptions.
The relative Lipschitzness of function in first-order methods was original introduced in [1,17] to go
beyond the gradient Lipschitz continuity.

In this paper, we first introduce two algorithmic frameworks, namely Bregman extragradient
method and Bregman extrapolation method, to unify existing extragradient-type algorithms. Then,
by employing the relative Lipschitzness of operator, we deduce certain upper bounds in terms of
Bregman distances for gap-type measures of the proposed algorithmic frameworks. Applying to
smooth convex-concave saddle point problems, we show that these algorithms converge with a rate
O(1/k). This demonstrates that our theory extends the recent discovery in [20], which was made
by formulating the extragradient and OGDA methods as approximations of the proximal point
algorithm [25], to more general algorithmic frameworks with weaker assumptions via a conceptually
different approach.

The rest of the paper is organized as follows. In Section 2, we introduce some basic convex
analysis and Bregman distance related tools. In Section 3, we propose two algorithmic frameworks
with generalized Bregman distances as well as some specialized variants. In Section 4, we list a group
of assumptions and establish two main iterate results for the proposed algorithmic frameworks. In
Section 5, we derive the convergence rate O(1/k) for the proposed algorithmic frameworks applied
to solving smooth convex-concave saddle point problems. Concluding remarks are given in Section
6. Missing proofs are postponed to Appendix.

2 Preliminaries

2.1 Notation

In this paper, we restrict our analysis into real finite dimensional spaces Rd. We use 〈·, ·〉 to denote
the inner product and ‖ · ‖ to denote the Euclidean norm. For a multi-variables function f(x, y),
we use ∇xf (respectively, ∇yf) to denote the gradient of f with respective to x (respectively, y).

2.2 Convex analysis tools

We present some basic notations and facts about convex analysis, which will be used in our results.

Definition 2.1. A function φ : Rd → R is convex if for any α ∈ [0, 1] and u, v ∈ R
d, we have

φ(αu+ (1− α)v) ≤ αφ(u) + (1− α)φ(v);

and strongly convex with modulus µ > 0 if for any α ∈ [0, 1] and u, v ∈ R
d, we have

φ(αu+ (1− α)v) ≤ αφ(u) + (1− α)φ(v) −
1

2
µα(1 − α)‖u− v‖2.

Further, φ is concave if −φ is convex.

Definition 2.2. Let φ : Rd → R be a convex function. The subdifferential of φ at u ∈ R
d is defined

as

∂φ(u) := {u∗ ∈ R
d : φ(v) ≥ φ(u) + 〈u∗, v − u〉, ∀v ∈ R

d}.

The elements of ∂φ(u) are called the subgradients of φ at u.
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The subdifferential generalizes of the classical concept of differential because of the well-known
fact that ∂φ(u) = {∇φ(u)} when the function φ is differentiable. In terms of the subdifferential,
the strong convexity in Definition 2.1 can be equivalently stated as [11]: For any u, v ∈ R

d and
v∗ ∈ ∂φ(v), we have

φ(u) ≥ φ(v) + 〈v∗, u− v〉+
µ

2
‖u− v‖2. (2.1)

Definition 2.3. Let φ : Rd → R be a convex function. The conjugate of φ is defined as

φ∗(u∗) = sup
v∈Rd

{〈u∗, v〉 − φ(v)}.

Definition 2.4. A function φ : Rd → R is gradient-Lipschitz-continuous with modulus L > 0 if for

any u, v ∈ R
d, we have

‖∇φ(u)−∇φ(v)‖ ≤ L‖u− v‖.

The following facts are well-known, which could be found from the classic textbooks [26] and [11].

Lemma 2.1. Let φ : Rd → R be a strongly convex function with modulus µ > 0. Then we have

that

• its conjugate φ∗ is gradient-Lipschitz-continuous with modulus 1
µ
;

• the conditions φ(u) + φ∗(u∗) = 〈u, u∗〉, u∗ ∈ ∂φ(u), and u ∈ ∂φ∗(u∗) are equivalent.

2.3 Bregman distance tools

The Bregman distance, originally introduced in [4], is a very powerful concept in many fields where
distances are involved. Recently, many variants of Bregman distances appears, see e.g. [2, 12, 24].
For simplicity as well as generality, we choose the Bregman distance defined by a strongly convex.

