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Abstract

We present different implementations for the irreducible Sobol’ (IS) sequences
introduced in [3]. For this purpose we retain two strategies: first we use the
connection between IS and Niederreiter sequences to provide a very simple
implementation requiring no computer search; then we use criteria measur-
ing the equidistribution to search for good parameters. Numerical results
comparing these IS sequences to known implementations show promise for
the proposed approaches.

Keywords: Sobol’ sequences, Niederreiter sequences, direction numbers,
irreducible polynomials.

1. Introduction

Irreducible Sobol’ (IS) sequences [3] generalize the famous LPτ -sequences
of Sobol’ based on primitive polynomials over F2, to prime power bases and
with irreducible polynomials. This generalization preserves two key prop-
erties of Sobol’ sequences: (0, 1)-sequences for their one-dimensional pro-
jections and an easy-to-implement column-by-column construction. Just like
for LPτ -sequences, parameters to initialize the recursions underlying the con-
struction —the so-called direction numbers—must be determined.
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The goal of this paper is to present different approaches to select direction
numbers for IS-sequences and study the properties of their implementations,
both in terms of their quality and their performance in various numerical
integration experiments. In particular we propose an implementation that
exploits an insightful connection between IS and Niederreiter sequences. This
implementation has the advantage of getting direction numbers “for free”,
without having to search for them. We also propose more traditional imple-
mentations based on computer searches for direction numbers.

This paper is organized as follows. In Section 2 we present important
background facts on IS sequences. Previous Sobol’ sequences constructions
are reviewed in Section 3. Our own implementations are described in Section
4, and their quality is assessed in Section 5. Numerical results comparing
our implementations to Sobol’ sequences are given in Section 6.

2. Background on IS sequences

We assume the reader is familiar with the concept of (t, s)-sequences, in-
cluding the definition of the parameter t and equidistribution properties, and
refer the reader to [2] for more information. We start by recalling the defi-
nitions of Sobol’ and Niederreiter sequences in the framework of the digital
method introduced by Niederreiter and as presented in [3].

The construction introduced by Sobol’ in [7] is now widely known as Sobol’
sequences. It is a digital sequence in base 2 very fast to generate, hence its
popularity with practitioners. The generating matrices C(i), 1 ≤ i ≤ s, are
constructed columns by columns, using monocyclic operators obtained from
primitive polynomials over F2. To simplify the presentation, we drop the
index i and explain below how to construct a generating matrix C based on
a primitive polynomial p(x) over F2[x].

Let p(x) = aex
e + ae−1x

e−1 + . . .+ a1x+ a0 be a primitive polynomial in
F2[x] of degree e ≥ 1. The matrix C = (Vr)r≥1 with columns Vr = (vj,r)j≥1 is
defined as follows: For r = 1, . . . , e, let dr be an odd number between 1 and
2r, and let the first e entries of V1, . . . , Ve be defined via

dr
2r

=

r
∑

j=1

vj,r2
−j

and vj,r = 0 for j > r.
Note that since dr is odd, vr,r = 1 for r = 1, . . . , e. The e integers

d1, . . . , de are the so-called direction numbers used to initialize the first e
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column vectors. The remaining column vectors Vr for r > e are obtained
using the following linear recurrence associated with p(x):

Vr+e =
1

2e
a0Vr + a0Vr + a1Vr+1 + . . .+ ae−1Vr+e−1, r ≥ 1, (1)

where the jth entry of (1/2e)Vr is given by the (j−e)th entry of Vr for j > e,
while the first e entries are 0.

It is easy to see from (1) and the property vr,r = 1 (1 ≤ r ≤ e) that C is
non-singular upper triangular (NUT) and therefore yields a (0,1)-sequence.

We point out that Sobol’ uses the term direction numbers for all vectors
Vr, r ≥ 1, while we call direction numbers only the first e ones giving the
first e columns of C. Hence, the direction numbers associated with p(x) can
be defined as the NUT (e× e) direction matrix D = (vj,r)1≤j≤r≤e.

