
Fixed-charge transportation problems on trees

Gustavo Angulo*† Mathieu Van Vyve*

gustavo.angulo@uclouvain.be mathieu.vanvyve@uclouvain.be

September 1, 2021

Abstract

We consider a class of fixed-charge transportation problems over graphs. We show that this problem
is strongly NP-hard, but solvable in pseudo-polynomial time over trees using dynamic programming. We
also show that the LP formulation associated to the dynamic program can be obtained from extended
formulations of single-node flow polytopes. Given these results, we present a unary expansion-based
formulation for general graphs that is computationally advantageous when compared to a standard for-
mulation, even if its LP relaxation is not stronger.

Keywords: fixed-charge transportation problem; single-node flow polytope; dynamic programming;
pseudo-polynomial extended formulation.

1 Introduction

Let n and m be positive integers, and let N := {1, . . . , n} and M := {1, . . . , m}. We refer to i ∈ N and j ∈ M
as suppliers and customers, respectively. Let ci ≥ 0 be the available supply at node i and let dj ≥ 0 be the
demand at node j. We assume that c and d are integer-valued. Also, let qij be the fixed cost for sending
a positive amount of flow from i to j, and let pij be the per unit flow cost (or revenue). The fixed-charge
transportation problem (FCTP) asks for a set of flows from suppliers to customers satisfying capacity limits
at nodes and arcs such that the sum of fixed and variable costs is the least possible. A natural integer
programming formulation is given by

(IPnm) min p>x + q>y

s.t.
m

∑
j=1

xij ≤ ci i ∈ N (1)

n

∑
i=1

xij ≤ dj j ∈ M (2)

yij ≤ xij ≤ min{ci, dj}yij i ∈ N, j ∈ M (3)
yij ∈ {0, 1} i ∈ N, j ∈ M, (4)

where yij indicates whether or not there is a positive flow from i to j, and xij is the amount of flow. In view
of (1) and (2), the roles of suppliers and customers are symmetric in the above formulation. However, the
∗Center for Operations Research and Econometric, Université catholique de Louvain
†Departamento de Ingenierı́a Industrial y de Sistemas, Pontificia Universidad Católica de Chile

1

ar
X

iv
:1

51
1.

08
17

9v
1

 [
m

at
h.

O
C

]
 2

5
N

ov
 2

01
5

analysis we present here can be modified to fit models where the inequalities in (1) and (2) are reversed or
set to equalities.

(FCTP) generalizes the single-node flow problem and is therefore at least as hard (weakly NP-hard). Flow
cover [6, 8] and lifted flow cover inequalities [5] have been shown to be very effective. For the equality
case, [1] derives inequalities and facets for the projection on the y-space, and [7] introduces a reformulation
with exponentially many variables which is solved with column generation. When the underlying graph is
a path, [9] presents a class of path-modular inequalities and shows that they suffice to describe the convex
hull of feasible solutions. For the single-node flow problems, [2] presents an improved dynamic program.

For notational convenience, we formulate (FCTP) as follows. Let G = (V, E) be a graph. Let bi ≥ 0 be the
capacity of node i ∈ V. For each arc (i, j) = (j, i) ∈ E, we set aij := min{bi, bj} as the capacity of the arc.
Given cost vectors p and q, consider

(IP) min p>x + q>y
s.t. ∑

j∈V: (i,j)∈E
xij ≤ bi i ∈ V (5)

0 ≤ xij ≤ aijyij (i, j) ∈ E (6)
yij ∈ {0, 1} (i, j) ∈ E. (7)

When G is isomorphic to Knm, the complete bipartite graph with n and m nodes on each side of the partition,
we recover (IPnm).

Let S be the set defined by (5)–(7), and let P be its linear relaxation obtained by replacing (7) with 0 ≤ yij ≤ 1.
We denote conv(X) the convex hull of a set X of real vectors. Our main object of study is conv(S).

