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Abstract

A brain-computer interface (BCI) enables direct communication between the human brain and external devices.

Electroencephalography (EEG) based BCIs are currently the most popular for able-bodied users. To increase user-

friendliness, usually a small amount of user-specific EEG data are used for calibration, which may not be enough to

develop a pure data-driven decoding model. To cope with this typical calibration data shortage challenge in EEG-based

BCIs, this paper proposes a parameter-free channel reflection (CR) data augmentation approach that incorporates prior

knowledge on the channel distributions of different BCI paradigms in data augmentation. Experiments on eight public

EEG datasets across four different BCI paradigms (motor imagery, steady-state visual evoked potential, P300, and

seizure classifications) using different decoding algorithms demonstrated that: 1) CR is effective, i.e., it can notice-

ably improve the classification accuracy; 2) CR is robust, i.e., it consistently outperforms existing data augmentation

approaches in the literature; and, 3) CR is flexible, i.e., it can be combined with other data augmentation approaches to

further increase the performance. We suggest that data augmentation approaches like CR should be an essential step

in EEG-based BCIs. Our code is available online.

Keywords: Brain-computer interface, electroencephalogram, informed machine learning, integration of data and

knowledge, data augmentation

1. Introduction

A brain-computer interface (BCI) enables direct com-

munication between the human brain and an external de-

vice (Rosenfeld and Wong, 2017). BCIs serve diverse

purposes, encompassing research, mapping, augmenta-

tion, assistance, and restoration of human cognitive and/or

sensory-motor functions (Krucoff et al., 2016).

According to the proximity of the electrodes to the
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brain cortex, BCIs can be categorized into three types:

non-invasive, partially invasive, and invasive (Wu et al.,

2020). The latter two require the surgical placement

of sensors, and hence are predominantly employed in

clinical applications. Non-invasive BCIs are the pre-

ferred choice for able-bodied individuals. They could

use different input signals, e.g., electroencephalogra-

phy (EEG), magnetoencephalography, functional mag-

netic resonance imaging, and functional near-infrared

spectroscopy. Among them, EEG stands as the most pop-

ular choice due to its convenience and cost-effectiveness.

Classical paradigms of EEG-based non-invasive BCIs

include motor imagery (MI) (Pfurtscheller and Neuper,
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Figure 1: Knowledge-driven machine learning pipeline for EEG-based BCIs, which includes EEG data acquisition, data preprocessing, data

augmentation (optional), feature engineering, and classification/regression. The latter two can be integrated into a single end-to-end neural network.

Task-related prior knowledge can be integrated into all blocks of the pipeline.

2001), steady-state visual evoked potential (SSVEP)

(Friman et al., 2007), and event-related potential (ERP)

(Hoffmann et al., 2008). Additionally, BCIs have also

been used for epileptic seizure detection (Acharya et al.,

2013), driver-drowsiness estimation (Lin et al., 2005),

emotion analysis (Wu et al., 2023), and so on.

The development of BCIs heavily relies on compre-

hending how the human brain functions. The ‘ho-

munculus’ model from the 20th century confirmed the

presumed relationship between each part of the hu-

man body and a corresponding region in the pri-

mary motor/somatosensory areas of the neocortex

(Jasper and Penfield, 1949), which becomes the basis

for MI-based BCIs (Pfurtscheller and Neuper, 2001).

Through differentiating the patterns in brain signals of im-

aged movements of different body parts, MI-based BCIs

can assist, augment, or even repair human sensory-motor

functions in various applications (Krucoff et al., 2016).

The mechanism relies on the neuroscience discovery that

processing of motor commands or somatosensory stim-

uli causes an attenuation of the rhythmic activity termed

event-related desynchronization, while an increase is

termed as event-related synchronization (Blankertz et al.,

2008).

Similarly, other paradigms also follow specific neu-

roscience discoveries. SSVEPs are electrical brain re-

sponses that occur in synchrony with repetitive visual

stimuli, such as flashing lights or flickering images, typ-

ically elicited in the visual cortex of the brain, specifi-

cally in the occipital region located at the back of the

head (Friman et al., 2007). ERPs are triggered by spe-

cific events or stimuli, offering valuable insights into cog-

nitive processes, such as attention, memory, and percep-

tion. The P300 ERP is distinguished by a prominent pos-

itive deflection within the EEG signal, typically ∼300

milliseconds after the presentation of a sensory stimu-

lus (Hoffmann et al., 2008). The P300 ERP is promi-

nently associated with neural activity in the parietal cor-

tex, particularly in the parietal midline (centroparietal) re-

gion (Abiri et al., 2019).

EEG-based seizure classification emerges as a pivotal

focus within the field of neurology, with positive impli-

cations for patients affected by epilepsy (Acharya et al.,

2013). Typically, seizures can originate in various brain
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regions, including the temporal, frontal, parietal and oc-

cipital lobes. Seizure activity can spread from the onset

zone to other brain parts. The path and extent of propa-

gation can vary, leading to different types of seizures and

clinical manifestations.

Accurate brain signal decoding is critical for success-

ful BCI applications. Although EEG-based BCIs have

various advantages as discussed, there are still many

challenges for their wide-spread real-world applications

(Lance et al., 2012; Makeig et al., 2012), including non-

stationarity of EEG signals, individual differences, and

inter-environment differences. The last refers to the dif-

ferences in EEG headsets and experiment protocols across

datasets. Such differences limit the current analysis of

EEG within a given paradigm and dataset, limiting the

number of training samples.

Data augmentation is the most commonly used

strategy to cope with the small data problem

(Shorten and Khoshgoftaar, 2019; Li et al., 2022).

For EEG signal analysis, approaches from both signal

processing and deep learning have been attempted.

Nevertheless, such approaches are usually based on the

characteristics of time series, EEG signals, or neural

networks in general. Without adequately utilizing the

paradigm-specific knowledge, such approaches usually

have unstable performance and are not generalizable

across paradigms and datasets. A simple, effective and

generalizable data augmentation approach remains to

be found. Notably, the relationships among paradigms

are complex yet vital. Delving into the connections

among channels, especially in different brain regions, is

essential for comprehending the brain and contributing to

constructing machine learning models.

The role of prior knowledge has received much atten-

tion, particularly for interpretable and explainable mod-

els (Lisboa et al., 2023). von Rueden et al. (2021) pointed

out that “Despite its great success, machine learning can

have its limits when dealing with insufficient training

data. A potential solution is the additional integration of

prior knowledge into the training process.” In EEG-based

BCIs, solely data-driven machine learning approaches are

becoming the current trend for signal decoding. Never-

theless, effective integration of prior knowledge can pro-

foundly influence model performance at various stages, as

illustrated in Figure 1.

