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A B S T R A C T

To investigate the relationship between microscopic myocardial structures and macro-
scopic measurements of diffusion tensor imaging (DTI), we propose a cardiac DTI sim-
ulation method using Bloch equation and Monte Carlo random walking in a realistic
myocardium model reconstructed from polarized light imaging (PLI) data of whole hu-
man hearts. To get a realistic simulation, with the constraints of prior knowledge about
the maturational change of myocardium structure, appropriate microstructure modeling
parameters are iteratively determined by matching DTI simulations and real acquisi-
tions of the same hearts in terms of helix angle, fractional anisotropy (FA) and mean
diffusivity (MD) maps. Once the realistic simulation was obtained, we varied extra-
cellular volume (ECV) ratio, myocyte orientation heterogeneity and myocyte size, and
explored the effects of microscopic tissue structure change on macroscopic diffusion
metrics. The experimental results demonstrated the feasibility of simulating DTI of a
whole heart using PLI measurements. When varying ECV from 15% to 55%, mean
FA decreased from 0.55 to 0.26, axial diffusivity increased by 0.6 µm2/ms, and radial
diffusivity increased by 0.7 µm2/ms. Mean FA decreased from 0.4 to 0.3, and axial
diffusivity decreased by 0.08 µm2/ms but radial diffusivity increased by 0.03 µm2/ms,
when orientation heterogeneity was varied from 0 to 20◦. When mean diameter of my-
ocytes was varied from 6 µm to 10 µm, FA decreased from 0.67 to 0.46, and axial and
radial diffusivities increased by respectively 0.05 and 0.2 µm2/ms.

c© 2021 Elsevier B. V. All rights reserved.

1. Introduction

The myocardium is crucial to maintaining normal cardiac functions. It has been demonstrated that the myocardium’s individual

cardiac myocytes, which are connected by intercalated discs and form a sort of cardiac fibers, allow for the propagation of electrical

impulses (Rohr, 2004; McCain et al., 2014) and that the electrical propagation is faster along the myocyte orientation than along
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its sheetlet plane (Benson et al., 2011). The fibrous extra-cellular matrix responses to mechanical strain (Spach et al., 1998) and

cardiac contractions are mainly explained by the myocyte arrangement (Eriksson et al., 2013). Therefore, investigating myocardial

fiber architecture is one of the most important means to explore the physiological and pathological properties of the heart (Helm

et al., 2006).

Early descriptions of myocardial fiber architecture were derived from histological measurements (Scollan et al., 1998). However,

such measurements require a long reconstruction time and suffer from myocardium distortion during tissue preparation; therefore,

they cannot provide an accurate description of the whole myocardium architecture for a large number of hearts. A more accurate

description of the myocardium structure using polarized light imaging (PLI) was proposed (Jouk et al., 1995, 2007; Desrosiers et al.,

2016), which can provide a three-dimensional (3D) description of an whole heart with a high spatial resolution through physical

measurements. PLI can thus offer the ground truth for investigating the myocardium structure (Yang et al., 2018). However, fiber

orientations alone are not enough for obtaining a complete description of myocardium; other parameters are needed to reflect the

variation of myocardial fiber structures. Recently, diffusion tensor imaging (DTI), which is a particular magnetic resonance imaging

(MRI) technique, has appeared as a promising technique for non-invasively investigating the fiber architectures of both ex vivo (Hsu

and Henriquez, 2001; Helm et al., 2005; Wu et al., 2007; Abdullah et al., 2016; Lombaert et al., 2012) and in vivo hearts (Toussaint

et al., 2013; Ferreira et al., 2014; Axel et al., 2014; Welsh et al., 2015; Wei et al., 2015; Nguyen et al., 2016; Von Deuster et al.,

2016; Moulin et al., 2016; Nielles-Vallespin et al., 2017; Khalique and Pennell, 2019). It enables us to infer not only cardiac

fiber orientations but also other diffusion metrics such as diffusion anisotropy (FA) and mean diffusivity (MD) by detecting the

displacement distribution of water molecules in the myocardium. By exploring the microscopic displacement of water molecules

in tissues, DTI provides an effective way to probe the microstructure of tissues at the sub-voxel level, which makes it possible to

investigate cardiac diseases that cause changes in myocardium tissue microstructure. For instance, it has been demonstrated that

cardiac myocyte orientation was disarrayed in hypertrophic cardiomyopathy (Tseng et al., 2006; Ariga et al., 2019; Cook et al.,

2019; Von Deuster et al., 2016) and that diffusion metrics of DTI such as FA and MD changed in myocardial infarction (Strijkers

et al., 2009; Nguyen et al., 2018a). Although FA and MD can characterize some cardiac diseases, their variation could in fact be

the consequence of a series of changes in microstructures. The relationship between myocardial microstructures and macroscopic

measurements in DTI remains to be elucidated. A number of techniques have been proposed to probe tissue microscopic structures,

such as DIAMOND (Scherrer et al., 2016), MAPL (Fick et al., 2016), AMICO (Daducci et al., 2015) and NODDI (Tariq et al.,

2016). However, without the ground truth, these estimations derived from analytical models with assumptions need to be further

evaluated.

To deal with this problem, numerous modeling and simulation methods have been proposed, which simulate diffusion signals

by tracking the diffusion displacement of water molecules in a controlled geometric model (Wang et al., 2012; Ianuş et al., 2016;

Gilani et al., 2017; Bates et al., 2017; Rensonnet et al., 2019; Brusini et al., 2019; Nguyen et al., 2018b; Sapkota et al., 2016; Lee

et al., 2020a). Since the microstructure configuration is under control, numerical simulation provides a valuable tool to accurately

investigate the relationship between macroscopic diffusion metrics and underlying microscopic structures. In recent years, several

works have focused on the simulation of brain DTI. The software package Camino (Cook et al., 2006) has been used to simulate DTI

of the brain with various geometrical models. Molecular motion simulation packages (Smoldyn (Andrews et al., 2010) or MCell

(Kerr et al., 2008)) have been used to synthesize diffusion-weighted (DW) signals in complex environments. Specific simulators

have also been considered to investigate the dependence of diffusion metrics on the microscopic structures of brain or muscle tissues

(Yeh, 2011; Yeh et al., 2013; Berry et al., 2018; Lee et al., 2020c,d). However, most of these works dealt with the brain, except
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the works of Bates (Bates et al., 2017) and Rose (Rose et al., 2019), which were dedicated to simulating cardiac DTI with much

more realistic structures. Bates et al. first modeled the myocardium structure in a voxel with arranged cubics, then simulated

the corresponding diffusion weighted signal, and finally validated their simulation using the acquired cardiac DTI. Such validation

within a single voxel cannot fully explore the relationship between inhomogeneous microstructures of the left ventricle and diffusion

metrics. To construct a realistic myocardium model, Rose et al. modeled myocytes with realistic cell morphologies extracted from

histological images. With such a model, they simulated DTI with several imaging sequences, including pulsed gradient spin echo

(PGSE), second-order motion compensated spin echo (M2−SE), and monopolar simulated echo acquisition mode (STEAM). They

analyzed the effects of extra-cellular volume and diffusion coefficients (in both intra-cellular and extra-cellular spaces) on FA and

mean diffusivity MD. However, without the corresponding real dMRI acquisitions, it is impossible to know whether the simulation

results are consistent with real acquisitions.

The purpose of this work was to connect myocardial microscopic structures and macroscopic diffusion metrics based on a

realistic cardiac DTI simulation. First, cardiac fiber orientations of the same human neonatal and infant hearts were obtained using

both PLI and DTI. Since fiber orientations measured by PLI have been proven to be consistent with the Streeter’s conjecture (D.

