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Abstract

The black-box nature of large language models (LLMs) necessitates the development of eXplainable Al (XAI) techniques for trans-
parency and trustworthiness. However, evaluating these techniques remains a challenge. This study presents a general evaluation
framework using four key metrics: Human-reasoning Agreement (HA), Robustness, Consistency, and Contrastivity. We assess the
Lo effectiveness of six explainability techniques from five different XAl categories—model simplification (LIME), perturbation-based
(\J] methods (SHAP), gradient-based approaches (InputXGradient, Grad-CAM), Layer-wise Relevance Propagation (LRP), and atten-
( tion mechanisms-based explainability methods (Attention Mechanism Visualization, AMV)—across five encoder-based language
O\ models: TinyBERT, BERTbase, BERTlarge, XLM-R large, and DeBERTa-xlarge, using the IMDB Movie Reviews and Tweet
Sentiment Extraction (TSE) datasets. Our findings show that the model simplification-based XAI method (LIME) consistently out-
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performs across multiple metrics and models, significantly excelling in HA with a score of 0.9685 on DeBERTa-xlarge, robustness,
and consistency as the complexity of large language models increases. AMV demonstrates the best Robustness, with scores as low
as 0.0020. It also excels in Consistency, achieving near-perfect scores of 0.9999 across all models. Regarding Contrastivity, LRP
performs the best, particularly on more complex models, with scores up to 0.9371.
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1. Introduction

The exponential growth in the capabilities of powerful large
language models (LLMs) such as GPT [1], BERT [2], and
their derivatives has revolutionized various domains, including
safety-critical applications. However, these models are com-
plex and opaque, posing significant challenges in understanding
= their decision-making processes and their internal workings. It
is critically important to comprehend the underlying principles
behind the decisions of these architecturally complex models.
O\l As these models become more sophisticated and are deployed

" across broader applications, the need for clear and interpretable
.= explanations of their decision-making processes becomes in-
>< creasingly essential for discovering potential flaws or biases [3]],

E enhancing user trust [4]], facilitating regulatory compliance [5]],
and guiding the responsible integration of AI models into di-
verse sectors [6]], [4]].

Explainable Artificial Intelligence (XAI) techniques are the
key to unlocking the reasons behind a model’s decision-making
process. They provide crucial insights into how and why a
model arrives at a particular decision, bridging the gap between
complex Al models and human understanding [7]], [8]. Post-
hoc XAI methods can be employed to analyze and interpret
trained models, providing explanations for their decisions with-
out modifying the underlying model structure. Based on their
design and functionality, these post-hoc XAl techniques can be
categorized into model simplification approaches, which cre-
ate interpretable forms of complex models [9]; perturbation-
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based methods, which alter inputs to identify influential fea-
tures [10]]; gradient-based approaches, which use gradients to
assess feature contributions [11]]; Layer-wise Relevance Propa-
gation (LRP) approaches, which trace decisions back through
model layers to assign relevance scores [12]]; and attention
mechanisms techniques, which highlight the key input fea-
tures affecting model predictions based on the attention weights
[13]. In addition to these categories, several other post-hoc
XAI methods exist, such as generating natural language expla-
nations, which provide narrative interpretations of model deci-
sions [14].

The growing number of explainability techniques in each
XAI category often produce varying and sometimes contradic-
tory explanations for the same input and model, complicating
the determination of accuracy [15]]. Explanations may lack con-
sistency across different situations due to changes in model be-
havior, making validation and verification challenging. Not all
XAI methods suit every model architecture or complexity, high-
lighting the need for systematic assessment and automated se-
lection of suitable techniques [[16]. Although previous studies
have used various metrics to evaluate XAl effectiveness [17],
inconsistencies among these studies result in a lack of standard-
ized criteria for comparison [16]. Additionally, these studies
often overlook crucial factors like model complexity, language
diversity, and application domain [18] [19], and most current
metrics emphasize feature salience scores, potentially leading
to misleading results when identical scores are assigned to dif-



ferent features.

In our study, we introduce new text ranking-based met-
rics alongside saliency scores and develop a robust evalua-
tion framework that integrates the strengths of existing meth-
ods while addressing their limitations. This framework focuses
on critical factors such as model complexity, a broad range of
downstream tasks, diverse explainability categories, and the dy-
namic behavior of models over time. Unlike most existing stud-
ies, which primarily focus on a limited set of aspects, our ap-
proach comprehensively considers various explainability meth-
ods, downstream tasks, model architectures, language diversity,
and domain-specific requirements to ensure a meaningful eval-
uation of XAI techniques.

We establish a general evaluation framework to assess XAl
methods across different AI models, proposing metrics that
account for the strengths and limitations of XAI methods
in encoder-based language models. The framework includes
widely applicable XAI methods from five distinct categories,
evaluated on five models with varying complexities across
two text classification tasks—short and long text inputs. Our
evaluation, conducted on five encoder-only language mod-
els—TinyBERT, BERTbase, BERTlarge, XLM-R large, and
DeBERTa-xlarge—provides a nuanced understanding of how
different XAI techniques perform across various models and
scenarios. The framework and metrics are designed to be ap-
plicable to a range of XAl techniques, encoder-based language
models, and downstream tasks.

The contributions of this study are:

e We propose a comprehensive end-to-end evaluation frame-
work to assess the effectiveness of XAl techniques across
various machine learning, including transformer-based
models.

e We develop four evaluation metrics based on saliency to-
ken ranking and saliency score approaches for evaluating
XAI techniques in encoder-based language models.

e We analyze and compare five XAl categories across five
encoder-based language models using these metrics on
two downstream tasks.

o We evaluate our XAl framework on two text classification
tasks under five XAI categories and five encoder-based
language models.

e We compare and contrast explanations with human ratio-
nales to assess alignment with models’ decision-making
processes.

e We provide comparative analyses to guide the selection of
suitable XAl techniques for different encoder-based lan-
guage models in downstream tasks.

The remainder of this paper is organized as follows: Section
2 reviews the related work on XAI techniques and evaluation
methods. In Section 3, we present the methodology, detail-
ing the proposed evaluation framework and metrics. Section
4 describes the experimental setup, including datasets, mod-
els, and the selected XAl techniques. In Section 5, we discuss
the results of the evaluation, providing insights into the effec-
tiveness of different XAI methods across various encoder-based

language models. Section 6 presents the limitations and future
work. Finally, Section 7 concludes the paper, summarizing our
findings and suggesting directions for future research.

2. Background and Related Works
2.1. Background

Explainable AI (XAI) has become essential to artificial intel-
ligence and machine learning, especially with the rise of com-
plex models like Large Language Models such as GPT [1],
BERT |[2]], and various transformer-based architectures. These
models have performed exceptionally well in diverse natural
language processing tasks. However, their complexity makes
them operate largely as black boxes, presenting considerable
challenges in understanding their internal decision-making pro-
cesses. This opacity has critical implications for trustworthi-
ness, fairness, and accountability, especially in high-stakes do-
mains such as healthcare, finance, and law. To address these
issues, XAl techniques have been developed to provide insights
into Al models’ decision-making processes, offering explana-
tions that enhance transparency and trust.

The urgency for evaluating XAl techniques on LLMs stems
from the need to ensure that explanations are accurate and prac-
tically useful across different languages and NLP tasks. How-
ever, most existing XAl techniques were not developed with
LLMs in mind. Consequently, they may struggle to provide
coherent and comprehensive interpretations for these complex
architectures, potentially requiring adaptations or entirely new
methodologies that can handle the unique requirements of LLM
interpretability. The need for new methodologies to handle the
unique requirements of LLM interpretability is urgent and can-
not be overstated.

