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Abstract

This corrigendum provides corrections for an error in the previously published letter “On
Maximizing a Monotone k-Submodular Function under a Knapsack Constraint” [Oper. Res.
Lett. 50.1 (2022) 28–31].

The aim of this corrigendum is to correct the error in the proof of Theorem 1 of [1]. This
error resulted from the incorrect statement of inequality (6). Fortunately, the corrections made
in this corrigendum do not affect the statement of Theorem 1. The proposed original algorithm
(Algorithm 2) still works, and its approximation ratio can even be improved from 1

2 − 1
2e ≈ 0.316

to 0.4.
This corrigendum is divided into two parts. We first describe how the error happens, and then

present a revised proof of Theorem 1.

1 Error in Inequality (6)

Inequality (6) in [1] states that

f(SA) ≥ f(St∗) = f(Y ) + g(St∗)

= f(Y ) + g(St∗ ∪ {(at∗+1, it∗+1)}) − g(St∗ ∪ {(at∗+1, it∗+1)}) + g(St∗)

= f(Y ) + g(St∗ ∪ {(at∗+1, it∗+1)}) − (f(St∗ ∪ {(at∗+1, it∗+1)}) − f(St∗))

≥ f(Y ) +
1

2
(1− e−1)g(T )− f(Y )/2

≥
1

2
(1− e−1)f(T ).
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However, the second last inequality may not hold, and more specifically, the inequality

f(St∗ ∪ {(at∗+1, it∗+1)}) − f(St∗) ≤ f(Y )/2

is incorrect. Since the item-index pair (at∗+1, it∗+1) may be not contained in the optimal solution
T (though at∗+1 ∈ U(T ), the index may be inconsistent), it does not satisfy the condition of Eq.
(2) in [1], and thus we cannot use Eq. (2) to bound the difference f(St∗ ∪{(at∗+1, it∗+1)})− f(St∗).

2 Revised proof of Theorem 1

In this section, we present a revised proof of Theorem 1 in [1]. In the previous version of Theorem
1 in [1], it is stated that Algorithm 2 has an approximation ratio 1

2 − 1
2e ≈ 0.316. In the revised

version, the ratio can be proven to be at least 0.4.

Theorem 2.1. For maximizing f under a knapsack constraint, Algorithm 2 has an approximation

ratio of 0.4.

Proof. Let T = {(e1, d
∗
1), . . . , (e|T |, d

∗
|T |)} be an optimal solution. If |T | = 1, our algorithm must

find it in Line 1. So we only need to consider |T | ≥ 2. First, we assume w.l.o.g. that the items
in U(T ) = {e1, . . . , e|T |} are arranged in decreasing order of maximum possible marginal gain.
Precisely, denote G0 = ∅, and for j = 1, . . . , |T |, denote

Gj = Gj−1 ∪ {(ej , dj)} where (ej , dj) ∈ arg max
(e,d)∈U(T )\U(Gj−1)×[k]

∆e,d(Gj−1).

That is, Gj−1 =
⋃j−1

i=1{(ei, di)}, and (ej , dj) is the item-index pair that brings the largest marginal
gain to Gj−1. Note that this definition is independent of the cost, and is indeed obtained by a
greedy procedure over items in U(T ). Though all items in Gj comes from T , the dimensions may
be different. Further, for j = 0, 1, . . . , |T |, define

Tj =
(

T \ {(e1, d
∗
1), . . . , (ej , d

∗
j )}

)

∪Gj . (1)

It is easy to see that T0 = T , T|T | = G|T |, and Tj is obtained by replacing the first j item-index
pairs of T by Gj .

The following claim is firstly noticed by Ward and Živnỳ (implicitly in Theorem 5.1 [2]) and
formalized by Xiao et al. [3].

Claim 2.2. f(T ) ≤ f(Gj) + f(Tj) ≤ 2f(Gj) +
∑

(a,d)∈Tj\Gj
∆a,d(Gj).

Let Y = G2. For any item e ∈ U(T ) − U(Y ), any dimension d ∈ [k] and any set Z ⊆
V \ U(Y ) \ {e} × [k], we have

f(Y ∪ Z ∪ {(e, d)}) − f(Y ∪ Z) ≤ f(G1)− f(∅) = f(G1),

where the inequality comes from the orthant submodularity and the definition of G1. Similarly,
since G1 ⊆ Y , we have

f(Y ∪ Z ∪ {(e, d)}) − f(Y ∪ Z) ≤ f(G1 ∪ {(e, d)}) − f(G1) ≤ f(G2)− f(G1).