Definition 2.5. Let ω : Rd → R be a strongly convex function with modulus µ > 0. The Bregman

distance Dv∗

ω (u, v) between u, v ∈ R
d with respect to ω and a subgradient v∗ ∈ ∂ω(v) is defined by

Dv∗

ω (u, v) := ω(u)− ω(v)− 〈v∗, u− v〉. (2.2)

In the following, we state three basic facts about the Bregman distance, which will be used later
in our analysis. It should be pointed out that the results are well-known–see e.g. [12, 13]. We list
them here, along with a brief proof, for completeness.

Lemma 2.2. Let ω : Rd → R be a strongly convex function with modulus µ > 0. For any u, p, q ∈ R
d

and p∗ ∈ ∂ω(p), q∗ ∈ ∂ω(q), we have that

Dp∗

ω (u, p) −Dq∗

ω (u, q) +Dq∗

ω (p, q) = 〈q∗ − p∗, u− p〉, (2.3)

Dq∗

ω (p, q) = Dp
ω∗(q∗, p∗), (2.4)

and

Dq∗

ω (p, q) ≥
µ

2
‖p− q‖2. (2.5)
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Proof. The equality (2.3) follows from (2.2), and the inequality (2.5) from (2.1) and (2.2). To
obtain (2.4), we derive that

Dq∗

ω (p, q) = ω(p)− ω(q)− 〈q∗, p− q〉
= 〈p, p∗〉 − ω∗(p∗)− 〈q, q∗〉+ ω∗(q∗)− 〈q∗, p − q〉
= ω∗(q∗)− ω∗(p∗)− 〈p, q∗ − p∗〉
= Dp

ω∗(q∗, p∗),

(2.6)

where the second and fourth lines follow by using the second part of Lemma 2.1 and the condition
p∗ ∈ ∂ω(p), q∗ ∈ ∂ω(q).

3 Algorithmic frameworks

In this section, we introduce two algorithmic frameworks, both of which are constructed by an
operator F : Rd → R

d and a strongly convex function ω : Rd → R via certain coupled styles.

3.1 Bregman extragradient method

Let u0, u
∗
0 ∈ R

d and positive parameters {αk} be given. The Bregman extragradient method,
abbreviated as BEG, updates the iterates {uk} for k ≥ 0 via the following scheme.











ūk = argminu∈Rd{αk〈F (uk), u〉+D
u∗
k
ω (u, uk)},

uk+1 = argminu∈Rd{αk〈F (ūk), u〉+D
u∗
k
ω (u, uk)},

u∗k+1 = u∗k − αkF (ūk).

(3.1)

Equivalently, it can be rewritten as






ūk = ∇ω∗(u∗k − αkF (uk)),
uk+1 = ∇ω∗(u∗k − αkF (ūk)),
u∗k+1 = u∗k − αkF (ūk).

(3.2)

Due to the newly introduced “parameter” ω, BEG not only includes the standard extragradient
method as its special case by taking ω(u) = 1

2‖u‖
2, but also generates implicitly regularized variants.

To illustrate the latter, we take ω as the augmented ℓ1-norm [16], that is ω(u) = γ‖u‖1 +
1
2‖u‖

2,
where γ is a positive constant and ‖ · ‖1 is the ℓ1-norm defined as the sum of absolute values of the
entries. It is easy to see that the augmented ℓ1-norm is a strongly convex function with modulus
µ = 1. Further, we have

∇ω∗(·) = Sγ(·), (3.3)

where Sγ(·) is the well-known shrinkage operator defined by

Sγ(u) := sign(u)max{|u| − µ, 0},

with sign(·), | · |, and max{·, ·} being component-wise operations for vectors. Now, the BEG method
for this special case becomes







ūk = Sγ(u
∗
k − αkF (uk)),

uk+1 = Sγ(u
∗
k − αkF (ūk)),

u∗k+1 = u∗k − αkF (ūk).
(3.4)
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Because the shrinkage operator Sγ(·) generates sparse vectors, we call the newly appeared scheme
(3.4) sparse extragradient method. Its remarkable advantage is that the iterates may be sparse,
although the shrinkage operations also increase computational cost. Thereby, how to balance these
two sides is worthy of future studying. In addition, it should be noted that although the iterates
could be sparse, their averaged sequences, whose iteration complexities will be studied, may be
dense.