2.2. XAl Techniques

XAI techniques are generally categorized into two cate-
gories: ante-hoc methods, which aim to be applied during
model training, and post-hoc methods, which are applied after
deployment to explain model predictions. Given LLMs’ com-
plexity, post-hoc techniques are often preferred as they offer
flexibility for explaining pre-trained models. In post-hoc ex-
plainability, methods are further divided into model-agnostic
techniques, which can be applied to any black-box model, and
model-specific techniques, designed for specific architectures.

Post-hoc explainability techniques are broadly categorized
into five main groups based on their functionalities and design
methodologies. Model simplification techniques, such as LIME
[9], are model-agnostic, and they simplify complex models
into more interpretable ones. Perturbation-based techniques,
like SHAP [20]], are model-agnostic and modify feature val-
ues to measure their impact on predictions. Gradient-based
techniques, such as Integrated Gradients [11], Grad-CAM [21]],
and Saliency Maps [22], explain models by analyzing gradients.
Gradient-based XAI methods for Transformer models in NLP
tasks analyze the influence of input tokens on predictions by
computing gradients of the model’s output with respect to in-
put tokens [23]], [24], [25]. Layer-wise Relevance Propagation
(LRP) techniques assign predictions to input features by redis-
tributing scores backward through the model’s layers [26], [27].



LRP, originally developed for image processing tasks, has been
successfully adapted to NLP tasks to enhance interpretability
in models like BERT. In the context of NLP, LRP identifies
the contributions of individual input tokens to a model’s final
prediction by tracing their influence through the model’s lay-
ers [28], [29], [24]. Attention mechanism techniques, such as
Attention Rollout [30] and Attention Mechanism Visualization
[L3], visualize influential input features by analyzing attention
weights.

2.3. Related Works

Various XAI methods have been proposed to improve inter-
pretability in AI models, yet their effectiveness varies widely
across models, requiring systematic assessment. Some ap-
proaches, like counterfactual explanations, aim to expose model
reasoning by revealing instances that would lead to different
predictions [31} 32]]. However, these methods often fall short in
providing holistic model explanations [33]]. Other studies have
relied on human evaluation to assess the quality of XAI out-
puts, but this is often subjective and can vary significantly be-
tween users [34, [35]]. Alternative evaluation approaches, such
as Ground Truth Correlation, have emerged, comparing human-
identified salient features with those generated by XAl methods
[36} [17]. Another method evaluates the sufficiency of expla-
nations by removing the most salient tokens identified by an
XAl technique and observing the impact on model performance
[L7]. While insightful, such metrics may not fully capture
an XAI method’s effectiveness for highly parameterized LLMs
due to their limited scalability and focus on simpler models like
random forests and SVMs [37]. Studies on CNN, LSTM, and
BERT have further evaluated model simplification, perturba-
tion, and gradient-based techniques, demonstrating their inter-
pretative potential [18]].

Most existing studies on evaluating explainability techniques
vary widely in scope, covering different model architectures,
methods, and tasks. Some focus on single architectures with
multiple explainability methods [17], while others examine a
range of models like CNN, LSTM, and BERT, using vari-
ous techniques such as model simplification, perturbation, and
gradient-based approaches [18]], [38]. Many studies are also
dataset-specific [39]], limiting the generalizability of their find-
ings across domains and languages. This emphasis on high-
resource languages highlights a gap in understanding XAl tech-
niques for under-resourced languages, impacting the fairness
and accessibility of Al globally. Additionally, most research
overlooks the influence of model complexity on the effective-
ness of explainability methods. Transformer models, for in-
stance, vary significantly in complexity, from millions to bil-
lions of parameters [40], [41]. Current research does not suf-
ficiently explore how explainability methods perform across
these complexities or which methods are best suited for dif-
ferent levels of model complexity.

These limitations highlight the necessity of our comprehen-
sive study, which systematically evaluates the effectiveness of
XAI methods across LLMs with varying complexities. Our re-
search addresses gaps in previous studies by integrating four
robust evaluation metrics to thoroughly assess how different

levels of encoder-based language model complexity influence
the performance of XAl techniques. By adopting this holistic
approach, we aim to identify and recommend the most effec-
tive XAl categories and techniques tailored to specific encoder-
based language model complexities, ensuring their optimal ap-
plication across diverse models and tasks.

3. Methodology

An XAl evaluation framework has manifold applications, of-
fering significant benefits across various Al models and XAI
techniques development and deployment dimensions. Exist-
ing XAl evaluation frameworks are often simple and typically
focus on limited tasks, a narrow range of Al models and ex-
plainability techniques, and evaluation metrics [37], [[18]], [L7].
These frameworks lack a comprehensive and standardized ap-
proach for evaluating the effectiveness of XAI methods across
diverse contexts and applications. No general and standardized
evaluation framework systematically assesses the performance
of XAI techniques in a way that meets the needs of different
stakeholders. Our new comprehensive XAI evaluation frame-
work overcomes these limitations by incorporating a diverse
array of datasets, covering a wide range of tasks, supporting
various Al architectures, including neural networks and trans-
former models, and employing a variety of XAI methods and
various evaluation metrics; see Figure This comprehen-
sive framework is used to rigorously evaluate and compare XAl
methods across different scenarios. The framework is designed
to be easy to understand and extend, allowing for the incor-
poration of new datasets, tasks, Al models, XAl methods, and
evaluation metrics as the field of XAl evolves. This holistic ap-
proach makes our framework exceptionally suited for in-depth
evaluations of XAI techniques.

XAl Evaluation Framework
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Figure 1: An overview of our comprehensive XAl evaluation framework for as-
sessing the effectiveness of explainability techniques across different scenarios.

3.1. Evaluation Metrics

Evaluation metrics for XAl techniques are crucial as they
provide quantitative measures to assess the quality and reliabil-
ity of explanations [42]], [43]]. These metrics ensure that expla-
nations accurately reflect the model’s behavior. They also en-
able the systematic comparison and improvement of XAI meth-
ods, ensuring that Al models’ decisions are transparent and re-
liable across various applications. We build a comprehensive
evaluation framework to evaluate various XAl categories by
adopting and enhancing the existing metrics, and introducing
new metrics.



3.1.1. Human-reasoning Agreement (HA)

The HA metric measures the degree of alignment between
the explanations provided by an explainability technique and
human intuition or reasoning [17]], [18]. It evaluates how
closely a model’s reasoning or explanation matches human
judgment, with a human-annotated dataset serving as the base-
line for this metric. However, it is important to note that the as-
sumptions regarding the high degree of agreement between the
feature importance scores (such as word saliency scores in this
study) provided by explainability techniques and those from
human-annotated datasets are not always valid. For instance,
while the saliency scores for words may be similar, the specific
words identified as salient may differ, which is a significant lim-
itation of previous studies [I18]. Using measurements like co-
sine similarity, Pearson correlation, and intersection-over-union
to compute the agreement between human and explainability
word saliency scores with this limitation may not always be
practical. This saliency approach does not adequately reflect the
rank or relevance of words to the decision-making process. To
address this limitation, we employed token/word ranking and
Mean Average Precision (MAP) methods to assess the level of
agreement between human-annotated and explainability-based
explanations. Initially, we ranked the significant tokens/words
for the model’s decision-making process based on saliency
scores from both perspectives to compute the Average Preci-
sion (AP) and MAP.