2



It follows from the summation of the above two inequalities that

f(Y ∪ Z ∪ {(e, d)}) − f(Y ∪ Z) ≤
f(G2)

2
=

f(Y )

2
. (2)

Eq. (2) provides an upper bound on the marginal gain of bringing any item in U(T ) \U(Y ) to any
solution that contains Y .

Now, we consider the iteration in which Algorithm 2 chooses fixed set Y = G2 at the beginning
of the greedy procedure, i.e. S0 = Y .

Let t∗ + 1 be the first step in which the algorithm considered an item in U(T ) but does not
add it due to the budget constraint (implying that c(St∗) + c(at∗+1) > B and St∗+1 = St∗). We
can further assume that t∗ + 1 is the first step t for which St = St−1. This assumption is without
loss of generality, because if it happens earlier for some t′ < t∗ + 1, then at′ does not belong to
the optimal solution T , nor the approximate solution we are interested in; thus, we can remove at′

from the ground set V , without affecting the analysis, the optimal solution T , and the approximate
solution obtained in the iteration with S0 = Y .

Let e∗ ∈ arg max
e∈U(T2\Y )

c(e) be the item of largest cost in T \ Y , and (e∗, d∗) ∈ T . Let R =

T2 \ Y \ {(e∗, d∗)} be the remainder, that is, T2 = Y ∪ {(e∗, d∗)} ∪ R. It is not hard to see that
c(St∗) ≥ c(R) + c(Y ), because adding the item at∗+1 (see Line 5 of Algorithm 2) to St∗ would
exceed the budget, that is, c(St∗) + c(at∗+1) > B ≥ c(T ) = c(R) + c(Y ) + c(e∗).

Define a function g(S) = f(S ∪ Y ) − f(Y ) for all S ⊆ V \ U(Y ), which is also a monotone
k-submodular function. Xiao et al. [3] prove that for any k-submodular function f ′, any instance
with an optimal solution OPT , and any partial greedy solution S, the function value f ′(S) is at

least 1
2(1− e

−2 c(S)
c(OPT ) ) · f ′(OPT ). Naturally applying this conclusion to function g and solution R,

we obtain

g(St∗ \ Y ) ≥
1

2
(1− e

− 2c(St∗\Y )
c(R) )g(R) ≥

1

2
(1− e−2)g(R). (3)

Moreover, we have

3

2
f(Y ) = f(Y ) +

1

2
f(Y )

≥ f(Y ) + (f(Y ∪R ∪ {(e∗, d∗)})− f(Y ∪R)) (4)

= f(T2)− g(R) (5)

≥ f(T )− f(Y )− g(R), (6)

where (4) comes from Eq. (2), (5) comes from the facts that T2 = Y ∪ R ∪ {(e∗, d∗)} and g(R) =
f(R ∪ Y )− f(Y ), and (6) comes from Claim 2.2. It immediately implies that

5

2
f(Y ) ≥ f(T )− g(R). (7)

Finally, combining (3) and (7), we obtain a lower bound on the output f(SA) of our algorithm:

f(SA) ≥ f(St∗) = f(Y ) + g(St∗ \ Y )

≥ f(Y ) +
1

2
(1− e−2)g(R) (8)

≥
2

5
(f(T )− g(R)) +

1

2
(1− e−2)g(R) (9)

≥
2

5
· f(T ). (10)

3



Eq. (8) follows from Eq. (3), Eq. (9) follows from Eq. (7), and Eq. (10) follows from the fact that
1
2(1 − e−2) > 2

5 . Therefore, the outcome SA of Algorithm 2 is at least 0.4-approximation of the
optimum.

References

[1] Zhongzheng Tang, Chenhao Wang, and Hau Chan. On maximizing a monotone k-submodular
function under a knapsack constraint. Operations Research Letters, 50(1):28–31, 2022.
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Abstract

We study the problem of maximizing a non-negative monotone k-submodular function f
under a knapsack constraint, where a k-submodular function is a natural generalization of a sub-
modular function to k dimensions. We present a deterministic (1

2
− 1

2e
) ≈ 0.316-approximation

algorithm that evaluates f O(n4k3) times, based on the result of Sviridenko (2004) on submod-
ular knapsack maximization.1

1 Introduction

A k-submodular function is a generalization of submodular function, where the input consists of
k disjoint subsets of the domain, instead of a single subset. The k-submodular maximization
problem has been studied in the unconstrained setting [15], under cardinality constraints [10], and
under matroid constraints [12], because it appears in a broad range of applications (e.g., influence
maximization with k kinds of topics, and sensor placement with k kinds of sensors [10]).