Consider now the following unary-expansion based formulation

(IP+z) min p>x + q>y
s.t. (5), (6), (7)

aij

∑
l=0

l zijl = xij (i, j) ∈ E (8)

aij

∑
l=1

zijl ≤ yij (i, j) ∈ E (9)

aij

∑
l=0

zijl = 1 (i, j) ∈ E (10)

zijl ∈ {0, 1} (i, j) ∈ E, 0 ≤ l ≤ aij, (11)

where the intended meaning is that zijl = 1 if xij = l and 0 otherwise. As the next easy proposition shows,
(IP+z) is not stronger than (IP).

Proposition 1. The projection of the linear relaxation of (IP+z) onto (x, y) is equal to P.

Proof. We just need to prove the reverse inclusion. Given (x, y) ∈ P, it suffices to exhibit a vector 0 ≤ z ≤ 1
such that (8)–(10) are satisfied. For each arc (i, j), let zijaij = xij/aij, zij0 = 1− zijaij and zijl = 0 for 0 < l < aij.
Verifying that the constraints are satisfied is straightforward.

However, we will see that modern IP solvers are much more effective at tightening (IP+z) than (IP).

2

This paper can be read as a theoretical explanation of this empirical finding. More specifically our contri-
butions are the following. In Section 2 we prove that (FCTP) is strongly NP-hard in general, but is pseudo-
polynomially solvable when G is a tree. Based on this last result, we show in Section 3 that single-node
tightening of (IP+z) is actually sufficient to describe conv(S) when G is a tree. Finally we empirically
demonstrate in Section 4 the substantial performance improvements obtained when using (IP+z) to solve
with CPLEX randomly generated instances of (FCTP), when numbers bi are not too large integers.

2 Complexity Results

2.1 General graphs

Proposition 2. (FCTP) is strongly NP-hard.

Proof. We give a reduction of the strongly NP-complete 3-Partition to (FCTP) [4]. In 3-Partition we are given
3n nonnegative integers a1, . . . , a3n that sum up to nb and are strictly between b/4 and b/2. The problem
is to decide whether they can be partitioned into n groups that each sum up to b. Consider an instance of
(FCTP) with n suppliers with capacity b each, 3n clients with demands a1, . . . , a3n, pij = −2 variable cost
and unit fixed cost qij = 1 for all pairs (i, j).

The optimal solution to this instance of (FCTP) satisfies ∑j xij = b for all i because the fixed cost of opening
any arc is smaller than the benefit of sending one unit of flow along this arc. Therefore the problem reduces
to using as few arcs as possible to saturate all nodes. Because each client has to be linked to at least one
supplier, any solution has cost at least −2nb + 3n.

If the optimal solution value is exactly −2nb + 3n and therefore each client is fully served by one supplier
only, then this solution yields the desired partition and the answer to 3-Partition is yes. If the answer of
3-Partition is yes, then the (obvious) assignment of clients to suppliers according to the 3-Partition solution
has indeed cost −2nb + 3n.

2.2 Trees

We assume in this subsection that G is a tree. Let node 1 be the (arbitrarily chosen) root of G. For node
i, let p(i) denote its parent node (we set p(1) = 0) and let { f (i), . . . , l(i)} denote its children, which we
assume are numbered consecutively (as with breadth-first search). In presenting a dynamic programming
formulation, it is understood that p(j) = i for any arc (i, j) ∈ E and thus i < j.

Let (i, j) ∈ E. For 0 ≤ l ≤ aij, let βijl denote the optimal value of the problem restricted to the subtree
induced by i, j, and its descendants, under the condition that xij = l (see Fig. 1a). Similarly, for 0 ≤ k ≤ bi, let
αijk denote the optimal value of the problem on the subtree induced by i, f (i), . . . , j, and their descendants,
under the condition that ∑ f (i)≤j′≤j xij′ = k (see Fig. 1b). Then we have that the optimal value of (IP) is given
by β010 such that

αijk =

 βijk j = f (i)

min
0≤k−k′≤aij

{
αi(j−1)k′ + βij(k−k′)

}
j > f (i) (i, j) ∈ E, 0 ≤ k ≤ bi (12)

βijl =

 cijl j is a leaf node

min
0≤k≤bj−l

{
αjl(j)k

}
+ cijl j is a nonleaf node (i, j) ∈ E, 0 ≤ l ≤ aij (13)

3

β010 = min
0≤k≤b1

{
α1l(1)k

}
(14)

where, for (i, j) ∈ E, we set cij0 = 0 and cijl = lpij + qij for l ≥ 1.