As shown in [7] (but using a different terminology), Sobol’ sequences are
(t, s)-sequences in base 2 with t =

∑s

i=1(ei− 1), where ei is the degree of the
primitive polynomial used to construct the ith generating matrix.

Next, in 1982, Faure introduced (0, s)-sequences in a prime base b ≥ s
(see [3, Sec. 2.2]), now widely known as Faure sequences. A few years later,
Niederreiter sequences were introduced for a general base b in [6, Sect. 4].
Here we assume b is a prime power. The construction requires s pairwise
co-prime polynomials p1(x), . . . , ps(x) ∈ Fb[x] of respective positive degrees
ei, and then a series of polynomials gi,j(x) ∈ Fb[x] for i = 1, . . . , s and
j ≥ 1 such that gcd(pi(x), gi,j(x)) = 1 for all i, j. The generating matrices
are defined through their rows by first developing the formal Laurent series
(where 0 ≤ k < ei and where w ≤ 1 may depend on i, j, k)

xkgi,j(x)

pi(x)j
=

∞
∑

r=w

a(i)(j, k, r)x−r. (2)

The matrix entries are then defined as c
(i)
j,r = a(i)(q+1, u, r) for r ≥ 1, where

q and u are defined by j − 1 = qei + u with 0 ≤ u ≤ ei − 1.
It is shown in [6] that this construction is a digital (t, s)-sequence in base

b with t =
∑s

i=1(ei − 1), provided that limj→∞(jei − deg(gi,j)) = ∞ for all
1 ≤ i ≤ s. This formula for t is also valid for the Sobol’ sequence, but
with primitive polynomials. Here however, the polynomials pi(x) must be
co-prime, and thus typically pi(x) is taken to be the ith element in a list
of monic irreducible polynomials over Fb sorted in non-decreasing order of
degrees, so as to obtain the best possible t. This implies that the parameter
t for Niederreiter sequences in base 2 is smaller than t for Sobol’ ones.
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2.1. Example showing the relation between Sobol’ and Niederreiter sequences

Consider the primitive polynomial p(x) = x2+x+1 corresponding to the
monocyclic linear operator of order 2: ui+2 + ui+1 + ui in [7].

In the framework of Sobol’, consider the matrix with starting direction
numbers (1, 3), resulting from Vi+2 = Vi+1 + Vi + Vi/4 on column vectors,
see [7, Section 3.2]. In the framework of Niederreiter, consider the matrix
generated row by row by the series xk/p(x)j (0 ≤ k < 2), see [6, Section 6].

As seen in Figure 1, a simple examination of these two matrices shows
they are the same after permutation of odd and even rows. Also, it is easy to
check on these two matrices that the recurrence relation of Sobol’ applies to
the original Niederreiter matrix. As mentioned before, the Sobol’ matrices
are NUT matrices and therefore they generate (0, 1)-sequences. This is an
advantage since there is no “leading-zeros phenomenon” (see [1, Section 3.3])
for Sobol’ sequences. Another advantage for implementation is that there is
only one recurrence relation for the whole Sobol’ matrix instead of a recur-
rence relation for each odd row of an original Niederreiter matrix in base 2.
Hence the interest of a generalization of our example.



















1 1 0 1 1 0 1 1 0 . . .
0 1 1 0 1 1 0 1 1 . . .
0 0 1 0 1 0 0 0 1 . . .
0 0 0 1 1 1 0 0 0 . . .
0 0 0 0 1 1 1 0 1 . . .
...

...
...

...
...

...
...

...
...

. . .





































0 1 1 0 1 1 1 0 1 . . .
1 1 0 1 1 0 1 1 0 . . .
0 0 0 1 0 1 0 0 0 . . .
0 0 1 0 1 0 0 0 1 . . .
0 0 0 0 0 1 1 1 0 . . .
...

...
...

...
...

...
...

...
...

. . .



















