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Abstract

In this article we present three key ideas which together form a flexible framework for
maximizing user-perceived quality under given resources with modern video codecs
(H.264). First, we present a method to predict resource usage for video decoding
online. For this, we develop and discuss a video decoder model using key metadata
from the video stream. Second, we explain a light-weight method for providing
replacement content for a given region of a frame. We use this method for online
adaptation. Third, we select a metric modeled after human image perception which
we extend to quantify the consequences of available online adaptation decisions.
Together, these three parts allow us, to the best of our knowledge for the first
time, to maximize user-perceived quality in video playback under given resource
constraints.
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1 Introduction

Video decoding is a highly dynamic real-time problem [33]. Resource demand
for a given stream can fluctuate in the order of magnitudes, with CPU time
being a key resource. In the advent of high definition content and modern video
codecs such as H.264 [32], resource demand does not only fluctuate greatly
within a stream, but may also be very high in absolute numbers. To deal with
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this situation there are two principle approaches —heavy overprovisioning and
adaptive decoders —which we discuss in the following.

Overprovisioning basically requires faster, more expensive hardware. It may
not be suitable or possible in certain situations, such as mobile clients, where
energy constraints are dominant. Also, better hardware may not yet be avail-
able (current desktop machines are barely able to play full resolution HDTV
streams [13]). Furthermore, there is no easy way to define the upper bound
for resource demands at the time of system design. The resource demand is
highly content dependent. As a consequence, overprovisioning is a, potentially
very expensive, approach that is not feasible in all situations.

An adaptive decoder design, on the other hand needs alternative working
modes. These may, for example be: playback at a different frame rate or reso-
lution. For some codecs it may also be possible to drop certain working steps
online. The simplest form is an offline selection of appropriate content for a
given platform. Such a selection does not result in optimal utilization of the
platform and requires dedicated content encoding. Online adaptation is more
complex and requires support in the decoder and stream format.

Currently, both approaches are applied in the real world depending on the
situation. State of the art decoder implementations regard resource shortage
as a rare special case and adaptation systems integrate a notion of quality only
as an afterthought. A typical adaptation process for MPEG-1/2 was to skip
decoding B-frames in overload situations [18], thereby dynamically reducing
frame rate. This approach was feasible, because B-frames could not be used
as reference pictures for future frames in MPEG-1/2. The error was therefore
limited to the current frame. For the modern video codec H.264, this simple
approach generally does not work anymore, as every frame type can be used
as a reference. Consequently, dropping any frame could result in the loss of
all frames until the next, potentially far away, instantaneous decoding refresh
(IDR) frame.

With MPEG-4 pt. 2, adaptation can be done by scaling the quality of the
optional post-processing step [20]. For H.264, however, the post-processing
step is in-loop and thus mandatory. It can therefore not be used for adaptation.

Perspectively, online adaptation is the most promising approach, which we
therefore explore for H.264. We aim at maximizing the user-perceived quality
under given resources as the primary goal. In this article we present three key
contributions which, when combined, achieve this goal.

(1) We present a method to predict resource usage for video decoding online.
For this, we use a model describing decoder behavior given a small amount
of metadata about a given frame’s coded representation. We also describe
how we obtain this metadata and how we constructed the model. Using
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the model we can predict how much fully decoding a given frame would
cost, and consequently how much resources can be saved by not doing so.

(2) We describe a light-weight method for providing replacement content
for a given region of a frame. This method is used in online adaptation
decisions.

(3) We selected an appropriate metric which is modeled after user-perception
of video quality. Using this metric we can compute the grade of degra-
dation by providing replacement content instead of fully decoding the
original stream content. This also includes the degradation in further
frames using the replacement content as a reference.

Combining these three contributions we can make sensible online decisions,
maximizing user-perceived quality under given resource constraints.

This set of methods forms a flexible framework, which can be modified and
adapted to future development in the area. Therefore, for each part of the
framework, we outline the requirements that it has to fulfill for being usable
in the whole system.