In slightly more general, let us consider the case of ω(u) = ψ(u) + 1
2‖u‖

2, where ψ is a convex
regularized function with an “easily” computational proximal operator given by

proxψ(u) := argmin
v

{ψ(v) +
1

2
‖u− v‖2}.

Substituting such ω into (3.1), we immediately obtain the following regularized extragradient
method







ūk = proxψ(u
∗
k − αkF (uk)),

uk+1 = proxψ(u
∗
k − αkF (ūk)),

u∗k+1 = u∗k − αkF (ūk).
(3.5)

It seems that, to the best of our knowledge, such variants have not appeared before us.

3.2 Bregman extrapolation method

Let u0, u−1, u
∗
0 ∈ R

d, positive parameters {αk}, and nonnegative parameters {βk} be given. The
Bregman extrapolation method, abbreviated as BEP, updates the iterates {uk} for k ≥ 0 via the
following scheme.

{

uk+1 = argminu∈Rd{αk〈F (uk) + βk(F (uk)− F (uk−1)), u〉+D
u∗
k
ω (u, uk)}

u∗k+1 = u∗k − αkF (uk)− αkβk(F (uk)− F (uk−1)).
(3.6)

Equivalently, it can be rewritten as
{

uk+1 = ∇ω∗(u∗k − αkF (uk)− αkβk(F (uk)− F (uk−1))),
u∗k+1 = u∗k − αkF (uk)− αkβk(F (uk)− F (uk−1)).

(3.7)

BEP is general enough to include several existing algorithms as its special cases. For example,
BEP with ω = 1

2‖ · ‖
2 and αk ≡ η, βk ≡ 1 recovers the optimistic gradient descent ascent (OGDA)

method; it also recovers the operator extrapolation method [15] by taking ω to be differentiable
and the modified forward-backward splitting [19] specialized to our setting. When considering the
case of ω(u) = γ‖u‖1 +

1
2‖u‖

2, we have the following scheme, called sparse extrapolation method.
{

uk+1 = Sγ(u
∗
k − αkF (uk)− αkβk(F (uk)− F (uk−1))),

u∗k+1 = u∗k − αkF (uk)− αkβk(F (uk)− F (uk−1)).
(3.8)

Corresponding to the case of ω(u) = ψ(u) + 1
2‖u‖

2, the regularized extrapolation method reads as
{

uk+1 = proxψ(u
∗
k − αkF (uk)− αkβk(F (uk)− F (uk−1))),

u∗k+1 = u∗k − αkF (uk)− αkβk(F (uk)− F (uk−1)).
(3.9)

At last, we would like to point out that the BEP method does not cover the simultaneous centripetal
acceleration and alternating centripetal acceleration methods, proposed in our recent work [22] for
training GANs, one of which also includes the OGDA as a special case.
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4 Iteration properties of the algorithmic frameworks

In order to provide a unified convergence analysis for the previously introduced algorithmic frame-
works, we make the following assumptions about the operator F and the function ω.

Assumption 4.1. Let ω : Rd → R be a strongly convex function with modulus µ > 0 and let λ
be a positive parameter. The operator F is λ-relatively Lipschitz with respect to ω, i.e., for any

u, v, z ∈ R
d, we have

〈F (v) − F (u), v − z〉 ≤ λ(Du∗

ω (v, u) +Dv∗

ω (z, v)).

This assumption is a slight modification of the relative Lipschitzness recently proposed in [6],
and will be a key tool in the forthcoming convergence analysis. As observed in [6], the relative
Lipshcitzness is a more general condition encapsulating the standard Lipschitz assumption as well
as the more recent relative smoothness assumption [1, 17]. The following, shown in [6], will be
required later.

Lemma 4.1. If ω is strongly convex with modulus µ and F is L-Lipschitz in the sense that for any

u, v ∈ R
d, we have ‖F (u)−F (v)‖ ≤ L‖u− v‖, then F is L/µ-relatively Lipschitz with respect to ω.

