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Highlights

• A novel descriptor for segmentation of luminal and glandular epithelium.

• The descriptor exploits the relatively similar orientation of epithelial cells.

• Multi-resolution extension of the proposed descriptor to improve the re-

sults.

• Detailed experimentation on a large dataset and on choice of neighbour-

hood.
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Descriptors for Epithelium Segmentation in

Endometrial Histology Images
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aDepartment of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.
bDepartment of Pathology, University Hospitals Coventry and Warwickshire, Coventry,
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Abstract

It has been recently shown that recurrent miscarriage can be caused by abnor-

mally high ratio of number of uterine natural killer (UNK) cells to the number of

stromal cells in human female uterus lining. Due to high workload, the counting

of UNK and stromal cells needs to be automated using computer algorithms.

However, stromal cells are very similar in appearance to epithelial cells which

must be excluded in the counting process. To exclude the epithelial cells from

the counting process it is necessary to identify epithelial regions. There are two

types of epithelial layers that can be encountered in the endometrium: luminal

epithelium and glandular epithelium. To the best of our knowledge, there is

no existing method that addresses the segmentation of both types of epithe-

lium simultaneously in endometrial histology images. In this paper, we propose

a multi-resolution Cell Orientation Congruence (COCo) descriptor which ex-

ploits the fact that neighbouring epithelial cells exhibit similarity in terms of

their orientations. Our experimental results show that the proposed descriptors

yield accurate results in simultaneously segmenting both luminal and glandular

epithelium.

Keywords: Histology image analysis, epithelium segmentation, recurrent

miscarriages, digital pathology.
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1. Introduction

Digital pathology offers several advantages over the age-old tissue slide anal-

ysis under the microscope by converting tissue slides into high-resolution mi-

croscopic image of the whole slide. One of these advantages is the seamless

transfer and manipulation of digitised images via computer algorithms (Gurcan5

et al. (2009)). Indeed, histology image analysis has been tipped to hold the key

to providing the much needed added value to digital pathology (Snead et al.

(2015)). Computers are very efficient in performing repetitive tasks such as cell

counting and can be used to improve the efficiency of routine clinical diagnosis.

One such problem is counting the ratio of uterine natural killer (UNK) cells to10

stromal cells in endometrial biopsies.

UNK cells are immune cells in the womb lining that normally make up no

more than 5% of all cells. It has recently been shown by Quenby et al. (2009)

that an over-presence of UNK cells leads to recurrent miscarriage. Women with

relatively high ratio of UNK to stromal cells are more likely to have a live birth15

if given glucocorticoids in lieu of placebo Tang et al. (2013). Thus UNK test-

ing plays a significant role in clinical diagnosis of recurrent miscarriages. A

diagnosis protocol devised by Quenby et al. (2009) calculates the ratio of UNK

cells to stromal cells in histology images of endometrial tissue slides stained

with Haematoxylin and CD56, which stains UNK cells brown when used with20

DAB staining. Consequently, the number of UNK and stromal cells must be

counted. Counting stromal cells is challenging in that these cells show the same

stain colour as epithelial cells, and both of them have a variety of morpholog-

ical shapes and sizes, therefore it is difficult to distinguish between these two

types using standard machine learning approaches Arif and Rajpoot (2007).25

Epithelial cells are very similar in appearance to stromal cells but they only

appear in glandular and luminal epithelial regions. Therefore, we propose to

segment the glandular and luminal epithelial regions containing epithelial cells

to discriminate between stromal and epithelial cells. Detection of UNK and

stromal cells, and localisation of luminal epithelium from tissue boundaries was30
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addressed in Li et al. (2014). However, in Li et al. (2014) epithelial regions

were discarded manually and it does not perform automatic segmentation of

glandular epithelium and luminal epithelium to discard the epithelial cells.

In this paper, we propose novel cell orientation congruence descriptors for

simultaneously segmenting both glandular epithelium and luminal epithelium35

(examples are shown in Fig. 1 (a) and (b)) from tissue boundaries in histology

images of endometrial biopsy samples. A major difference between glandular

epithelium and luminal epithelium is that the glandular epithelium encloses lu-

men inside the epithelial boundaries whereas luminal epithelium is usually at

the edge. We observe that epithelial cells are arranged in a locally and neatly40

oriented manner as shown in Fig. 2. The distribution shows that the epithelial

cells are oriented mainly in the similar direction as the difference from median

is near zero except for a few neighbours for which the difference is in the range

between 0−30◦ due to curvature of the epithelium (∆θ = 4.98±5.51). For non-

epithelial cells, the difference from median is spread across the histogram due to45

irregular orientations of the stromal cells (∆θ = 37.77 ± 35.29). Based on this

observation, we propose to use orientation of epithelial cells to extract a novel

cell orientation congruence descriptor, by employing the orientation congruence

in the neighbourhood of a cell. The strength of the proposed descriptors over

the existing methods is that they are not restricted to segmentation of glandular50

epithelium with close boundaries, but are also capable of accurately segment-

ing disconnected (broken or open) glandular epithelium and luminal epithelium

from the tissue boundaries. This paper is an extension of our previous work (Li

et al. (2015))with the following additional novel contributions:

1. Introduction of the Multi-Ring Cell Orientation Congruence (MR-COCo)55

descriptor.