The remainder of this article is structured as follows: The next section de-
scribes our resource model and the prediction for decoding times. In Section 3,
we continue by outlining our adaptivity approach and by discussing the vi-
sual error introduced by adaptation. Section 4 describes the interaction of the
previously explained components, followed by Section 5, which evaluates our
framework. Section 6 concludes the article.

2 Resource requirements

In order to make intelligent adaptation decisions at runtime, we do not only
need knowledge about the current system state, that is, currently available
resources, but we also need to know or need to estimate the consequences of
our decisions beforehand. That may seem trivial at first but video decoding is a
very complex process, where resource demand is highly dependent on the data
actually processed at runtime. Therefore, static analysis alone will not solve
the problem. Instead we use an approach which combines static and dynamic
analysis. We developed a static decoder model derived from both an example
implementation (FFmpeg [3]) and general knowledge from video standards
[8,9,11,12]. We parameterize this static model with dynamic information from
video streams.

Based on this model, we try to predict the consequences of future actions.
These predictions should be as accurate as possible. A simple ordering of the
set of possible actions according to the respective resource needs is not good
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Figure 1. Generic decoder model.

Figure 2. Execution time breakdown of H.264 decoding for BBC sequence (resolution
1280×720, Main Profile, for more details see Table 1 on page 32).

enough to make precise decision. Instead we need a metric with a quantitative
notion of how much more resources will be used by a certain action in contrast
to another.

In the following we present a decoder model for the current H.264 codec and
discuss this model in detail. This model is derived from a generic model we
described in [23]. The model consists of a chain of execution blocks, which
process the compressed video stream. We describe, which features of the video
stream can reasonably be used for predicting the resource demand. We call
these features metrics.

In this article we will only discuss H.264 (MPEG-4 pt. 10), however, this
same method can also be applied to other video compression standards, such
as MPEG-1/2 and MPEG-4 pt. 2. In fact, we have done so already in [23].

2.1 Decoder model for H.264

Figure 1 shows a generic video decoder architecture which is powerful enough
to describe MPEG-1/2, MPEG-4 pt. 2, H.264, and potentially others as well.
In the following we discuss, how an actual decoder implementation maps each
of those generic model steps to H.264 functional blocks. To judge the relative
relevance of the blocks, a typical breakdown of H.264 total decoding time is
shown in Figure 2.
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(a) Bitstream parsing (corr. 0.76)
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(b) CABAC (corr. 0.98)
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(c) Inverse block transf. (corr. 0.94)
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(d) Spatial prediction (corr. 0.99)
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(e) Temporal prediction (corr. 0.96)
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(f) Deblocking (corr. 0.95)

Figure 3. Execution time estimation for individual functional blocks (BBC sequence,
see Table 1). The Pearson product-moment correlation coefficient is given for each
fit.

We also describe which metrics from the bitstream correlate well with the
execution times of the individual function blocks. Figure 3 demonstrates the
precision of the correlation by plotting actual measurements of execution time
spent within a function block over the respective prediction derived from a fit
of the selected metrics. The following paragraphs explain the individual blocks
in detail.

All time measurements were taken using the FFmpeg H.264 decoder [3] (ver-
sion SVN-r6795) on a 2GHz AMD Opteron machine. Other than the JM
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reference decoder [6], FFmpeg heavily uses hand-tuned vector assembler code
and is optimized for decoding speed. FFmpeg’s timing behavior should there-
fore match that of practically used decoders better than JM. Furthermore,
FFmpeg is virtually the only H.264 decoder available as open source.

Bitstream parsing The decoder reads in and prepares the bitstream of
the upcoming frame and processes any header information available. Because
each pixel is represented somehow in the bitstream and the parsing depends
on the bitstream length, the candidate metrics here are the pixel and bit
counts. Figure 3a shows a linear fit of both matches the execution time with a
correlation of 0.76 (Pearson product-moment correlation coefficient). This is
not particularly accurate, but as this step only accounts for 4% of the total
decoding time, we found it to be good enough.

Decoder preparation With H.264, the preparation part consists of pre-
computing symbol tables to speed up the upcoming entropy decoding. Its
execution time is negligible, so we chose to subsume it under the bitstream
parsing step above.