(a) Restricted problem defining βijl . (b) Restricted problem defining αijk.

Figure 1: Representation of dynamic program on a tree.

The key property exploited for this construction is the fact that for a tree, if the flow on an edge is fixed, the
problem decomposes into two subproblems of exactly the same type.

3 Extended Formulations

In LP form, (12)–(14) leads to

max β010

s.t. αijk ≤ βijk (i, j) ∈ E, j = f (i), 0 ≤ k ≤ bi (uij0k)

αijk ≤ αi(j−1)k′ + βij(k−k′) (i, j) ∈ E, j > f (i), 0 ≤ k′ ≤ k ≤ bi : k− k′ ≤ aij (uijk′k)

βijl ≤ cijl (i, j) ∈ E, 0 ≤ l ≤ aij, j is a leaf node (vijl0)

βijl ≤ αjl(j)k + cijl (i, j) ∈ E, 0 ≤ l ≤ aij, 0 ≤ k ≤ bj − l, j is a nonleaf node (vijlk)

β010 ≤ α1l(1)k 0 ≤ k ≤ b1 (v010k).

4

Taking the dual we obtain

min ∑
(i,j)∈E

∑
k,l

cijlvijlk (15)

s.t. ∑
0≤k−k′≤aij

uijk′k =


∑

0≤k′−k≤ai(j+1)

ui(j+1)kk′ f (i) ≤ j < l(i)

∑
0≤l≤bi−k

vp(i)ilk j = l(i)
(i, j) ∈ E, 0 ≤ k ≤ bi (16)

∑
0≤k≤bj−l

vijlk = ∑
k−k′=l

uijk′k (i, j) ∈ E, 0 ≤ l ≤ aij (17)

∑
0≤k≤b1

v010k = 1 (18)

u ≥ 0 (19)
v ≥ 0. (20)

Note that the left-hand side of (16) reduces to uij0k if j = f (i). Similarly, the left-hand side of (17) reduces to
vijl0 if j is a leaf, and its right-hand side equals to uij0l if j = f (i).

From (15) and the definition of cijl , we have

∑
(i,j)∈E

∑
k,l

cijlvijlk = ∑
(i,j)∈E

∑
l>0

(lpij + qij)∑
k

vijlk = ∑
(i,j)∈E

pij ∑
l

l ∑
k

vijlk + ∑
(i,j)∈E

qij ∑
l>0

∑
k

vijlk.

Thus using the mappings xij = ∑l l ∑k vijlk and yij = ∑l>0 ∑k vijlk, (16)–(20) becomes an extended formula-
tion for conv(S) of pseudo-polynomial size. Let us call it QDP.

On the other hand, we can derive another formulation for S, of pseudo-polynomial size as well, by writting
an extended formulation for the convex hull of the single-node flow problem at each node of G and adding
an appropriate set of linking constraints. More precisely, for each i ∈ V, we consider a vector fi which
indicates how flows from i are assigned to p(i) and f (i), . . . , l(i). Let fijk′k be a binary variable taking
the value 1 if and only if ∑ f (i)≤j′<j xij′ = k′ and xij = k − k′. If j = f (i), then only variables fij0k are
defined. Similarly, let fip(i)k′k be a binary variable taking the value 1 if and only if ∑ f (i)≤j′≤l(i) xij′ = k′ and
xip(i) = k− k′. If i is a leaf node, then only variables fip(i)0k are defined, and if i = 1, then we set a10 = 0
and only variables f10kk are defined. Thus we have that f = (f1, . . . , f|V|) must satisfy