2. Validation of the proposed method on a larger data set, 150 visual fields

compared to 30 visual fields in the conference publication.

3. Detailed experimentation on the choice of cellular neighbourhood, com-

putational speed.60
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(a)

(b)

Figure 1: (a) and (b) are two example images of glandular epithelium and luminal

epithelium.

4. Detailed critique on challenges faced by automated algorithms in segmen-

tation of epithelial regions in endometrial biopsies.

The remainder of this paper is organised as follows. Related Work is sum-

marised in Section 2. Image acquisition is described in Section 3. The pre-

processing, i.e., cell detection and lumen segmentation, which are prerequisites65

for computing the proposed descriptors and epithelial cell classification, are ex-

plained in Section 4.1. We present the proposed descriptors in Sections 4.3.

In Section 4.5, we show how to use epithelial cells classified by the proposed

6
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Figure 2: (a) Sample image cropped from a visual field from endometrial slide. (b)

Orientations of epithelial cells overlaid in green and non-epithelial cells in red. (c)

Distribution of difference of orientations of epithelial/non-epithelial cells from the me-

dian of all the orientations of epithelial/non-epithelial cells in green/red. It can be

seen that neighbouring epithelial cells tend to have similar orientations.
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descriptors with superpixels to achieve the final epithelium segmentation. Ex-

perimental results are presented and discussed in Section 5. Finally, the paper70

concludes with some directions for future work.

2. Related Work

To the best of our knowledge, there is no existing method on automatic seg-

mentation of epithelium, both glandular and luminal, in endometrial biopsies.

However, different methods have been proposed in literature for segmentation of75

glandular epithelial regions on other types of tissues. Glandular epithelium can

be indirectly obtained by extracting it from glandular structures in most cases

but it is difficult to extract luminal epithelium. Existing methods in literature

are mainly based on employing two types of features: cell colour/texture and

structural information of gland. Farjam et al. (2007) propose a variance filter80

which produces different texture features on lumen and cell regions and the seg-

mentation is accomplished by clustering the texture features. Their method can

be used for segmenting lumen or background regions. However, it is unable to

differentiate between stromal and epithelial cell regions due to strong similarity

of their textural features. Naik et al. (2008) use a Bayesian classifier to detect85

potential lumen regions and then initialise a level set curve on the boundaries

of detected luminal area to finalise the segmentation. One limitation of this

method is that its level set curve has difficulty with approximating epithelial

boundaries with complex shape and texture. Nguyen et al. (2012) first label

nuclei, cytoplasm and lumen by colour space analysis and utilise the constitu-90

tion of glandular components to achieve the segmentation. Gunduz-Demir et al.

(2010) construct an object graph of a set of circular objects decomposed from

the image to identify the lumen. Then cell objects are used to form the bound-

ary of glandular structures. Recently, Sirinukunwattana et al. (2015) proposed

a novel Random Polygons Model (RPM) using epithelial cells as the vertices95

of a polygon to approximate boundaries of glands at the cost of relatively high

computational complexity. A major limitation of such structure-based meth-
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ods is that they rely on prior knowledge of the glandular structures. Lee et al.

(2013) proposed a Cell Orientation Entropy (COrE) method which attempts

to first qualitatively model cells/nuclei orientations by performing PCA on the100

cells/nuclei boundaries segmented using active contour, and then it quantifies

the cell disorders by calculating the second order statistics for cell orientation

from a co-occurrence matrix. This method can be potentially used for distin-

guishing differences between orientations of neighbouring epithelial and stromal

cells/nuclei. Recently, Deep Learning (DL) techniques have been shown to pro-105

duce promising results on gland segmentation Chen et al. (2016); Ronneberger

et al. (2015) but DL approaches require a lot of training data and therefore we

will focus on non-DL methods in this paper.

In endometrial histology, insignificant distinctive features, between epithelial

cells and stromal cells, and also between lumen and background regions are110

observed, in terms of colour and morphology. Consequently, existing solutions

listed above based on colour or texture features and composition of glandular

structures may fail to segment epithelial cells correctly.

3. Materials

Endometrial biopsies were collected in a clinic at the University Hospitals115

Coventry and Warwickshire NHS Trust from patients suffering from recurrent

pregnancy loss or recurrent IVF treatment failure. Written informed consent

was obtained prior to tissue collection. The biopsies were taken in the mid-

luteal phase and obtained using a Wallach Endocell sampler (Wallach, USA).