Entropy decoding This function block is the first that is executed inside
a per-macroblock loop. A macroblock is typically a 16×16 pixel area of the
target image whose compressed representation is stored consecutively in the
data stream and that is decoded in one iteration of the loop. The data needed
to further decode the macroblock is stored using a lossless entropy coding
technology.

The execution time breakdown (see Figure 2) shows this entropy decoding step
to be the most expensive. This sets H.264 apart from other coding technologies
like MPEG-4 Part 2, where the temporal prediction step was by far the most
expensive [23]. The reason for this shift is that the H.264 Main Profile uses
a new binary arithmetic coding (CABAC [10]), that is much harder to com-
pute than the previous Huffman-like schemes. A less-expensive variable-length
compression (CAVLC) is also available in H.264 and is used in the Baseline
and Extended Profiles, where CABAC is not allowed. Both methods decode
the data for the individual macroblocks. Using the same rationale as for the
preceding bitstream parsing, a linear fit of pixel and bit counts predicts the
execution time well. We restrict ourselves to CABAC with results shown in
Figure 3b. As this step accounts for a large share (40%) of total execution
time, it is fortunate that the match is tight with a correlation of 0.98.
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Inverse scan The decompressed macroblock we received from the previ-
ous stage is a one dimensional list of bytes. Those need to be rearranged as
a 2D matrix. Because this would partly countereffect the preceding entropy
compression step, this reordering is not done in a line-by-line fashion, but in
a diagonal pattern. H.264 decoders typically incorporate this step into the
entropy decoding step above by storing the entropy decoded coefficients ac-
cording to a scan pattern. Execution time of this step is thus already accounted
for.

Coefficient prediction Because H.264 contains a spatial prediction step,
the coefficient prediction found in earlier standards is not used any more.

Inverse quantization The macroblock-coefficient quantization is reversed
before decoding proceeds by multiplying with an inverse quantization matrix.
As this step’s individual execution time is negligible and it is tightly coupled
with the upcoming block transform, we combined the two in our analysis.

Inverse block transform This decoder step transforms the macroblock
matrix from the frequency domain to the spatial domain. The resulting spatial
matrix corresponds to a portion of the final image and has the same dimen-
sions as the macroblock matrix. H.264 knows two different transform block
sizes of 4×4 or 8×8 pixels, which can even be applied hierarchically. There-
fore, we account how often each block size is transformed and use a linear fit of
these two counts to predict the execution time. Figure 3c shows the resulting
correlation of 0.94. The remaining deviations are most likely caused by opti-
mized versions of the block transform function for blocks, where only the DC
coefficient is nonzero. But given the small percentage of total execution time
this step contributes (5%, see Figure 2), we refrained from trying to improve
this prediction any further.

Spatial prediction The spatial and temporal prediction steps described
now use previously decoded data of either the same frame (spatial prediction)
or a different frame (temporal prediction) to predict the part of the image be-
ing covered by the currently decoded macroblock. This step can potentially be
executed at the same time as the inverse block transform, but we will not pur-
sue this parallelism, because the commonly available decoder implementations
perform this work in a single thread.

Spatial prediction extrapolates image data from the same frame with various
patterns into the target area of the current macroblock. This prediction can
use block sizes of 4×4, 8×8, or 16×16 pixels, so we account those prediction
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sizes separately. A linear fit of those counts correlates well with the execution
time (see Figure 3d, correlation 0.99).

Temporal prediction This step was the hardest to find a successful set
of metrics for, because it is exceptionally diverse. Not only can motion com-
pensation be used with square and rectangular blocks of different sizes, each
block can also be predicted by a motion vector of full, half or quarter pixel
accuracy. In addition to that, bi-predicted macroblocks use two motion vectors
for each block and can apply arbitrary weighting factors to each contribution.
However, motion compensation is essentially a way to copy image data from
a reference frame. Thus, it is mostly memory bound.