Assumption 4.2. The solution set of F defined as Y := {u : F (u) = 0} is nonempty.

Assumption 4.3. The operator F is monotone, i.e., for any u, v ∈ R
d we have

〈F (u) − F (v), u− v〉 ≥ 0.

Assumption 4.4. The conjugate function ω∗ : R
d → R satisfies coercivity, i.e, for any fixed

v ∈ R
d, we have

ω∗(u∗)− 〈v, u∗〉 → +∞, ‖u∗‖ → +∞.

It is easy to verify that Assumption 4.4 holds for ω∗(u∗) = 1
2‖u

∗‖2. Actually, it holds for the
conjugates of strongly convex functions, as a direct result of Proposition 14.15 in [3].

Lemma 4.2. Let ω : Rd → R be a strongly convex function with modulus µ > 0. Then the conjugate

function ω∗ satisfies the coercivity.

Now, we are ready to present the main results of this study. The first result is a upper bound of
the “regret measure” 〈αkF (ūk), ūk−u〉 by the difference between the generalized Bregman distances

D
u∗
k
ω (u, uk) and D

u∗
k+1
ω (u, uk+1), for the Bregman extragradient method.

Proposition 4.1. Let {ūk, uk} be the iterates generated by the Bregman extragradient method

introduced in (3.1). Suppose that Assumption 4.1 holds and the parameters αk satisfy 0 < λαk ≤ 1.
Then, we have

〈αkF (ūk), ūk − u〉 ≤ D
u∗
k

ω (u, uk)−D
u∗
k+1
ω (u, uk+1). (4.1)

Moreover, if Assumptions 4.2-4.3 also hold, then the sequence {ūk} is bounded.

The first part of this result is a modification of Lemma 3.1 in [21] (see also Proposition 1 in [6]),
and the second part and the followings are partially inspired by the work [20].
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Proposition 4.2. Let {uk} be the iterates generated by the Bregman extrapolation method intro-

duced in (3.6) with the initial conditions u0 = u−1. Suppose that Assumption 4.1 holds and the

parameters αk, βk satisfy the condition

{

αkβk = αk−1,
λ(αk + αk−1) ≤ 1.

(4.2)

Then, we have

αk〈F (uk+1), uk+1 − u〉 ≤ αk〈F (uk+1)− F (uk), uk+1 − u〉 − αk−1〈F (uk)− F (uk−1), uk − u〉

+D
u∗
k
ω (u, uk)−D

u∗
k+1
ω (u, uk+1)

+λαk−1D
u∗
k−1
ω (uk, uk−1)− λαkD

u∗
k
ω (uk+1, uk).

(4.3)

Moreover, if Assumptions 4.2-4.3 also hold and there is a positive constant ρ such that λαk ≤ 1−ρ,
then the sequence {uk} is bounded.

To illustrate the generality of the result above, we consider the OGDA method, i.e., the special
case of BEP with αk ≡ η, βk ≡ 1, ω = 1

2‖ · ‖
2. The condition on the step size η becomes 0 < η ≤ 1

2L
due to (4.2) and µ = 1, λ = L

µ
because of Lemma 4.1. Note that Dv∗

ω (u, v) = 1
2‖u− v‖2. Under this

setting, the existence of ρ such that λαk ≤ 1− ρ also holds. From (4.3), we obtain

〈F (uk+1), uk+1 − u〉 ≤ 〈F (uk+1)− F (uk), uk+1 − u〉 − 〈F (uk)− F (uk−1), uk − u〉
+ 1

2η‖u− uk‖
2 − 1

2η‖u− uk+1‖
2

+L
2 ‖uk − uk−1‖

2 − L
2 ‖uk+1 − uk‖

2,

(4.4)

which is exactly Lemma 8(a) in [20]. The second part of Proposition (4.2) guarantees the bound-
edness of {uk}, which recovers Lemma 8(b) in [20].

5 Iteration complexity for saddle point problems

In this section, we first formulate the saddle point problem which we want to solve and then deduce
the iteration complexity results.