The tissue was fixed in 10 formalin and embedded in paraffin wax. Sections120

(3µm) were labelled with anti-CD56 monoclonal antibody and stained with

DAB and haematoxylin as per standard protocols in the pathology laboratory

at the hospital. Stained tissue sections were scanned using Mirax Midi (Zeiss,

Germany) at 0.25µm/pixel. Scans were assessed using Panoramic Viewer to

identify regions for analysis. Digitised images were captured for each slide at125

40× resolution and saved in the JPEG format. Images in the dataset used for

9
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Figure 3: A block diagram of the proposed method with intermediate results of each

step. Lumen segmentation is shown in transparent yellow, red grid marks superpixels,

potential epithelial superpixels are shown in transparent red, red dots depict detected

cells, black bars represent cell orientation, green dots depict epithelial cells classifica-

tion using the proposed descriptors, and epithelial segmentation is shown in green.

experiment and evaluation of the proposed method are cropped regions in the

high power fields (HPFs).
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4. The Proposed Method

An overview of the proposed epithelial segmentation method is given by the130

block diagram in Fig. 3, which shows a workflow with the intermediate result

of each main step. In the proposed method, we first perform a pre-processing

step which detect cells and segments lumen or background regions to locate the

superpixels of potential epithelium. Next, we compute the proposed descriptors

for individual cells within these potential epithelial superpixels, and classify135

them into either epithelial or stromal cells by Random Forest classifier. Finally,

potential epithelial superpixels containing classified epithelial cells are joined

together to yield the segmentation of epithelial region.

4.1. Pre-processing

The input image is separated into the two underlying stain channels, Haema-140

toxylin and DAB (CD56), using a colour deconvolution method proposed in

Khan et al. (2014). The Haematoxylin channel is used for cell detection, lumen

segmentation, and superpixel decomposition. We segment lumen and back-

ground of the input image using the variance filter in Farjam et al. (2007). It

is based on the observation that lumen or background are large homogeneous145

regions with small local standard deviations, while regions with dense cellular

populations are the opposite. We denote a set of pixels segmented as lumen

or background as Seglb. We decompose the input image into superpixels using

the Simple Linear Iterative Clustering (SLIC) algorithm proposed by Achanta

et al. (2012). A superpixel denoted as P is a set of pixels, that depict a small150

homogeneous region depicting either lumen, background or cell in our cases.

We classify superpixels into two categories: lumen and cell superpixels. A su-

perpixel P is a lumen superpixel and denoted as Sl depicting a lumen region

if |Seglb ∩ P | ≥ 1
2 |P |, |...| represents cardinality of a set. Otherwise it is a cell

superpixel and denoted as Sc, which depicts either an epithelial or a stromal155

cell region. An Sc is defined as 1st level potential epithelial superpixel (S1
e ) if

it immediately connects to any Sl. Similarly, an Sc is defined as a 2nd level
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potential epithelial superpixel (S2
e ) if it immediately connects to any S1

e but not

to Sl. We merge both S1
e and S2

e to yield the potential epithelium regions. This

is because an epithelium can be formed by multiple layers of epithelial cells,160

thus we also define some superpixels which are more distant to lumen regions

as potential epithelial superpixels.

It is important to mention that localisation of the cell positions is prerequisite

to compute the proposed descriptors, though cell segmentation is not necessary.

We detect cells using an extended version Li et al. (2014) of Local Isotropic165

Phase Symmetry Measure (LIPSyM) method proposed in Kuse et al. (2011).

The method is based on the assumption that stromal and epithelial nuclei appear

as elliptical blobs where the pixels near to their centers show peaks of local

symmetry.

4.2. Estimation of cell orientations170

In this step, the Haematoxylin channel is used as a gray-scale input image

which is normalised to zero mean and unit variance in order to reduce the

variations in pixel value of cell and background regions from different images,

which facilitates the subsequent image processing steps (Hong et al. (1998)).

After normalisation, we calculate pixel-level orientation Op(i, j) at pixel (i, j)175

of the input image with the help of gradient direction (Gonzalez and Woods

(2008)).

We then estimate the orientation of a cell ‘c’ using the pixel-level orientations

at a set of its neighbouring pixels within a circular pixel neighbourhood Np(c)
defined as,

Np(c) =
{
p ∈Maskh|dist(c, p) ≤ r

}
(1)

where p is a pixel from the input image, Maskh is a binary mask image seg-

mented from the Haematoxylin channel using Otsu Thresholding (Otsu (1975)),

dist(c, p) is the Euclidean distance between p and the center of c, and r is a scalar180

in pixel value which defines the radius of Np(c). In our cases, we empirically

chose r to be 7 pixels, which was found to roughly cover a cell nucleus. Fig.