∑
0≤k−k′≤aij

fijk′k =


∑

0≤k′−k≤ai(j+1)

fi(j+1)kk′ f (i) ≤ j < l(i)

∑
0≤k′−k≤aip(i)

fip(i)kk′ j = l(i)
(i, j) ∈ E, 0 ≤ k ≤ bi (21)

∑
0≤k−k′≤aip(i)

fip(i)k′k = 1 i ∈ V (22)

∑
k−k′=l

fijk′k = ∑
k−k′=l

f jik′k (i, j) ∈ E, 0 ≤ l ≤ aij (23)

f ≥ 0. (24)

Since in this case we use the mappings xij = ∑k′≤k(k− k′) fijk′k and yij = ∑k′<k fijk′k, constraints (23) ensure
that the flows from i to j and from j to i are consistent. Let QSN be the polyhedron defined by (21)–(24).
By construction, conv(S) is contained in the projection of QSN onto the (x, y)-space. We show that equality
holds.

Proposition 3. QSN is an extended formulation for conv(S).

5

Proof. Since QDP is an extended formulation for conv(S), it suffices to show that there exists an injective
linear mapping π : QSN −→ QDP such that for any f ∈ QSN , both f and π(f) have the same projection
onto the (x, y)-space. Let π(f) = (u, v) be defined by uijk′k = fijk′k and vijlk = f jik(k+l) for i < j.

We first show that (u, v) ∈ QDP. Clearly, (19) and (20) are implied by (24). Since f satisfies (21), then (u, v)
satisfies (16). Constraint (17) is implied by (23). Taking (22) for i = 1 yields

1 = ∑
0≤k≤b1

f1p(1)kk = ∑
0≤k≤b1

f10kk = ∑
0≤k≤b1

v010k,

implying (18). Therefore, (u, v) ∈ QDP and π is well-defined. Seeing that π is injective is immediate from
its definition. Verifying that the projections of f and π(f) coincide follows from (23) and a simple change
of variables.

Note that (23) can be equivalently rewritten as:

∑
k−k′=l

fijk′k = zijl (i, j) ∈ E, 0 ≤ l ≤ aij (25)

∑
k−k′=l

f jik′k = zijl (i, j) ∈ E, 0 ≤ l ≤ aij, (26)

where, as in (IP+z), zijl = 1 if xij = l and 0 otherwise. It should then be clear that (i) formulation (21)–(22),
(24)–(26) is an exact extended formulation when G is a tree, and (ii) that this exact formulation is obtained
by convexifying (in the (x, y, z)-space of variables) each single-node relaxation of (IP+z) separately.

Note that this is very much in the spirit of Bodur et al. [3]. They show that the LP relaxation of any mixed-
binary linear program admits an extended formulation, not stronger than the original formulation, but
whose split closure is integral. However, the proof is existential only in the sense that it requires a complete
enumeration of all extreme points of the LP relaxation, which in general is an extremely demanding task.
Here, for the specific case of (FCTP), we exhibit an extended formulation, not stronger than the orginal one,
but whose ”single-node closure” is integral. Note that this is not the case for the standard formulation (IP):
convexifying each single-node relaxation of (IP) separately (in the (x, y)-space of variables) does not yield
an integral polyhedron, even when G is a tree.

When G is not a tree, Proposition 3 still suggests a strong (albeit not exact) formulation for (FCTP): write
the network flow-based extended formulation at each node of (IP+z). The resulting formulation will be at
least as strong as the intersection of all tree-relaxations in the original variable space. However, the number
of variables grows quadratically with the size of the entries of b, which is impractical except for very small
values.

Fortunately, modern IP solvers have very effective built-in cut separation routines for single-node relax-
ations of the type found in (IP+z). Therefore instead of explicitely tightening these single-node relaxations
in the model, a practical approach that we explore in the next section is to just give formulation (IP+z) to
the solver and rely on its automatic tightening capabilities. The intended benefit is to reduce the number of
variables to linear from quadratic in the size of b, but at the cost of a reduced strength of the dual bound.