5.1 Problem formulation and preliminary results

Let f : Rm×R
n → R be a given function. We consider finding a saddle point (x̄, ȳ) of the problem

min
x∈Rm

max
y∈Rn

f(x, y). (5.1)

In other words, find a pair (x̄, ȳ) ∈ R
m × R

n, which will be called saddle point, to satisfy the
following relation

f(x̄, y) ≤ f(x̄, ȳ) ≤ f(x, ȳ)

for all x ∈ R
m, y ∈ R

n. Let z = [x; y] ∈ R
n+m and define the operator F : Rn+m → R

n+m as

F (z) := [∇xf(x, y);−∇yf(x, y)]. (5.2)

In order to apply previous theory to this specialized operator F , we restrict our attention to the
problem (5.1) with the following assumption.
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Assumption 5.1. The set of all saddle point pairs of the problem (5.1), denoted by Z, is nonempty.

Let positive parameters Lxx, Lxy, Lyy, Lyx be given and let

L := 2×max{Lxx, Lxy, Lyy, Lyx}.

The function f(x, y) in (5.1) is

• continuously differetiable in x and y,

• convex in x for any fixed y and concave in y for any fixed x, and

• gradient-Lipschitz-continuous with modulus L in the sense that

‖∇xf(x1, y)−∇xf(x2, y)‖ ≤ Lxx‖x1 − x2‖ for all y,

‖∇xf(x, y1)−∇xf(x, y2)‖ ≤ Lxy‖y1 − y2‖ for all x,

‖∇yf(x, y1)−∇yf(x, y2)‖ ≤ Lyy‖y1 − y2‖ for all x,

‖∇yf(x1, y)−∇yf(x2, y)‖ ≤ Lyx‖x1 − x2‖ for all y.

The gradient-Lipschitz-continuity above implies the standard Lipschitzness of F , which further
implies the relative Lipschitzness of F due to Lemma 4.1. Now, by substituting the formula (5.2)
for F in the algorithmic frameworks (3.1) and (3.6), the saddle point problems in the form (5.1)
could be solved in some degree. Especially, for the saddle point problems that satisfy Assumption
5.1, we will derive the convergence rate of O(1/k) for the BEG and BEP methods. To this end,
we let {zk} be the concerned iterate sequence with zk := [xk; yk] ∈ R

n+m. Let {rk} be a parameter
sequence with rk > 0 and let sk :=

∑k
i=0 ri. We denote the averaged iterates of {zk} by {rk} as

follows

ẑk := [x̂k; ŷk] := [

k
∑

i=0

ri
si
xi;

k
∑

i=0

ri
si
xi] =

k
∑

i=0

ri
si
zi. (5.3)

In terms of these notations, we have the following preliminary results for the saddle point problem
(5.1). It should be pointed out that they are well known–see for example [21].

Lemma 5.1. Consider the saddle point problem (5.1) with Assumption 5.1 and recall the definitions

in (5.2)-(5.3). Let ω : Rd → R be a strongly convex function with modulus µ > 0. Then,

• Assumptions 4.2-4.3 and Assumption 4.1 with λ = L
µ
hold for the operator F , and especially,

Z ⊂ Y, i.e., F (z̄) = 0 for any z̄ ∈ Z;

• For any z = [x; y] ∈ R
n+m, we have

f(x̂k, y)− f(x, ŷk) ≤
1

sk

k
∑

i=0

ri〈F (zi), zi − z〉. (5.4)

We remark that the gradient Lipschitz continuity in Assumption 5.1 is only a sufficient condition
guaranteeing the weaker relative Lipschitzness.
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5.2 Iteration complexity results

The first result is about the iteration complexity of BEG method applied to the saddle point
problem with Assumption 5.1. Before presentation, we first clarify some notations.