4(a) shows the estimated pixel orientations.
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(a) (b)

Figure 4: (a) shows the cell orientation estimation of a cell, the black circle is the pixel

neighbourhood used for sampling neighbouring pixels of the cell, the binary mask (cell

segmentation) of Haematoxylin is shown in green, red bars depict pixel orientations

and the black line depicts the orientation of a cell; (b) shows illustration of the COCo

descriptor for a detected cell. Black dots depict the positions of the detected cell,

purple shapes depict cells, black circles mark the cell neighbourhoods of the descriptors,

black dashed lines divide the angular sections of the cell neighbourhoods, red dashed

lines are coordinate axes, the“ring-like” cell neighbourhoods of the descriptors are

shown in gray, black lines depict the cell orientation and black arrows depict vectors.

To estimate the orientation of the cell c, we first define a pixel orientation

histogram H(c) for N (c) as,

H(c) =
{
h1, h2, ..., h7

}
(2)

The count hk for the kth bin is calculated as follows:

hk =

|N (c)|∑

p=1

C(Op, k), k = 1, 2, ..., 7

C(Op, k) =





1, if (k−1)π
8 ≤ Op ≤ (k+1)π

8

0, otherwise

(3)

where C(Op, k) is an indicator function that indicates to which bin the orien-

13
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tation of a pixel p belongs. We then estimate the orientation denoted as Oc of

cell c using the largest bin of H(c) as follows,

Oc =
1

hl

|N (c)|∑

p=1

Op · C(Op, l)

l = arg max
(
H(c)

)

hl = max
(
H(c)

)

(4)

Fig. 4(a) shows the cell orientation estimation of a cell.

4.3. Computation of the Cell Orientation Congruence (COCo) descriptor185

To compute the COCo descriptor for a cell c, we first define a circular cell

neighbourhood denoted as Nc(c) for c, which is shown in Fig. 4(b) and given

as:

Nc(c) =
{
nc|dist(c, nc) ≤ d

}
(5)

where nc is a neighbouring cell within distance d, dist(c, nc) denotes the Eu-

clidean distance between the centers of c and nc, and d is the radius of Nc(c).
The circular cell neighbourhood Nc(c) is divided into a set of 16 half-overlapping

(with overlap of π
8 ) angular sections with the same angular width of π

4 . We ex-

perimentally found that 16 bins were enough to cover all the neighbouring cell190

orientations and choosing more than 16 was redundant. The division of angular

sections starts clockwise from the Y-axis which is aligned with the orientation

of c. The division is illustrated in Fig. 4(b).

We then calculate the cell orientation congruence Con of the nth angular sec-

tion of Nc(c) using orientation of the cells located in angular section as follows:

Con =

|Nc(c)|∑

nc=1

Ωnc · cos(Φnc) · I(∆nc, n),

n = 1, 2, ..., 16

(6)

14
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where

Ωnc =
ωnc

|Nc(c)|∑
nc=1

ωnc

, ωnc = e
−D2

nc
2σ2

Φnc =




π − |Oc −Onc|, if |Oc −Onc| ≥ π

2 ,

|Oc −Onc|, otherwise

I(∆nc, n) =





1, if (n−1)π
8 ≤ ∆nc ≤ (n+1)π

8

0, otherwise

∆nc =





2π − |Θnc −Oc|, if Θnc −Oc ≤ 0,

Θnc −Oc, otherwise

Θnc =





2π − |θnc| , if θnc < 0,

θnc, otherwise

θnc = arccos
( vnc · vx
||vnc · vx||

)

In the above equations, Ωnc is the weight given to nc, which is calculated based

on its Euclidean distance Dnc to the center of c using a standard deviation σ,195

Φnc is the orientation difference of nc compared with c, I(∆nc, n) is an indicator

function that indicates whether nc is located in the nth angular section of Nc(c),
vnc is a vector from the center of c to the center of nc, vx is an unit vector along

the x-axis, and θnc is the angle between vnc and vx. Fig. 4 (b) illustrates how

to localise a nc for an angular section of the COCo descriptor and compute the200

cell orientation congruence of this angular section.

We finally express the COCo descriptor of the cell c as a feature vector

COCo(c) consisting of the cell orientation congruences of 16 angular sections

as:

COCo(c) =
〈
Co1, Co2, ..., Co16

〉
(7)

The above descriptor calculated for the epithelial cell c shown in Fig. 4(b) is

likely to have relatively large values in the first element Co1 and middle element

Co10, which tend to exhibit the orientation congruence of its cell neighbourhood.
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4.4. Multi-Ring COCo Descriptor205

The COCo descriptor is designed to capture differences in orientations of cells

in a neighbourhood. A limitation of the single-radius version of COCo descriptor

is that it is susceptible to noisy cell orientations in the vicinity of a cell. We

propose a multi-ring construction of our descriptor, which not only helps to

include features from larger neighbourhoods but also filters the descriptor for

orientations from noisy regions such as those containing clumped cells. We

define a “ring-like” cell neighbourhood (shown in gray colour in Fig. 4(a) and

(b)) of the epithelial cell c as:

Ri(c) =
{
nc|dinner ≤ dist(c, nc) ≤ douter

}
(8)

where nc is a neighbouring cell in Ri(c), dinner and douter are inner and outer

radii respectively.