Let V be a finite set. Let (k + 1)V := {(X1, . . . ,Xk) | Xi ⊆ V ∀i ∈ [k],Xi ∩Xj = ∅ ∀i 6= j}
be the family of k disjoint sets, where [k] := {1, . . . , k}. A function f : (k + 1)V → R is called
k-submodular [7], if for any x = (X1, . . . ,Xk) and y = (Y1, . . . , Yk) in (k + 1)V , we have

f(x) + f(y) ≥ f(x ⊔ y) + f(x ⊓ y),

where

x ⊔ y :=

Ñ

X1 ∪ Y1\(
⋃

i 6=1

Xi ∪ Yi), . . . ,Xk ∪ Yk\(
⋃

i 6=k

Xi ∪ Yi)

é

,

x ⊓ y := (X1 ∩ Y1, . . . ,Xk ∩ Yk) .

1This manuscript is published in Operations Research Letters, but there is an error in the proof of Theorem 1.

We provide a corrigendum in the end of this manuscript.
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Denote x � y, if x = (X1, . . . ,Xk) and y = (Y1, . . . , Yk) with Xi ⊆ Yi for each i ∈ [k]. Define
the marginal gain when adding item a to the i-th dimension of x to be

∆a,i(x) := f(X1, . . . ,Xi−1,Xi ∪ {a},Xi+1, . . . ,Xk)− f(x).

It is not hard to see that, a k-submodular function f satisfies the orthant submodularity, that is,

∆a,if(x) ≥ ∆a,if(y), for any x,y ∈ (k + 1)V with x � y, a /∈ ∪j∈[k]Yj, i ∈ [k].

A function f : (k+1)V → R is called monotone, if f(x) ≤ f(y) for any x � y. Ward and Živnỳ [15]
shows that when monotonicity holds, f is k-submodular if and only if it is orthant submodular.

In this note, we study the maximization problem of a non-negative monotone k-submodular
function under a knapsack constraint, and give a deterministic (12 −

1
2e)-approximation algorithm

(see Theorem 3.1). It is an adaption to Sviridenko’s (1− 1
e )-approximation algorithm for submodular

knapsack maximization [14].

Related works. It is well known that the diminishing return property characterizes the submod-
ular function. This property often appears in practice, and various problems can be formulated as
submodular function maximization, under different constraints. Unfortunately, submodular func-
tion maximization is generally known to be NP-hard [2]. Therefore, approximation algorithms that
can run in polynomial time have been extensively studied.
Submodular knapsack. For monotone submodular maximization under a knapsack constraint, Sviri-
denko [14] presents a greedy (1 − 1

e )-approximation algorithm with O(n5) queries, which enumer-
ates all feasible sets of size no more than than 3 and then expands each set of size 3 greedily by
the marginal density. This is the best possible approximation ratio among polynomial-time algo-
rithms. Faster algorithms with (1− 1

e − ǫ)-approximation exist [1], but the time is exponential to 1
ǫ .

Yaroslavtsev et al. [17] presented a Greedy+Max algorithm that is a 1
2 -approximation with query

complexity O(K̃n), where K̃ is an upper bound on the number of elements in any feasible solution.
Huang et al. [6, 5] considered this problem in a streaming setting.
k-submodular maximization. One decade ago, Huber and Kolmogorov [7] proposed k-submodular
functions, which express the submodularity on choosing k disjoint sets of elements instead of a single
set, and recently become a popular subject of research [3, 4, 9, 13]. For unconstrained non-monotone
k-submodular maximization, Ward and Živnỳ [15] proposed a max{13 ,

1
1+a}-approximation algo-

rithm with a = max{1,
»

k−1
4 }. Later, Iwata et al. [8] improved the approximation ratio to 1

2 , which

is improved to k2+1
2k2+1

by Oshima [11] more recently. For unconstrained monotone k-submodular

maximization, Ward and Živnỳ [15] proved that a greedy algorithm is 1
2 -approximaion, and later,

Iwata et al. [8] proposed a randomized k
2k−1 -approximation algorithm, which is asymptotically

tight.
In the constrained setting, Ohsaka and Yoshida [10] proposed a 1

2 -approximation algorithm for
nonnegative monotone k-submodular maximization with a total size constraint (i.e., ∪i∈[k]|Xi| ≤ B

for an integer B) and a 1
3 -approximation algorithm for that with individual size constraints (i.e.,

|Xi| ≤ Bi ∀i ∈ [k] with integers Bi). Sakaue [12] proposed a 1
2 -approximation algorithm for

nonnegative monotone k-submodular maximization with a matroid constraint on the union of the
sets. Thus, our work completes the picture by studying a knapsack constraint.