Let {ūk} be the iterates generated by the BEG method with initial points u0, u
∗
0, µ-strongly

convex ω and L-Lipschitz operator F = [∇xf ;−∇yf ], and the parameters {αk} satisfying 0 <
Lαk ≤ µ. To apply the preliminary result in Lemma 5.1, we let zk = ūk and rk = αk. Let
z̄ = [x̄; ȳ] ∈ Z ⊂ Y be a fixed saddle point. Denote

R1 := max{max
k

{‖ūk‖, ‖z̄‖};

then R1 < +∞ due to the boundedness of {ūk}. Let

D1 := {z ∈ R
m+n : ‖z‖ ≤ R1},

which is the smallest compact convex set including the iterates {ūk} (or say {zk}) and the saddle
point z̄. By convexity, it also includes the averaged iterates {ẑk}, as defined in (5.3). In terms of
these notations, we have the following iteration complexity result, which recovers the convergence
rate of O(1/k) by taking the positive parameters αk to be some constant.

Proposition 5.1. Let ω : Rd → R be a strongly convex function with modulus µ > 0. The BEG

method with αk satisfying 0 < Lαk ≤ µ and initial points u0, u
∗
0 being given, applied to the saddle

point problem (5.1) with Assumption 5.1, converges sublinearly in the sense that

|f(x̂k, ŷk)− f(x̄, ȳ)| ≤ max
z:z∈D1

1
∑k

i=0 αi
D
u∗0
ω (z, u0). (5.5)

The second result is about the iteration complexity of the BEP method applied to the saddle
point problem (5.1). Since its deduction is similar to that of the first result, we here just briefly
point out the difference notations. Let {uk} be the iterates generated by the BEP method with
F = [∇xf ;−∇yf ], the initial points u0 = u−1 being given, and the positive parameters αk, βk
satisfying the condition (4.2). Let zk = uk+1 and rk = αk. Let z̄ = [x̄; ȳ] ∈ Z ⊂ Y be a fixed saddle
point. Denote

R2 := max{max
k

{‖uk‖, ‖z̄‖};

then R2 < +∞ due to the boundedness of {uk}. Let

D2 := {z ∈ R
m+n : ‖z‖ ≤ R2},

which is the smallest compact convex set including the iterates {uk} (or say {zk}) and the saddle
point z̄. By convexity, it also includes the averaged iterates {ẑk}, as defined in (5.3). In terms of
these notations, we present the second iteration complexity result, whose proof follows directly by
replacing (6.4) with (6.15) and repeating the argument for Proposition 5.1.

Proposition 5.2. Let ω : Rd → R be a strongly convex function with modulus µ > 0. The BEP

method with {αk, βk} satisfying (4.2) and initial points u∗0, u−1 = u0 being given, applied to the

saddle point problem (5.1) with Assumption 5.1, converges sublinearly in the sense that

|f(x̂k, ŷk)− f(x̄, ȳ)| ≤ max
z:z∈D2

1
∑k

i=0 αi
D
u∗0
ω (z, u0). (5.6)

The iterate complexities above show that the function value of the averaged iterates generated
by BEG or BEP converges to the function value at any fixed saddle point of the problem (5.1).
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6 Conclusion

Partially inspired by the elegant results in [20], we introduce two algorithmic frameworks with
generalized Bregman distances and study their iteration complexity for solving saddle point prob-
lems. With the help of the recent concept of relative Lipschitzness and Bregman distance related
tools, our approach is simple and essentially different from the proximal point approach taken
in [20]. Moreover, our theory is general in the sense that it applies to more general algorithmic
frameworks under weaker assumptions. The numerical performance of the sparse and regularized
variants definitely deserve further study and we leave it as future work.
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Appendix: The missing proofs

The proof of Proposition 4.1: From the formula ūk = ∇ω∗(u∗k − αkF (uk)) in (3.2), we have

u∗k − αkF (uk) ∈ ∂ω(ūk).

Take ū∗k := u∗k −αkF (uk); then using the fact of u∗k ∈ ∂ω(uk) and applying (2.3) in Lemma 2.2, we
derive that

〈αkF (uk), ūk − u〉 = −〈u∗k − ū∗k, u− ūk〉

= D
u∗
k
ω (u, uk)−D

ū∗
k
ω (u, ūk)−D

u∗
k
ω (ūk, uk).

(6.1)

Similarly, starting with u∗k+1 = u∗k − αkF (ūk) in (3.2) and applying (2.3) in Lemma 2.2 again, we
derive that

〈αkF (ūk), uk+1 − u〉 = −〈u∗k − u∗k+1, u− uk+1〉

= D
u∗
k
ω (u, uk)−D

u∗
k+1
ω (u, uk+1)−D

u∗
k
ω (uk+1, uk).