Given a set of COCo descriptors computed using different sizes of “ring-like”

cell neighbourhoods of the cell c, the multi-ring version of the COCo descriptor

of the cell c, which we term here as the Multi-Ring Cell Orientation Congru-

ence (MR-COCo) descriptor, is given as a feature vector MRCOCo(c) which

concatenates the set of COCo descriptors,

MRCOCo(c)

=
〈
COCo(c)1, COCo(c)2, ..., COCo(c)nrings

〉
(9)

where nrings denotes the number of rings and COCo(c)i is calculated using

Ri(c) as defined above in (8) instead of Ncc as in (5). The MR-COCo de-

scriptor can more comprehensively describe the cell orientation congruence by210

considering a diversity of cell neighbourhoods of a cell.

4.5. Epithelium segmentation by labelling potential epithelium superpixels

For epithelium segmentation, we first compute the proposed descriptors from

both epithelial and non-epithelial cells located within potential epithelial super-

pixels as described above. Secondly, we employ the random forests classifier215

(Breiman (1996, 2001); Breiman and Cutler) with the proposed descriptors to

16
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identify epithelial cells. Next, a potential epithelial superpixel which contains

any non-epithelial cells or no cells is initially categorised as a non-epithelial su-

perpixel, Sne, otherwise it is marked as an epithelial superpixel, Spe. In the

former case i.e., superpixels with a few non-epithelial cells, superpixels may220

be mistakenly classified as non-epithelial. Therefore, we perform a refinement

process to re-classify these non-epithelial superpixels, Sne, as described below:

1. Given Sne, we define a Spe which immediately connects to Sne as its level

1 neighbour denoted as S1
i . A set of S1

i is denoted as
{
S1
i

}
;

2. We define a Spe as a level 2 neighbour of Sne if it immediately connects225

to any S1
i and Spe /∈

{
S1
j

}
, denoted as S2

j . The set of level 2 neighbours

is denoted as
{
S2
j

}
;

3. Cells identified as epithelial cells by the random forests classifier with the

proposed descriptors are defined as true epithelial cells, otherwise they

are defined as false epithelial cells. The numbers of true and false epithe-230

lial cells within Sne and its neighbours
{
S1
i

}
and

{
S2
j

}
are counted and

denoted as Ntrue and Nfalse, respectively. Sne is remarked as an epithe-

lial superpixel if Ntrue ≥ Nfalse, otherwise it remains as a non-epithelial

superpixel.

A binary image is segmented by joining all epithelial superpixels together after235

the refinement step. We then achieve the final epithelium segmentation by

removing small isolated connected components from the binary image. We

empirically chose to remove a region that has area smaller than 500 pixels.

5. Experimental Results

We devise three experiments with gradually increasing complexity in order240

to comprehensively evaluate the segmentation accuracies of the proposed de-

scriptors. In addition, we performed three-fold cross validation. For each cross

validation, we divided the data randomly into three subsets and chose two sub-

sets for training and the remaining subset for testing.
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The first experiment examines the segmentation accuracy of the proposed245

descriptors, i.e., COCo, MR-COCo on a randomly selected subset of the image

dataset. In addition, their computational speeds are also evaluated using the

same subset. The second experiment compares the proposed MR-COCo in the

first experiment with five state-of-the-art methods, i.e., Farjam et al. (2007),

Naik et al. (2008), Nguyen et al. (2012), Sirinukunwattana et al. (2015) and250

Lee et al. (2013). To the best of our knowledge there is no existing method

on segmentation of both glandular & luminal epithelium in literature. How-

ever, the above five methods are proposed mainly for segmenting glands rather

than luminal epithelium, this experiment aims to evaluate the performance of

the proposed descriptors against the other methods on segmenting glandular255

epithelium. Our image dataset contains 150 images. The images were initially

annotated by one expert to obtain the ground truth markings and then veri-

fied by a second more senior expert. As the other methods we compare with

are designed for segmentation of glands, we perform two set of experiments to

make the comparison fair. We first manually select a subset (50 images) from260

the image dataset to guarantee that each image contains at least one glandu-

lar structure. Next, we manually crop a sub-image from each of these images,

which contain only glandular structures. The sub-images are then used in the

experiment in Section 5.2 where we only compare the performance of different

methods on segmentation of glandular structures. To highlight the advantages265

of the proposed method, we compare MR-COCo with all the state-of-the-art

methods in Section 5.3 where we use all the data set (150 images). The im-

ages of this dataset may contain either or both of the luminal and glandular

epithelium.