Streeter,, 1979) and PLI is now considered a gold-standard technique for obtaining 3D fiber structure of ex vivo hearts with high

spatial resolution (Jouk et al., 2007), we used physical measurements from PLI to model realistic cardiac fiber structures. Once

the cardiac fiber model was constructed, DW images of such model were simulated by combining Bloch equation and Monte

Carlo random walking. The simulations were then refined by adjusting the myocardium modeling parameters so that the simulated

DTI metrics can match with the corresponding real acquired ones. Following that, we simulated DW images by varying myocyte

arrangement pattern, extra-cellular volume, and myocyte size to investigate the relationship between tissue microstructure variations

and macroscopic diffusion metrics.

2. METHODS

2.1. Heart Preparation for DTI and PLI

Five human neonatal and infant hearts were used for simulation. These hearts were obtained and processed in compliance with

French legal and ethical guidelines. The investigations conformed to the principles outlined in the declaration of Helsinki (Carlson

et al., 2004). First, all the hearts were embedded in a hydrophilic gel to maintain the shape of the heart. Then, the DW images

of these ex vivo hearts were acquired with a 3T Siemens MRI scanner (MAGNETOM Verio) using a Siemens MDDW (multi-

directional diffusion weighting) sequence. The characteristics and the corresponding acquisition parameters of each heart are given

in Table 1. To increase the signal−to−noise ratio (SNR), all the DW images were acquired six times. Based on these DW images,

diffusion tensor was calculated using the method proposed by Kingsley (Kingsley, 2006), from which cardiac fiber orientation and

diffusion metrics including FA and MD were derived.

After DW image acquisition was accomplished, PLI of the same hearts was performed. PLI physically measures cardiac fiber

orientations at a microscopic scale by detecting the birefringence of myosin filaments. To obtain cardiac fiber orientations with PLI,

the heart was first perfused and fixed in a 4% neutralized formaldehyde solution and immersed for a minimum of one week in the

same solution. Once fixed, the ventricular mass was then embedded in a hydrophobic acrylic resin, methyl methacrylate (MMA)

prepared according to a well-defined protocol (Yang et al., 2018). Subsequently, the myocardium was dehydrated and impregnated

first with a hydrophilic resin, methacrylate glyscol (GMA), and then impregnated with a mixture of GMA and MMA, in which the

concentration of MMA was increased gradually until only MMA remained. The duration of the impregnations by successive baths

was about 9 weeks. The whole heart sample was finally embedded by polymerization and reinforced by MMA resin. After the
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Table 1. The characteristics and the corresponding DTI acquisition parameters of neonatal and infant hearts.

Heart 1 Heart 2 Heart 3 Heart 4 Heart 5

Age 3 months 14 months 2 months 0 days 8 days
Weight 13.56 g 31.84 g 22.28 g 12.92 g 14.46 g
Septum thickness 6.3 mm 4.9 mm 4.4 mm 4.5 mm 3.7 mm
TE 70 ms 74 ms 70 ms 70 ms 70 ms
TR 5600 ms 5100 ms 5900 ms 7900 ms 5600 ms
Matrix size 104×104 104×104 104×104 104×104 104×104
Spatial resolution 1.38×1.38 mm2 1.38×1.38 mm2 1.38×1.38 mm2 1.38×1.38 mm2 1.38×1.38 mm2

Slice thickness 1.4 mm 1.4 mm 1.4 mm 1.4 mm 1.4 mm
b value 700 s/mm2 700 s/mm2 700 s/mm2 700 s/mm2 700 s/mm2

Number of diffusion directions 192 64 192 192 192

polymerization, the block of the sample was oriented and sectioned according to a selected reference frame with a slice thickness

of 500 µm. 34 to 45 sections were collected with a spacing of 500 µm in a serial manner for the whole heart. For each section,

images were acquired and fiber orientations were determined using the methods presented in the works of Jouk (Jouk et al., 2007)

and Desrosiers (Desrosiers et al., 2016). The acquired raw PLI images are under the form of a series of paired two-dimensional

(2D) images, which form a 3D volume. Each pair of images represents an elevation angle image and an azimuth image (Fig.1), and

gives the orientation of fiber in space. In the present work, the spatial resolution of PLI images was 0.093 ×0.093×0.5 mm3. We

used the fiber orientations provided by PLI for modeling and considered them as the ground truths, and refined the simulation by

matching the simulated diffusion metrics with the corresponding real acquisition ones.

(a)                                     (b)                                                                (c)                                                                (d) 

Fig. 1. Fiber orientations of a neonatal heart obtained using PLI. (a) A neonatal heart specimen. (b) Azimuth angle maps for several neonatal heart sections.
(c) Corresponding elevation angle maps, (d) Definition of elevation and azimuth angles.

2.2. Microstructure Modeling

The myocardium is mainly composed of myocytes connected end−to−end by intercalated discs and surrounded by an extra-

cellular matrix. The myocytes are assumed to be quasi−parallel cylinders. Based on such anatomical characteristics and the fiber

orientation maps measured by PLI, we modeled, in each voxel of PLI, a local myocardium using quasi-parallel packed cylinders.

The geometrical modeling of such cylinder bundles can be reduced to a 2D circle packing problem. Namely, packing the cylinders

is equivalent to packing the non−compressible and non−overlapped disks. Previous histological research showed that the distri-

bution of myocyte diameters follows a natural logarithmic function. Therefore, in the modeling, the diameters of disks, which

represent those of myocytes, were chosen randomly with a Hasting Metropolis algorithm using a log normal distribution with a

mean µd and a standard deviation σd. The initial positions of these disks were randomly distributed within a square area of size√
N ×max(dk, k = 1, 2, ...,N) + ∆d)2, where N is the number of disks, dk represents the diameter of the kth disk, and ∆d indicates the
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maximum gap between different disks. Changing such gap varies the extra-cellular volume (ECV). The width of this square was

determined by
√

N + 1. In addition, in our modeling, myocyte membrane thickness was also considered, which was determined by

internal myocyte diameter to external diameter ratio dratio. These disks were then migrated toward the area center using a molecular

dynamics−based method (Mingasson et al., 2017) until the desired disk density was achieved.

Once the circle packing was completed, according to the fiber orientation at the current PLI image voxel, the geometrical

structure of local myocardium was constructed. Firstly, we divided a PLI voxel into 20 subregions with a size of 46.5×46.5×100

µm3. In each subregion, we assume that all the myocytes have the same orientation, which is derived as follows: according to the

elevation and azimuth angles provided by PLI, calculating the fiber orientation and then rotating this orientation around itself by an

angle ϕ, which is uniformly chosen from the range between 0 and hetero. Then, according to the orientation in each subregion, the

packed circles were rotated and extruded to form paralleled and orientated cylinders. These cylinders intersect with the boundaries

of subregions. Finally, only the cylinders located inside the subregions were kept and cut randomly into several segments according

to the length range [lmin, lmax] of myocytes and the length ldics of intercalated disc. The detailed modeling process is illustrated in

Fig. 2. The values of the corresponding modeling parameters are listed in Table 2, where as the values are expressed by range, they

are assumed to be uniformly distributed.

Fiber orientation is calculated with the 
azimuth and elevation angles provided by PLI, 
and then rotating this orientation around itself 
by an angle φ, which is uniformly chosen from 
the range between 0 and hetero. The rotated 
orientation is taken as the fiber orientation in a 
subregion.

Fig. 2. Myocardium modeling process.

Table 2. Cardiac myocyte modeling parameters.