This paper proposes a straightforward yet effective

knowledge-driven channel reflection (CR) data augmen-

tation approach to generate high-quality task-specific

augmented data, enriching the training dataset with-

out introducing additional hyperparameters. Inspired

by the left/right hand MI paradigm design, CR con-

structs new samples by reflecting left and right brain elec-

trodes/channels of EEG signals and simultaneously ex-

changing the labels. For other BCI paradigms, CR as-

sumes task-invariability when reflecting the hemispheres

and sticks with the original labels. Extensive experiments

on eight public EEG datasets demonstrated that CR could

effectively improve performance on four BCI paradigms,

namely MI, SSVEP, P300, and seizure classification. Our

Python code is available on GitHub1.

The remainder of this paper is organized as follows:

Section 2 introduces related works. Section 3 proposes

CR. Section 4 presents experimental results to show the

effectiveness of CR. Finally, Section 5 draws conclusions

and points out future research directions.

2. Related Works

This section introduces related works on integrat-

ing prior knowledge into machine learning in EEG-

based BCIs, and discusses current data augmentation ap-

proaches for EEG classification.

2.1. Integration of Prior Knowledge in EEG-based BCIs

Previous works have demonstrated the power of prior

knowledge in various stages in brain signal decoding:

1. Data Preprocessing. Filtering and denoising proce-

dures (Pedroni et al., 2019), vital for data quality en-

hancement, depend extensively on the specific char-

acteristics and requirements of the dataset. Prior

knowledge aids in the development of robust data

preprocessing methods, ensuring that the data fed

into the model is clean, reliable, and aligned with the

objectives of the task. As an example, the passband

of filters differs across BCI paradigms.

2. Feature Engineering. Features can be extracted

in the time domain (Boonyakitanont et al., 2020),

frequency domain, time-frequency domain, etc

1https://github.com/sylyoung/DeepTransferEEG
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(Jenke et al., 2014). However, without integration

of task specific knowledge, general features for time

series would not work well for a particular BCI

paradigm. For example, in EEG-based BCIs, select-

ing features or spatial patterns relies on prior knowl-

edge of neurophysiological processes and specific

cognitive tasks. For MI-based BCIs, Common Spa-

tial Pattern (CSP) (Ramoser et al., 2000) is the most

widely used supervised spatial filter. It aims to find

a set of spatial filters to maximize the ratio of vari-

ance between two different classes, i.e., left hand and

right hand imaginations (Wu et al., 2022). CSP is

motivated by the neuroscience discovery that motor

activities, both actual and imagined, modulate the µ-

rhythm (Blankertz et al., 2008), and can trigger no-

ticeable pattern changes in EEG from different brain

regions.

3. Classification. Representative neural net-

works for EEG signal classification, e.g.,

EEGNet (Lawhern et al., 2018), EEGWaveNet

(Thuwajit et al., 2022), and SSVEPNet (Pan et al.,

2022), are motivated by our understanding of the

corresponding BCI paradigm. For example, EEG-

Net approximates CSP in designing its convolution

layers.

2.2. EEG Data Augmentation

Existing EEG data augmentation approaches mainly

consider time, frequency, and/or spatial domain transfor-

mations.

For time domain transformation, Wang et al. (2018)

added random Gaussian white noise to the original sig-

nals; Mohsenvand et al. (2020) set a random portion of

the EEG signal to zero; and, Rommel et al. (2022) ran-

domly flipped the signals or reversed the axis of time of

all channels.

For frequency domain transformation,

Schwabedal et al. (2018) randomized the phases of

Fourier transforms of all channels; Mohsenvand et al.

(2020) and Cheng et al. (2020) randomly filtered a nar-

row frequency band of all channels; and, Rommel et al.

(2022) randomly shifted all channels’ power spectral

density by a small value.

For spatial domain transformation, Saeed et al. (2021)

set the values of some randomly picked channels to zero,

or performed random permutation, and Krell and Kim

(2017) interpolated channels on randomly rotated posi-

tions.

Deep learning techniques, e.g., generative adversarial

networks (Luo and Lu, 2018), have also been used for

EEG data augmentation (Lashgari et al., 2020).

However, existing EEG data augmentation approaches

integrated little task-related knowledge into the data trans-

formation process, which is the challenge to be solved by

this paper. The data augmentation approach most similar

to ours was Deiss et al. (2018), which exchanged the left

and right hemisphere channels. Section 4.2 gives detailed

comparisons.

3. Channel Reflection for EEG Data Augmentation

Assume the training data include m labeled EEG trials

{(Xi, yi)}m
i=1

, where Xi ∈ R
C×T is the i-th EEG trial (C is

the number of EEG channels, and T the number of time

samples), and yi ∈ {0, 1} the corresponding label. Let Xi
c ∈

R
T be the c-th channel of Xi, where c ∈ NC = {1, 2, ...,C}.

Then, Xi can also be denoted as Xi
= [Xi

1
, Xi

2
, ..., Xi

C
].

For simplicity, we assume exact symmetric place-

ment of electrodes, i.e., K channels with indices L =

{L1, ..., LK} ⊂ NC are placed on the left hemisphere, and K

channels with indices R = {R1, ...,RK} ⊂ NC on the right

hemisphere, where Lk and Rk (k = 1, ...,K) are symmet-

rical electrodes on the left and right hemisphere, respec-

tively.

CR constructs new training trials by exchanging the

symmetrical left and right hemisphere channels. More

specifically, the left and right hemisphere channels are ex-

changed, while the middle line channels stay fixed, i.e.,

the c-th channel of the transformed trial X̃i becomes

X̃i
c =































Xi
Rk
, c = Lk

Xi
Lk
, c = Rk

Xi
c, c < L ∪ R

. (1)

The label of X̃i is modified in MI classification, but stay

identical to the label of Xi for other BCI paradigms, i.e.,

ỹi
=















1 − yi, left/right hand MI classification

yi, other BCI paradigms
(2)
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Figure 2: CR data augmentation for (a) unipolar channels, using MI-I dataset (Tangermann et al., 2012) as an example; and, (b) bipolar channels,

using Seizure-I dataset (Stevenson et al., 2019) as an example.

Figure 2 illustrates the details of CR augmentation in

MI, SSVEP and P300 paradigms with unipolar channels,

and seizure classification with bipolar channels. A unipo-

lar channel [Figure 2(a)] measures the potential difference

between an electrode and a common reference, whereas

a bipolar channel [Figure 2(b)] outputs the potential dif-

ference between two adjacent channels (Yao et al., 2019).

CR augmentation flips all unipolar or bipolar channels

from left to right, and right to left.

Figure 3 shows the flowchart of using CR in a closed-

loop EEG-based BCI system, by extending the cross-

subject transfer learning pipeline proposed in Wu et al.

(2022). After CR, the training data become the combi-

nation of the original EEG trials and the augmented EEG

trials.

4. Experiments and Results

Extensive experiments were performed to validate the

superior performance of CR. This section presents the ex-

periment settings, results and analyses.

4.1. Datasets

Eight datasets from four different BCI paradigms were

used to verify the effectiveness of CR:

Figure 3: Closed-loop EEG-based BCI system, including the proposed

CR data augmentation block.
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Table 1: Summary of the eight EEG datasets from MI, SSVEP, P300, and seizure classification paradigms.