We evaluate the segmentation accuracy using a modified version of the Dice-

score inspired by Sirinukunwattana et al. (2015) in pixel-level and epithelium-

level. The closer to 1 the Dice score, the more accurate is the segmentation.

The pixel-level Dice score is calculated as:

Dicepix(Seg,Grt) = 2

(
|Seg ∩Grt|
|Seg|+ |Grt|

)
(10)
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where Dicepix is the pixel-level Dice score, Seg is the set of pixels segmented270

as an epithelium and Grt is the set of pixels annotated as the ground truth.

We consider all segmented epithelium in an image as a whole for calculating

pixel-level Dice score.

To measure the weighted accuracy of segmenting individual epithelium, we

calculate the epithelium-level Dice score based on the pixel-level Dice score as

follows,

Diceepi(Seg,Grt) =

1

2

(
NS∑

i=1

wi ·Dicepix(Segi, Grti) +
NG∑

i=1

ẇi ·Dicepix( ˙Grti, ˙Segi)

)

wi =
1

2

(
|Segi|
|Seg| +

|Grti|
|Grt|

)

ẇi =
1

2

(
˙|Grti|
|Grt| +

˙|Segi|
|Seg|

)

(11)

where Diceobj is the object-level Dice score, Segi is a set of pixels segmented as

the ith epithelium region in the image, Grti is a set of pixels annotated as the275

ith ground truth region which maximally overlaps with Segi among all ground

truth regions in the image, NS is the total number of the segmented epithelium

regions in the image, ˙Grti is a set of pixels segmented as the ith ground truth

region in the image, ˙Segi is a set of pixels segmented as the ith epithelium region

which maximally overlaps with Segi among all segmented epithelium regions in280

the image, and NG is the total number of ground truth regions in the image.

5.1. Comparison of the proposed descriptors for epithelium segmentation

The radius (in pixels) of the neighbourhood is a sensitive and key parameter

in all of the proposed descriptors. The radius size is empirically tuned based

on the image dataset. This experiment examines the performance of different285

radii for the proposed descriptors, and also compares the accuracy of these

descriptors for both luminal and glandular epithelium segmentation. The idea

of the proposed descriptors is to take the advantage of orientation congruence of

neighbouring cells. The radius and neighbourhood size are proportional to the
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average size of cells in terms of pixels in the image. The radius should be large290

enough to guarantee that the descriptors can locate a sufficient number of cells

within the defined neighbourhood. We set the radius initially to 60 pixels to

allow the proposed descriptors to capture a couple of cells, and then increase it

by 30 pixels up to a maximum of 180 pixels. We empirically chose 3 “ring-like”

neighbourhoods for the multi-ring version of the proposed descriptors.295

Fig. 5 shows the segmentation accuracy of the proposed descriptors with

different neighbourhood radii in terms of average dice scores. The results show

that the proposed descriptors performed poorly with a radius of 60 pixels. The

proposed multi-ring descriptor have much lower accuracy compared with the cell

descriptors using a single neighbourhood. This is due to fact that a small radius300

does not allow locating enough cells to compute the orientation congruence,

especially, very few of cells can be found within a ring of 20 pixels, 60/3, in

the multi-ring version. The accuracy of the proposed descriptors is significantly

improved by increasing radius but decreases when their radii becomes larger

than 120 pixels. The MR-COCo outperforms the COCo descriptor in terms of305

the average Dice score. In conclusion, the multi-ring neighbourhood improves

the accuracy of the proposed descriptors with an appropriate value for the radius

as shown in Fig. 5.

The average computational speeds per image (for average 975.4 detected

cells per image) of the proposed descriptors are given in Fig. 6. All the results310

were generated using Matlab 2015b running on a Windows 10 machine with

2.5GHz Intel Xeon E5-2760 v2 processor and 64GB RAM. The computational

costs of these descriptors increase as the neighbourhood radius increase. The

cost of the MR-COCo descriptor is roughly 3 times of the COCo descriptor. This

is due to the fact that 3 ring-like neighbourhoods are used for the MR-COCo315

descriptor in the experiment, which can be considered as repeating 3 times the

computations of the COCo descriptor. This can be optimised by parallelising

the computation.
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Figure 5: Epithelium segmentation object dice scores of the proposed descriptors.
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Figure 6: Computational speeds of the proposed descriptors.
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(a) (b) (c)

(d) (e) (f)

Figure 7: (a), (b) and (c) are three sample images whereas the ground truth for epithe-

lium is manually marked using green lines in (d) and (f). The green line in (e) marks

“hive-like’ cluster of epithelial cells.