Figure 1: Generating matrices based on p(x) = x2 + x + 1 for: Sobol’ sequence with
starting direction numbers (1, 3) (left); Niederreiter sequence based on gi,j = 1 (right).

2.2. Definition and properties of IS sequences

We now recall the definition of IS sequences introduced in [3].

Definition 1. Let p(x) = xe−ae−1x
e−1−· · ·−a1x−a0 be a monic irreducible

polynomial of degree e over Fb, where b is a prime power. Define a generating
matrix C associated with p by the linear recurrence relation

Vr+e − ae−1Vr+e−1 − · · · − a1Vr+1 − a0Vr =
1

be
Vr, (3)
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where Vr (r ≥ 1) is the rth column of C, and with e starting direction
numbers d1, . . . , de (1 ≤ dr < br with gcd(dr, b) = 1) defining an NUT
(e× e) direction matrix D for C. Then, according to the general principle of
construction, an s-dimensional irreducible Sobol’ sequence is obtained with
s different monic irreducible polynomials pi generating s such matrices C(i)

(typically, one chooses the e first ones in a list of all monic irreducible polyno-
mials sorted in non-decreasing degree, as is done for Niederreiter sequences).
Note that when working in a general prime power base b, one also needs to
choose bijections to go back and forth between Fb and Zb so that points with
coordinates in [0, 1) can then be defined.

By construction, the generating matrices of irreducible Sobol’ sequences
are NUT matrices, so that their one-dimensional projections are (0, 1)-se-
quences. Also, it is worth noting that no truncation is required in their
definition (in contrast with other types of low-discrepancy sequences). The
following lemma and theorems are taken from [3].

Lemma 1. (Fundamental lemma for prime power base b [3, Lemma 4.2])
The matrix of a Niederreiter sequence in prime power base b generated by
the formal Laurent series xk/p(x)j (for 0 ≤ k < e and j ≥ 1), where p is
a monic irreducible polynomial over Fb with deg(p) = e, satisfies the Sobol’
recurrence relation (3) associated with p in Definition 1.

Theorem 1. ([3, Theorem 4.3]) After re-ordering of the rows to get NUT
matrices, Niederreiter sequences in a prime power base b generated by the
formal Laurent series xk/pi(x)

j, where pi, 1 ≤ i ≤ s are distinct monic
irreducible polynomials, are IS-sequences associated with the polynomials pi.

Theorem 2. ([3, Theorem 5.2]) The only Niederreiter sequences in a prime
power base b that are IS-sequences (after re-ordering of the rows to get NUT
matrices) are those based on gi,j(x) = 1 for all i = 1, . . . , s and j ≥ 1.

3. Previous Sobol’ sequences constructions

Before we present different implementations for IS sequences, we first
review two relatively recent constructions for Sobol’ sequences. Both have
been defined up to very large dimensions.

The idea proposed by Joe and Kuo [4] to find good direction numbers
(DNs) is to introduce a criterion that measures the quality parameter t for
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several two-dimensional projections of the sequence, and then look for the
DNs that optimize this criterion via a component-by-component search. The
criterion they used to search DNs for coordinate j is

D
(q)
JK = max

mmin≤m≤mmax

[Tj(m,w)]q

m− Tj(m,w) + 1
, q > 0, (4)

where Tj(m,w) = max1≤k<j(t(j − k, j;m)× wj−k), and where t(j − k, j;m)
is the value of the parameter t for the two-dimensional digital net formed by
the 2m first points of the sequence over the coordinates {j−k, j}, and where
w ∈ (0, 1] is a weight typically chosen to be close to 1.

In addition, in their search they also verify if the so-called Property A
holds [9]. More precisely, up to dimension 1111, they only retain DNs
that meet this property before assessing them via (4). We say that a se-
quence satisfies Property A in dimension s if its first 2s points are (1, . . . , 1)-
equidistributed. That is, if we split the s-dimensional hypercube into 2s

congruent hypercubes of side 1/2, then there is one point into each of the 2s

sub-cubes of the partition. It should be noted that this property becomes
somewhat meaningless once s reaches values beyond which the correspond-
ing number of points 2s is too large to be representative of the number of
function evaluations that would be used in real-life problems [8].