Parameter Symbol Value Unit References

Mean of diameter µd [6-10] µm (Wah and Keller, 2003)
STD of diameter σd 1 µm (Poole-Wilson, 1995;

Pluess et al., 2014)
Length l [40-100] µm (Poole-Wilson, 1995)
Intercalated disc length ldisc 3.3±0.4 (mean±std) 10−2µm (Hoyt et al., 1989)
Orientation heterogeneity hetero [0-30] ◦

Maximum gap between myocytes ∆d [0-4] µm
Ratio of internal to external diameter dratio 0.9
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2.3. Diffusion MRI Simulation Framework

We combined Bloch equation and Monte Carlo random walk simulation to produce realistic DW images. The Bloch equation

was used to generate B0 image and Monte Carlo random walk simulation was for providing the diffusion displacement distribution

in the microstructures. To achieve this, the simulation framework takes a pulse sequence, a labeled object and a microscopic fiber

structure as inputs, as depicted in Fig. 3(a). The details of the dMRI simulation are given in Fig. 3(c). The kernel of dMRI

simulation includes geometrical modeling and Monte-Carlo random walking simulation. The former is described in Fig. 2 and the

latter is illustrated in Fig. 3(b). The detailed simulation process is described as follows.

(a)

(b) (c)

Fig. 3. Details of cardiac diffusion MRI simulation. (a) The overall simulation framework; (b) The flowchart of Monte-Carlo simulation in a cardiac
model; (c) Detailed process of cardiac DTI simulation.

To simulate the B0 image, the myocardium was segmented from PLI data. Then the proton density, T1 and T2 values of the

zhu
Commentaire sur le texte 
- laisser un espace entre ":" et "Convergence"
- Mettre les caractères dans "space, note the initial position..." à la meme taille que le reste
- Vérifier et si possible mettre tous les caractères de la figure à la même taille.
- utilise toujours soit le verbe soit le verbe+ing. Je préfère utiliser le verbe. Par ex.:
randomly choose, note its index, comare the acquired and simulated, look up the structure, ...
- structure file table => structure table ?
-  " (intra-or extra) => laisser un espace entre "-" et "or"
- "surrounding myocytes that may include"=> pb grammaire, je devine que tu voulais dire "surrounding myocytes they may include".
Finalement, je pense que  "surrounding myocytes they may involve" serait meilleur.
- "Transversal all the myocardium" => pb grammaire, que tu voulais dire?



Lihui WANG et al. / Medical Image Analysis (2021) 7

myocardium and background were given. For the cardiac muscle, T1 was about 1471 ms and T2 about 47 ms (Stanisz et al., 2005).

For the background, T1 and T2 were chosen as 2000 ms and 70 ms, respectively. At each voxel of such a labeled object, the full MR

(magnetic resonance) acquisition process was simulated by evolving magnetization vectors over time, which can be described as

~Mt+1 = RrelaxRzRRF ~Mt, (1)

where RRF represents the rotation matrix caused by the RF pulse and given by

RRF =

 1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)

 , (2)

with α designating the flip angle. Rz describes the dephasing process induced by the imaging gradient and is expressed as

Rz =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 , (3)

where θ is the phase shift caused by the imaging gradients (phase and frequency encoding gradients), expressed by

θ = γ

∫ t0+∆t

t0
~r · ~G(t)dt, (4)

in which γ is gyromagnetic ratio, ~r the position in the label model, ∆t the duration of imaging gradients, and ~G the gradient

amplitude. Rrelax indicates the relaxion process that can be described as

Rrelax = diag
(
e−t/T2 , e−t/T2 , 1 − e−t/T1

)
. (5)

The transverse magnetizations Mx and My with various frequencies and phases are fulfilled in k-space and form a k-space data

M,

M =
∑
~r

Mx + j
∑
~r

My. (6)

Subsequently, Fourier transform is then applied on M to generate the spatial domain MR image S 0.

To obtain DW images of whole heart and to facilitate parallel simulation, we simulated diffusion weighted signals in a voxel-by-

voxel manner, as illustrated in Fig. 3(b). The original PLI heart volume was split into regions of size equal to DTI voxel dimension.

Then, one region was randomly selected. By looking up the structure file table, in which the locations, directions, diameters and

lengths of all the myocytes are recorded, we searched for the myocytes located in the selected region (orange cylinders in Fig.

3(b)). Particles were distributed uniformly in the selected region and were determined in intra- or extra-cellular spaces. The initial

position and state (intra- or extra-cellular space) of each particle was noted. The diffusion of water molecules in both intra- and

extra-cellular spaces was described by a random walking process. In each walking step of duration τ, the diffusion displacements

of intra- and extra-cellular molecules are described by

rin =
√

6Dinτ

rex =
√

6Dexτ
. (7)

where Din and Dex are the diffusion coefficients respectively in intra-cellular and extra-cellular spaces, which are smaller or equal

to free diffusion coefficient D0 = 3 × 10−3mm2/s. To accelerate the diffusion simulation, the myocytes in the surrounding regions

(extending the selected region by 2 times maximum diffusion displacement in one random walking step) that may be collided with

the particles are selected (green cylinders in Fig. 3(b)). After each walking step, the collision between a segment and cylinders
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(orange and green ones in Fig. 3(b)) was detected. If collision occurs, the particles will diffuse along the other directions without

any energy loss. Conventionally, elastic boundary reflection (EBR) is usually used to deal with the collision between particles and

membranes. However, this is time consuming. To deal with such issue, we proposed to use diffuse boundary reflection (DBR) to

treat the collision (Xing et al., 2013; Fieremans and Lee, 2018). That is, when the particle collides with boundary, it is reflected by

the membrane in a random direction to the next position located on the same side as its previous one. The difference between EBR

and DBR is illustrated in Fig. 3(c) (Step 1). When the selected region is located at the boundary of the myocardium, the imaged

object in a voxel may include partially the heart muscle and hydrophilic gel. In this case, part of free diffusion should be considered:

r f ree =
√

6D0τ (8)

The permeability of the membrane is about 0−100 µm/s (Kuchel and Durrant, 1999; Fieremans et al., 2011). For a short

diffusion time, although some molecules can pass through the membrane, their effect is negligible. Therefore, water exchange

between intra− and extra−cellular spaces was not considered in the present work. During diffusion time ∆, phase shift caused by

diffusion of one molecule i can be expressed as

φi =

K∑
j=0

~q · ~r j
i , (9)

where ~q is the wave vector determined by diffusion gradient strength and duration, ~r j
i indicates the position of the ith particle

after the jth walking steps, and K is the total number of steps, K = (∆− δ/3)/τ. φi can be introduced by intra-cellular, extra-cellular

space diffusion and free diffusion, noted as φiintra, φiextra and φi f ree, respectively. The diffusion signal attenuation caused by all the

molecules can be written as,

s
s0

=
1

Nintra + Nextra + N f ree

√√√√ (∑Nintra
i=1 cos (φiintra) +

∑Nextra
i=1 cos (φiextra) +

∑N f ree

i=1 cos (φi f ree )
)2

+
(∑Nintra

i=1 sin (φiintra) +
∑Nextra

i=1 sin (φiextra) +
∑N f ree

i=1 sin (φi f ree )
)2 , (10)

where s is the diffusion weighted signal, s0 is the signal without diffusion weighting (i.e. B0 signal), Nintra, Nextra and N f ree

designate the effective number of water molecules for intra-cellular, extra-cellular and free diffusions, respectively. N f ree is deter-

mined by the portion of free diffusion, namely the portion of hydrophilic gel. If the imaged region does not contain hydrophilic

gel, N f ree = 0. Considering that there may be immobilized water molecules in intra-cellular space (Aliev et al., 2002), we assumed

that the diffusible water molecule density in intra-cellular and extra-cellular spaces may be different. Thus, the ratio of particle

number in intra-cellular space to that in extra-cellular space may not be equal to the ratio of intra-cellular volume to extra-cellular

volume. Assuming that the ratio of diffusible water molecules density in intra-cellular space to that in extra-cellular space is de-

noted as ρ. When calculating diffusion weighted signals, the effective number of particles in intra-cellular space (Nintra) and that in

extra-cellular space (Nextra) are calibrated with: Nintra = N′intra × ρ,Nextra = N′extra, in which N′intra and N′extra designate the original

number of water molecules for intra-cellular and extra-cellular spaces, respectively.