Mean Average Precision (MAP) During our evaluation, we
utilize the AP and MAP of the ranked words/tokens to precisely
measure the agreement between human rationales and the ex-
planations generated by the explainability technique and math-
ematically represented by Equations [I|and 2} respectively, this
metric provides a clear understanding of the alignment between
human-annotated and explainability explanations. Average pre-
cision for a single instance evaluates the importance of salient
words identified in the explanation compared to those identi-
fied by human annotators, aiding decision-making processes. It
is computed as:

AP = Yio (P(k) X rel(k))
" Number of relevant tokens (n)

ey

Where k represents the rank or position of a word in the se-
quence of retrieved words, n is the total number of retrieved
words, P(k) is the precision at rank & in the ranked word list,
and rel(k) is a binary indicator function. rel(k) = 1 if the word at
rank or position k from the explainability explanation matches
the corresponding word in the human annotation, otherwise
rel(k) = 0, Equation 3] The ranking of words from the explain-
ability method is automatically determined based on relevance
scores computed by the explainability technique. In contrast,
human annotators provide a ranked order of words directly in
their explanation rather than assigning explicit relevance scores
only. An example is available in[Appendix A]

AP measures the precision of the explanation provided by the
explainability technique for a single instance. If the AP score
is high (closer to 1), it indicates that the explainability of that
instance strongly aligns with the human rationale. A lower AP

score (closer to 0) suggests that the agreement is poor in that
particular instance.

MAP is the mean of the AP scores for all instances, as calcu-
lated by Equation (2).

N
map = 2ot AP )
N
where N is the total number of instances evaluated, AP, is the
Average Precision calculated for the n”* instance.

MAP evaluates the alignment between explanations provided
by an explainability technique and human rationale across a
set of instances or documents rather than measuring the pre-
cision of the explanation for each individual instance. A high
MAP score (closer to 1) indicates that the explainability tech-
nique consistently performs well across diverse instances and
strongly agrees with human rationales. Conversely, a low MAP
score (closer to 0) suggests that the explainability technique’s
performance varies across instances, indicating poor agreement
with human rationales.

3.1.2. Robustness

This metric measures the robustness of explanations pro-
vided by explainability techniques in response to changes in the
input data and the model [44]]. It evaluates how explanations
vary under various conditions, such as real-time applications
and adversarial perturbations. It also assesses the model’s con-
sistency when its parameters are altered or when it is retrained
with modified or augmented datasets. This helps understand
the robustness and reliability of the explanations across differ-
ent scenarios, thereby enhancing comprehension of the model’s
behavior under diverse conditions [45]. We assess how stable
the explanation provided for an original input instance X re-
mains when the input is slightly modified to X’. In previous
studies, the robustness of explanations is measured directly by
evaluating the differences in top-k saliency token/word scores
between the original input instance and the perturbed or modi-
fied input instance [37]]. However, this approach does not fully
capture the robustness of explanations or the model’s behav-
ior, as different tokens/words at the same rank may have similar
scores. To address this, we employ element-wise differences
and averaging techniques to quantify robustness metrics at both
the token/word and instance levels based on relevance compu-
tation.

Relevance Function: The relevance function, rel(k), serves
as a binary indicator to determine the relevance of each word k
in a model’s decision-making process. If the word k is included
in both X and X’, it returns 1; otherwise, it returns 0.

el = {1 ifkeX 3

0 otherwise

where k is a relevant word to the model’s decision-making pro-
cess.

To create a modified instance X’, a perturbation ¢; is applied
such that X=X +¢;. This perturbation §; typically involves var-
ious techniques such as masking, replacing words with syn-
onyms, removing words, or applying other modifications to
words with high or low salience scores.



Element-wise Difference d(k): For each word k, the func-
tion d(k) precisely quantifies the change in the saliency scores
of a word k between X and X', as identified by rel(k). d(k) is
computed as:

d(k) = |IX[k] = (X[k] x rel(k)) | “

where X[k] represents the saliency score of word k in the expla-
nation derived from the original input, while X’[k] represents
the saliency score of word k in the explanation derived from
the modified input. The product with rel(k) ensures that differ-
ences are calculated only for words that appear in both sets (X
and X’), avoiding distortion from irrelevant words.

Average Difference (AD): The AD aggregates the individ-
ual differences d(k) for all relevant words and provides a single
metric for each instance. AD reflects the average magnitude of
change in an individual explanation due to an input modifica-
tion. AD is essential for understanding the robustness of expla-
nations at an instance level. Mathematically, it is described by
Equation 3]

K
AD = L Z dk) o)
K k=1

where K represents the total number of words in an explanation
for a given instance.

Mean Average Difference (MAD): MAD is a dataset-wide
metric that averages the AD values across all instances, provid-
ing a global measure of the robustness of the explanations in
response to changes in input data throughout the dataset. Math-
ematically, it is represented by Equation

1 N
MAD = ;AD (©6)
No(L K dk
MAD = n=1 (K]%k—l ( )) (7)

where N is the total number of instances.

Lower AD and MAD scores indicate that the explainability
technique performs robustly well both at the instance level and
across diverse instances, respectively.

3.1.3. Consistency

Models with diverse architectures tend to have low explana-
tion consistency and vice versa [46]]. We are interested in prov-
ing the similarity of attention reasoning mechanisms rather than
similar predictions for similar model architecture. We focus on
a set of models with the same architecture, trained with different
random seeds and randomly initialized weights. Our interest is
to discover the attention-based reasoning mechanisms instead
of model prediction outputs since similarities of prediction out-
puts are not always guaranteed in models with similar reason-
ing. Different models can arrive at the same prediction through
different reasoning processes.
Let M, and M, be two distinct models with similar architectures
and trained with different seeds, and x; be an input instance.
Ds(M,, My, x;) and Dg(M,, My, x;) are the distances between

attention weights and explanation scores, respectively, and they
can be computed using some distance measurements such as
Cosine similarity or Euclidean distance.

Multi-Layer Attention Weights Distance for input x;:
The similarity of their reasoning mechanisms can be effec-
tively measured by computing the distance between the atten-
tion weights generated by the two models (Equation [I0). First,
we extracted and averaged attention weights. For a model M
with L attention layers, attention weights at /” layer can be rep-
resented by A;(M, x;) for the input x;, (M can be model M,
or M,). Then, we compute the weighted average of attention
weights by Equation §]

_ =
AM.x) = = ) AM. x) @®)
=1

Here, A(M, x;) represents the averaged attention weights over
all layers for a given instance x;. We obtain the average atten-
tion weight vector A(M, x;). This average provides a consoli-
dated view of how the model attends to different parts of the
input across all layers, making it easier to compare attention
mechanisms between models.

The distance between model M, and M,, denoted as
(Ds(M,, My, x;)) is computed using the equation below.

Dy(Mgy, My, x;) = Da(My(x;), Mp(x;)) 9

Dj(M,, My, x;) establishes a way to quantify the differences or
similarities in how two models process the same input x;. This
sets the basis for comparing models based on their responses to
the same data point rather than only on their output predictions.
Z(Ma,x,-) and Z(Mb,x,-) are the averaged attention weights of
models M, and M, for the input x;, as shown by Equation
Bl Then Ds(M,, My, x;) computed as:

Da(My, My, x;) = Da(A(My, x;), A(Mp, x7)). (10)

Considerable attention weight similarities or differences sug-
gest that the models attend to different aspects of the input be-
ing trained with different seeds. This is not just a technical de-
tail but a crucial aspect in assessing whether the models main-
tain consistent focus and importance on the same input features
(words), which is our main interest in evaluating the consis-
tency and effectiveness of different explainability techniques.

Explanation Score Distance for Input x;: The explanation
scores are derived from an explainability technique that we are
interested in to evaluate its effectiveness and consistency. By
measuring the distance between the explanation scores, we can
evaluate how similarly or differently the explainability tech-
niques explain the two models’ predictions for the same input.