In our numerical comparisons we label this sequence ‘KJ’ and have ex-
tracted the DN’s from Frances Kuo’s website, for a sequence built up to
21201 dimensions.

In addition to Property A, Sobol’ also introduced Property A
′

in [9], which
means that the first 22s points of the sequence are (2, . . . , 2)-equidistributed.
That is, if we partition the s-dimensional hypercube into 22s subcubes of side
0.25, then we have one point in each sub-cube.

The second type of construction we consider is the one presented in [8]
under the name SobolSeq16384 (although in this paper we used a version
for a slightly lower dimension—6144 instead of 16384—kindly provided to
us by S. Kucherenko, and refer to it as SobolSeq). This sequence is de-
signed to satisfy Property A up to 6144 dimensions, and Property A′ for
all sets of five adjacent dimensions (this is referred to as Property A′

5 be-
low (borrowing the notation from [8])). We note that the latter means that
the first 210 = 1024 points of the sequence are tested to see if they are
(2, 2, 2, 2, 2)-equidistributed, over each projection of indices (dimensions) of
the form {l, l + 1, . . . , l + 4}, l = 1, . . . , 6140.
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4. Implementations of IS sequences

We now propose two different approaches for implementing IS sequences.

4.1. Irreducible Sobol’-Niederreiter (ISN) sequences

This approach simply exploits the connection discussed in Theorem 2.
That is, we construct an IS sequence by defining its corresponding generating
matrices as follows. Assume for the ith coordinate, the matrix is based
on an irreducible polynomial of degree e. Then we take the e first rows
of the generating matrix of the Niederreiter sequence based on the same
polynomial (and with all polynomials gi,j set to 1) and reorder them so that
the e × e upper left generating matrix is NUT. The rest of the matrix is
filled column-by-column as in a regular IS sequence. The major advantage
of this approach is that we do not need to search for good DNs, and simply
need to decide how to order irreducible polynomials of a given degree. In our
experiments, we have ordered polynomials p(x) either (1) in increasing order
of their decimal representation, or (2) using their decimal representation
but interlacing them with the polynomial p̃(x) with coefficients ae−i for x

i.
For instance, if p(x) = x4 + x3 + 1 then p̃(x) = x4 + x + 1. We refer to
these two options as “decimal order” and “alternative order” and label the
corresponding sequences as ISN-dec and ISN-alt, respectively.

Note that the generating matrices based on this construction are such
that the upper left e × e matrix is completely determined by the first row,
whose e bits are then copied in a diagonal-wise fashion. This idea will be
used later when we describe a method we used to search for “good” DNs.

4.2. Component-by-component search for direction numbers

Here we describe two approaches we used to find “good” DNs for IS-
sequences in base 2, using a component-by-component search that has some
similarities with the approach used in [4].

• The first approach explores the space of IS-sequences in base 2 using
either the alternative or decimal order. Because that space is very large,
we designed a two-step search method. The first step is that we screen
a number of randomly selected DNs (unless the space is small enough to
have them all considered) and only retain those who reach the minimum
value for a criterion that assesses Property Ak1 and Property A′

k2
, defined

in (5) below. From the retained DNs, we select the one that minimizes
(6), a criterion similar to (4) but that weighs projections differently. More
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precisely, for the first step and assuming we are looking for DNs for coordinate
j, where 2 ≤ j ≤ d, we first form the ℓj,1 × ℓj,1 matrix obtained by taking
the first ℓj,1 = min(k1, j) elements on the first row of the max(1, j − k1 +
1)th,. . . ,jth generating matrices and compare its rank Rj,k1 with ℓj,1. Using
the terminology introduced above, if ℓj,1 − Rj,k1 = 0 for j = 2, . . . , d, then
we say Property Ak1 is met up to dimension d.