5.2. Evaluation of MR-COCo descriptors for glandular epithelium segmentation

In this experiment, the MR-COCo descriptor is evaluated against Farjam320

et al. (2007), Naik et al. (2008), Nguyen et al. (2012), Sirinukunwattana et al.

(2015), and Lee et al. (2013) for segmenting glands on 50 sub-images which

contain only glandular structures. The algorithms in Farjam et al. (2007) Naik

et al. (2008), Nguyen et al. (2012), and Sirinukunwattana et al. (2015) were pro-

posed for segmenting complete glandular structure but as mentioned above, to325

the best of our knowledge there is no existing literature on segmentation of both

luminal and glandular epithelial regions in endometrial biopsies. The methods

mentioned above generally connect a set of epithelial cells to generate a close

boundary that marks the glandular structures. To make the comparison fair for

the task of epithelium segmentation, in their results we morphologically dilate330

these boundaries by the average thickness (30 pixel) of glandular epithelium,

and also remove lumen regions from segmented glandular structures, in order
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to achieve the segmentation of epithelium by these methods.

The results of the comparison are reported in Table 1 which show that

MR-COCo descriptor yields top accuracy among all the compared methods.335

In reality, thickness of epithelium can differ greatly between different glandu-

lar structures and even within one glandular structure as shown in Fig. 7(a).

Therefore, the proposed descriptors achieve better accuracy than other methods

which try to construct a boundary of glandular structures using a single layer of

epithelial cells. An image with varied thickness of glandular epithelium is shown340

in Fig. 7(a), and the segmentation results in Fig. 8(j) show that accurate seg-

mentation of glandular epithelium of variable thickness can be simultaneously

achieved when using the MR-COCo descriptor. Another common problem of

these methods is that large blank regions between cell clusters are often mistak-

enly segmented as lumen by them. Both Fig. 7(a) and 7(b) show examples of a345

such cases. In the top-middle of Fig. 7(a), we observe that an elongated blank

region is surrounded by stromal cells on the left side and epithelium on the

right side. In Fig. 7(c), a large blank region at the centre is enclosed by stromal

cells. Our method first labels the blank region as lumen and its surrounding cell

regions as potential epithelium regions. Next, the cells within these regions are350

classified using the proposed descriptors. In Fig. 7(a), the stromal cell region is

completely removed from the segmentation result. Although a few of cells are

mistakenly classified as epithelial cells from Fig. 7(c) in Fig. 8(l), most of the

potential epithelium regions are also finally removed since a majority of cells

within these regions are stromal cells. On the other hand, the other methods355

generally consider blank region as lumen and then construct a boundary sur-

rounding this blank region to report a glandular structure. In addition, Nguyen

et al. (2012) uses a colour-based pixel clustering method to classify stromal and

epithelial cell. This causes the stromal and epithelial cells to be segmented as

one cell type. Thus the segmentation result of Nguyen et al. (2012) is also af-360

fected by incorrect epithelial cell classification. The active contour based cell

segmentation method in Lee et al. (2013) has difficulty in segmenting dense cell

cluster as separate individual cells. Consequently their PCA based cell orien-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8: Lumen segmentation for the sample images in Figure 7 are shown in transpar-

ent yellow in (a), (b) and (c), potential epithelium region is shown in transparent red

in (d), (e) and (f); (g), (h) and (i) are classification images of Figure 7 (a), (b) and (c)

using the MR-COCo descriptor, in which black bars depict cell orientations, red dots

non-epithelial cells and green dots depict epithelial cells within potential epithelium

regions; epithelium segmentation results are shown in transparent green in (j), (k) and

(l) in the last row.

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

tation estimation method fails. Thus the problems of cell segmentation cause

Nguyen et al. (2012) and Lee et al. (2013) to perform poorly on the images with365

large blank stromal regions due to relatively sparse distribution of cells and

densely grouped cells. So Nguyen et al. (2012) and Lee et al. (2013) attain low

accuracy, and also large standard deviations are reported in their Dice score.

We observe a small “hive-like” epithelial structure which is marked by a green

circle at the bottom of the truth image in Fig. 7(e). Both the proposed descrip-370

tors and all the state-of-the-art methods are not able to detect this structure due

to the fact that no lumen region can be found in the first place to locate it. An-

other problem of the proposed descriptors is that the cell orientation estimation

of the cells from “hive-like” epithelial structures is inaccurate due to their small

circular shapes. Moreover, their cell orientation congruence is similar to some of375

the stromal cells. Hence, the “hive-like” epithelial structure becomes the main

challenge preventing our method from generating very accurate segmentation

results.

Table 1: Segmentation accuracy of the proposed descriptor compared to different meth-

ods on sub-images containing only glandular epithelium. Dice scores are reported by

the averages ± standard deviations and the best results are in bold.