(6.2)

Substituting uk+1 for u in (6.1), we obtain

〈αkF (uk), ūk − uk+1〉 = D
u∗
k
ω (uk+1, uk)−D

ū∗
k
ω (uk+1, ūk)−D

u∗
k
ω (ūk, uk). (6.3)

Combining (6.2) and (6.3), we have

〈αkF (ūk), ūk − u〉 = D
u∗
k
ω (u, uk)−D

u∗
k+1
ω (u, uk+1)

+αk〈F (ūk)− F (uk), ūk − uk+1〉 −D
u∗
k
ω (ūk, uk)−D

ū∗
k
ω (uk+1, ūk).

Invoking the relative Lipschitz assumption and noting λαk ≤ 1, we obtain (4.1).
Now, we turn to prove the boundedness. Summing up (4.1) from k = 0 to t− 1, we obtain

t−1
∑

k=0

〈αkF (ūk), ūk − u〉 ≤ D
u∗
0
ω (u, u0)−D

u∗
t
ω (u, ut). (6.4)
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Using the monotonicity of F in Assumption 4.3 and the condition F (ū) = 0 for any ū ∈ Y, we have
that

〈F (ūk), ūk − ū〉 = 〈F (ūk)− F (ū), ūk − ū〉 ≥ 0.

This means that each term in the summand in (6.4) with u = ū is nonnegative and hence implies
the following

D
u∗
t
ω (ū, ut) ≤ D

u∗
0
ω (ū, u0). (6.5)

Note from (2.4) in Lemma (2.2) that

D
u∗
t
ω (ū, ut) = Dū

ω∗(u∗t , ū
∗) = ω∗(u∗t )− ω∗(ū∗)− 〈ū, u∗t − ū∗〉.

Thereby, we have

ω∗(u∗t )− 〈ū, u∗t 〉 ≤ D
u∗
0
ω (ū, u0) + ω∗(ū∗)− 〈ū, ū∗〉. (6.6)

This implies that for the fixed ū, {ω∗(u∗t ) − 〈ū, u∗t 〉} is bounded. Together with Lemma 4.2 and
Assumption 4.4, we conclude that {u∗t } is bounded. Finally, using the strong convexity of ω and
the fact in Lemma 2.1, we deduce that

‖ut − u0‖ = ‖∇ω∗(u∗t )−∇ω∗(u∗t )‖ ≤
1

µ
‖u∗t − u∗0‖,

from which the boundedness of {ut} immediately follows. This completes the proof.

The proof of Proposition 4.2: First, recall from (3.7) that

u∗k − u∗k+1 = αkF (uk) + αkβk(F (uk)− F (uk−1)).

It follows that

〈u∗k − u∗k+1, uk+1 − u〉 = 〈αkF (uk) + αkβk(F (uk)− F (uk−1)), uk+1 − u〉. (6.7)

On the other hand, applying (2.3) in Lemma 2.2, we have

〈u∗k − u∗k+1, uk+1 − u〉 = D
u∗
k

ω (u, uk)−D
u∗
k+1
ω (u, uk+1)−D

u∗
k

ω (uk+1, uk). (6.8)

Thus, combining (6.7) and (6.8), we obtain

〈αkF (uk)+αkβk(F (uk)−F (uk−1)), uk+1−u〉 = D
u∗
k
ω (u, uk)−D

u∗
k+1
ω (u, uk+1)−D

u∗
k
ω (uk+1, uk). (6.9)

Let ∆Fk := F (uk)− F (uk−1); then

〈αkF (uk) + αkβk(F (uk)− F (uk−1)), uk+1 − u〉
= αkβk〈∆Fk, uk+1 − u〉 − αk〈∆Fk+1, uk+1 − u〉+ αk〈F (uk+1), uk+1 − u〉
= αkβk〈∆Fk, uk − u〉+ αkβk〈∆Fk, uk+1 − uk〉

−αk〈∆Fk+1, uk+1 − u〉+ αk〈F (uk+1), uk+1 − u〉.