In [23], we therefore broke this problem down for MPEG-4 Part 2 to counting
the number of memory accesses required. A similar approach was used here:
by consulting the H.264 standard [12] we came up with motion cost values,
depending on the pixel interpolation level (full, half or quarter pixel, inde-
pendently for both x- and y-direction). These values are essentially memory
access counts, but we empirically took optimizations of typical decoder code
like cache reuse into account.

These cost values are then accounted separately for the different block sizes
of 4×4, 8×8, or 16×16 pixels. The possible rectangular block sizes of 4×8,
8×4, 8×16, or 16×8 are treated as two adjacent square blocks. Bidirectional
prediction is treated as two separate motion operations. The resulting fit with
a correlation of 0.96 can be seen in Figure 3e. This correlation is acceptable
for a 27% share of total decoding time.

Merging ⊕ The merging of the results of prediction and inverse trans-
form ends the per-macroblock loop. Execution will continue with the entropy
decoding of the next macroblock.

Post-processing Post-processing applies a set of filters to the resulting im-
age so that compression artifacts are reduced and the perceived image quality
is enhanced. For H.264, post-processing is comprised of an edge deblocking
filter. The deblocking is performed adaptively based on the calculation of a
boundary filtering strength. This strength is calculated for every macroblock.
Its edges are then deblocked conditionally according to a strength threshold.
A correlation of 0.95 is achieved with a linear fit of pixel count and the number
of edges being deblocked (see Figure 3f).

Metrics summary The metrics selected for execution time prediction are:
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• pixel count,
• bit count,
• count of intracoded blocks of size 4×4,
• count of intracoded blocks of size 8×8,
• count of intracoded blocks of size 16×16,
• motion cost for intercoded blocks of size 4×4,
• motion cost for intercoded blocks of size 8×8,
• motion cost for intercoded blocks of size 16×16,
• count of block transforms of size 4×4,
• count of block transforms of size 8×8,
• count of deblocked edges.

In Figure 3, we have shown prediction accuracy based on linear combinations
of metrics selected specifically for single function blocks. The prediction of the
entire decoding time will be more accurate than the sum of the individual
predictions, because all metrics contribute to all steps of the prediction.

2.2 Numerical background

Now that we have determined a set of q metric values required for each frame
of the video, we first describe how we process them by solving a linear least
square problem. Following that, we explain how we actually obtain the metrics
using a stripped down decoder.

We choose a linear model for two reasons: first, source-code inspection for
FFmpeg and video coding standards suggest such a dependency already for
single metrics. Second, our experimental validation shows both a good predic-
tion for real experiments and a good correlation for single functional blocks of
the model (see Section 2.1).

In a learning stage, on which we will present details in Section 2.2.2 we will
receive a metric vector mi and the measured frame decoding time ti for each
of a total p frames (i = 1, . . . , p). Accumulating all the metric vectors as rows
of a metric matrix M and collecting the frame decoding times in a column
vector t, we now want to derive a column vector of coefficients x, which will,
given any metric row vector m, yield a predicted frame decoding time m x.
Because the prediction coefficients x must be derived from M and t alone, we
model the situation as a linear least square problem (LLSP):

‖Mx− t‖2
e → min

x

That means the accumulated error between the prediction Mx and the mea-
sured frame decoding times t is minimized. The error is expressed by the
square of the Euclidean norm of the difference-vector. Because of its insensi-
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tivity against badly conditioned matrices M , we chose QR decomposition with
Householder’s transformation as the method to solve the LLSP. For a more
detailed explanation of the involved mathematics, please refer to the literature
such as [26,21].

2.2.1 Metric selection and refinement

For the general problem of metric finding we see two approaches: (a) First,
a domain expert has to model the problem using smaller sub-steps. Then, by
looking at the work done in the sub-steps, he has to guess interesting metrics
which can be easily obtained from the data to be processed and which correlate
with the work done in the sub-steps. These selected metrics are then verified
with obtained resource usage statistics of the original problem. (b) Second, for
more simple problems, one could get useful results without splitting up the
original problem into smaller pieces and without a domain expert selecting
metrics. One could just use all easily available metrics and try to find the
relevant metrics by validating them against measured data. In both cases only
those metrics are relevant for our approach which can be obtained with much
less resource usage than solving the original problem.