We then form a ℓj,2×ℓj,2 matrix by taking the first ℓj,2 = 2min(k2, j)
elements on the first two rows of the max(1,j − k2 +1)th, . . . ,jth generating
matrices and compare its rank R

′

j,k2
with ℓj,2.

Using a weight ω ∈ [0, 1], we define the criterion

πk1,k2 = ω(ℓj,1 −Rj,k1) + (1− ω)(ℓj,2 −R
′

j,k2
). (5)

Then the criterion for the second step is of the form

D(q) = max
mmin≤m≤mmax

[T̂j(ℓ2, m, w)]q

m− T̂j(ℓ2, m, w) + 1
, q > 0 (6)

where T̂j(ℓ2, m, w) = max1≤k≤ℓ2 t(j − k, j;m) × wk, and where w ∈ (0, 1] is
a weight typically chosen close to 1. We note that D(q) depends not just on
the parameter q but also on mmin, mmax, ℓ2 and w.

So one of the differences with the criterion (4) from [4] is that we do not
necessarily look at all two-dimensional projections over indices {l, j} with
1 ≤ l ≤ j − 1, but instead focus on a window of size ℓ2. Doing so reduces
the computational burden for calculating the criterion and puts more focus
on projections of nearby coordinates, which are more likely to be important
when considering the ANOVA decomposition of the function under study. In
the above criterion D(q), we restrict ourselves to two-dimensional projections,
but could easily generalize to a larger set of projections deemed important.
We label the corresponding construction as IS-t2A-dec/alt in the next two
sections, with ‘dec’ or ’alt’ referring to the order used for the polynomials.

• The second approach focuses on constructions that generalize the ISN
sequences, by considering all possible e-bit strings (starting with a 1) for the
first e elements of the first row of the direction matrix, and choosing the
string that minimizes (6). We label the obtained sequence as ISN-t2-dec/alt.

Recall that irreducible Sobol’-Niederreiter (ISN) sequences have their up-
per left e × e elements completely determined by the first e elements of the
first row. In other words, only the most significant bit of the DNs is needed,
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as we then obtain the other bits on the following e−1 rows by shifting the bits
by one to the right on each row. Equation (7) illustrates the process, showing
that only the bits d2, . . . , de need to be chosen. (In an ISN sequence, these bits
are prescribed by the expansion of 1/pj(x) = x−e+ d2x

−e−1+ d3x
−e−2+ . . .).











1 d2 d3 · · · de · · ·

0 1 d2
. . . de−1 · · ·

...
. . .

. . .
...

0 0 0 · · · 1 · · ·











(7)

Hence only e− 1 bits need to be chosen instead of e(e− 1)/2 when all e DNs
must be specified, as in Approach 1 or the KJ or SobolSeq constructions.

In the searches that generated the sequences that will be assessed in the
next two sections, we have used the criterion D(6) with mmin = 10, mmax =
17, ℓ2 = 20, w = 0.9999 and for the search algorithm that first filters DNs
using Property A and A’, we used ω = 0.5 and k1 = 8, k2 = 9 in (5). The
reason for the latter choice is that k1 = 8 allows us to consider the sequence
over a number of points smaller than what is used in D(q) (since mmin = 10)
and similarly, with k2 = 9 we are able to assess a point set of size 218, hence
larger than the largest ones assessed in D(q) (since mmax = 17).

5. Assessment of quality

As should be clear from the previous section, the criteria typically used
to measure the quality of Sobol’ sequences are the t parameter and Property
A (or A′). The criteria discussed in the previous section were designed for
the search algorithm to select DNs for each component (or dimension) one
at a time. Here instead we want to assess and compare sequences over all
coordinates from 1 to d, and thus the criteria used here are slightly different
than in the previous section. We first describe measures based on the t
parameter, and then on Property A and A′.