Rician noise was finally added to the diffusion signals to simulate a realistic acquired image, described by

S noisy =

√
(s + η1)2 + η2

2, (11)

where η1 and η2 conform to a normal distribution, namely η1, η2 ∼ N
(
0, σ2

)
, with the standard deviation σ = 1/SNR controlling

the level of noise. Note that the SNR here indicates the SNR of B0 image.
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The accuracy of Monte-Carlo random walking simulation depends on the number of particles, random walking steps and

boundary collision method. To choose appropriate number of particles and steps and to validate the effectiveness of the collision

method used in this work, we first performed the convergence test like that done in the work of Hall et al. (Hall and Alexander,

2009). In consists of using two boundary collision methods to quantify the variations of diffusion signals with the number of

particles and steps in a fixed substrate, as illustrated in Fig. 3(c) (Step 1). Such substrate includes 200 parallel-packed cylinders

with a mean diameter of 8 µm and a standard deviation of 1 µm; the length of cylinders is 1000 µm. The gap between cylinders

is 1 µm. The diffusion coefficients in intra-cellular and extra-cellular spaces were assigned to 2×10−3 mm2/s and 3×10−3 mm2/s,

respectively. Then, DW signals were simulated with different number of particles ( 500, 1000, 5000, 10000, 20000, 50000, 100000

) and different number of steps (100, 500, 1000, 3000, 5000, 10000). Other simulation parameters are diffusion time ∆ = 26 ms,

gradient duration δ = 2 ms, and b value = 700 s/mm2. For each combination of particle number and step, simulation was repeated

50 times with different random seeds. The convergence was evaluated in terms of relative mean absolute error (RMAE) of DW

signals with respect to the analytical solution. The analytical signal generated by intra-cellular space of a cylinder of radius R is

approximated by (Vangelderen et al.)

s
s0

= exp

−2γ2g2
∞∑

m=1

2Dinα
2
mδ − 2 + 2e−Dinα

2
mδ + 2e−Dinα

2
m − e−Dinα

2
m(∆−δ) − e−Dinα

2
m(∆+δ)

D2
inα

6
m
(
R2α2

m − 1
)  (12)

where γ is the gyromagnetic ratio, g is the diffusion gradient strength, and am are obtained by dividing the roots of the first derivate

of the Bessel function of the first kind by R. The analytical signal (i.e. ground truth) generated by multiple cylinders can be

expressed as:

sgt =

∑n
j=1 v js j∑n

j=1 v j
(13)

where s j denotes the signal generated by jth cylinder (calculated with Eq. (12)), v j the volume of jth cylinder and n the number of

cylinders involved in the substrate. The RMAE between the simulated and analytical signals is defined by:

RMAE =

reps∑
i=1

si
simu − sgt

sgt
(14)

where reps designates the number of repetitions equal to 50 and si
simu the signal obtained from ith simulation.

Once the number of particles and steps were determined and the boundary collision method was validated, we analyzed the the

correlations between modeling and simulation parameters and diffusion metrics to find the most possible substrate structure allow-

ing us to generate realistic cardiac DTI simulation. As illustrated in Fig. 3(c) (Step 2), After fixing fiber orientation, b value and

diffusion gradient direction, by varying modeling and simulation parameters, we obtain various substrates and simulation schemes.

For example, in the present study, mean myocyte diameter µd of neonatal hearts in a voxel was varied from 6 to 10 µm, standard

deviation of diameters was set as 1 µm , mean length meanL of myocytes was changed from 40 to 100 µm, gap ∆d between two

myocytes was set between 0 and 4 µm , intra- and extra-cellular diffusion coefficients were varied from 0.5 to 3×10−3 mm2/s,

and ratio ρ of diffusible water molecule density in intra-cellular space to that in extra-cellular space was increased from 0.5 to 1.

Diffusion time was changed from 20 ms to 50 ms, and diffusion gradient duration from 5 ms to 20 ms. With random combinations

of the above parameter values, we generated 200 thousand combinations of substrates and acquisition schemes, and simulated the

corresponding DW signals. After that, correlations between modeling/simulation parameters and diffusion metrics were analyzed,

through which we identified what kind of parameters influence positively or negatively a given diffusion metric.
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In the case of real DTI acquisitions, we used an iterative method to find appropriate modeling and simulation parameters to

simulate realistic cardiac DTI (Fig. 3(c) (Step 3). After fixing acquisition schemes, modeling parameters (µd, hetero, and ∆d) and

simulation parameters (Din, Dex and ρ) were initialized according to heart properties, such as the priors about maturation develop-

ment of the heart. Then, the virtual myocardium structure was constructed using these modeling parameters, the corresponding DW

images were simulated and diffusion metric maps were calculated using the package DIPY (https://dipy.org). Finally, the simulated

diffusion metrics or DW images were compared with acquisitions. If simulations and acquisitions are not matched, we update

the modeling and simulation parameters based on the correlation table. For example, if the simulated FA value is larger than the

acquired FA value but the MD value is smaller, we will change the modeling or simulation parameters that can decrease FA and

increase MD simultaneously. The iterations were terminated until simulations match acquisitions. The matching degree was evalu-

ated in terms of fiber orientation (defined by helix angle) and diffusion metrics such as FA, MD, λ1, and λ2. Since simulation was

based on PLI measurements while the position of the hearts in PLI was not the same as that in DTI, the comparison was carried out

in terms of distribution instead of in a voxel-by-voxel manner. A Kruskal-Wallis test, which is a non-parametric ANOVA version

that can test if two groups with different sample sizes are significantly different or not, was performed to determine the significant

difference (P<0.05) in diffusion metrics between simulations and acquisitions.

2.4. Effects of Microstructure Variation on cardiac DTI Metrics

The correlation analysis described above was only performed in a single voxel, which does not reflect the variation of macro-

scopic myocardium structure (such as the helix angle), with respect to myocardium microstructure. To further explore the rela-

tionship between macroscopic cardiac DTI measurements and myocardium microstructure, we selected an AHA zone (AHA 12,

mid anterolateral) from heart 1, where a number of myocardium models were constructed by changing ECV, myocyte diameter,

and orientation heterogeneity of myocytes. Finally, we constructed five myocardium models with different ECV ratios (15%, 25%,

35%, 45% and 55%), five myocardium models with different orientation heterogeneities (0◦, 5◦, 10◦, 15◦, and 20◦ ), and five my-

ocardium models with different myocyte diameters (6 µm, 7 µm, 8 µm, 9 µm and 10 µm). In total, the corresponding DW images of

15 myocardium models were simulated with Din =1×10−3 mm2/s, Dex =3×10−3 mm2/s, ∆ = 26 ms, δ = 20 ms, and b-value =700

s/mm2. Following that, relationships between microstructure and macroscopic DTI measurements were analyzed.

3. Experiments and Results

3.1. Simulated B0 Images

Based on the label model and the corresponding T1 and T2 values, the B0 image was simulated with the following parameters:

TE=70 ms, TR=7700 ms, static field strength=3T, FOV=104 × 104, and in-plane image resolution= 1.38 × 1.38 mm2. Fig. 4

compares the simulated and acquired B0 images, which have no significant difference in normalized intensity distribution (p = 0.29),

which validates our B0 image simulation method.