For this article we took the first approach, as the domain is highly complex
and a lot of different metrics are available. For both approaches an automatic
method for metric validation is required, which we describe in the following.

In general, it should be possible to feed the LLSP solver with sensible metrics
and it should figure out which ones to use and which ones to drop by itself. Of
course, the best result for the linear least square problem is always achieved
by using as many metrics as possible, but one of the design goals is to make
the results transferable to other videos, which might not always work when
using metrics too greedily. Using too many metrics can lead to overfitting
to the training material, leading to bad predictions for videos not included
in the training set. A common artifact of this is negative coefficients, which
make little sense in the decoder model we presented. The main cause for
this is similarities of columns with linear combinations of other columns. The
special case of this situation is an actual linear dependency, resulting in a rank-
deficient matrix. This leads to instabilities in the resulting coefficients, such
that we can increase certain coefficients and compensate by decreasing others
with little or no influence on the prediction results. The barebone LLSP solver
will always search for the optimal fit, which might be too specific to predict
other video’s decoding times with the resulting coefficients. To overcome this
problem, we drop metrics before solving the LLSP, deliberately making the fit
less good for the training set, but more transferable to other videos outside
the training set.
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In the resulting R matrix of a QR decomposition, the remaining error, called
residual sum of squares, for an n-column matrix is the square of the value in the
nth column of the nth row. This value indicates the quality of the prediction:
The smaller, the better. If we have to drop columns for transferability, we want
to do so without too much degradation on the quality of the result. Therefore,
we iteratively drop columns and then choose the one that best fits our goals,
but results in the smallest increase of this error indicator. A linear dependency
or a situation close to it can also be detected with this indicator: If we drop
a column and there is only a minor increase in the residual sum of squares,
the dropped column had little to no influence on the result, so the column can
be sufficiently approximated as a linear combination of others. We propose an
algorithm to eliminate such situations in [21].

2.2.2 LLSP solver

The LLSP (linear least square problem) solver and the collector support two
phases of operation:

• Learning mode, in which the collector accumulates metrics and a timed and
unmodified decoding step delivers real frame decoding times.

• Prediction mode, in which previously obtained LLSP coefficients are multi-
plied with online-collected metrics to predict frame decoding times.

During learning mode, the solver collects metric values in a matrix. If the
data accumulation is finished, the coefficient vector x is calculated with an
enhanced QR decomposition that we discuss in the next section. This step
has a complexity of O(pq4), of which the normal QR decomposition accounts
for O(pq2) and the iterative column dropping accounts for another O(q2) fac-
tor (see [21] for details). q is typically fixed and small, compared to p being
unbound. Therefore, the video length has linear impact which is what one
would hope for. The resulting coefficients are then stored for use in prediction
mode, typically on videos other than those in the learning set.

2.2.3 Metrics extraction

In [23] we explained the metric extraction procedure for MPEG-1/2/4. In con-
trast to previous coding standards, the CABAC entropy decoding step domi-
nates the total decoding time, so extraction of metrics other than compressed
frame size is too expensive to do online. Instead, we extract the relevant met-
rics offline in a preprocessing step and embed them into the bitstream, which
constitutes a size overhead of 32Bytes per frame without any compression.
This accounts for a negligible 0.2% for a typical 4MBit/s stream or an ac-
ceptable 6.2% for a 100 kBit/s stream, which could be reduced significantly
with a domain-specific compression.
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2.3 Related work

Our approach to predicting resource requirements ahead of time combines the
separation of the problem according to a decoder model with a training phase
to empirically link the model to the actual execution environment. Various
aspects of this idea have been explored in earlier work.

Szu-Wei Lee and C.-C. Jay Kuo modeled the complexity of the H.264 motion
compensation step in [19]. The general approach of predicting decoding time
with a linear combination of metrics extracted from the bitstream is similar.
The weight coefficients for the metrics are determined using training in much
the same way. But while Lee and Kuo specialize on the motion compensation
step only, we extend this to cover the entire H.264 decoding process. The
metrics chosen by Lee and Kuo for motion compensation are the counts of x-
and y-direction interpolations, the number of motion vectors and an estimated
number of cache misses. We account for motion compensation complexity
primarily by block size, so integrating the proposed notion of cache behavior
into our approach is an interesting direction for future improvement.