(6.10)

Inserting (6.9) into (6.10) and rearranging the terms, we have

αk〈F (uk+1), uk+1 − u〉
= αk〈∆Fk+1, uk+1 − u〉 − αkβk〈∆Fk, uk − u〉+ αkβk〈∆Fk, uk − uk+1〉

+D
u∗
k

ω (u, uk)−D
u∗
k+1

ω (u, uk+1)−D
u∗
k

ω (uk+1, uk).

(6.11)
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Using the relative Lipschitzness assumption, we have that

〈∆Fk, uk − uk+1〉 = 〈F (uk)− F (uk−1), uk − uk+1〉

≤ λD
u∗
k
ω (uk+1, uk) + λD

u∗
k−1
ω (uk, uk−1).

(6.12)

Finally, combining (6.11) and (6.12) and noting (4.2), we obtain (4.3).
Now, we turn to prove the boundedness. Summing up (4.3) from k = 0 to t− 1, we obtain

∑t−1
k=0 αk〈F (uk+1), uk+1 − u〉 ≤ αt−1〈∆Ft, ut − u〉 − α−1〈∆F0, u0 − u〉

+D
u∗0
ω (u, u0)−D

u∗
t
ω (u, ut)

+λα−1D
u∗
−1
ω (u0, u−1)− λαt−1D

u∗
t−1
ω (ut, ut−1).

(6.13)

Using the relative Lipschitzness assumption, we have that

〈∆Ft, ut − u〉 = 〈F (ut)− F (ut−1), ut − u〉

≤ λD
u∗
t
ω (u, ut) + λD

u∗
t−1
ω (ut, ut−1).

(6.14)

Combining (6.13) and (6.14) and noting ‖∆F0‖ = D
u∗
0
ω (u, u0) = 0 due to the fact u0 = u−1, we

obtain
t−1
∑

k=0

αk〈F (uk+1), uk+1 − u〉 ≤ D
u∗
0
ω (u, u0)− (1− λαt−1)D

u∗
t
ω (u, ut). (6.15)

Using (6.15) with u = ū ∈ Y and repeating the argument below (6.4), we deduce that

(1− λαt−1)D
u∗
t

ω (ū, ut) ≤ D
u∗0
ω (ū, u0). (6.16)

Repeating the argument below (6.5) and noting that 1 − λαt−1 > ρ, we finally conclude that the
sequence {uk} is bounded. This completes the proof.

The proof of Proposition 5.1: Combining (5.4) in Lemma and (6.4), we obtain

f(x̂k, y)− f(x, ŷk) ≤
1

sk

k
∑

i=0

ri〈F (zi), zi − z〉 ≤
1

sk
D
u∗0
ω (z, u0). (6.17)

In view of the definition of D1, we derive that

maxy:[x̂k;y]∈D1
f(x̂k, y)−minx:[x;ŷk]∈D1

f(x, ŷk)

= maxz:z∈D1
[f(x̂k, y)− f(x, ŷk)]

≤ maxz:z∈D1

1
sk
D
u∗
0
ω (z, u0).

(6.18)

Note that
max

y:[x̂k;y]∈D1

f(x̂k, y) ≥ f(x̂k, ȳ) ≥ f(x̄, ȳ)

and
min

x:[x;ŷk]∈D1

f(x, ŷk) ≤ f(x̄, ŷk) ≤ f(x̄, ȳ)
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due to the fact of z̄ = [x̄; ȳ] ∈ D1 and the definition of saddle points. Thus, together with the fact
of [x̂k; ŷk] ∈ D1 and using (6.18), we derive that

f(x̂k, ŷk)− f(x̄, ȳ) ≤ max
y:[x̂k;y]∈D1

f(x̂k, y)− min
x:[x;ŷk]∈D1

f(x, ŷk) ≤ max
z:z∈D1

1

sk
D
u∗0
ω (z, u0)

and

f(x̄, ȳ)− f(x̂k, ŷk) ≤ max
y:[x̂k;y]∈D1

f(x̂k, y)− min
x:[x;ŷk]∈D1

f(x, ŷk) ≤ max
z:z∈D1

1

sk
D
u∗0
ω (z, u0).

Therefore, the sublinear convergence (5.5) follows.
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