Acquisition Simulation Box plot

Fig. 4. Qualitative (visualization) and quantitative (box plot with p-value) comparisons between simulated and acquired B0 images of the heart 1. The
intensity of B0 image was normalized by dividing its own maximum value, and p-value was calculated with myocardium regions.
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3.2. Influence of Modeling and Simulation Parameters on DTI Metrics in a Single Voxel

Fig. 5. Effects of the number of particles, walking steps and boundary reflection method on simulation signals. (a) Influence of number of particles for a
given number of walking steps of 10000; (b) Influence of number of walking steps for a given number of particles of 100000; (c) Difference in RMAE of
diffusion signals between elastic boundary reflection (EBR) and diffuse boundary reflection (DBR) obtained with different particle numbers and a fixed
walking step number of 100. (d) Difference between EBR and DBR for a given number of walking step of 10000. The blue squares represent the RMAE of
diffusion signals, and the circles indicate the relative absolute error (RAE) of diffusion signal for each repetition.

The variation of errors in diffusion signals as a function of particles or walking steps is shown in Fig. 5. As observed in Fig.

5(a), as the number of particles is larger than 10000, RMAE between simulation and analytical ground truth is always about 1%.

Also, the more the number of particles there is, the smaller the standard deviation of RMAE becomes. Concerning the influence

of number of walking steps (Fig. 5(b)), when the latter reaches 3000, RMAE tends to be stable with a value of about 1%, and the

variation of RMAE caused by number of steps is not obvious. When varying number of steps from 100 to 10000, RMAE decreases

about by 0.2%. Fig. 5(c) and (d) shows the difference between EBR and DBR in terms of simulated signal error; there is no obvious

difference between them when the number of particles is larger than 5000 (for a given number of steps of 10000). However, when

the number of steps is 100, the error of DBR is always larger than EBR, but not significantly (by about 0.4%).

According to the results of convergence test, the number of particles was set as 30000 and the number of walking steps as

5000 for the correlation analysis. The DW images of 200 thousand combinations of different substrates and acquisition schemes
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described in section 2.3 were simulated. The influences of modeling and simulation parameters on diffusion metrics, including FA,

MD, λ1 and λ2, and estimation accuracy of fiber orientations, were analyzed by means of the correlation heatmap, as illustrated in

Fig. 6. We observe that FA is positively correlated with diffusion time (∆), ratio of water molecule density in intra-cellular space to

that in extra-cellular space (ρ), and diffusion coefficient in intra-cellular space (Din). It is negatively correlated with mean diameter

(µd), orientation heterogeneity (hetero) of myocytes and ECV. As to the first eigenvalue λ1, it is positively correlated to diameter

and length of myocyte, ECV, diffusion coefficients in both intracellular and extracellular spaces and diffusion time. It is negatively

correlated to orientation heterogeneity and water molecule density ratio. The second eigenvalue λ2 and MD are negatively correlated

with water molecule density ratio and diffusion time. Concerning fiber orientations, the estimation error increases if mean diameter,

orientation heterogeneity, ECV, and diffusion coefficient in extra-cellular space increase, and it decreases if diffusion time, diffusion

coefficients in intra-cellular space and water molecules density ratio increase. Based on such correlations and comparison with

real acquisitions, along with the constraints of priors about the maturation development of hearts, we can adjust our modeling and

simulation parameters to realize realistic cardiac DTI simulation.

Fig. 6. Correlation between microscopic myocardial structure parameters and macroscopic DTI measurements. “µd” indicates the mean diameter of
myocytes, “meanL” the mean length of myocytes, “hetero” the orientation heterogeneity, “ECV” the extra-cellular volume ratio. “Din” and “Dex” are the
diffusion coefficients in intra- and extra-cellular spaces respectively. “∆” is the diffusion time, and “ρ” the ratio of water molecule density in intra- to
extra-cellular spaces. The red clockwise pie chart represents the positive correlation, the counterclockwise blue pie chart depicts the negative correlation,
and the proportion of dark blue or dark red indicates the strength of correlation. The light red full circle represents the maximum positive correlation
coefficient with a value equal to 1. The light blue full circle represents the maximum negative correlation coefficient with a value equal to -1.

3.3. Cardiac DTI Simulation Results

Based on real acquisitions and correlations between modeling / simulation parameters and diffusion metrics, the final modeling

and simulation parameters for the five hearts are given as follows: the mean myocyte diameters for the heart 1, heart 2, heart 3, heart

4 and heart 5 are 9.5, 10, 9, 7, and 8 µm respectively; the standard deviation of the diameters in a PLI voxel is 1 µm; the maximum

gap between myocytes for the five hearts are respectively 3 µm, 0.5 µm, 3.5 µm, 3 µm, and 3.5 µm; the mean length of myocytes is 80

µm; the orientation heterogeneities are 25 ◦, 20 ◦, 28 ◦, 25◦ and 30 ◦; the ratio of diffusible water molecular density in intra-cellular

space to that in extra-cellular space is 0.9, 0.95, 0.95, 0.99, and 0.99 respectively for the five hearts. The extracellular diffusion

coefficient is fixed as 3×10−3 mm2/s, and the intracellular diffusion coefficients for the five hearts are 0.9×10−3, 0.45×10−3, 1×10−3,
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1.8×10−3, and 1.1×10−3 mm2/s respectively. With a diffusion time of 26 ms (except heart 2 for which the diffusion time is 30 ms),

diffusion gradient pulse duration of 20 ms, walking step duration of 0.1 ms, diffusion direction number of 193 (except heart 2

for which the number of diffusion directions is 64), and b-values of 5, 700 and 705 s/mm2, the simulated DW images along one

diffusion direction for different infant hearts are shown in Fig. 7, together with the corresponding acquired ones and the statistical

analysis. We observe that globally the simulated and acquired DW images have no significant difference with p > 0.05, which

demonstrates that our simulation is realistic.

Heart 1 Heart 2 Heart 3 Heart 4

Simulations

Acquisitions

(b) Box plots of DW images along with p value

(a) DW images obtained from simulations and acquisitions for five hearts

Heart 5
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Fig. 7. Qualitative and quantitative comparison between simulated and acquired DW images along one diffusion direction for different hearts. Note that
the intensity of DW images was normalized to [0, 1] by dividing B0 image.

From the DW images, FA, MD, λ1, λ2 and fiber orientations were calculated. Note that, since helix angle is a well-known

index for describing the cardiac fiber structure, we used it in the result section to describe fiber orientation. For PLI, helix angle

was calculated from the orientation defined by elevation and azimuth angles. For simulated and acquired DTI, helix angle was

calculated from the eigenvector with the largest eigenvalue. Comparisons of the simulated and acquired diffusion metrics for left

ventricle are given in Fig. 8. Visually, we can see that the simulated and acquired FA, MD, λ1, and λ2 are very similar, except at the

septum and free lateral, as illustrated in the red rectangle of Fig. 8.
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Heart 1 Heart 2 Heart 3 Heart 4 Heart 5

(a) FA

(b) MD

 (c) 1

(d) 2

Acquisitions

Simulations 

Simulations 

Acquisitions

Acquisitions

Acquisitions

Simulations 

Simulations 

Fig. 8. Comparison between simulated and acquired diffusion metrics of five hearts, including FA, MD, λ1, and λ2. For fair comparison between simulations
and acquisitions, as well as between different hearts, the range of FA is displayed between [0,1], and that of MD, λ1 and λ2 between [0, 0.003] (mm2/s). The
regions with major difference between simulations and acquisitions are highlighted with red rectangles.

To quantitatively compare the difference between simulations and real acquisitions, the box plots of FA, MD, λ1 and λ2 for

both simulation and acquisitions of the five hearts are given in Fig. 9, in which, “simu” designates the simulation, and “acq” the
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acquisition. For each group of diffusion metrics, p-value is annotated above the box plots. Notice that p-value for all the diffusion

metrics is larger than 0.05, which means that there is no significant difference between the simulations and acquisitions.

Heart1 Heart 2

Heart 3 Heart 4

Heart 5

Fig. 9. Box plots of simulated and acquired diffusion metrics, including FA, MD, λ1 and λ2. Note that λ1, λ2 and MD were multiplied by 500.