Another model specifically for the motion compensation process is presented
by Yong Wang and Shih-Fu Chang in [29]. The paper explains a motion vector
cost function based on subpixel interpolation complexity, which is similar to
our motion cost. Wang and Chang utilize the complexity model in the en-
coder to create bitstreams with reduced decoding complexity. Their goal is
static reduction of decoding effort, rather than dynamic graceful adaptation
in overload situations.

An approach that addresses not only motion compensation, but the entire
H.264 decoding process is presented by Horowitz et al. in [17]. The paper
presents an execution time estimation for the H.264 baseline profile. It is
based on a decoder model and breaks the decoding down into function blocks,
similar to our approach. They also consider the different block sizes for metrics.
Once the candidate metrics have been chosen, we then continue empirically by
utilizing training and linear fitting. Horowitz et al. continue by translating the
computational requirements of the standard into typical arithmetic operations
of the target CPU. Considering superscalar execution, they derive execution
times from the computational throughput of the CPU. This has the advantage
of not requiring any training, but because loop overhead, flow control, memory
latencies, and pipeline stalls are ignored, the estimated times are factor 2–6
below the real values. In contrast, our approach combines the decoder model
idea with training to more accurately capture the behavior of real decoder
code on real CPUs.

Training is also employed by van der Schaar and Andreopoulos in [27]. They

12



break decoding down using a generic reference machine that supports assign,
add, and multiply operations. The execution time on real hardware is esti-
mated by using the operation counts of the reference machine as metrics. This
reference machine thus abstracts from the real hardware. However, van der
Schaar and Andreopoulos do not consider H.264, but a custom codec. Schaar
et al. do not focus on execution time prediction on real hardware. Their evalu-
ation of prediction accuracy is not definitive. Applying the reference machine
approach to our decoder model and training approach could help exploring,
how weight coefficients derived on one machine can be applied to a different
architecture.

Reviewing this related work, the idea of using metrics and training is com-
mon, but the abstraction level on which the modeling is complemented by
training is different. Building on the previous results, we believe to have found
a balance that enables both accurate results by training against real decoder
implementations and transferability with a model that is independent of the
hardware and the decoder implementation.

3 Quality

We have now covered the resource consumption of video decoding with a
model of decoder execution times and an architecture to predict it at runtime.
Resource consumption being the machine’s view on the problem, we can now
turn around and look at video playback from a user’s perspective. This means
we have to deal with visual quality under potentially constrained resources.

Current players typically react to insufficient CPU time with frame drops. This
may have been acceptable with decoders prior to the H.264 standard, because
the B-frames of MPEG-1/2/4 can be dropped without degrading visual quality
for any frame other than the one being skipped. In fact, this approach has been
proposed in the literature [18]. Losing one frame in a high-motion sequence
can still be perceived as visually disrupting, but decoding can then continue
normally. With H.264, however, every frame, including B-frames, can be a
reference frame and might therefore be required to correctly decode future
frames. This means that skipping one frame can prevent or at least degrade
the decoding of all future frames until the next IDR frame resets the decoder.
Such resets can be in the order of seconds apart from one another.

Another strategy to cope with insufficient resources is to briefly stall playback
to recover. However, to keep audio and video synchronized, the audio has to
be stopped as well, which is extremely irritating to the user. Watching a video
with intermittent audio gaps can be very frustrating. This effect can be seen
with web video, which can stall due to limited bandwidth.
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The fundamental problem with these approaches is their underdeveloped quality-
awareness, which leads to a heavily degraded user experience. Therefore, we
set out to develop a way of dealing with insufficient CPU time more gracefully.
Currently, the playback process regards resource shortage as a rare special case
and adaptation systems integrate a notion of quality only as an afterthought.
We strive to treat user-perceived quality as a first class priority and resource
limitations as the common case.