Dataset
Number of Number of Sampling Trial Length Number of

Task Types
Subjects EEG Channels Rate (Hz) (seconds) Total Trials

MI-I 9 22 250 4 1,296 left/right hand

MI-II 9 3 250 4.5 1,080 left/right hand

MI-III 7 59 250 3 1,400 left/right hand, or feet/left hand

SSVEP 10 8 256 1 1,800 12 different class

P300-I 8 8 256 1 29,400 target/non-target

P300-II 10 16 256 0.8 17,280 target/non-target

Seizure-I 39 18 256 4 52,534 seizure/normal

Seizure-II 27 18 500 or 1000 4 21,237 seizure/normal

1. MI: Three datasets, namely MI-I (Tangermann et al.,

2012) and MI-II (Leeb et al., 2007) from MOABB

(Jayaram and Barachant, 2018), and MI-III from

BCI Competition IV-1 (Blankertz et al., 2007), were

used.

2. SSVEP: The dataset in Nakanishi et al. (2015) was

used, and is simply referred to as the SSVEP dataset.

3. P300: Two EEG-based P300 datasets, P300-I

(Riccio et al., 2013) and P300-II (Aricò et al., 2014),

were used.

4. Seizure classification: Seizure-I (Stevenson et al.,

2019) and Seizure-II (Wang et al., 2023) datasets

were used.

Their characteristics are summarized in Table 1. Table 2

also shows the channel locations for each dataset.

The following data preprocessing procedures were

used:

1. MI-I and MI-II: The standard preprocessing steps in

MOABB, including notch filtering, band-pass filter-

ing, etc., were followed to ensure the reproducibility.

For MI-I, only two classes (left/right hand MIs) were

used. For both datasets, only EEG trials from the

first session of each subject were used for training

and test.

2. MI-III: The EEG data were first [8, 30] Hz band-pass

filtered, and then downsampled to 250 Hz to match

the other two datasets. Note that Subjects S0 and

S5 in MI-III conducted feet/left hand tasks instead

of left/right hand tasks; so, their training data were

not CR augmented. Again, only EEG trials from the

first session of each subject were used for training

and test.

3. SSVEP: We followed the preprocessing steps in

Pan et al. (2022). All signals were first down-

sampled to 256 Hz and [6, 80] Hz band-pass

filtered via fourth-order forward-backward Butter-

worth band-pass filter, and then split into 1-second

length trials.

4. P300-I and P300-II: We followed the standard pre-

processing steps in MOABB, including band-pass,

high-pass and low-pass filtering, etc. Only the first

session of P300-I was used, whereas all three ses-

sions of P300-II were used, due to its smaller size.

5. Seizure-I and Seizure-II: We followed the prepro-

cessing steps in (Wang et al., 2023). Each bipolar

EEG channel was preprocessed by a 50 Hz notch fil-

ter and a [0.5,50] Hz band-pass filter. EEG signals

of Seizure-II were further downsampled to 500 Hz.

The signals were then segmented into 4-second long

non-overlapping trials.

4.2. Algorithms

CR was compared with five popular data augmentation

baselines. Four of them were described in Freer and Yang

(2020), which were also used in Zhang et al. (2022). The

remaining one was proposed in Deiss et al. (2018).

1. No augmentation (Baseline), which does not use any

data augmentation.

2. Noise adding (Noise), which adds uniform noise to

an EEG trial.
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Table 2: Channel locations of the eight datasets.

Dataset Left Hemisphere Right Hemisphere

MI-I [FC3, FC1, C5, C3, C1, CP3, CP1, P1] [FC4, FC2, C6, C4, C2, CP4, CP2, P2]

MI-II [C3] [C4]

MI-III

[AF3, F5, F3, F1, FC5, FC3, FC1, CFC7, [AF4, F6, F4, F2, FC6, FC4, FC2, CFC8,

CFC5, CFC3, CFC1, T7, C5, C3, C1, CFC6, CFC4, CFC2, T8, C6, C4, C2,

CCP7, CCP5, CCP3, CCP1, CP5, CP3, CCP8, CCP6, CCP4, CCP2, CP6, CP4,

CP1, P5, P3, P1, PO1, O1] CP2, P6, P4, P2, PO2, O2]

SSVEP [P7, P3, O1] [P8, P4, O2]

P300-I [P3, PO7] [P4, PO8]

P300-II [F3, C3, CP3, P3, PO7] [F4, C4, CP4, P4, PO8]

Seizure-I
[Fp1-F3, F3-C3, C3-P3, P3-O1, Fp1-F7, [Fp2-F4, F4-C4, C4-P4, P4-O2, Fp2-F8,

F7-T3, T3-T5, T5-O1] F8-T4, T4-T6, T6-O2]

Seizure-II
[Fp1-F3, F3-C3, C3-P3, P3-O1, Fp1-F7, [Fp2-F4, F4-C4, C4-P4, P4-O2, Fp2-F8,

F7-T3, T3-T5, T5-O1] F8-T4, T4-T6, T6-O2]

3. Data flipping (Flip), which flips the amplitude of an

EEG trial.

4. Data multiplication (Scale), which scales the ampli-

tude of an EEG trial by a coefficient close to 1.

5. Frequency shift (Freq), which uses Hilbert transform

(Freeman, 2007) to shift the frequency of an EEG

trial.

6. Channel symmetry (Symm), which reflects left and

right hemisphere channels.

Symm seems similar to our proposed CR, but there are

two differences:

1. Symm does not alter the labels, which is crucial for

prior knowledge guided data augmentations. For

paradigms that are relying detecting event-related

desynchronization/synchronization in the left/right

hemisphere, the operations of Symm and CR are dif-

ferent.

2. Symm does not explicitly require the left and

right hemisphere channels to be strictly symmetric,

whereas CR does.

Table 3 shows the details of the seven approaches.

Cnoise = 2, CScale = 0.05 and Cfreq = 0.2 were used,

following Freer and Yang (2020). Note that CR does not

require any hyperparameters.

4.3. Experiment Settings

EEG signals usually exhibit large inter-subject varia-

tions (individual differences), and are non-stationary. As

a result, collecting labeled calibration data from the target

user is generally required for satisfactory classification ac-

curacy (Wu et al., 2022). Three experiment settings with

different amounts of training data were used, as illustrated

in Figure 4:

Figure 4: Illustration of the three experiment scenarios.

1. Within-subject classification, where the training set

contains only a few labeled data from the target sub-

ject, but no data from the source subjects were used.
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Table 3: Comparison of different data augmentation strategies.

Strategy Formulation Label Hyper-parameters

Noise X̃c = Xc + rand ∗ std(Xc)/Cnoise Fixed Cnoise = 2

Flip X̃c = max(Xc) − Xc Fixed –

Scale X̃c = Xc ∗ (1 ± Cscale) Fixed Cscale = 0.05

Freq X̃c = Fshift(Xc,±Cfreq) Fixed Cfreq = 0.2

Symm X̃c =































Xi
c′ , c ∈ L, c′ ∈ R

Xi
c′ , c ∈ R, c′ ∈ L

Xi
c, c < {L ∪ R}

Fixed –

CR (ours) X̃c =































Xi
Rk
, c = Lk

Xi
Lk
, c = Rk

Xi
c, c < {L ∪ R}

Exchanged (based on task) –

2. Cross-subject unsupervised transfer, where the train-

ing set contains a decent amount of labeled data from

the source subjects, but no labeled data from the tar-

get subject.