In addition to the diffusion metrics, the helix angle maps of left ventricles extracted from PLI acquisitions, simulations and DTI

acquisitions are shown in Fig .10. To evaluate our simulation with respect to PLI acquisitions, spatial resolution of PLI helix angle

maps is scaled to DTI spatial resolution by averaging fiber orientations in multiple PLI voxels (Fig. 10 (b)). We observe that the

simulated helix angle is almost the same as the scaled PLI helix angle except for a few pixels.

To quantitatively evaluate the difference in helix angle between simulations and real acquisitions, the box plots of helix angles

and the corresponding p-values are provided in Fig .11. We see that, for all the hearts, the interquartile range of helix angles acquired

by DTI is smaller than that acquired by PLI or simulations, which implies that helix angles from real DTI acquisitions are more

concentrated. Moreover, there are significant differences in helix angle between DTI acquisitions and PLI acquisitions for heart 2

(with p = 0.01) and heart 3 (with p = 0.026). By comparing “PLI” and “PLI−with−DTI−VoxelSize”, we found that the range of

helix angles decreases when observing at a larger voxel. As to the helix angles obtained by simulations, they are similar not only to

the initial helix angles from PLI but also to those from real DTI acquisitions (with p>0.05), except for heart 2 where the helix angle
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(b) Helix angle obtained from PLI at the same spatial resolution as in DTI

(a) Helix angle obtained from PLI

    (d) Helix angle obtained from DTI acquistion

(c) Helix angle obtained from simulation

Heart 1 Heart 2 Heart 3 Heart 4 Heart 5

Fig. 10. Comparison between simulated and acquired DTI helix angles for 5 different hearts. The helix angle range is [-90,90].

from DTI acquisition is neither similar to the PLI acquisition nor to the simulation.

Heart 1

Heart 4Heart 3

Heart 5

Heart 2

Fig. 11. Box plots of helix angles obtained by PLI, simulation and real DTI acquisitions. For the labels of x-axis, “simulation” is DTI simulation, “Acquisi-
tion” indicates DTI acquisition, “PLI” and “PLI−with−DTI−VoxelSize” represent the helix angle obtained by PLI at original resolution and DTI resolution
respectively.
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3.4. Variations in Myocardium Microscopic Structure against Macroscopic Cardiac Diffusion Metrics

(b) Box plots of  diffusion metrics as a function of orientation heterogeneity

(c) Box plots of  diffusion metrics as a function of myocyte diameter

(a) Box plots of  diffusion metrics as a function of ECV ratio

Fig. 12. Effects of ECV ratio, orientation heterogeneity and myocyte size on diffusion metrics. In (a), mean diameter is 8 µm, orientation heterogeneity is
0 ◦, and myocyte length varies from 40-100 µm. In (b), mean diameter is 8 µm, maximum gap between myoctes is 1 µm, and myocyte length varies from
40-100 µm. In (c), orientation heterogeneity is 0 ◦, maximum gap between myoctes is 0 µm, and myocyte length varies from 40-100 µm.
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With Din=1 µm2/ms and Dex = 3 µm2/ms, we simulated the DW images of several myocardium structures in an AHA zone by

varying the modeling parameters. Fig. 12 gives the effects of ECV ratio, orientation heterogeneity and myocyte size on diffusion

metrics, including FA, λ1, λ2 and error in helix angles with respect to PLI ground-truth. The corresponding results are visualized in

Appendix. From Fig. 12(a), we observe that with the increase of ECV, FA decreases and λ1 increases but not significant with respect

to λ2. When varying ECV from 15% to 55%, mean FA decreased from 0.55 to 0.26, axial diffusivity increased by 0.6 µm2/ms, and

radial diffusivity increased by 0.7 µm2/ms. Regarding helix angle, increasing ECV increases the mean error in helix angle. When

orientation heterogeneity was varied from 0 ◦ to 20 ◦, mean FA decreased from 0.4 to 0.3 and axial diffusivity decreased by 0.08

µm2/ms but radial diffusivity increased by 0.03 µm2/ms. The increase in radial diffusivity caused by orientation heterogeneity is

not as obvious as the decrease in axial diffusivity. Concerning the estimation error of helix angle, when orientation heterogeneity

increases, the interquartile range of helix angles errors increases, as illustrated in Fig. 12(b). The influences of myocyte size on

diffusion metrics are illustrated in Fig. 12(c). Note that the increase of myocyte diameters resulted in a lower FA, a higher λ1 and

λ2. When mean diameter of myocytes was varied from 6 µm to 10 µm, FA decreased from 0.67 to 0.46, λ1 and λ2 increased by

respectively 0.05 and 0.2 µm2/ms. Also, the mean values of helix angle errors increase when the myocyte diameter is increased.

4. Discussion

We have investigated the relationship between macroscopic DTI diffusion metrics and myocardial microstructures by simu-

lating DW images of realistic myocardial model constructed based on high spatial-resolution PLI measurements. To get realistic

simulation, we first performed DTI simulations in a single voxel with a large number of virtual structures that were modeled with

the combination of all the possible modeling and simulation parameters. Then, by analyzing the correlations between diffusion

metrics and modeling and simulation parameters, and by comparing with real acquisitions, we searched for appropriate modeling

parameters to construct the right substrate for cardiac DTI simulation.

Considering the correlations between diffusion metrics and simulation parameters (including diffusion time ∆, diffusion coeffi-

cients Din and Dex, and ratio ρ of diffusible water molecules density in intra-cellular to extra-cellular space) in Fig. 6, we found that

the variation trends of FA and diffusivities with ∆ are consistent with the findings in the work of Kim et al. (Kim et al., 2005), in

which when ∆ varies from 33 ms to 412 ms, parallel diffusivity in calf hearts increases firstly (not significantly) and then remains

almost unchanged, whereas perpendicular diffusivity decreases and FA increases. This phenomenon can also be found in in vivo

cardiac DTI. For example, FA obtained with STEAM sequence is larger than that with M2-SE sequence, since diffusion time is

much longer in STEAM compare to M2-SE sequence (Scott et al., 2018). As to the influence of Din, we found that increasing

Din results in larger FA and MD, which is consistent with the findings reported by Rose et al. (Rose et al., 2019). Concerning the

influence of Dex, Rose et al. found that increasing Dex did not affect FA but increased MD. However, our simulations demonstrated

that the increase of Dex led to a smaller FA and a larger MD. This can be explained by isotropic diffusion property in extra-cellular

space. Increasing Dex can increase simultaneously λ1 and λ2 by the same amount, denoted as ∆λ. According to the definition of FA,

FA =

√
1
2

√
(λ1−λ2)2+(λ2−λ3)2+(λ3−λ1)2

√
λ2

1+λ2
2+λ2

3

, increasing λ1, λ2 and λ3 by ∆λ at the same time does not change the numerator but increases

the denominator of FA, thus resulting in the decrease of FA. In the work of Rose et al., such phenomenon was not observed. This

may be caused by the fact that the variation (∆λ) of axial and radial diffusivities with Dex was not obvious. As a result, FA was

unaffected and MD increased non-significantly with the increase of Dex. When comparing the influences of Din and Dex on FA, we

found that the effect of Din is more significant, which is in agreement with the findings of Rose et al. When the ratio of diffusible

water molecule density in intra-cellular space to that in extra-cellular space increases, FA increases, but λ1, λ2 and MD decrease.

The reason is that the restricted diffusion fraction increases, therefore leading to larger FA and smaller diffusivities.
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To get a realistic cardiac DTI simulation, with the constraints of prior knowledge about the myocardium structure, the mi-

crostructure modeling parameters are iteratively refined by matching DTI simulations and real acquisitions of the same hearts.