2



ALGORITHM 1: Greedy (without constraint)

Input: Set V = {1, 2, . . . , n}, monotone k-submodular function f
Output: A solution S ∈ S

1: S ← ∅

2: for a = 1 to n do
3: ia ← argmaxi∈[k]∆a,i(S)
4: S ← S ∪ {(a, ia)}
5: end for
6: return S

2 Preliminaries

For notational ease, we identify (k + 1)V with the set

S =
{

∪tj=1{(aj , ij)} | ∀t ∈ [|V |], aj ∈ V ij ∈ [k] ∀j ∈ [t], aj 6= aj′ ∀j 6= j′
}

∪ {∅}

that is, any k-disjoint set x = (X1, . . . ,Xk) ∈ (k+1)V uniquely corresponds to an item-index pairs
set S ∈ S , such that (aj , ij) ∈ S if and only if aj ∈ Xij . From now on, we rewrite f(x) as f(S)
with some abuse of notations, and thus ∆a,i(S) means the marginal gain f(S ∪ {(a, i)}) − f(S).
For any S ∈ S , we define U(S) := {a ∈ V | ∃i ∈ [k] s.t. (a, i) ∈ S} to be the set of items included,
and the size of S is |S| = |U(S)|. In the remainder of this note, let f be an arbitrary non-negative,
monotone, k-submodular function. We further assume that f(∅) = 0, which is without loss of
generality because otherwise we can redefine f(S) := f(S)− f(∅) for all S ∈ S .

We first introduce an important lemma.

Lemma 2.1. For any S, S′ ∈ S with S ⊆ S′, we have

f(S′)− f(S) ≤
∑

(a,i)∈S′\S

∆a,i(S).

Proof. Let t = |S′|−|S|. Define arbitrary manner sets {Sj}
t
j=0 such that (1) S0 = S; (2) |Sj\Sj−1| =

1 for j ∈ [t]; (3) St = S′. Let {(aj , ij)} := Sj\Sj−1 for j ∈ [t]. Then we have

f(S′)− f(S) =

t
∑

j=1

∆aj ,ij(Sj−1) ≤

t
∑

j=1

∆aj ,ij(S),

where the inequality follows from the orthant submodularity.

The following proposition from Ward and Živnỳ [15] says that Greedy (see Algorithm 1) is
1
2 -approximation for maximizing f without constraint (note that Theorem 5.1 of [15] states a more
general conclusion which holds for a large class of k-set functions). Greedy considers items in an
arbitrary order, and assign each item the best index that brings the largest marginal gain.

Proposition 2.2 ([15]). Let T ∈ S be a solution that maximizes f in the unconstrained setting,
and S ∈ S be the solution returned by Greedy. Then f(T ) ≤ 2 · f(S).

In the later proofs we will use the following inequality from Wolsey [16].

3



Lemma 2.3 ([16]). Let P and D be arbitrary positive integers, and (ρi)
P
i=1 be arbitrary nonnegative

real values with ρ1 > 0. Then

∑P
i=1 ρi

mint=1,...,P (
∑t−1

i=1 ρi +Dρt)
≥ 1− (1−

1

D
)P ≥ 1− e−P/D.

3 Knapsack constraint

Given a set V = {1, . . . , n}, nonnegative integers ca ∈ N for all a ∈ V , and budget B ∈ R, we
consider the following maximization problem with a knapsack constraint,

max
S∈S







f(S) :
∑

a∈U(S)

ca ≤ B







. (1)

Sviridenko [14] considers the special case of k = 1 (i.e., submodular maximization with a
knapsack constraint), and presents a greedy (1 − 1

e )-approximation algorithm with O(n5) queries,
which enumerates all feasible sets of size at most 3 and then expands each set of size 3 greedily by
the marginal density. We adapted it to Algorithm 2 for problem (1) by enumerating all feasible
sets of size at most 2 and then expanding each set of size 2 greedily, and prove an approximation
ratio of 1

2 −
1
2e . For any solution S ∈ S , define c(S) to be the total cost of all items in S.