3. Cross-subject supervised transfer, where the training

set contains a large amount of labeled data from the

source subjects, and a small amount of labeled data

from the target subject.

In all three scenarios, only the training set was used to

tune the algorithms, and the test set was inaccessible dur-

ing the training phase. The labels of the test set were used

only during the test phase to compute the performance

measures. For each dataset, each subject was treated as

the target subject once, and all remaining subjects as the

source subjects. For the target subject, different amounts

of labeled trials in a continuous block [as in (Li et al.,

2021)] were used in training, with the remaining trials in

testing.

In all three scenarios, data augmentation was applied

to all labeled trials in the training set to generate extra

training data. The amount of training data was doubled

for Noise, Flip, Symm and CR, and tripled for Scale and

Freq.

The raw classification accuracy was used as the perfor-

mance measure for MI and SSVEP classification, which

usually do not have significant class-imbalance. How-

ever, significant class-imbalance exists in the other two

paradigms, i.e., the non-target class overwhelmed the tar-

get class in P300, and the normal class overwhelmed the

seizure class in seizure classification; thus, the raw classi-

fication accuracy may be misleading. So, balanced classi-

fication accuracy (BCA), defined as the average of recall

obtained on each class, was used as the performance mea-

sure for P300 and seizure classification.

All experiments using neural networks were repeated

five times to accommodate randomness.

4.4. Main Results

4.4.1. MI Classification

For the MI paradigm, the classic CSP (Blankertz et al.,

2008) filtering with Linear Discriminant Analysis (LDA)

classifier was used in within-subject classification. CSP

used ten spatial filters. In cross-subject unsupervised and

supervised transfers, EEGNet (Lawhern et al., 2018), a

compact convolutional neural network (CNN) with four

convolutional layers, was used. In both within-subject

classification and cross-subject supervised transfer, the

number of labeled trials per class from the target sub-

ject increased from 5 to 45 with step 5. The batch size

was 32 for Baseline, doubled for Noise, Flip and CR, and

tripled for Scale and Freq. All models were trained with

100 epochs using Adam optimizer with learning rate 10−3,

identical to those in Li et al. (2024). The final update steps

of gradient descent for each evaluation instance stayed the

same.

Euclidean Alignment (EA) (He and Wu, 2020), an ef-

fective unsupervised EEG data alignment approach for

8



MI (Wu et al., 2022), was applied before all approaches

to align the EEG trials for each source subject. For the

target subject, the reference matrix of EA was calculated

on the labeled trials, then incrementally updated as each

new test trial arrived, as in (Li et al., 2024).

Tables 4-6 show the results:

1. Comparing the Baseline performance in the three

settings, we can find that when the labeled target data

were small, cross-subject unsupervised transfer gen-

erally outperformed or performed comparably with

within-subject transfer, and cross-subject supervised

transfer always outperformed the former two, sug-

gesting the benefits of using source data in transfer

learning.

2. The five existing data augmentation approaches

did not noticeably improve over Baseline; particu-

larly, Symm significantly degraded the performance,

because switching the left/right channels without

switching the label contradicts the neuroscience

principle of MI.

3. In terms of average performance, our proposed CR

always outperformed all other approaches in all three

classification scenarios, indicating the effectiveness

and robustness of incorporating prior knowledge into

data augmentation.

4.4.2. SSVEP Classification

Three different settings were also considered for

SSVEP.

SSVEPNet (Pan et al., 2022) trained with 500 epochs

and Adam optimizer was used as the classifier. The num-

ber of labeled target trials per class increased from 1 to 9

with step 1. For baseline, batch size 30 and learning rate

10−2 were used in within-subject classification, and batch

size 64 and learning rate 10−3 in cross-subject transfers.

The batch size was doubled for Noise, Flip and CR, and

tripled for Scale and Freq.

Table 7 shows the results:

1. Unlike the case in MI classification, here cross-

subject unsupervised transfer always had worse per-

formance than within-subject classification. This

may be because SSVEP had 12 classes, much more

than the two classes in MI, so it was more sensitive to

the data discrepancies between the source and target

subjects.

2. Although most of the four existing data augmenta-

tion approaches were ineffective, our proposed CR

always outperformed Baseline, again indicating the

effectiveness and robustness of incorporating prior

knowledge into data augmentation.

4.4.3. P300 Classification

Due to page limit, only cross-subject unsupervised

transfer was consider in P300. EEGNet with batch size

256 was used. All other hyperparameters were identical

to those in MI.

Tables 8 and 9 show the results. All data augmen-

tation approaches were effective, but our proposed CR

achieved the best or second best average BCAs, compa-

rable to Noise. However, Noise has one hyper-parameter,

whereas CR is completely parameter-free.

4.4.4. Seizure Classification

EEGNet and EEGWaveNet (Thuwajit et al., 2022)

were used in cross-subject unsupervised transfer in

seizure classification. Same as Wang et al. (2023), both

networks were trained for 100 epochs. Batch size 256

was used for Baseline. It was doubled for Noise, Flip and

CR, and tripled for Scale and Freq.

Tables 10 and 11 show the results. Again, our proposed

CR achieved the best average BCAs. Particularly, it was

the only effective data augmentation approach for EEG-

Net.

4.5. Visualizations

Figure 5 uses t-SNE (Van der Maaten and Hinton,

2008) to visualize the feature distributions of the left and

right hand imaginations from some subject in the three MI

datasets. Observe that the augmented samples may occur

in regions where no original samples were present, which

may not be possible without utilizing prior knowledge.

Figure 6 shows t-SNE visualization of feature distribu-

tions of all subjects on the three MI datasets. Integrating

the CR augmented samples added additional information

beyond the original samples.

Figures 5 and 6 show that, for each subject, the CR

augmented samples generally had consistent distributions

with the original samples. There are a few exceptions:

1. Figure 6(a) shows that, on MI-I, the CR augmented

samples from S1 and S4 were far away from their
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Table 4: Classification accuracies (%) on MI-I using different data augmentation approaches. The best average performance in each panel is marked

in bold, and the second best by an underline.

Scenario Approach S0 S1 S2 S3 S4 S5 S6 S7 S8 Avg.