In practice, it is impossible to image the same hearts with DTI and PLI at exactly the same position and state. If we want to

perform pixel-by-pixel comparison to determine it is match or not, image registration would be required. However, registration may

introduce unavoidable errors because myocardium is a deformable object. Therefore, we compared the simulations and acquisitions

with similar slices that have almost the same ventricle volumes. The volumes measured by PLI for the five hearts in Fig. 7 are

respectively 602, 925, 795, 385 and 433 mm3, and the corresponding volumes measured by DTI are 625, 935, 769, 377 and 453

mm3. This explains the slight difference in shape between DTI and PLI slices in Fig. 7. The statistical test showed that there is no

significant difference between simulations and acquisitions in terms of DW images and diffusion metrics. However, from the visual

results in Fig. 8, we found that there are still some differences between simulations and acquisitions at the free lateral and septum

(red rectangle in Fig. 8). Such differences illustrate that the modeled structure in these zones may be different from the underlying

ground-truth structure. In our method, the modeling parameters are homogeneous for the whole myocardium, which indicates

that the mean diameter, orientation heterogeneity and ratio of diffusible water molecules density are set as the same everywhere.

However, there are several studies on rat and pig hearts, which demonstrated that the myocyte diameters at the mid-myocardium,

endocardium and epicardium are different (Gerdes et al., 1986; Campbell et al., 1987). In addition, with real DTI acquisitions of

human hearts, it was found that both FA and MD are higher at septum than at lateral (McGill et al., 2015). However, our acquisitions

for heart 3, heart 4 and heart 5 revealed that FA is greater at septum than at lateral, but that MD is smaller at septum than at lateral.

On the other hand, the diffusion metrics of heart 2 were totally different from other hearts. Therefore, during the modeling, the mean

myocyte diameter for this heart had been set as 10 µm, which is larger than the mean myocyte diameter of the other hearts. Likewise,

the maximum gap between myocytes had been set as 0.5 µm and the orientation heterogeneity as 20 ◦, which is smaller than those of

the other hearts. During the simulation, diffusion coefficient in intracellular space Din was set as 0.5 µm2/ms. Concerning the age of

the hearts, we know that heart 2 is the oldest one. With the development of heart after birth, myocyte diameter, length and volumes

increase, the gap between myocytes becomes narrower, and the content of sarcoplasmic reticulum and myofibrils inside the myocyte

increases (Wah and Keller, 2003). We therefore assumed that the diffusion coefficients in intracellular space Din decreases with

the maturational development. According to correlation analysis results in Fig. 6, increasing diameter and decreasing Din should

decrease FA. However, with the decrease of ECV and orientation heterogeneity, FA increases. The combining effects of ECV and

orientation heterogeneity are more significant than the effects of diameter and Din. Accordingly, FA of heart 2 increases. Similarly,

the decreasing effect of Din and ECV on MD, λ1, and λ2 is more obvious, therefore resulting in smaller MD, λ1, and λ2 for heart 2.

It has been demonstrated that with the aging of neonatal hearts, FA increases, both parallel and perpendicular diffusivities decrease

(Pervolaraki et al., 2017). Our acquisition and simulation of heart 2 conform to these findings. With regard to the helix angles

(Fig.10), the difference between simulations and acquisitions for all the hearts is not obvious. However, helix angles of heart 2 and

heart 3 obtained by DTI and PLI acquisitions are different (p <0.05 in Fig.11). This may be caused by DTI acquisition noise or slice

difference between PLI and DTI. Although we have matched PLI slices and DTI slices with the closest volumes, it is still possible

that these slices do not correspond exactly to the same myocardium positions, thus introducing the difference in helix angle.

By investigating the influences of the variations of ECV on diffusion metrics, we found that FA, λ1, and λ2 are correlated to

ECV, which is consistent with recent reports (Ariga et al., 2019; Wu et al., 2018). As illustrated in Fig. 12(a), as ECV is increased,

FA decreases, and λ1 and λ2 increase. Increasing ECV can reduce the hinderance effect for extra-cellular water molecules diffusion;

therefore, axial and radial diffusivities in extra-cellular space increase, thus leading to the increase of λ1, λ2 and MD. Meanwhile,
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with the increase of ECV, the fraction of isotropic diffusion increases, and that of anisotropic diffusion decreases; consequently, FA

decreases.

Concerning the variation of diffusion metrics with respect to orientation heterogeneity (Fig. 12(b)), it can be explained as

follows. An increase in orientation heterogeneity tends to destroy diffusion direction preference, which makes the diffusivity almost

the same in all directions and thus decreases both FA and λ1 and increases λ2. As to the helix angle, the increase of heterogeneity

will increase the uncertainty of estimated cardiac fiber orientations and consequently the large variation of helix angles, which can

be clearly demonstrated by the variation of the estimation errors of helix angles.

The variation with myocyte diameter of FA, λ2 and helix angle can be readily understood in light of the restricted diffusion

in intracellular space. Larger myocyte diameter makes the intracellular diffusion less restricted along the myocyte radial direction,

thus resulting in the increase of radial diffusivity λ2 and the decrease of FA. Meanwhile, increasing the myocyte diameter decreases

the difference in diffusion displacement between parallel and perpendicular directions. Accordingly, the directional preference of

particle diffusion is decreased, leading to a large variation of estimation errors in helix angle. All these results are consistent with

observations in studies on myocardium infarction. It is well known that myocardial infarction leads to the increase in myocyte

cross-sectional area (diameter) (Gerdes et al., 1992), and that, in the infarct zones, FA decreases, MD increases, and helix angle

experiences a larger variation (Nguyen et al., 2018a; Mekkaoui et al., 2018). As to the variation of axial diffusivity λ1 with the

myocyte diameter, in theory, it should not change with the diameter, however, in our work, we observe that increasing the diameter

leads to an increase of λ1 but not significantly. This is caused by collision treatment method DBR used in this work. With the

traditional elastic boundary reflection (EBR) method, changing the diameter influences only the radial diffusivity and not the axial

diffusivity. However, due to different reflection methods of dealing with collision, there is discrepancy in extracellular diffusion

signals between EBR and DBR methods. More precisely, in EBR collision method, after collision, the particles can diffuse only

along the reflected direction, while in DBR collision method, the particles can diffuse along any directions in the reflected plane.

As a result, in a very small extracellular space, after collision, the particles diffusing with DBR method have larger probability to

avoid colliding again with boundary. Accordingly, the extracellular particles can diffuse a longer distance along the perpendicular

direction in DBR method, which makes that extracellular diffusion signals along perpendicular direction are more attenuated with

DBR method than with EBR. Since the diffusion step size always keeps unchanged, bigger displacement along perpendicular di-

rection leads to smaller displacement along parallel direction. Consequently, along parallel direction, the signal is less attenuated

with DBR than with EBR. When increasing the myocyte diameter, the size of each extracellular diffusion pool increases and the

collision difference between EBR and DBR is decreased. Accordingly, the discrepancy between EBR and DBR can be overlooked.

By comparing EBR and DBR method, we observe that when the diameter is small, there is discrepancy in extracellular diffusion

signals, but as the diameter is large enough, the discrepancy between EBR and DBR can be neglected. The change of discrepancy

between EBR and DBR with the diameter leads to the change of axial diffusivity with diameter in our work, but such change is not

significant and can be accepted.