In Line 1 of Algorithm 2, it enumerates all feasible singleton solutions, and store the currently
best solution as SA; it takes O(nk) oracle queries. Then it considers all feasible sets of size two, and
completes each such set greedily with respect to the density, subject to the knapsack constraint.
There are O(n2k2) such sets, and for each set it takes O(n2k) queries. Thus, the time complexity
is O(n4k3).

ALGORITHM 2: Greedy for (1)

1: Let SA ∈ arg max
S: |S|=1,c(S)≤B

f(S) be a singleton solution giving the largest value.

2: for every I ∈ S of size 2 do
3: S0 ← I, V 0 ← V \U(I)
4: for t from 1 to n do
5: Let θt = max

a∈V t−1,i∈[k]

∆a,i(St−1)
ca

, and assume that the maximum is attained on (at, it)

6: if c(St−1) + cat ≤ B then
7: St = St−1 ∪ {(at, it)}
8: else
9: St = St−1

10: end if
11: V t = V t−1\{at}
12: end for
13: SA ← Sn if f(Sn) > f(SA)
14: end for
15: return SA

Theorem 3.1. For maximizing f under a knapsack constraint, Algorithm 2 has an approximation
ratio of 1

2 −
1
2e , and evaluates f O(n4k3) times.

4



Proof. Let T = {(a∗1, i
∗
1), . . . , (a

∗
|T |, i

∗
|T |)} be an optimal solution. If |T | = 1, our algorithm must find

it in Line 1. So we only need to consider |T | ≥ 2. We order the set T so that for any t = 1, . . . , |T |,

f(T t) = max
(a,i)∈T\T t−1

f(T t−1 ∪ {(a, i)}),

where T t = {(a∗1, i
∗
1), . . . , (a

∗
t , i

∗
t )}, and T 0 = ∅.

Let Y = T 2 be the set that consists of the first two items of T . For any item (a∗j , i
∗
j ) ∈ T , j ≥ 3,

and any set Z ⊆ V \{a∗1, a
∗
2, a

∗
j} × [k], by the ordering of the sets in T , we have

f(Y ∪ Z ∪ {(a∗j , i
∗
j )})− f(Y ∪ Z) ≤ f(T 1)− f(∅) ≤ f(T 1);

f(Y ∪ Z ∪ {(a∗j , i
∗
j )})− f(Y ∪ Z) ≤ f(T 1 ∪ {(a∗j , i

∗
j )}) − f(T 1) ≤ f(T 2)− f(T 1).

It follows from the summation of the above two inequalities that

f(Y ∪ Z ∪ {(a∗j , i
∗
j )}) − f(Y ∪ Z) ≤ f(Y )/2. (2)

Now, we consider the iteration in which the algorithm chooses set Y at the beginning of the greedy
procedure, i.e. S0 = Y . Define a function g(S) = f(S) − f(Y ) for all S ⊇ Y , which is also a
monotone k-submodular function.

Let t̂ + 1 be the first step that the algorithm does not add item at̂+1 ∈ U(T ) to the current

set U(S t̂) because its addition would exceed the budget. Thus S t̂+1 = S t̂. We can further assume
that t̂ + 1 is the first step t for which St = St−1. This assumption is without loss of generality,
because if it happens earlier for some t′ < t̂ + 1, then at′ does not belong to the optimal solution
T , nor the approximate solution we are interested in; thus, we can remove at′ from the ground set
V , without affecting the analysis, the optimal solution T , and the approximate solution obtained
in the iteration with S0 = Y .

Note that Y ⊆ T ∩ St, for any t = 0, . . . , t̂. Define OPTg(V
′) to be the optimal value of

function g over items V ′ ⊆ V without constraint. We greedily construct a set S̃ ∈ S over items
U(T ) ∪ U(St): starting with Y ⊆ S̃, consider every item in U(St\Y ) in the same order as it is
added to U(St) in Algorithm 2, and then consider every item in U(T )\U(St) in an arbitrary order;
when considering each item, assign the best index that brings the largest marginal gain. Clearly
St ⊆ S̃, as the indices in St are assigned greedily. For any t = 0, . . . , t̂, we have

g(T ) ≤ OPTg(U(T ) ∪ U(St)) ≤ 2 · g(S̃)

≤ 2

Ñ

g(St) +
∑

(a,i)∈S̃\St

(g(St ∪ {(a, i)}) − g(St))

é

= 2

Ñ

g(St) +
∑

(a,i)∈S̃\St

(f(St ∪ {(a, i)}) − f(St))

é

≤ 2
(

g(St) + (B − c(Y ))θt+1

)

.