Dg(My, My, x;) = D(M(x;), Mp(x;)) (11

This equation computes the difference in explanation scores be-
tween the two models for the same input, emphasizing the mag-
nitude of differences.



Consistency in Instance Level x;: We can assess effective-
ness and consistency at the instance level by comparing the dis-
tances between attention weights (D4(M,, My, x;)) and expla-
nation scores (Dg(M,, My, x;)) for individual inputs. If these
distances are similar or close to similar, the explainability tech-
nique is considered effective, indicating that models with simi-
lar attention weights provide consistent explanations.

Consistency across the Dataset: For multiple instances X =
{x1, x2,...,xy}, we computed the correlation of the distances of
attention weights and explanation scores using Spearman’s rank
correlation coefficient p [47], (Equation .

p = Spearman’s corr ({DA(M[,, M, x[)}fil, {Dp(M,, My, x[)}ﬁ\il)
(12)
where p is the overall Spearman’s correlation of the attention
weights and explanations of the entire input instances, and N is
the total number of input instances.
p provides the overall correlation between the attention weights
and explainability explanations of the global trend across all
data points. The higher the positive correlation, the more con-
sistent the explainable technique is. p measures the strength and
direction of the monotonic relationship between the distances in
attention weights and the distances in explanation scores across
multiple inputs. A high correlation indicates that models with
similar attention weights also tend to have similar explanation
scores, suggesting consistency in their reasoning mechanisms.
By using this attention-weight approach, we can determine
whether models trained with different random seeds exhibit
consistent reasoning mechanisms and focus on similar input
words, thereby evaluating the effectiveness and robustness of
explainability techniques.

3.1.4. Contrastivity

Contrastivity is a critical evaluation metric for assessing
the effectiveness of XAl methods, particularly in classification
tasks [48]]. It focuses on how well an XAI method can differ-
entiate between different classes through its explanations, pro-
viding insight into why a model chooses one class over another.
For example, to assess the difference between the two classes
(positive or negative), we can compare the explanations for dif-
ferent class predictions and see if the explanations for one class
are distinct from those for another. This practical use of con-
trastivity helps us to understand the effectiveness of XAl meth-
ods. We used Kullback-Leibler Divergence (KL Divergence) to
quantify the contrastivity metric in feature importance distribu-
tions. KL Divergence is ideal for its sensitivity to differences in
feature importance distributions and its focus on the direction
of divergence, making it perfect for analyzing and comparing
tokens/words (feature) importance across different classes [49].

N P()
KL(PI Q)= ) P@) 10g(—. ) (13)

Z] 00)
where P(i) and Q(7) represent the importance of feature i in one
class and in a different class, respectively, and n is the total
number of tokens/words in the given instance. P and Q are the
distribution of feature importance for the two different classes.

High contrastivity means that the XAI method effectively
highlights different features for different classes. The posi-
tive attributions should be associated with the target label, and
the negative attributions should be associated with the opposite
class.

4. Experiments and Setups

We have proposed a comprehensive XAl evaluation frame-
work as a benchmark for assessing the effectiveness of explain-
ability techniques across different scenarios (Fig.[I). Our study
used five different encoder-only language models with varied
levels of complexity to focus on text data and a classification
task. To provide clear insights into our experiment, we included
six distinct XAl methods, each representing five different cate-
gories of XAl techniques (two methods for gradient-based cat-
egories). We then evaluated these methods using four specific
metrics.

We conducted our experiments on Google Colab, utilizing
an NVIDIA A100-SXM4-40GB GPU with 40 GB of VRAM
powered by CUDA Version 12.2. This setup provided robust
computational resources, enabling efficient handling of high-
demand tasks such as deep learning model training and large-
scale data processing.

4.1. Datasets

We utilized two distinct datasets for our study: IMDB [
Movie Reviews and Tweet Sentiment Extraction. The IMDB
Movie Reviews dataset consists of 50,000 movie reviews, each
labeled as either positive or negative. The Tweet Sentiment Ex-
traction (TSE) E] dataset consists of 31,016 tweets labeled with
sentiments such as positive, negative, or neutral. Tweets are
typically short texts. We randomly split each dataset into 80%
for training and 20% for testing.

4.2. Models

We conducted experiments using commonly used
transformer-based models, including TinyBERT [50], BERT-
base-uncased [2]], BERT-large-uncased [2l], XLM-R large
[51]], and DeBERTa-xlarge [52]. These models were chosen
primarily for their varying levels of complexity and parameter
sizes. This baseline model selection enables a comprehensive
comparison and analysis of explainability techniques across
models with diverse complexities. Fig [2]illustrates the selected
transformer-based models and their respective parameter sizes,
highlighting the differences that impact their performance and
suitability for various tasks. By evaluating the effectiveness
of explainability techniques, we aim to understand how model
complexity and size influence the interpretability and trans-
parency of these models in practical applications. We fine-tune
all the selected pre-trained models by adding a linear layer on
top of them. The size of this linear layer corresponds to the
number of classes in the given classification task.

1 https://www.kaggle.com/datasets/columbine/imdb-dataset-sentiment-
analysis-in-csv-format
2https://www.kaggle.com/c/twec:t—sentiment—extraction
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Figure 2: The selected transformer-based models by complexity band parame-
ter size.

4.3. Explainability Techniques

We grouped explainability techniques into five categories
based on their design principles and functionality to provide
a comprehensive evaluation by category: model simplification
[9], perturbation [10]], gradient [11]], layer-wise relevance prop-
agation [12], and attention mechanism [13]]. We chose the most
representative and commonly used explainability techniques
from each category.

From the model simplification category, we selected LIME,
a model-agnostic explainer. LIME trains a linear model to ap-
proximate the local decision boundary for each instance and
provides explanations for individual predictions of a complex
model [9]].

We selected SHAP, another model-agnostic explainer, from
the perturbation category. SHAP uses the perturbation tech-
nique to determine the importance of each feature and pro-
vides interpretable explanations for the model’s predictions
(111, [20].

For the Gradient category, we employed InputXGradient and
Gradient-weighted Class Activation Mapping (Grad-CAM),
model-specific techniques. These methods leverage the gradi-
ents of the model’s output with respect to its input features to
interpret the predictions of deep learning models [53], [21]].

We used LRP-€e (LRP for simplicity for this study) methods
from the Layer-wise Relevance Propagation category due to its
balanced approach between simplicity and stability. LRP-€ is
a model-specific technique that assigns a model’s prediction to
its input features by systematically redistributing the prediction
score of the model backward through each neuron to the previ-
ous layer based on the contribution of each neuron to the output
(121, [29].

Lastly, we selected an Attention Mechanism Visualization
(AMYV) explainability technique that is also model-specific.
This technique visualizes and interprets the most influential
input features for a model’s prediction based on the attention
weights assigned by the model’s attention mechanism [13],
[154], [28].

5. Results and Discussion

We present the results of each evaluation metric on various
XAI methods and encoder-based language models across the
IMDB (long texts) and TSE (short texts) datasets, considering
model complexity from TinyBERT (14.5 million parameters) to

DeBERTa-large (1.5 billion parameters). The primary focus of
this study is not on the performance of the models themselves
but on the effectiveness of the XAI methods on these encoder-
based language models. The quantitative results for each eval-
uation metric are presented below. Additionally,
includes sample visualizations of the outputs from each XAl
technique, offering deeper insights and enabling thorough com-
parisons.

Human-reasoning Agreement (HA): Table [I] presents the
HA metric results. We randomly selected 100 instances from
each dataset. We used three machine learning experts to anno-
tate the datasets as the baseline to evaluate the alignment be-
tween explanations provided by XAI methods and human judg-
ment.