With respect to cardiac DTI simulation of Rose et al. (Rose et al., 2019), which aimed to analyze the effects of Din, Dex, ECV

and gradient strength on diffusion metrics with three different imaging sequences, although their model structures are realistic,

the corresponding simulations were not sure to be realistic because real dMRI acquisitions were not used. Their simulated FA

was higher than that reported in cardiac DTI literatures. In the work of Bates et al. (Bates et al., 2017), the authors attempted to

validate their simulation methods with different imaging conditions, by changing for example b-value and diffusion time. They

simulated DTI at a voxel of size 200 µm3 and validated the simulation using the averaged DW signal of a whole rat heart acquired
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with isotropic resolution of 200 µm. They also demonstrated the effects of myocardium structures and diffusivity in intra-cellular

space on diffusion metrics through a sensitivity analysis, and found that cross sectional area and diffusivity in intra-cellular space

influence greatly the eigenvalues of diffusion tensor, but that the effect of myocyte volume fraction is negligible. This is the

first work validating cardiac Monte Carlo random walk simulations with real acquisitions. However, validating with the averaged

signal of whole heart may introduce bias and miss some interesting findings, such as local-related differences between simulations

and acquisitions. In addition, the effects of microstructure were not fully considered in their work, like orientation disarray and

diffusivity in extra-cellular space.

Our work solved the above-mentioned problems in cardiac DTI simulation. With the help of real DTI acquisitions of the same

heart, we can refine the modeling and simulation parameters to make sure that the simulation results are more realistic. After that,

the detailed analysis about the influence of microstructure variations on diffusion metrics allow us to explore underlying microstruc-

tures from macroscopic diffusion metrics. For instance, by comparing simulations and real acquisitions, we inferred that heart 2 has

a larger mean myocyte diameter, a smaller gap between myocytes, a smaller orientation heterogeneity and a smaller intracellular

diffusivity than the other hearts, which suggests that the properties of myocyte structure are related to the maturational change from

the point of view of DTI. The established relationship between microscopic structure variations and macroscopic measurements in

cardiac DTI could help in investigating some cardiac diseases.

However, there are still several limitations for this work. Firstly, although considered as gold-standard technique, PLI is a

destructive fiber orientation imaging method. The image provided by PLI is not really a 3D volume (with slice spacing), which

may cause that the fiber orientations provided by PLI do not match exactly any slices provided by DTI. In addition, real DTI

acquisitions are noisy. Although we have improved the SNR by averaging the images acquired from multiple repetitions, the

influence of noise on diffusion metrics still exists. These factors may cause the biases in inferring the underlying microstructures.

Secondly, the geometrical models of myocardium were constructed from PLI, which, although able to provide myocyte orientations

of a whole heart with a high spatial resolution, do not offer real morphological characteristics of myocytes. It has been verified

that the substrate shape will influence simulation accuracy (Lee et al., 2020b). Therefore, incorporating true geometrical shapes

of myocytes into our model for simulation would be a future work. Thirdly, all the simulations and acquisitions being performed

on infant hearts, investigating the difference in modeling and simulation parameters on human adult hearts will help us further

understand the longitudinal myocardium structure development using DTI. However, PLI acquisition for whole human adult hearts

is technically very challenging, which prevents us from using the proposed method to explore the difference in microstructures

between infant and adult hearts. Fourthly, as mentioned above, in this work we used DBR method to deal with the collision for

saving computational time, but such method suffers from a bias in diffusion signals. Although the bias is acceptable but still influ-

ences slightly several analyses, such as convergence (Fig. 5 and Fig. A5) and correlation between diameter and λ1 . Finally, this

work focused on ex vivo hearts. Investigating the relationship between DTI diffusion metrics and in vivo myocardium structures is

still a clinical challenge, since myocyte deformation and myocyte arrangement variation during a cardiac cycle remain unclear. An

interesting future work would be to construct a realistic in vivo myocardium model to simulate the corresponding cardiac DTI with

in vivo imaging sequences, such as the STEAM and M2-SE.

5. Conclusion

To get a realistic cardiac DTI simulation, the myocardium model of whole human heart was firstly constructed based on phys-

ical measurements of high-resolution PLI. Then the corresponding DTI was simulated with Block equation and Monte Carlo ran-

dom walking methods. Finally, the modeling and simulation parameters were refined by matching the simulated DTI metrics and
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the corresponding real acquisitions. The proposed simulation method enabled us to get insights into the effects of myocardial

microstructure variations on DTI diffusion metrics. An increase of ECV was found to decrease FA and increase λ1 and λ2. The

increase of orientation heterogeneity resulted in the decrease of FA and λ1 but the increase of λ2. Increasing myocyte diameter led to

a higher λ2 and a lower FA. As to the helix angle, the variations of ECV, orientation heterogeneity, and myocyte diameter can effect

the estimation accuracy of helix angle, especially for heterogeneity and ECV. In the future, the proposed DTI simulation method

may be further used to investigate the influence of imaging sequence parameters on diffusion metrics and validate the corresponding

mappings between DTI and microstructures.
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Appendix

Variations of diffusion metric maps including FA, λ1, λ2, helix angle and error in helix angle with respect to ECV are given in

Fig. A1.

(b) �1

(a) FA

(c) �2

(d) Helix angle

(e) Helix angle error maps

ECV=15% ECV=25% ECV=35% ECV=45% ECV=55%

Fig. A1. Effects of ECV ratio on diffusion metrics. The other modeling parameters are: mean diameter is 8 µm, orientation heterogeneity is 0 ◦, myocyte
length varies from 40-100 µm.

Variations of diffusion metric maps including FA, λ1, λ2, helix angle and error in helix angle with respect to orientation hetero-

geneity are given in Fig. A2.
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(b) �1

(a) FA

(c) �2

(d) Helix angle

(e) Helix angle error maps

hetero = 0° hetero = 10° hetero = 15° hetero = 20°hetero = 5°

Fig. A2. Effects of orientation heterogeneity on diffusion metrics. The other modeling parameters are: mean diameter is 8 µm, the maximum gap between
myoctes is 1 µm, and myocyte length varies from 40-100 µm. Note that the orientation heterogeneity here indicates the maximum angle that the fiber
orientation rotated around itself.

Variations of diffusion metric maps including FA, λ1, λ2, helix angle and error in helix angle with respect to myocyte diameter

are given in Fig. A3.
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d=6 μm d=7 μm d=8 μm d=9 μm d=10 μm

(b) �1

(a) FA

(c) �2

(d) Helix angle

(e) Helix angle error maps

Fig. A3. Effects of myocyte diameter on diffusion metrics. The other modeling parameters are: orientation heterogeneity is 0 ◦, maximum gap between
myoctes is 0 µm, and myocyte length varies from 40-100 µm.

In the manuscript, we only showed the convergence result obtained with different number of particles while fixing the number

of steps as 10000. To fully understand the influence of the number of particles and steps, in Fig. A4, are provided the variations in

RMAE of diffusion signals as a function of the number of particles for different number of steps. We observe that when the number

of particles is more than 5000, RMAE decreases with the increase of number of steps. By Varying the number of steps from 100 to

10000, RMAE decreases by about 0.4% at most.
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Fig. A4. The variations of RMAE of diffusion signal with the number of particles obtained with different number of steps.

Fig. A5. The difference in RMAE between EBR and DBR obtained with different numbers of particles and steps.

The difference between EBR (elastic boundary reflection ) and DBR (diffuse boundary reflection) obtained with different num-

bers of steps and particles is given in Fig. A5. As the number of steps is larger than 1000 and the number of particles is more than

10000, there is almost no significant difference between EBR and DBR.

zhu
Barrer 

zhu
Texte inséré 
illustrated


	Introduction
	METHODS
	Heart Preparation for DTI and PLI
	Microstructure Modeling 
	Diffusion MRI Simulation Framework 
	Effects of Microstructure Variation on cardiac DTI Metrics

	Experiments and Results
	Simulated B0 Images 
	Influence of Modeling and Simulation Parameters on DTI Metrics in a Single Voxel
	Cardiac DTI Simulation Results
	Variations in Myocardium Microscopic Structure against Macroscopic Cardiac Diffusion Metrics

	Discussion
	Conclusion