Baseline 70.44 59.33 81.33 64.11 48.78 66.89 60.78 89.11 71.11 67.99
Noise 69.89 58.56 81.11 63.78 49.22 67.44 62.56 89.89 70.22 68.07

Within Flip 71.78 57.89 80.89 64.67 52.33 66.44 61.78 88.78 71.44 68.44
-subject Scale 70.00 58.56 82.22 62.33 49.78 66.44 61.33 89.33 70.67 67.85

classification Freq 70.00 59.44 81.22 63.44 50.78 67.56 62.00 90.33 71.22 68.44
Symm 52.00 56.11 52.00 58.11 52.11 51.22 57.22 68.78 63.78 56.81

CR 75.67 56.00 88.22 69.78 46.78 71.22 71.00 87.11 73.67 71.05
Baseline 82.22 60.69 93.19 68.06 56.11 72.64 65.00 85.42 80.14 73.72±1.14

Cross Noise 79.17 62.08 95.69 67.08 60.42 70.28 65.14 84.17 81.81 73.98±1.06

-subject Flip 75.69 59.58 94.72 65.83 57.36 75.83 62.22 83.61 82.78 73.07±0.84

unsupervised Scale 80.56 61.11 92.78 65.56 56.94 71.25 63.75 85.42 81.53 73.21±0.76

Transfer Freq 83.47 62.22 93.61 68.33 58.75 72.22 62.92 85.83 82.08 74.38±0.89

Symm 52.78 52.64 54.86 54.17 51.53 52.22 52.64 55.00 53.75 53.29±0.45

CR 84.03 63.06 91.39 71.67 60.83 75.00 70.00 85.00 80.97 75.77±1.58

Baseline 84.96 60.93 94.53 72.51 63.60 74.11 68.01 86.94 89.39 77.22±0.81

Cross Noise 83.85 59.25 93.59 72.76 63.34 72.50 68.43 86.20 88.52 76.49±1.37

-subject Flip 85.40 60.01 94.05 71.27 59.12 73.40 65.06 86.15 90.89 76.15±1.00

supervised Scale 83.04 59.54 92.40 71.49 67.81 73.73 69.06 84.77 89.23 76.78±1.46

transfer Freq 85.12 63.18 94.26 70.88 68.68 74.31 69.80 87.29 90.65 78.24±1.30

Symm 57.01 52.43 69.54 52.27 51.10 53.00 52.61 73.86 59.39 57.91±1.20

CR 91.35 64.30 95.18 75.76 70.60 76.06 78.51 87.31 85.12 80.46±1.02

Table 5: Classification accuracies (%) on MI-II using different data augmentation approaches. The best average performance in each panel is

marked in bold, and the second best by an underline.

Scenario Approach S0 S1 S2 S3 S4 S5 S6 S7 S8 Avg.

Baseline 82.56 59.78 48.56 77.56 58.78 70.11 61.78 55.11 66.78 64.56
Noise 82.89 60.11 49.44 77.78 59.00 70.11 61.56 55.78 66.56 64.80

Within Flip 81.11 56.22 43.00 64.11 49.78 49.67 54.78 55.44 69.11 58.14
-subject Scale 82.44 59.00 49.22 77.89 58.78 70.33 62.00 55.78 66.78 64.69

classification Freq 82.56 59.78 48.56 77.56 58.78 70.11 61.78 55.11 66.78 64.56
Symm 63.22 56.33 40.78 46.56 49.44 51.11 52.00 52.44 48.33 51.14

CR 83.44 56.00 56.00 78.89 57.89 71.89 59.67 50.78 73.33 65.32
Baseline 81.33 60.83 63.00 72.67 63.83 71.67 64.00 65.67 66.33 67.70±0.91

Cross Noise 81.67 62.00 64.17 72.00 66.33 70.83 64.33 64.67 67.50 68.17±0.77

-subject Flip 84.00 57.83 62.50 74.33 63.17 70.50 66.00 67.83 67.67 68.20±0.53

unsupervised Scale 79.00 58.83 66.33 69.83 65.33 70.17 62.67 68.17 64.83 67.24±1.32

transfer Freq 82.67 57.83 64.00 71.83 65.17 67.50 66.67 63.50 68.83 67.56±0.55

Symm 49.00 48.00 49.83 49.33 48.67 46.50 50.33 49.00 47.50 48.69±2.03

CR 84.83 59.33 66.83 73.50 64.17 73.00 65.33 64.00 71.00 69.11±0.84

Baseline 88.73 57.11 56.44 76.41 66.27 75.89 68.25 59.04 71.76 68.88±1.16

Cross Noise 87.80 56.89 57.20 76.04 68.47 74.58 67.03 58.49 70.34 68.54±0.68

-subject Flip 88.99 57.71 54.03 80.51 65.85 75.26 73.01 57.35 73.24 69.55±1.01

supervised Scale 87.46 56.55 54.93 73.32 67.11 71.80 67.33 58.22 70.74 67.49±0.87

transfer Freq 87.91 57.23 56.39 80.05 65.77 72.78 68.53 57.43 73.36 68.83±0.94

Symm 53.62 48.81 52.52 57.20 48.18 46.50 53.16 52.11 46.90 51.00±2.31

CR 90.13 62.35 59.22 76.56 64.80 76.95 70.89 57.62 71.65 70.02±1.13
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Table 6: Classification accuracies (%) on MI-III using different data augmentation approaches. The best average performance in each panel is

marked in bold, and the second best by an underline.

Scenario Approach S0 S1 S2 S3 S4 S5 S6 Avg.

Baseline 66.89 57.33 62.89 81.67 84.22 74.89 80.78 72.67
Noise 68.00 55.56 61.11 82.00 84.56 74.67 78.67 72.08

Within Flip 69.22 54.67 61.44 83.78 87.89 73.78 77.11 72.56
-subject Scale 67.22 55.56 62.89 83.44 84.56 75.22 81.22 72.87

classification Freq 67.56 55.00 62.67 83.00 84.56 72.22 79.11 72.02
Symm 66.89 54.78 65.11 74.67 57.78 74.89 57.67 64.54

CR 66.89 59.22 61.33 81.78 85.00 74.89 89.22 74.05
Baseline 66.00 69.30 65.70 58.30 92.20 74.80 71.90 71.17±0.87

Cross Noise 69.60 69.70 65.80 59.40 92.80 75.20 70.60 71.87±0.55

-subject Flip 67.50 66.70 66.10 54.50 91.50 75.00 67.70 69.86±1.49

unsupervised Scale 68.80 69.40 66.10 60.50 91.20 73.30 72.60 71.70±0.73

transfer Freq 68.10 68.30 66.00 58.90 91.30 73.70 70.40 70.96±0.82

Symm 53.50 49.00 49.80 50.60 47.40 53.80 42.50 49.51±0.80

CR 66.40 75.60 64.50 68.10 92.90 72.10 85.20 74.97±0.96

Baseline 75.16 74.34 69.98 75.57 93.48 81.51 80.13 78.60±1.13

Cross Noise 76.26 72.70 71.37 74.86 92.85 78.85 79.69 78.08±1.00

-subject Flip 73.55 73.41 70.55 73.99 94.16 77.69 77.11 77.21±1.66

supervised Scale 76.16 71.11 68.61 70.50 91.03 77.56 75.86 75.83±1.04

transfer Freq 75.54 72.42 69.62 71.92 90.86 78.02 77.36 76.53±0.86

Symm 56.88 50.33 49.33 59.29 75.28 60.66 64.31 59.44±1.78

CR 76.86 77.65 67.31 82.11 94.32 79.14 85.91 80.47±0.82

Table 7: Classification accuracies (%) on SSVEP using different data augmentation approaches. The best average performance in each panel is

marked in bold, and the second best by an underline.