On the IMDB dataset, which contains longer texts, LIME
consistently performs exceptionally well across all model sizes,
with HA scores improving as model complexity increases. This
suggests that LIME effectively captures human-like explana-
tions irrespective of model size, achieving its highest score of
0.9685 with DeBERTa-xlarge. SHAP shows moderate perfor-
mance, with its effectiveness significantly improving for larger
models, indicating that it benefits from increased model com-
plexity or larger parameter sizes. LRP struggles with larger
models, displaying a decline in performance as model com-
plexity increases. It performs better with simpler models like
TinyBERT, where it achieved its highest score of 0.6427. In-
putXGradient, despite showing low agreement with human ra-
tionales, holds promise as it improves with larger models, sug-
gesting that it benefits from increased model complexity. Grad-
CAM demonstrates moderate performance, with improvements
seen as model size increases, while AMV shows consistently
poor performance across all models, with a slight decrease as
model complexity increases.

For the TSE dataset, which contains shorter texts, LIME
again shows high agreement with human rationales, with per-
formance improving as model complexity increases, achieving
a top score of 0.9118 with DeBERTa-xlarge. SHAP, demon-
strating its adaptability, performs better on TSE compared to
IMDB, particularly for larger models, indicating its effective-
ness with increased model complexity. LRP performs better on
TSE (short text) than IMDB but still shows a decline in perfor-
mance with larger models. InputXGradient improves on TSE
compared to IMDB, with better performance for larger models,
while Grad-CAM maintains moderate performance, improving
with larger models. AMYV continues to show low performance
across all models, with a slight decrease as model complexity
increases.

LIME stands out as the best-performing explainability tech-
nique, providing strong and reliable alignment with human ra-
tionales across both datasets and various models. Its perfor-
mance has improved with increased model complexity. SHAP
and Grad-CAM, on the other hand, provide a balance of perfor-
mance, benefiting significantly from larger models. In contrast,
AMYV and LRP are the least effective in aligning with human ra-
tionales and become significantly less effective as model com-
plexity increases. InputXGradient is also the least effective but
benefits from increasing model complexity.



Table 1: The quantitative results of the Human-reasoning Agreement metric on various XAl methods and encoder-based language models for IMDB and TSE

datasets. Higher scores indicate better agreement.

IMDB TSE

TinyBERT  BERTbase = BERTlarge = XLM-R  DeBERTaxlarge  TinyBERT = BERTbase @ BERTlarge = XLM-R  DeBERTa xlarge
LIME 0.8774 0.6981 0.8903 0.9445 0.9685 0.7566 0.4689 0.8023 0.8869 0.9118
SHAP 0.4135 0.4354 0.5012 0.5634 0.6625 0.5231 0.5728 0.6002 0.6894 0.7254
LRP 0.6427 0.2736 0.2078 0.2011 0.1984 0.7223 0.5986 0.5023 0.4533 0.3689
InputXGradient 0.0782 0.0659 0.1775 0.2356 0.3133 0.1691 0.0965 0.2647 0.3562 0.3959
Grad-CAM 0.1437 0.1936 0.5229 0.6118 0.6497 0.2563 0.4125 0.4565 0.5001 0.5926
AMV 0.1658 0.1459 0.1001 0.0859 0.0653 0.2136 0.1759 0.1325 0.0962 0.0593

Table 2: The quantitative results of the Robustness metric on various XAI methods and encoder-based language models for IMDB and TSE datasets. Lower scores

indicate better robustness.

IMDB TSE

TinyBERT  BERTbase = BERTlarge @~ XLM-R  DeBERTaxlarge  TinyBERT =~ BERTbase = BERTlarge = XLM-R  DeBERTa xlarge
LIME 0.0056 0.0058 0.0061 0.0078 0.0092 0.0043 0.0049 0.0053 0.0060 0.0068
SHAP 0.0356 0.0387 0.1258 0.1547 0.2139 0.0258 0.0301 0.03662 0.1321 0.1965
LRP 0.3214 0.5431 0.7621 0.8549 0.9124 0.3392 0.4895 0.5684 0.6855 0.8215
InputXGradient 0.1108 0.1546 0.2391 0.2769 0.3012 0.0953 0.1258 0.2011 0.2547 0.2958
Grad-CAM 0.0237 0.0161 0.0273 0.0312 0.0367 0.0189 0.0123 0.0232 0.0259 0.0291
AMV 0.0020 0.0023 0.0056 0.0058 0.0073 0.0014 0.0019 0.0032 0.0041 0.0051

Table 3: The quantitative results of Consistency metric on various XAI methods and encoder-based language models for IMDB and TSE

indicate better consistency.

datasets. Higher scores

IMDB TSE
TinyBERT = BERTbase = BERTlarge = XLM-R  DeBERTa_xlarge  TinyBERT =~ BERTbase = BERTlarge = XLM-R  DeBERTa_xlarge
LIME 0.9665 0.9741 0.9800 0.9837 0.9895 0.7568 0.8425 0.8962 0.9228 0.9556
SHAP 0.9002 0.9368 0.9487 0.9569 0.9775 0.8322 0.8598 0.8896 0.9002 0.09324
LRP 0.9417 0.9642 0.9754 0.9801 0.9887 0.8556 0.8901 0.9223 0.9596 0.9713
InputXGradient 0.9341 0.9447 0.9555 0.9599 0.9799 0.7583 0.7759 0.7952 0.8235 0.8596
Grad-CAM -0.9593 -0.9677 -0.9698 -0.9700 -0.9749 -0.8259 -0.8556 -0.8718 -0.8987 -0.9325
AMV 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Table 4: The quantitative results of Contrastivity metric on various XAI methods and encoder-based language models for IMDB and TSE datasets. Higher scores

indicate better.

IMDB TSE
TinyBERT  BERTbase = BERTlarge = XLM-R  DeBERTa_xlarge  TinyBERT =~ BERTbase = BERTlarge @ XLM-R  DeBERTa_xlarge

LIME 0.7065 0.7226 0.6545 0.6288 0.5766 0.6863 0.7145 0.6631 0.6251 0.5838

SHAP 0.6449 0.6694 0.6208 0.5565 0.5448 0.6552 0.6727 0.6075 0.5709 0.5356

LRP 0.7723 0.5797 0.7958 0.8456 0.9371 0.8598 0.7126 0.8540 0.8797 0.9367

InputXGradient ~ 0.7488 0.5921 0.4493 0.4289 0.3942 0.7968 0.6833 0.5288 0.4516 0.3661

Grad-CAM 0.5689 0.4695 0.4163 03915 03641 0.6623 0.5965 0.4471 0.4034 03371

AMV 0.1546 0.1168 0.1012 0.0761 0.0384 0.1841 0.1616 0.1243 0.1050 0.0680
Robustness: Table [2] presents the quantitative results of ~ CAM demonstrates good robustness, with scores ranging from

the robustness metric. LIME demonstrates very good robust-
ness across all models for the IMDB dataset, with scores rang-
ing from 0.0056 for TinyBERT to 0.0092 for DeBERTa-xlarge.
This suggests that LIME’s explanations are stable and consis-
tent even for complex models handling long texts. SHAP, on
the other hand, shows moderate robustness, with scores rang-
ing from 0.0356 for TinyBERT to 0.2139 for DeBERTa-xlarge.
This indicates that SHAP’s explanations are less robust for
larger models. LRP exhibits poor robustness, especially for
larger models, with scores ranging from 0.3214 for TinyBERT
to 0.9124 for DeBERTa-xlarge, suggesting highly variable and
unstable explanations. InputXGradient shows moderate robust-
ness, with scores ranging from 0.1108 for TinyBERT to 0.3012
for DeBERTa-xlarge, indicating that while it is more robust
than LRP, it is less effective than LIME and Grad-CAM. Grad-

0.0161 for BERTbase to 0.0367 for DeBERTa-xlarge, providing
relatively stable explanations even for larger models handling
long texts. AMV shows the best robustness across all models,
with scores ranging from 0.0020 for TinyBERT to 0.0073 for
DeBERTa-xlarge, indicating highly stable and consistent expla-
nations regardless of model complexity.