3.1 The H.264 scalable extension

H.264’s scalable video coding (SVC) [25] promises to be an excellent technol-
ogy for implementing a fine-grained balancing algorithm between perceived
visual quality and decoder resource needs. Unfortunately, the standard for
this extension has not yet been ratified and as a consequence, no mature de-
coders or encoder toolchains are available. We are planning to look into H.264
SVC once it is ready, but to explore our ideas now, we needed a different
base technology. Therefore, we decided to develop our own scalable decoding
system. It provides only two decoding levels: full decoding with full resource
consumption and fast fallback decoding. It will be described in full detail in
the following sections. Our entire architecture, however, is modular enough to
incorporate H.264 SVC with considerable reuse of research results presented
here once H.264 SVC is mature. We will comment on this in Section 4.

3.2 Fallback decoding and quality

In developing our own H.264 fast fallback decoding mode to trade visual qual-
ity for decoding time, we have to answer three questions:

(1) How is the content of the fallback frame created?
(2) What is the impact on the visual quality for that frame? That is, how

much does the fallback content differ visually from the original?
(3) To what degree will the quality degradation be carried over to future

frames due to the degraded frame being used as a reference? How does this
effect accumulate if multiple subsequent frames will be fallback-decoded?

The following sections will answer those questions.
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3.3 Fallback content

Instead of dropping a frame when low on CPU time, we want to fabricate a
fallback frame with replacement content. Because we want to do this as fast as
possible, we have to avoid executing the expensive parts of the H.264 decoding
process. Looking back at Figure 2, we can see that the CABAC step takes up
a large portion of the total decoding time per frame. Therefore, avoiding this
step is key to conserve CPU time. However, this means that all data of the
current frame will remain in its compressed state and hence will not be directly
available for creating the fallback content.

The next interesting pool of information potentially useful for crafting a re-
placement frame is the buffer of reference frames in the decoder. These previ-
ously decoded frames kept in memory by the decoder provide image content
temporally close to the content we want to replace. Our idea is to fabricate
a fallback frame by reusing portions of those previously decoded frames. This
idea is especially adequate for H.264, which, with its buffer of multiple refer-
ence frames, offers a wide choice of candidate replacement regions to choose
from.

Again, because we want the fallback to be fast, the image data from the
reference frames should simply be copied into the replacement frame. However,
copying does usually not take place from the same location of a different
frame, but from different regions of different frames, leading to higher quality
of the fallback because motion between the two frames can be compensated
for. While motion analysis of a series of images is generally expensive, the
H.264 coded video stream already provides motion vectors of good quality.
But direct access to these vectors is only possible after performing CABAC
decoding, which we want to avoid. Therefore, the coded bitstream of each
video frame should be supplemented offline with another representation of
the frame’s motion relative to the reference frames.

However, simply extracting and redundantly storing all motion vectors would
increase the bitstream size unacceptably. Therefore, we will present a more
lightweight representation of the motion vectors in the next section.

3.4 Quadtree encoding

To encode the frame’s motion efficiently, we use a quadtree [15] to partition the
data. Starting with the root node representing the complete frame, we recur-
sively and adaptively subdivide each node’s image region into four subregions.
This leads to a nonuniform subdivision of the frame, with each node having
either zero or four subnodes. An example of a possible quadtree subdivision
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Figure 4. Quadtree subdivision example.

is given in Figure 4.

3.4.1 Bitstream assumptions

Instead of doing our own offline motion analysis, which would replicate a lot of
the work already done by the H.264 encoder, our approach reuses the motion
vectors already present in the bitstream. We rely on several assumptions on
bitstream behavior that enable us to use these vectors:

• Areas of related motion are spatially contiguous.
• In an area of related motion, the bitstream selects the most similar reference

frame.
• In an area of related motion, the motion vectors do not jump erratically,

but neighboring vectors are similar in direction and length.

These assumptions are justified, because a sensible H.264 encoder tries to
minimize the size of the bitstream. The coding features in H.264 have been
designed such that motion vectors following a fluent pattern can be encoded
with fewer bits. Therefore, the encoder will automatically prefer bitstreams
encoded in favor to our assumptions.