Scenario Approach S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 Avg.

Baseline 79.88 60.75 80.46 93.90 92.66 94.06 92.91 97.50 92.32 74.42 85.89±0.15

Within Noise 65.95 47.29 69.85 90.34 88.6 91.38 92.16 97.71 88.37 68.1 79.97±0.50

-subject Flip 66.48 47.87 69.5 90.48 88.77 91.68 91.98 97.86 89.06 68.26 80.19±0.39

classification Scale 81.57 62.44 83.6 93.22 94.28 94.92 93.06 97.32 93.28 75.36 86.91±0.07

Freq 71.55 54.49 78.38 91.51 91.66 91.86 92.59 92.56 89.87 63.91 81.84±0.30

CR 81.56 64.07 79.95 94.57 94.25 93.83 92.86 97.22 92.19 76.26 86.68±0.28

Baseline 52.52 43.77 61.87 95.81 95.03 93.88 94.39 97.90 95.27 86.97 81.74±0.37

Cross Noise 42.78 46.52 47.37 97.21 93.32 94.16 92.21 93.75 91.24 78.20 77.68±0.20

-subject Flip 32.22 34.03 42.64 89.58 89.45 89.72 85.14 95.97 87.91 74.17 72.08±0.38

unsupervised Scale 46.67 45.37 50.74 97.59 94.63 94.26 91.30 95.19 89.07 80.56 78.54±0.46

transfer Freq 45.18 38.34 49.08 95.00 93.52 93.33 92.78 94.26 81.30 81.30 76.41±0.23

CR 56.89 48.11 67.33 95.33 96.11 91.67 94.78 98.67 93.66 88.67 83.12±0.17

Baseline 67.88 54.11 79.03 97.30 97.88 95.35 93.28 99.09 95.57 81.25 86.07±0.30

Cross Noise 69.04 52.28 78.83 97.26 97.80 95.88 92.49 98.32 95.36 81.40 85.87±0.23

-subject Flip 63.66 43.83 65.64 94.52 84.68 91.74 92.64 96.16 94.85 77.05 80.48±0.27

supervised Scale 72.34 56.52 83.85 97.07 97.20 96.50 94.11 98.05 95.87 85.69 87.72±0.11

transfer Freq 73.05 54.69 86.52 97.54 97.95 94.29 96.25 97.53 95.34 84.95 87.81±0.22

CR 74.54 58.33 84.64 97.33 97.93 93.99 95.74 98.97 94.59 87.99 88.40±0.28
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Table 8: BCAs (%) of different data augmentation approaches in cross-subject unsupervised transfer on P300-I. The best average performance is

marked in bold, and the second best by an underline.

Approach S0 S1 S2 S3 S4 S5 S6 S7 Avg.

Baseline 71.65 69.35 75.11 70.31 73.46 69.94 74.18 72.78 72.10±0.17

Noise 71.17 70.27 75.59 70.33 74.00 70.29 74.56 74.29 72.56±0.23

Flip 71.43 69.61 75.92 70.19 73.99 70.67 74.14 73.42 72.42±0.21

Scale 71.09 70.36 75.45 70.34 73.89 70.08 74.13 74.88 72.53±0.21

Freq 71.60 70.44 74.42 69.86 74.73 69.57 74.76 73.92 72.41±0.23

CR 71.50 70.35 75.43 70.21 74.36 70.66 74.82 74.33 72.71±0.13

Table 9: BCAs (%) of different data augmentation approaches in cross-subject unsupervised transfer on P300-II. The best average performance is

marked in bold, and the second best by an underline.

Approach S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 Avg.

Baseline 76.04 85.51 79.26 85.52 87.15 79.06 76.92 74.28 87.95 87.71 81.94±0.16

Noise 78.36 85.10 79.66 85.65 88.08 79.15 80.18 76.29 88.35 89.50 83.03±0.08

Flip 76.70 85.26 79.11 84.54 88.78 79.86 78.65 75.54 88.73 87.54 82.47±0.20

Scale 78.52 85.13 79.76 85.32 88.09 78.63 79.38 75.25 88.26 89.14 82.75±0.28

Freq 78.45 86.01 79.63 84.91 88.17 80.05 79.50 75.70 88.73 88.69 82.98±0.12

CR 77.91 85.39 79.69 85.92 88.32 79.51 79.81 75.52 88.63 89.53 83.02±0.11

original samples. This is because these two sub-

jects had lower data quality, as indicated by the low

classification accuracies in Table 4 and previous re-

search (Zanini et al., 2018). Figure 5(a) also shows

that their two classes had large overlaps. So, the CR

approach may perform less well when the original

data quality is low.

2. Figure 5(c) shows that, on MI-III, the distributions

of CR augmented samples and the original samples

from S0 and S5 were much separated than others.

This is because S0 and S5 performed right hand ver-

sus feet MI tasks, whereas other subjects performed

left hand versus right hand MI tasks.

4.6. Necessity of Symmetry in CR

Random shuffle (RS) was performed to verify the ne-

cessity of symmetry in CR. RS randomly exchanges the

left and right hemisphere channels, without considering

the channel symmetry. For example, in Figure 2(a), FC3

may be switched with P2 in RS, whereas FC3 must be

switched with FC4 in CR.

The results are shown in Table 12. CR always achieved

much better performance, indicating the necessity of

maintaining strict symmetry of the switched channels.

4.7. Effect of Transfer Learning

Wu et al. (2022) demonstrated the benefits of utilizing

source subjects’ data to facilitate the calibration for the

target subject. Figure 7 shows the performance of CR as

the number of labeled target samples increased:

1. Generally, as the number of labeled target sam-

ples increased, the performance in both scenarios

increased, regardless of whether data augmentation

was used or not, which is intuitive.

2. Cross-subject supervised transfer almost always out-

performed within-subject classification (the solid

curves are almost always higher than the dashed

curves of the same color), especially when the num-

ber of labeled target samples was small, indicating

again the benefits of utilizing source subjects’ data

for target subject model learning.

3. As the number of labeled target samples increased,

the performance improvement of transfer learning
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Table 10: BCAs (%) of different data augmentation approaches on Seizure-I in cross-subject unsupervised transfer. The best average performance

is marked in bold, and the second best by an underline.