LIME maintains high robustness across different models for the
TSE dataset, with scores ranging from 0.0043 for TinyBERT to
0.0068 for DeBERTa-xlarge, suggesting stable and consistent
explanations for short texts. SHAP again demonstrates moder-
ate robustness, with scores ranging from 0.0258 for TinyBERT
to 0.1965 for DeBERTa-xlarge, indicating less stable explana-
tions for larger models. LRP continues to show poor robust-
ness, especially for larger models, with scores ranging from
0.3392 for TinyBERT to 0.8215 for DeBERTa-xlarge. InputX-



Gradient shows moderate robustness, with scores ranging from
0.0953 for TinyBERT to 0.2958 for DeBERTa-xlarge, provid-
ing more stable explanations than LRP but less effective than
LIME and Grad-CAM. Grad-CAM demonstrates good robust-
ness, with scores ranging from 0.0123 for BERTbase to 0.0291
for DeBERTa-xlarge, providing relatively stable explanations
even for larger models with short texts. AMV continues to
show the best robustness across all models, with scores rang-
ing from 0.0014 for TinyBERT to 0.0051 for DeBERTa-xlarge,
indicating highly stable and consistent explanations regardless
of model complexity.

LIME and AMV are consistently the most robust XAI meth-
ods, providing stable and consistent explanations across both
datasets and various models, regardless of text length and model
complexity. Grad-CAM offers a balance of performance, pro-
viding good robustness across different models, particularly for
larger models. LRP and SHAP are the least robust, with SHAP
showing significant performance decreases for larger models
and LRP exhibiting high variability and instability.

Consistency: Table [3| presents the quantitative results of
the Consistency metric. LIME demonstrates excellent consis-
tency across both datasets, with scores improving as model
complexity increases. For IMDB, scores range from 0.9665
for TinyBERT to 0.9895 for DeBERTa-xlarge, while for TSE,
scores range from 0.7568 to 0.9556, indicating highly reliable
explanations for both long and short texts. SHAP also ex-
hibits strong consistency, with scores increasing from 0.9002
for TinyBERT to 0.9775 for DeBERTa-xlarge on IMDB, and
from 0.8322 to 0.9324 on TSE, suggesting that SHAP’s expla-
nations become more reliable as model complexity increases.
LRP shows very good consistency, with scores improving from
0.9417 for TinyBERT to 0.9887 for DeBERTa-xlarge on IMDB,
and from 0.8556 to 0.9713 on TSE, indicating stable and reli-
able explanations for more complex models. InputXGradient
demonstrates strong consistency, with scores increasing from
0.9341 for TinyBERT to 0.9799 for DeBERTa-xlarge on IMDB,
and from 0.7583 to 0.8596 on TSE, highlighting its effective-
ness in providing consistent explanations for larger models.
Conversely, Grad-CAM shows poor consistency across both
datasets, with negative scores ranging from -0.9593 for Tiny-
BERT to -0.9749 for DeBERTa-xlarge on IMDB, and from -
0.8259 to -0.9325 on TSE, indicating significant inconsistency
in its explanations. In contrast, AMV achieves perfect consis-
tency with scores consistently at 0.9999 across all models, re-
gardless of complexity, providing identical explanations across
all instances and models.

AMYV and LIME are the most robust XAI methods, consis-
tently providing stable and reliable explanations across both
datasets and various models, irrespective of text length and
model complexity. SHAP, LRP, and InputXGradient offer a
balance of performance with reasonable consistency, particu-
larly for larger models. However, Grad-CAM remains the least
consistent method, with significant variability and instability in
its explanations.

Contrastivity: Table [ presents the quantitative results of
the Contrastivity metric. For both the IMDB and TSE datasets,
LIME demonstrates strong contrastivity for smaller models,

with scores of 0.7065 for TinyBERT on IMDB and 0.6863 on
TSE. However, LIME’s performance decreases as model com-
plexity increases, with scores dropping to 0.5766 for DeBERTa-
xlarge on IMDB and 0.5838 on TSE, suggesting that its ability
to highlight contrasting features diminishes with larger mod-
els. SHAP exhibits moderate contrastivity across both datasets,
with scores such as 0.6449 for TinyBERT on IMDB and 0.6552
on TSE. However, as model complexity increases, SHAP’s
scores decrease, dropping to 0.5448 for DeBERTa-xlarge on
IMDB and 0.5356 on TSE, indicating reduced effectiveness for
larger models. LRP shows varying performance on the IMDB
dataset, with a lower score of 0.5797 for BERTbase but signif-
icantly higher scores for more complex models like DeBERTa-
xlarge, which achieves 0.9371. LRP maintains strong con-
trastivity on the TSE dataset with high scores, such as 0.8540
for BERTlarge and 0.9367 for DeBERTa-xlarge, suggesting
it effectively highlights contrasting features as model com-
plexity increases. InputXGradient displays good contrastiv-
ity for smaller models, with scores of 0.7488 for TinyBERT
on IMDB and 0.7968 on TSE. However, its performance de-
clines sharply with increasing model complexity, as seen in the
scores of 0.3942 for DeBERTa-xlarge on IMDB and 0.3661
on TSE. Grad-CAM demonstrates weak contrastivity across
both datasets, with low scores such as 0.5689 for TinyBERT
on IMDB and 0.6623 on TSE, further declining with more
complex models like DeBERTa-xlarge, which scores 0.3641 on
IMDB and 0.3371 on TSE, indicating less effective highlight-
ing of contrasting features. In contrast, AMV shows poor con-
trastivity across all models on both datasets, with particularly
low scores of 0.1546 for TinyBERT and 0.0384 for DeBERTa-
xlarge on IMDB, and similarly low scores on TSE, indicating
minimal effectiveness in highlighting contrasting features.

LRP emerges as the most effective XAI method in terms
of contrastivity, especially for complex models like DeBERTa-
xlarge. This suggests that LRP is particularly adept at high-
lighting differences in model predictions based on contrasting
features. LIME and SHAP offer a balance of performance, pro-
viding moderate contrastivity, although their effectiveness de-
creases as model complexity increases. Grad-CAM and AMV
show poor contrastivity, with significant variability and lower
scores across different models, indicating less reliable explana-
tions for highlighting contrasting features.

Overall, The study highlights that no single XAl technique
excels universally across all metrics and models. However, our
rigorous evaluation process has identified some reliable XAI
techniques. A model simplification-based approach, LIME,
consistently performs well across multiple evaluation metrics,
making it a reliable choice for generating explanations that
align with human reasoning, and are robust and consistent. De-
spite its limitations in contrastivity, AMYV, an attention mech-
anism approach, excels in robustness and consistency, mak-
ing it suitable for applications where stability and reliability
are paramount. A layer-wise relevance propagation approach,
LRP, shows promise in contrastivity, particularly for complex
models, indicating its potential for tasks requiring identifying
contrasting features. Perturbation-based techniques (such as
SHAP) and gradient-based techniques (such as InputXGradi-



Table 5: The quantitative results of the combined weighted metrics scores on various XAI methods and encoder-based language models for IMDB and TSE datasets.