4 Computational Experiments

We generated random instances as follows. We consider problems of the form (IPnm) where (2) is set to
equality. The number of suppliers and customer is the same, n, chosen from {20, 30, 40}. We also choose a
number B ∈ {20, 40, 60} and a factor r ∈ {0.90, 0.95, 1.00} as the total demand to total supply ratio. Given B
and r, we sample each ci and dj independently from the uniform distribution on {1, . . . , B}. Let C and D be

6

the sampled total supply and total demand, respectively. If D < drCe, then we iterate over j and increase
dj by one unit if dj < B, one j at a time, until D = drCe. Similarly, if D > drCe, then we iterate over i and
increase ci by one unit if ci < B, one i at a time, until D = drCe. Fixed cost are sampled independently from
the uniform distribution on {200, . . . , 800}, while variable costs are set to zero.

We generated 10 instances for each combination of n, B, and r, which are solved using formulations (IP) and
(IP+z). For each formulation, we gather information at two stages: after the root node has been processed
(Root) and at the end of branch-and-cut (B&C). We report average results for Time (seconds), Gap (%), and
Nodes. For (IP+z), we also report the average percentage difference of the lower bound (∆LB) and upper
bound (∆UB) compared to those obtained by (IP) at the root node and at end of branch-and-cut. We use
CPLEX 12.6.1 as the solver, running on Linux with a single thread and a time limit of 3600 seconds. Tables
1, 2, and 3 summarize our results.

(IP) (IP+z)

Root B&C Root B&C

B r Time Gap Time Nodes ∆LB ∆UB Time ∆LB ∆UB Gap Time Nodes

20
0.90 1 0.00 10 3297 3.08 -1.65 1 0.00 0.00 0.00 1 1
0.95 1 0.00 28 8596 4.49 -1.86 3 0.00 0.00 0.00 3 11
1.00 1 0.00 528 163231 6.92 25.65 5 0.00 0.00 0.00 6 58

40
0.90 1 0.00 24 8424 3.87 -1.37 3 0.00 0.00 0.00 4 70
0.95 1 0.00 289 131431 5.32 -3.10 5 0.00 0.00 0.00 6 63
1.00 1 3.04 3251 809102 9.50 123.09 13 2.64 -0.52 0.00 135 1487

60
0.90 1 0.00 24 9227 3.74 -1.48 5 0.00 0.00 0.00 6 94
0.95 1 0.00 677 228024 5.74 50.50 10 0.00 0.00 0.00 32 592
1.00 1 6.16 3610 985554 10.60 192.02 19 5.27 0.84 1.94 2294 16412

Table 1: Average results on 20× 20 instances.

(IP) (IP+z)

Root B&C Root B&C

B r Time Gap Time Nodes ∆LB ∆UB Time ∆LB ∆UB Gap Time Nodes

20
0.90 1 0.00 167 29033 2.06 -1.95 4 0.00 0.00 0.00 4 22
0.95 2 0.17 853 114655 3.87 -4.89 7 0.17 0.00 0.00 8 43
1.00 3 2.31 2905 308104 5.49 69.52 15 2.16 -0.22 0.00 68 789

40
0.90 2 0.00 626 106839 3.58 -2.36 10 0.00 0.00 0.00 16 180
0.95 2 0.87 2419 329429 4.76 -1.68 17 0.86 -0.03 0.00 42 475
1.00 3 8.66 3600 427371 8.08 353.10 31 5.75 -0.32 2.93 2824 13022

60
0.90 2 0.00 290 58686 3.60 -2.67 14 0.00 0.00 0.00 15 84
0.95 3 1.89 2585 327116 4.63 231.29 19 1.82 -0.13 0.00 184 1323
1.00 3 10.92 3600 456224 8.77 468.14 46 6.51 7.81 11.90 3600 12197

Table 2: Average results on 30× 30 instances.