ID
EEGNet EEGWaveNet

Baseline Noise Flip Scale Freq CR Baseline Noise Flip Scale Freq CR

S1 50.98 62.07 62.00 56.72 61.38 55.73 59.67 54.21 57.47 58.58 62.53 65.55

S4 81.01 60.37 60.55 60.60 57.02 66.03 70.02 67.59 72.85 67.77 70.09 69.52

S5 69.26 79.00 78.27 78.92 78.78 77.38 70.39 65.28 73.08 70.45 64.58 74.47

S7 57.38 55.82 63.15 60.86 61.16 66.30 70.78 65.68 62.72 63.18 61.99 66.96

S9 74.30 55.94 57.12 52.09 55.53 54.94 64.39 65.56 57.35 65.51 67.64 67.62

S11 59.65 63.95 70.85 64.32 71.29 70.01 62.03 61.57 61.40 60.50 70.68 58.74

S13 60.37 54.75 57.18 59.33 55.51 67.13 65.92 60.46 56.67 64.03 57.67 71.20

S14 55.02 56.56 56.36 55.30 49.10 49.31 47.17 54.25 56.85 56.42 55.81 52.98

S15 51.21 55.60 53.34 54.32 53.30 50.27 51.04 51.64 53.90 50.50 49.80 52.42

S16 51.54 51.37 53.85 54.31 54.57 59.61 56.48 62.91 57.78 61.39 62.02 56.81

S17 59.55 57.47 63.54 57.65 60.09 52.10 49.98 53.81 50.89 55.09 55.06 53.58

S19 62.16 51.65 52.90 48.49 50.40 56.60 52.44 55.08 56.27 57.05 58.03 61.59

S20 50.88 59.80 59.90 55.64 61.65 56.78 60.63 58.75 56.76 60.18 53.87 58.26

S21 59.23 56.36 87.48 86.19 88.74 89.00 58.97 74.93 68.00 66.09 66.41 61.67

S22 40.38 52.79 52.84 51.82 50.38 54.73 53.14 49.92 52.72 55.29 52.02 57.04

S25 64.29 71.02 65.89 69.14 66.20 74.60 62.64 59.46 55.93 65.44 62.36 61.77

S31 78.75 55.22 57.21 52.87 53.26 59.20 76.75 60.18 59.14 82.31 67.31 87.11

S34 75.29 64.86 69.42 57.60 56.62 70.90 76.68 86.57 81.75 93.03 90.07 91.82

S36 69.61 78.63 84.57 63.11 75.09 74.00 77.25 73.63 62.48 80.67 79.84 71.97

S38 66.76 61.98 58.02 57.39 51.48 54.34 59.70 58.13 58.28 55.38 56.69 60.80

S39 74.43 66.78 65.85 64.49 65.09 58.13 69.54 64.02 67.54 71.56 64.47 64.41

S40 51.15 49.44 50.62 50.21 50.27 58.84 62.07 56.56 59.85 53.39 64.14 61.99

S41 55.26 63.23 61.85 53.02 57.53 64.96 70.64 61.74 66.09 67.81 67.42 65.22

S44 68.79 45.39 64.38 42.51 66.24 64.85 64.57 79.30 52.59 69.43 71.01 61.58

S47 83.12 63.45 59.04 53.27 62.49 63.73 70.34 64.71 66.71 82.84 71.09 84.48

S50 69.92 65.61 69.58 65.37 68.64 73.96 73.85 78.82 70.84 73.62 64.58 68.48

S51 54.03 44.26 47.87 46.81 48.37 46.62 55.35 50.41 39.81 61.28 51.48 56.30

S52 47.28 60.41 57.31 67.96 56.17 63.85 54.14 50.46 51.41 59.99 56.79 63.88

S62 90.19 51.30 53.17 50.05 52.32 46.00 68.78 83.73 76.66 88.12 93.98 88.09

S63 50.10 52.71 51.36 54.65 54.19 51.49 48.33 51.69 48.40 54.33 50.95 53.49

S66 63.95 71.12 56.07 70.19 65.85 75.69 64.20 66.64 68.66 63.69 60.71 67.71

S67 59.71 67.83 70.78 71.32 65.35 76.54 74.97 72.60 63.95 65.32 58.11 74.49

S69 50.05 49.98 50.64 68.48 49.93 50.08 83.02 84.68 86.52 89.66 87.90 90.91

S73 50.03 60.97 59.50 51.08 50.67 67.94 51.28 60.33 67.20 57.25 56.51 64.82

S75 52.47 51.51 50.35 52.87 52.59 56.34 56.01 52.24 58.61 59.15 56.64 59.04

S76 53.95 51.79 51.24 55.00 50.65 53.82 53.37 54.67 53.51 52.77 52.98 59.41

S77 50.58 58.29 56.61 58.58 54.84 45.98 48.97 52.80 54.11 49.66 49.74 49.43

S78 67.16 67.51 69.64 66.34 63.74 80.51 74.13 66.41 63.15 68.56 74.64 76.40

S79 57.67 49.57 46.56 49.96 46.32 60.95 62.12 60.79 57.60 62.25 54.40 63.57

Avg.
61.22 58.88 60.43 58.69 58.79 62.03 62.86 62.88 61.17 65.12 63.38 66.04

±0.54 ±0.29 ±0.24 ±0.43 ±0.51 ±0.40 ±0.68 ±0.50 ±0.47 ±0.71 ±0.53 ±0.16
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Table 11: BCAs (%) of different data augmentation approaches on Seizure-II in cross-subject unsupervised transfer setting. The best average

performance is marked in bold, and the second best by an underline.