Higher scores indicate better overall performance.

IMDB TSE

TinyBERT  BERTbase = BERTlarge = XLM-R  DeBERTaxlarge  TinyBERT = BERTbase @ BERTlarge = XLM-R  DeBERTa xlarge
LIME 0.8862 0.8755 0.8797 0.8873 0.8611 0.7989 0.7468 0.7785 0.8572 0.8611
SHAP 0.7308 0.7507 0.7427 0.7504 0.7427 0.7308 0.7507 0.7427 0.7504 0.7516
LRP 0.7588 0.5686 0.7329 0.6741 0.6809 0.6779 0.6562 0.6677 0.7055 0.7285
InputXGradient 0.6626 0.6569 0.6741 0.6865 0.7062 0.6572 0.6457 0.6635 0.6859 0.6978
Grad-CAM 0.6621 0.2355 0.6906 0.6934 0.6965 0.1824 0.6817 0.6906 0.7197 0.7250
AMV 0.5796 0.5241 0.5637 0.5561 0.5442 0.5991 0.5920 0.5733 0.5593 0.5436

ent) demonstrate moderate performance across all metrics and
models.

Combined Weighted-metrics Scores (CWS): A combined
weighted metrics approach is employed to assess the perfor-
mance of various XAI methods across different encoder-only
language models. The evaluation is based on four key met-
rics: Human-reasoning Agreement (HA), Robustness (R), Con-
sistency (Cn), and Contrastivity (Ct), each assesses various as-
pects of XAI performance. Higher scores (closer to 1) indicate
better performance for Human-reasoning Agreement, Consis-
tency, and Contrastivity. However, lower scores (closer to 0)
are preferable for robustness as they reflect an excellent expla-
nation of stability under perturbations. To align this with the
other metrics, we normalize the Robustness score by subtract-
ing it from 1, ensuring all metrics are positively oriented. Each
metric is considered equally important, so they are all assigned
an equal weight (w) of 0.25. However, if specific metrics are
more critical to the evaluation context, larger weights can be
assigned to those metrics accordingly. The CWS for each XAl
method on each encoder-based language model is computed us-
ing the formula:

CWS = wya - HA + wep - Cn+ wep - Ct+wg - (1 —=R)  (14)

where wys + we, + Wer + wr =1, and w > 0.

CWS provides a comprehensive evaluation, with higher
scores indicating the superior overall performance of XAl
techniques across different encoder-based language models,
as shown in Table [5] Based on combined weighted metric
scores, LIME, a model simplification-based technique, con-
sistently demonstrates strong performance across all models
on the IMDB and TSE datasets. SHAP, a perturbation-based
method, shows balanced and reliable results across models. The
LRP approach exhibits more variability in performance, with
significant fluctuations depending on the model. InputXGra-
dient, a gradient-based method, maintains mid-range scores,
offering consistent reliability but falling short of top-tier per-
formance. Grad-CAM, also a gradient-based method, shows
significant variability, with performance varying greatly across
models. Finally, AMYV consistently scores modestly across both
datasets, suggesting it may be less effective than other XAI
methods.

LIME aligns more effectively with human reasoning than
other XAI methods because it uses localized, interpretable ap-
proximations tailored to each prediction instance. By selec-
tively isolating and analyzing the influence of specific words or
tokens, LIME approximates complex model behavior in a way
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that resonates with human judgment. With their sophisticated
attention mechanisms that process multi-dimensional relation-
ships across tokens, transformer-based models are often opaque
and challenging to interpret globally. LIME’s localized focus
effectively addresses this issue by concentrating only on the
most relevant tokens within each instance, avoiding the need to
explain the entire model’s behavior. In contrast, other explain-
ability methods, such as gradient-based techniques like Grad-
CAM and InputXGradient, often lack the strong alignment with
human reasoning that LIME provides. Gradient-based meth-
ods depend on gradients or feature attributions derived from
the entire model behavior, which may introduce noise in highly
parameterized transformer models. These methods frequently
struggle to capture localized patterns and may highlight features
that do not align with human interpretative strategies, especially
as model complexity increases.

6. Limitation and Future Work

Due to experimental complexity, our study is limited to
selected metrics, encoder-based language models, XAI tech-
niques, and classification tasks. Future research could broaden
the scope by incorporating a wider range of XAl techniques,
exploring more diverse and complex transformer-based models
such as LLaMA, including under-resourced languages, and ex-
amining a broader set of downstream tasks. This extended work
would allow for more refined evaluation metrics and increased
applicability in real-world contexts. Furthermore, addressing
the computational complexity of XAl techniques will be cru-
cial to improving the scalability and feasibility of our evaluation
framework for large-scale applications.

7. Conclusion

Our proposed comprehensive evaluation framework, with a
detailed set of metrics, serves as a structured approach to as-
sess the effectiveness of various explainability techniques ap-
plied to encoder-based language models. This systematic eval-
uation, which rigorously tests these techniques across key eval-
uation metrics such as Human-reasoning Agreement, Robust-
ness, Consistency, and Contrastivity, is a significant step for-
ward. By evaluating diverse datasets and models, we provide an
in-depth analysis of how well each technique aligns with human
judgment, remains robust under perturbations, provides consis-
tent explanations, and highlights contrasting features. Our find-
ings indicate that model simplification approaches like LIME
perform well across multiple metrics, regardless of model com-
plexity. Although it has limitations in contrastivity, the atten-
tion mechanism approach (e.g., AMV) excels in robustness and



consistency metrics, making it ideal for applications requir-
ing stability and reliability. The layer-wise relevance propa-
gation (LRP) technique shows strong potential in contrastivity,
particularly for complex models, suggesting its potential ad-
vantage in tasks that require identifying contrasting features.
Perturbation-based techniques (e.g., SHAP) and gradient-based
techniques (e.g., InputXGradient) demonstrate moderate per-

formance across all metrics and models.

This evaluation en-

hances our understanding of the strengths and limitations of
current XAl techniques in encoder-based language models. It
lays a foundation for future research to improve the reliability of
explanations provided by explainability techniques in language
models in real-world applications.
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Appendix A. Human-reasoning Agreement Example

We proposed four evaluation metrics: Human-reasoning
Agreement, Consistency, Robustness, and Contrastivity. In this
framework, human annotators rank only the most important
words, while precision and rel (k) are computed automatically
without human intervention.

The primary objective of the Human-reasoning Agreement
(HA) metric is to rigorously evaluate XAI explanations, en-
suring they align accurately with human judgment, particu-
larly in safety-critical domains such as healthcare, finance, au-
tonomous vehicles, aerospace, nuclear energy, defense, trans-
portation safety, and legal compliance. HA’s restricted rank-
ing approach is crucial for achieving exact interpretability and
alignment with human priorities in these fields, where misinter-
preting Al predictions can lead to severe consequences. HA en-
sures that XAl explanations support reliable and safe decision-
making by focusing on strict ranking alignment, reducing the
risk of errors, and enhancing the AI model’s capacity to operate
within strict safety and regulatory standards.

Average Precision (AP) for a Single Instance

AP = Yo (Pk) x rel(k))
" Number of relevant tokens (n)

(A.1)

where:
e [ is the rank in the sequence of retrieved relevant words,

e 1 is the total number of relevant words (as determined by
human annotations),

e P(k) is the precision at rank k,

e rel(k) is an indicator function that equals 1 if the word at
rank k matches the human annotation; otherwise, it equals
0.

Mean Average Precision (MAP) across Multiple Instances

1 N
MAP = — AP, A2
5 Z; (A2)

where:
e N is the total number of instances evaluated,

e AP, is the Average Precision for the n-th instance.