Methods
Dice Scores

Pixel-Level Epithelium-Level

Nguyen et al. (2012) 0.61± 0.08 0.59± 0.08

COrE Lee et al. (2013) 0.65± 0.08 0.62± 0.09

Naik et al. (2008) 0.72± 0.04 0.71± 0.05

Farjam et al. (2007) 0.76± 0.04 0.74± 0.05

TGPM Sirinukunwattana et al. (2015) 0.75± 0.03 0.74± 0.03

MR-COCo 0.79 ± 0.03 0.78 ± 0.03
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5.3. Evaluation of the MR-COCo descriptor for glandular and luminal epithe-

lium segmentation380

Table 2 indicates that the state-of-the-art methods perform with a lower

accuracy in this experiment. The MR-COCo descriptor slightly dropped the

accuracy by only 0.02, showing that it is also able to accurately segment luminal

epithelium. The algorithms in Farjam et al. (2007), Naik et al. (2008), Nguyen

et al. (2012), and Sirinukunwattana et al. (2015) produce lower accuracy than385

in the above experiment because lumen segmentation used in these methods

cause the background regions to be also segmented as lumen due to their high

similarity in our dataset. Consequently, the stromal cells at the boundary of

background regions are mistaken for epithelial cells, since they have similar

texture, colour and shape features to their neighbouring epithelial cells. Fig.390

7(c) shows an example of such a case. A large empty background region is

normally segmented as lumen and then all nearby cells are used to generate a

boundary which is segmented as a glandular structure by the other methods. In

fact, the ground truth image in Fig. 7(f) shows that only the cells at the top-left

and the bottom-right of the background are from luminal epithelium, despite395

the fact that they are located at the same diagonal edge which is a background

boundary. In the results, the classification of these cells is performed accurately

by using the MR-COCo descriptor.

In addition, all the state-of-the-art methods assume a closed boundary for

the glandular epithelium. But luminal epithelium regions are normally curves400

or lines and do no belong to any glandular structure, as shown in Fig. 7(a).

The algorithm in Lee et al. (2013) produces a low accuracy due to the fact

that the cells at luminal epithelium are more frequently overlapped or in dense

cluster, which makes the cell segmentation even more challenging for their active

contour based method.405

In summary, the experimental results show that the MR-COCo descriptor

is relatively robust for segmentation of luminal epithelium and all the state-of-

the-art methods have poor performance on segmenting luminal epithelium.
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Table 2: Segmentation accuracies of the proposed descriptor and all the state-of-the-art

methods on the completed image dataset for both glandular and luminal epithelium.

Dice scores are reported by the averages ± standard deviations and the best results

are in bold.

Methods
Dice Scores

Pixel-Level Epithelium-Level

Nguyen et al. (2012) 0.58± 0.09 0.56± 0.10

COrE Lee et al. (2013) 0.58± 0.11 0.54± 0.12

Naik et al. (2008) 0.66± 0.05 0.65± 0.05

Farjam et al. (2007) 0.67± 0.05 0.66± 0.06

TGPM Sirinukunwattana et al. (2015) 0.70± 0.04 0.68± 0.05

MR-COCo 0.76 ± 0.05 0.76 ± 0.05

6. Conclusions

In this paper, we presented cell orientation congruence descriptor and its410

multi-ring version which aim to solve the problem of simultaneously segmenting

both luminal and glandular epithelium segmentation in endometrial histology

images. The proposed descriptors are designated to discriminate between ep-

ithelial and stromal cells based on the observation that the epithelial cells in

normal endometrium are depicted with an orientation that is similar to that of415

their neighbouring cells along certain directions whereas neighbouring stromal

cells are packed depicted following an entirely different pattern. The results

show that the MR-COCo descriptor yields the best results compared to COCo

and to the 5 state-of-art methods in two experiments. The experimental results

show that the MR-COCo descriptor attains a superior segmentation accuracy,420

particularly for simultaneously segmenting both luminal and glandular epithe-

lium.

The COCo descriptor has been designed to segment epithelial regions (con-
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sisting of both glandular epithelium and luminal epithelium) that generally con-

tain cells exhibiting congruence in their orientation. The proposed descriptor425

can be adapted to segment epithelial regions in adenocarcinomas (cancers of

the epithelial tissue, for example in breast, lung and colon) where neighbour-

ing epithelial cells again exhibit cell orientation congruence, i.e. neighbouring

epithelial cells have similar orientations. We believe that this gives the COCo

descriptors wider applicability in the analysis of histology images of adenocar-430

cinomatous tissue slides. We intend to validate the proposed descriptors on a

much larger dataset of both cancer and non-cancer histology images consisting

of epithelial regions. A potential direction of future research is to efficiently

parallelise the computation of the proposed descriptors.
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