5.1. Measures based on the t-parameter

For a given value of m, we measure the quality of the corresponding
point set of size 2m by computing the t parameter denoted t(J , m) over all
projections J in a set of the form

I(D, d,w) := ∪D
s=2Is,ws,d

9



where Is,ws,d contains ordered s-tuples of the form (i1, . . . , is) with is−i1+1 ≤
ws, and is ≤ d, andw is a (D−1)-tuple of integers with wj ≥ j for 2 ≤ j ≤ D.

We can then compute the frequency vector given by

FD,d,w,m = (n0,D,d,w,m, . . . , nm,D,d,w,m),

where nl,D,d,w,m =
∑D

s=2

∑

J∈Is,ws,d
1t(J ,m)=l is the number of times we have

recorded a value of l for the value of t(J , m) over all subsets J considered.
From the frequency vector, for each m we can compute an average t-value

t̄D,d,w,m =
1

PD,d,w

m
∑

l=0

l × nl,D,d,w,m

where PD,d,w is the cardinality of I(D, d,w).
Of course we can also simply look at the maximum value TD,d,w,m =

maxJ∈I(D,d,w) t(J , m) obtained over all projections J for eachm0 ≤ m ≤ m1,
and then compute the overall maximum

T̃D,d,w,m0,m1
= max

m0≤m≤m1

TD,d,w,m.

Finally, we can also compare t(J , m) with its upper bound αJ :=
∑

j∈J (ej−
1), where ej is the degree of the polynomial used in dimension j. A nice
feature of this measure is that 0 ≤ t(J , m)/αJ ≤ 1, and thus by being
scaled it makes it easier to compare this measure across values of m. We can
even define an overall measure of the form

τ̃D,d,w =
1

(m1 −m0 + 1)PD,d,w

∑

m

∑

J

t(J , m)

αJ

.

Tables 1 and 2 give some results for criteria based on D = 2. For
each choice of (D, d,w), we provide the values of t̄D,d,w,m for several m be-
tween 4 and 20 (1st line) and TD,d,w,m (second line), its maximal component
T̃D,d,w,m0,m1

as well as the value τ̃D,d,w.
From these two tables we see that the simple ISN sequences ISN-alt and

ISN-dec often have the best results for the average t value t̄D,d,w,m and the
measure τ̃D,d,w, while ‘KJ’ does better for the measures based on the maxi-
mum value T̃D,d,w,4,20 of t. We also note that ISN-t2 and IS-t2A perform quite
well in Table 2, where d = 1000 but with the smaller window size w2 = 20.
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Table 1: D = 2, d = 100,w2 = 100, 1st line: t̄D,d,w,m; 2nd line: TD,d,w,m

(T̃D,d,w,4,20, τ̃D,d,w) 4 6 8 10 12 14 16 18 20

KJ 1.3 1.9 2.4 2.7 3.0 3.2 3.3 3.4 3.6
(8, 0.187) 3 5 6 7 7 8 8 8 8

SobolSeq 1.3 1.9 2.5 2.8 3.1 3.2 3.3 3.5 3.8
(13, 0.201) 3 5 7 9 11 11 13 10 10

ISN-alt 1.4 1.9 2.3 2.6 2.8 3.0 3.2 3.4 3.5
(11,0.188) 3 5 7 8 8 8 9 9 11

ISN-dec 1.4 1.9 2.3 2.6 2.8 3.0 3.2 3.4 3.5
(11,0.188) 3 5 7 8 8 8 9 9 11

ISN-t2-dec 1.4 1.9 2.3 2.7 2.9 3.0 3.2 3.5 3.6
(11, 0.192) 3 5 7 9 10 10 10 10 11

IS-t2A-dec 1.3 2.0 2.4 2.7 3.0 3.1 3.2 3.5 3.7
(12, 0.196) 3 5 7 9 11 11 10 11 11

5.2. Measures based on Property A and Property A’

Using the notation introduced in Section 4.2—more precisely the ranks
Rl,k and R′

l,k— for d ≥ k, we define the measure

Πd,k =
1

d− 1

d
∑

l=2

(min(k, l)−Rl,k).