Example

(Note: This example is not actual program output; it is pro-
vided solely to illustrate how this metric functions.)
Input instance: ” The movie was absolutely fantastic, fasci-
nating, and delightful.”

Step 1: Human Annotation and Ranking (Gold Standard)
Human annotators rank the words by importance for positive

sentiment:

{fantastic, fascinating, absolutely, delightful, movie}

Step 2: XAl Explanation and Ranking

We rank important words based on the XAI explanation
scores as follows:
{fantastic, fascinating, absolutely, movie, delightful}

Step 3: Computation of Relevance rel(k) and Precision P(k)

Rank 1 (XAI: “fantastic”’, Human: “fantastic™)
Relevance rel(1): “fantastic” matches in both lists, so rel(1) =
1.
Precision P(1): Computed as the number of relevant words up
torank 1 divided by 1: P(1) = ; =1

Rank 2 (XAI: “fascinating”, Human: “fascinating’)
Relevance rel(2): "Fascinating” also matches, so rel(2) = 1.
Precision P(2): Computed as the number of relevant words up
to rank 2 divided by 2: P(2) = 2 = 1

Rank 3 (XAI: “absolutely”, Human: “absolutely’)
Relevance rel(3): ”Absolutely” matches, so rel(3) = 1.
Precision P(3): Computed as the number of relevant words up
to rank 3 divided by 3: P(3) = % =1

Rank 4 (XAI: “movie”, Human: “delightful’)
Relevance rel(4): ”"Movie” does not match with “delightful,”
so rel(4) = 0.



Precision P(4): Computed as the number of relevant words up
to rank 4 divided by 4: P(4) = 2 = 0.75

Rank 5 (XAI “delightful”, Human: “movie”)
Relevance rel(5): “Delightful” does not match with "movie,”
so rel(5) = 0.
Precision P(5): Computed as the number of relevant words up
to rank 5 divided by 5: P(5) = 2 = 0.6

Summary
Rank | XAI Word | Human Word | rel(k) | P(k)
1 fantastic fantastic 1 1
2 fascinating | fascinating 1 1
3 absolutely absolutely 1 1
4 movie delightful 0 0.75
5 delightful movie 0 0.6

Average Precision (AP):

_(IxD+Ax1)+(Ax1)+(0.75x0) + (0.6 X 0)
a 5

=0.6

AP

_1+1+1+0+0 3
- 5 5

Thus, for this single instance, AP = 0.6.

Mean Average Precision (MAP)

If we evaluate multiple instances, MAP would be calculated as
each instance’s mean of AP scores. Since this example uses
only one instance, MAP = AP = 0.6.

Hence, The higher the Average Precision (AP) and Mean Av-
erage Precision (MAP) scores, the stronger the alignment or
agreement between the XAl explanations and human reason-
ing.
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Appendix B. Sample XAI visualization Outputs

This appendix provides a comprehensive perspective on how different models and explainability methods handle sentiment analy-
sis. we present sample visualizations of the decision-making process for sentiment predictions on different datasets, utilizing various
explainability methods, including SHAP, LIME, InputXGradient, Grad-CAM, Attention Visualization, and Layer-wise Relevance
Propagation (LRP). Each figure highlights the words contributing most significantly to the sentiment predictions, offering insight
into how models like TinyBERT, BERT _base, BERT-large, XLMR, and DeBERTa interpret input text data. For this visualization,
we selected two sample texts from the IMDB and TSE datasets, applying various models and explanation methods to compare how
each interprets and attributes sentiment. This visualization comparison offers insight into model behavior and reveals how different
explainability techniques illustrate the model decision-making process.

outputs

base value f_ . . .(inputs)
0

PN e e e o o ) S (1

inputs

Well, | have not much to say about this film except that it was a truly (iSHSEHEER{ilm. Natalie Portman is absolutely fantastic as the daughter in this lovely mother-daughter relationship film. Beautiful film.

Figure B.3: SHAP explanation of BERT _base model’s IMDB movie sentiment prediction. Positive words are highlighted in red and negative words in blue.

Prediction probabilities
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not|
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Positive
fantastic Text with highlighted words
fv(](:nderﬁxl Well, I have 8 much to say about this film except that it was a truly Wonderful film. Natalie Portman is absolutely
0.01 [RESHE a5 the daughter in this [ovely mother-daughter relationship film. Beautiful film.
Beautiful
0.01
lovely
0.01
film
0.01
absolutely

Figure B.4: LIME explanation of BERT _large model’s IMDB movie sentiment prediction. Positive words are highlighted in orange and negative words in blue.

Sample text: Well, I have not much to say about this film except that it was a truly
/usr/local/lib/python3.16/dist-packages/torch/nn/modules/module.py:1827: FutureWarni
self._maybe_warn_non_full backward_hook(args, result, grad_fn)
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Figure B.5: Grad-CAM explanation of DeBERTa model’s positive sentiment prediction on IMDB movie review (Yellow indicates high importance and dark

purple indicates less importance).
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Epoch 4/5

134/134 [ ] - 8s 60ms/step - loss: ©.1233 - output_1_loss: ©.0564 - output_2_loss: 0.0669 - output_1_accuracy: 0.
Epoch 5/5

134/134 [ ] - 8s 6lms/step - loss: ©.0284 - output_1_loss: ©.0116 - output_2_loss: ©.0168 - output_1_accuracy: 0.
34/34 [ 1 - 4s 20ms/step

Accuracy: 0.775

1/1 [ ] - 3s 3s/step

Attention Mechanism Visualization Explanation
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Figure B.6: Attention Mechanism visualization explanation of XLMR model’s positive sentiment prediction on IMDB movie review (Yellow indicates high
importance and dark purple indicates less importance).

film . natalie [SSHEER is absolutely fantastic as the HAWGHLER in this [OVEly mother - daughter felationship film .

well , i have not MUk to 88y about this film except that it was a fflljl Wong
S fim .

Figure B.7: InputXGradient explanation of TinyBERT model’s positive sentiment prediction on IMDB movie review, highlighting the words that contribute most
to the model’s prediction. Stronger red intensity indicates higher relevance to the prediction, with words like "beautiful,” *fantastic,” *wonderful,” and ’relationship’
suggesting a positive sentiment.

LIME Explanation:

Prediction probabilities Negative Positive Text with highlighted d
s ext wi 1 1 ed words
Negative o A g9 A -
. Mother Misses my Mom today. She was my Best Friend, and even though she has been gone for several years, I still miss her
Positive 07 0.01 dearly. Happy Mother'§ Day

1
Figure B.8: LIME explanation of BERT _large model’s TSE dataset sentiment prediction. Positive words are highlighted in orange, and negative words in blue.

Mmisses my mom [88&Y . she was my best friend , and BV tAGUGH she has been gone for §&Vieral years , i still miss her G&&FY . Aappy mother ™ s day

Figure B.9: InputXGradient explanation of XLMR model’s positive sentiment prediction on Tweet Sentiment Extraction (TSE) dataset, highlighting the words
that contribute most to the model’s prediction. Stronger red intensity indicates higher relevance to the prediction, with words like *misses,” "today,” "even though,’
gone, ’several years, ’still,” *dearly,” and "happy’ suggesting a positive sentiment.

Misses my Mom today. She was my Best Friend, and even though she has been gone for several years, | still miss her dearly. Happy Mother's Day

Figure B.10: LRP explanation of BERT _large model’s TSE dataset sentiment prediction. Higher-importance words are highlighted with greater intensities of
green, indicating their strong positive contribution to the BERT _large model’s prediction
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