We observe that the instances become more challenging as n, B, and r increase, with both formulations
taking longer and exploring more nodes. In particular, they become extremely hard for r = 1.00.

When looking at the results of branch-and-cut, we observe that (IP+z) clearly outperforms (IP) in both time
and number of nodes explored, with reductions of up to two orders of magnitude. The sole exception are
the hardest instances for which both formulations run out of time.

7

(IP) (IP+z)

Root B&C Root B&C

B r Time Gap Time Nodes ∆LB ∆UB Time ∆LB ∆UB Gap Time Nodes

20
0.90 3 0.01 402 39345 2.15 -2.23 9 0.00 0.00 0.01 8 2
0.95 4 1.53 3303 246765 3.80 -6.49 16 1.38 -0.18 0.00 20 123
1.00 5 5.27 3600 257034 5.83 240.27 33 4.22 -1.14 0.15 1193 5751

40
0.90 3 0.57 2221 195118 3.14 -4.13 21 0.53 -0.05 0.00 22 73
0.95 5 4.32 3600 260138 4.98 61.81 34 3.46 -1.02 0.00 175 1070
1.00 5 10.93 3600 223986 8.51 408.39 66 6.64 5.31 9.65 3360 7815

60
0.90 3 0.57 1725 150346 2.89 -3.26 25 0.51 -0.07 0.00 48 308
0.95 4 4.61 3600 265815 4.73 257.09 40 3.89 -0.91 0.01 1023 4430
1.00 5 13.31 3602 216712 8.68 492.87 96 6.71 12.08 17.39 3600 6045

Table 3: Average results on 40× 40 instances.

Also note that (IP+z) spends more time processing the root node than (IP), yielding improvements of the
lower bound of up to 10%. This improvements seems to increase with B and r. The quality of the incumbent
found by (IP+z) at the root decreases with the instance size, but it seems that CPLEX manages to find good
solutions further in the search tree. The lower bounds obtained by (IP+z) are always better than those
obtained by (IP). The upper bounds are most often better, except for hardest instances.

Acknowlegements: Gustavo Angulo was supported by a Postdoctoral Fellowship in Operation Research
at CORE, Université catholique de Louvain. Mathieu Van Vyve was supported by the Interuniversity At-
traction Poles Programme P7/36 COMEX of the Belgian Science Policy Office and the Marie Curie ITN
”MINO” from the European Commission.

References

[1] Y. Agarwal and Y. Aneja, Fixed-charge transportation problem: Facets of the projection polyhedron, Oper. Res.
60 (2012), no. 3, 638–654.

[2] B. Alidaee and G.A. Kochenberger, A note on a simple dynamic programming approach to the single-sink,
fixed-charge transportation problem, Transp. Sci. 39 (2005), no. 1, 140–143.

[3] M. Bodur, S. Dash, and O. Günlük, Cutting Planes from Extended LP Formulations, Optimization Online
(2015).

[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H.
Freeman & Co., New York, NY, USA, 1979.

[5] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh, Lifted flow cover inequalities for mixed 0-1 integer pro-
grams, Math. Program. 85 (1999), no. 3, 439–467.

[6] M.W. Padberg, T.J. Van Roy, and L.A. Wolsey, Valid linear inequalities for fixed charge problems, Oper. Res.
33 (1985), no. 4, 842–861.

[7] R. Roberti, E. Bartolini, and A. Mingozzi, The fixed charge transportation problem: An exact algorithm based
on a new integer programming formulation, Manag. Sci. 61 (2014), no. 6, 1275 –1291.

[8] T.J. Van Roy and L.A. Wolsey, Solving mixed integer programming problems using automatic reformulation,
Oper. Res. 35 (1987), no. 1, 45–57.

8

[9] M. Van Vyve, Fixed-charge transportation on a path: optimization, LP formulations and separation, Math.
Program. 142 (2013), no. 1-2, 371–395.

9

	1 Introduction
	2 Complexity Results
	2.1 General graphs
	2.2 Trees

	3 Extended Formulations
	4 Computational Experiments