ID
EEGNet EEGWaveNet

Baseline Noise Flip Scale Freq CR Baseline Noise Flip Scale Freq CR

S1 89.41 86.37 84.80 86.28 84.22 89.31 83.18 83.27 87.93 91.00 83.49 85.22

S2 84.52 81.78 71.15 82.97 78.71 86.04 76.60 76.28 72.85 88.74 66.53 75.00

S3 99.17 96.50 93.87 98.83 98.33 97.50 92.36 98.67 95.33 94.12 96.50 98.25

S4 92.47 93.55 94.62 93.01 93.01 94.09 94.62 95.16 89.25 92.47 97.31 93.55

S5 85.42 80.16 73.05 81.16 77.67 78.35 70.20 75.68 81.57 75.14 73.96 88.54

S6 70.67 70.02 76.76 78.13 67.65 78.24 83.38 86.79 74.41 86.81 76.67 84.14

S7 93.75 79.58 89.58 93.75 93.75 79.17 85.83 91.67 87.50 67.92 78.33 85.83

S8 84.62 78.21 76.23 85.90 76.92 88.46 92.79 90.22 90.22 87.66 94.07 83.23

S9 91.03 88.78 94.87 94.55 93.27 93.59 95.19 95.83 91.76 95.83 87.50 91.03

S10 82.52 84.53 62.27 67.91 79.43 81.25 57.74 70.70 61.87 66.39 62.48 63.93

S11 86.60 91.18 92.75 94.93 94.55 96.50 90.33 85.18 76.03 86.71 84.23 85.39

S12 54.11 53.56 52.00 54.26 50.60 60.50 55.06 52.99 52.96 55.95 60.94 66.31

S13 85.89 88.74 88.33 94.30 87.22 83.26 66.67 75.00 78.33 62.78 74.44 81.11

S14 89.50 89.75 89.88 84.53 85.59 96.55 78.96 71.79 94.67 71.55 93.63 85.13

S15 92.19 91.67 92.83 87.76 88.31 67.81 91.31 70.49 72.04 70.56 70.80 55.75

S16 82.83 89.39 87.37 89.90 85.86 85.86 78.28 77.27 81.31 81.82 78.28 82.32

S17 94.39 93.26 89.54 92.50 90.67 92.05 86.56 81.00 84.22 84.16 80.94 89.77

S18 95.42 82.31 97.14 90.67 94.22 97.86 97.22 99.08 92.86 98.78 97.14 84.14

S19 82.67 78.47 71.34 80.63 76.32 91.35 64.01 59.87 76.44 66.05 79.73 81.18

S20 69.11 62.12 60.04 59.73 60.12 71.02 88.91 86.74 80.84 84.56 81.35 76.77

S21 72.06 91.36 75.07 80.37 84.17 86.14 64.49 57.36 73.30 80.96 65.24 80.03

S22 89.82 87.50 81.94 88.89 86.11 85.83 87.96 88.15 91.11 84.44 84.35 88.06

S23 57.60 58.82 56.87 59.74 55.66 59.69 49.92 59.33 56.39 59.04 50.27 48.05

S24 83.38 78.50 81.85 81.57 81.30 84.91 76.62 78.62 81.13 74.37 80.37 82.39

S25 92.48 95.51 94.01 95.51 89.14 88.39 93.74 88.61 89.97 94.16 90.29 97.93

S26 46.91 45.13 51.79 49.40 55.29 62.00 56.01 64.30 65.26 71.91 56.17 56.97

S27 63.45 60.31 65.43 59.88 63.62 59.00 49.46 51.72 54.22 59.68 51.66 55.66

Avg.
81.92 80.63 79.46 81.74 80.43 82.77 78.05 78.21 79.03 79.02 77.65 79.47

±0.76 ±0.81 ±0.78 ±0.31 ±0.93 ±0.40 ±0.34 ±0.97 ±0.70 ±1.56 ±1.31 ±0.57

Table 12: Performance comparison of RS and CR in cross-subject unsupervised transfer.

Approach MI-I MI-II MI-III SSVEP ERP-I ERP-II Seizure-I Seizure-II

RS 60.54±0.45 48.69±2.03 67.44±0.80 76.25±0.32 71.76±0.18 79.50±0.21 63.39±0.23 75.25±1.09

CR 75.77±1.58 69.11±0.84 74.97±0.96 83.12±0.17 72.71±0.13 83.02±0.11 66.04±0.16 79.47±0.57
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left
right
CR left
CR right

(a)

Subject 0 Subject 1 Subject 2 Subject 3 Subject 4

Subject 5 Subject 6 Subject 7 Subject 8
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CR left
CR right

(b)

Subject 0 Subject 1 Subject 2 Subject 3 Subject 4

Subject 5 Subject 6

left
right
CR left
CR right

(c)

Figure 5: t-SNE visualization of CSP features from the original EEG trials and the CR augmented EEG trials. (a) Subjects S0-S8 in MI-I; (b)

Subjects S0-S8 in MI-II; and, (c) Subjects S0-S6 in MI-III. Different colors represent different classes. The dots represent the original trials, and

the crosses represent the CR augmented trials. Note that for S0 and S5 in MI-III, the classification task was right hand versus feet.
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(a)

(b)

(c)

Figure 6: t-SNE visualization of CSP features from the original EEG trials and the CR augmented ones. (a) MI-I; (b) MI-II; and, (c) MI-III.

Different colors represent different subjects. The dots represent the original trials, and the crosses represent the CR augmented trials.
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Figure 7: Performance of CR as the number of labeled target samples increased on MI-I, MI-II, MI-III and SSVEP datasets.

diminished. It indicates that if we have access to an

adequate amount of labeled target data, then auxil-

iary data from other subjects are less beneficial. For

example, on MI-I, when there were 10 labeled tar-

get samples, the performance improvement of cross-

subject CR over within-subject CR was 77.69%-

61.22%=16.47%; however, when there were 90 la-

beled target samples, the performance improvement

of cross-subject CR over within-subject CR reduced

to 82.47%-75.89%=6.58%.

4. CR almost always outperformed Baseline (the red

curves are almost always higher than the correspond-

ing black curves of the same line style), indicating

again the effectiveness and robustness of incorporat-

ing prior knowledge in data augmentation.

4.8. Hyperparameter Analysis

CR is hyperparameter-free; however, other data aug-

mentation approaches like Noise, Freq and Scale all have

hyperparameters, which may affect their performance.

Figure 8 shows how their performance changed with the

hyperparameters. Although better performance of the

other three data augmentation approaches may be ob-

tained by adjusting their hyperparameters, our proposed

CR almost always outperformed them.

4.9. Combination of Different Data Augmentations

It is also interesting to study if our proposed CR can be

combined with other data augmentation approaches for

further performance improvement.

Figure 8 shows that Freq has the second-best perfor-

mance in MI-I when Cfreq = 0.4, and in MI-II and MI-III

when Cfreq = 0.5. We combined these best configurations

of Freq with CR, expanding the training data size by a

factor of 6. The results are shown in Table 13. CR+Freq

always outperformed Freq, and achieved comparable or

better performance than CR, suggesting the effectiveness,

robustness and flexibility of CR.

5. Conclusions

To cope with the typical calibration data shortage chal-

lenge in EEG-based BCIs, this paper has proposed a
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Figure 8: Parameter sensitivity analysis for Noise, Freq, Scale and Flip on MI-I, MI-II and MI-III in cross-subject unsupervised transfer. Cnoise ∈

{0.25, 0.5, 1, 2, 4}, Cfreq ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and Cscale ∈ {0.005, 0.01, 0.05, 0.1, 0.2}. CR and Flip do not have hyperparameters.

Table 13: The performance of combining CR with Freq on MI datasets

in cross-subject unsupervised transfer setting. The best average perfor-

mance is marked in bold.

Approach MI-I MI-II MI-III

Freq 75.45±0.89 68.78±0.55 72.73±0.82

CR 75.77±1.58 69.11±0.84 74.97±0.96

CR+Freq 75.45±0.62 69.70±0.73 77.27±0.84

parameter-free CR data augmentation approach that in-

corporates prior knowledge on the channel distributions

of different BCI paradigms in data augmentation. Exper-

iments on eight public EEG datasets across four different

BCI paradigms (MI, SSVEP, P300, and Seizure classifica-

tions) using different decoding algorithms demonstrated

that: 1) CR is effective, i.e., it can noticeably improve

the classification accuracy; 2) CR is robust, i.e., it consis-

tently outperforms other data augmentation approaches in

the literature; and, 3) CR is flexible, i.e., it can be com-

bined with other data augmentation approaches to further

increase the performance. We suggest that data augmen-

tation approaches like CR should be an essential step in

EEG signal classification.

CR also has some limitations, which will be investi-

gated in our future research:

1. Although CR is effective for augmenting left/right

hand MI trials, it cannot be directly applied to other

classes like feet or tongue MIs.

2. This paper assumes strict symmetry between left and

right hemisphere EEG electrodes; however, in prac-

tice the electrodes may not always be perfectly sym-

metric.
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