(3)

The second inequality follows from the fact that S̃ is obtained greedily and thus achieves a 2-
approximation by Proposition 2.2. The third inequality is because of Lemma 2.1. The last inequal-
ity follows from f(St ∪ {(a, i)}) − f(St) ≤ ca · θt+1 and

∑

(a,i)∈S̃\St ca ≤ B − c(Y ).

5



Let Bt =
∑t

τ=1 caτ and B0 = 0. Define B′ = Bt̂+1 and B′′ = B − c(Y ). By the definition of
the item at̂+1, we have B′ > B ≥ B′′. For j = 1, . . . , B′, we define ρj = θt if j = Bt−1 + 1, . . . , Bt

(that is, ρ1 = · · · = ρB1 = θ1, ρB1+1 = · · · = ρB2 = θ2, . . ., ρBt̂+1 = · · · = ρB′ = θt̂+1). Using this

definition, we obtain g(St) =
∑t

τ=1 caτ θτ =
∑Bt

j=1 ρj for t = 1, . . . , t̂ and g(S t̂ ∪ {(at̂+1, it̂+1)}) =
∑t̂+1

τ=1 caτ θτ =
∑B′

j=1 ρj . Then we have equalities

min
s=1,...,B′

{
s−1
∑

j=1

ρj +B′′ρs} = min
t=0,...,t̂

{
Bt
∑

j=1

ρj +B′′ρBt+1}

= min
t=0,...,t̂

{g(St) +B′′θt+1}.

(4)

Combining (4) with (3) and Lemma 2.3, we obtain

g(S t̂ ∪ {(at̂+1, it̂+1)})

g(T )
=

∑B′

j=1 ρj

g(T )

≥

∑B′

j=1 ρj

2 ·mins=1,...,B′{
∑s−1

j=1 ρj +B′′ρs}

≥
1

2
(1− e−B′/B′′

) >
1

2
(1− e−1).

(5)

Finally, combining (2) and (5), we obtain a lower bound on the output f(SA) of our algorithm:

f(SA) ≥ f(S t̂) = f(Y ) + g(S t̂)

= f(Y ) + g(S t̂ ∪ {(at̂+1, it̂+1)}) − g(S t̂ ∪ {(at̂+1, it̂+1)}) + g(S t̂)

= f(Y ) + g(S t̂ ∪ {(at̂+1, it̂+1)}) − (f(S t̂ ∪ {(at̂+1, it̂+1)}) − f(S t̂))

≥ f(Y ) +
1

2
(1− e−1)g(T ) − f(Y )/2 (6)

≥
1

2
(1− e−1)f(T ).

4 Discussions

We remark that the proof idea of Theorem 1 generally follows the proof of the (1− 1
e )-approximation

algorithm for submodular knapsack maximization in [14]. That is, first upper bound the marginal
value brought by an single item in the optimal solution on the basis of Y (as in (2)), then upper
bound the optimal value g(T ) (as in (5)), and finally derive a lower bound on our solution f(SA).
There are two main differences. First, we reduce the enumeration in the algorithm from subsets of
size three in [14] to two. The reason we can do it is that, if the starting set Y is of size s, then the

RHS of Eq. (2) is f(Y )
s ; this will be used to derive Eq. (6), which only requires 1− 1

s ≥
1
2(1− e−1).

Thus, a size s = 2 is enough for the analysis. Second, the additional difficulty that arises in our
problem is that, we can no longer obtain an upper bound on g(T ) straightforwardly from Lemma
2.1, because the items in U(T ) ∩ U(St) may have different indices in T and St. To overcome this,
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we construct an intermediary S̃ over the items in U(T )∩U(St) by the Greedy algorithm, such that
g(T ) ≤ 2 · g(S̃) (see Eq. (3)), and then use Lemma 2.1 to upper bound the value g(S̃). Thus, we
indirectly obtain an upper bound on g(T ).

One may be surprised by the fact that we get a 1
2(1−

1
e )-approximation for any k, whereas there

is a (1− 1
e )-approximation when k = 1 [14]. The reason for such a jump is that, the approximation

ratio of the Greedy (which is used to construct S̃) is trivially 1 for k = 1, but jumps to 2 for any
k ≥ 2 (and the analysis is tight). It would be an interesting direction to get an approximation ratio
that degrades smoothly as a function of k.
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