This corresponds to the average difference between the maximal rank and
the actual rank Rl,k up to dimension d. Hence if a sequence is said to satisfy
Property Ak up to dimension d, then it means Πd,k = 0. We also introduce

md,k = max
2≤l≤d

(min(k, l)−Rl,k)

which returns the largest difference between a rank and its maximum value
over all projections considered.

Similar measures are introduced to study Property A′
k: for d ≥ k let

Π′
d,k =

1

d− 1

d
∑

l=2

(2min(k, l)−R
′

l,k) and m′
d,k = max

2≤l≤d
(2min(k, l)−R

′

l,k).

In Table 3 we provide the values related to Property A (that is, (Πd,k, md,k))
on the first line for each choice of (d, k) and then those related to Property
A

′

(that is, (Π′
d,k, m

′
d,k)) on the second line.
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Table 2: D = 2, d = 1000,w2 = 20, 1st line: t̄D,d,w,m; 2nd line: TD,d,w,m

(T̃D,d,w,4,20, τ̃D,d,w) 4 6 8 10 12 14 16 18 20

KJ 1.3 2.0 2.5 2.9 3.2 3.5 3.7 3.9 4.1
(12,0.123) 3 5 7 9 10 11 11 12 12

SobolSeq 1.3 2.0 2.5 2.9 3.3 3.5 3.8 3.9 4.1
(16,0.130) 3 5 7 9 11 13 15 15 16

ISN-alt 1.6 2.1 2.5 2.6 2.8 3.1 3.3 3.5 3.7
(12,0.120) 3 5 7 9 10 12 11 12 11

ISN-dec 2.3 2.6 2.5 2.5 2.8 3.0 3.3 3.5 3.7
(12,0.123) 3 5 7 9 10 10 11 12 12

ISN-t2-dec 1.4 1.9 2.2 2.4 2.5 2.9 3.1 3.5 3.8
(9,0.113) 3 5 7 6 6 6 7 8 9

IS-t2A-dec 1.3 1.9 2.3 2.5 2.8 3.1 3.4 3.8 4.0
(9,0.119) 3 5 7 6 6 6 7 8 9

From Table 3 we see a significant difference between the two ways of or-
dering the polynomials when considering the ISN sequences, with the decimal
order performing worse than the alternative one. The difference is even more
striking as the dimension increases. This ordering does not matter as much
for ISN-t2 and IS-t2A. In summary, for Table 3, we see that the construction
IS-t2A-dec seems to generally be the best.

6. Numerical Integration Results

We refer the reader to [5] for more information on the functions and
examples considered in this section, and the randomization method used to
estimate the variance of the different estimators. First we consider the test
function f1(u) =

∏s

j=1
|4uj−2|+αj

1+αj
with either the choice (i) αj = j or (ii)

αj = s − j + 1. Figure 2 shows the root mean-square error as a function of
the number of points, based on m = 25 randomizations based on a digital
shift. For this problem, the sequences ISN-dec or ISN-alt seem to give the
smallest error.

Next we consider a problem based on a simple queueing system. Clients
arrive according to a Poisson process with arrival rate of 1/minute, and re-
ceive service of length that is exponentially distributed with mean 55 seconds.
All random variables in this model are assumed to be independent. We simu-
late the arrival of clients over a fixed period of time T minutes and are inter-
ested in E(W5,T ), the expected number of clients who will have to wait more
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Table 3: (Πd,k,md,k) (1st line) and (Π′

d,k,m
′

d,k) (2nd line) for different pairs (d, k)

(d, k) KJ SobolSeq ISN-alt ISN-dec IS-t2A-dec ISN-t2-alt

(100,10) (0.60,2) (0.80,2) (0.94,3) (1.92,4) (0.66,2) (0.80,2)
(0.80,2) (0.93,2) (0.70,2) (1.22,3) (0.60,2) (0.81,2)

(360,10) (0.74,3) (0.88,3) (0.89,3) (0.99,3) (0.68,2) (0.81,3)
(0.78,2) (0.92,3) (0.82,2) (2.53,6) (0.69,2) (0.92,3)

(1000,10) (0.77,3) (0.88,3) (1.23,3) (4.00,6) (0.68,2) (0.84,3)
(0.86,3) (0.85,3) (1.05,4) (4.77,9) (0.67,2) (0.85,3)

(1000,15) (0.79,3) (0.87,3) (1.62,4) (5.85,9) (0.86,3) (0.82,3)
(0.82,3) (0.88,3) (0.84,3) (3.39,8) (0.83,3) (0.85,3)

(2000,10) (0.82,3) (0.86,3) (1.63,4) (4.88,7) (0.65,2) (0.82,3)
(0.85,3) (0.85,3) (1.24,4) (6.20,10) (0.66,2) (0.85,3)

(5000,10) (0.84,3) (0.85,4) (2.28,5) (6.11,9) (0.65,2) (0.79,3)
(0.85,4) (0.84,3) (1.49,5) (7.79,12) (0.68,2) (0.85,3)

than 5 minutes before being served. The problem is thus 2L-dimensional
where L is the number of clients who arrived over [0, T ] (a random variable
not bounded a priori). We point out that E(L) = T (with T in minutes).
For this problem, ISN-alt is the best, for both the cases of T = 1000 and
T = 2000 minutes. On the right-hand side of Figure 6, we show results from
a mortgage-backed security problem often used in the literature, on which
ISN-alt, ISN-dec and ISN-t2-dec all do well.

Overall, based on the results of this section, the simple ISN construc-
tions seem the best. We also note that although ISN-dec does not do well
based on the quality measures reported in Table 3, these measures consider
higher-dimensional projections (up to 15) than what seems to be important
in the problems considered in this section, which is why we think this simple
construction still does well on those problems.

7. Conclusion

In this paper we have proposed different implementations of IS sequences
in base 2. We saw that our naive irreducible Sobol’-Niederreiter (ISN)
implementation—which does not require to search for DN—gives compet-
itive results, even in very high-dimensional problems. This remarkable suc-
cess of the ISN sequences is very intriguing and a bit of a mystery to us. A
theoretical study of this success would be desirable and we plan to pursue
it. In particular, it would be interesting to obtain a family of sequences that

13



0 1 2 3 4 5 6 7 8 9 10

number of points 104

10 -5

10 -4

10 -3

10 -2

va
r

kj
SobolSeq
ISN-dec
ISN-alt
IS-t2A-dec
ISN-t2-dec

0 1 2 3 4 5 6 7 8 9 10

number of points 104

10 -6

10 -5

10 -4

10 -3

10 -2

va
r

kj
SobolSeq
ISN-dec
ISN-alt
IS-t2A-dec
ISN-t2-dec

Figure 2: RMSE for f1: Left: case (i) with s = 1000; right: case (ii) with s = 20

Figure 3: Queueing problem with T = 1000 minutes, decimal ordering (left) and alterna-
tive ordering (right); shown is the variance of the estimator for E(W5,T )

0 1 2 3 4 5 6 7 8 9 10

number of points 104

10 -2

10 -1

100

101

102

va
r

kj
SobolSeq
ISN-dec
IS-t2A-dec
ISN-t2-dec

0 1 2 3 4 5 6 7 8 9 10

number of points 104

10 -2

10 -1

100

101

va
r

kj
SobolSeq
ISN-alt
IS-t2A-alt
ISN-t2-alt

include ISN and have the same good results, which could in turn be recom-
mended to users not familiar with the technical background. We also plan
to study implementations in bases other than 2.
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Figure 4: Left: Queueing problem with T = 2000 minutes; shown is the variance of the
estimator for E(W5,T ); Right: mortgage-backed security problem in the non-linear setting,
shown is the variance of the price at time 0.
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