3.4.2 Encoding algorithm

The quadtree is created as side information to already encoded macroblocks.
The actual H.264 encoding process is left unchanged, our quadtree algorithm
operates by processing the encoded H.264 bitstream. The following two-part
algorithm associates motion vectors with quadtree nodes. The separation in
two parts is purely to simplify the explanation, the overall algorithm is com-
prised of a serial execution of both parts. The running time of the algorithm
is in the order of magnitude of an H.264 encoder run.
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Algorithm 1 Fully subdividing the quadtree

// Step 1
populateQuadtreeNode(entireFrame);

function populateQuadtreeNode(quadtreeNode) {
// Step 2
referenceAccess[] = 0;
foreach (macroblock in quadtreeNode)

referenceAccess[macroblock.refFrame]++;
mostOftenUsedRefFrame = indexOfMaximum(referenceAccess);
quadtreeNode.refFrame = mostOftenUsedRefFrame;

// Step 3
averageVector = <0, 0>;
foreach (macroblock in quadtreeNode)

if (macroblock.refFrame == mostOftenUsedRefFrame)
averageVector += macroblock.vector;

quadtreeNode.vector = averageVector;

// Step 4
quadtreeNode.subnodes[] = subdivideNode(quadtreeNode);
foreach (subnode in quadtreeNode.subnodes)

if (subnode.area >= singleMacroblockArea &&
subnode.motionVectorCount >= 1)

populateQuadtreeNode(subnode);
else

quadtreeNode.subnodes = null;
}

The first part recursively creates a fully subdivided quadtree. A pseudo-code
description can be found in Algorithm 1, a textual description follows:

(1) Start the iteration with the root node of the quadtree covering the entire
frame.

(2) For the region covered by the current node, determine the reference frame
used most often by motion vectors. Store this reference in the current
node.

(3) For the region covered by the current node, determine the average motion
vector across all motion vectors using the reference frame determined in
step 2. Round this vector to full pixels and store it in the current node.

(4) Subdivide the current node’s region into four subregions, creating four
subnodes of the current node. If the areas covered by the subnodes are
each at least the size of one macroblock and contain each at least one
motion vector, repeat steps 2–4 for each subnode, otherwise delete the
subnodes and return.
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This yields a fully subdivided quadtree with a hierarchy of reference frames and
motion vectors. The algorithm continues by adaptively pruning the quadtree
from the leaves towards the root node, trading quality for stream size with
a quality threshold. A pseudo-code version is available in Algorithm 2 given
below.

(1) Start the recursion with the root node.
(2) Return to the parent node, if the current node has no subnodes.
(3) If the current node has subnodes, recurse to prune them first.
(4) Return to the parent node, if any of the current node’s subnodes is not

a leaf. This ensures that cutting is not performed here if it failed on one
of the subnodes.

(5) Fabricate a complete fallback frame by iterating over all leaves of the
quadtree. The region covered by each leaf node is filled with an equally
sized region designated by the reference frame and motion vector stored
in the leaf node.

(6) Calculate the quality loss between the fully decoded frame and the fall-
back frame.

(7) Remove all subnodes of the current node, so the current node becomes
a leaf and fabricate the fallback frame again as described in step 5. This
time, the fallback frame is determined by the coarser motion representa-
tion due to the coarser subdivision of the quadtree.

(8) Calculate the quality loss between the fully decoded frame and the fall-
back again. How we quantify quality loss is discussed below.

(9) The coarser subdivision is expected to lead to a higher quality loss. If the
resulting decrease in quality is below a certain threshold, the subnodes
removed in step 7 are discarded, otherwise they are reattached. In both
cases, control flow returns.

The algorithm results in a non-uniformly subdivided quadtree that approxi-
mates the motion in the frame.

The calculation of quality loss is performed using a metric we will discuss in
Section 3.5. The accepted loss in step 9 provides a way to balance the size of the
quadtree against the accuracy of the motion representation. More elaborate
thresholds like a ratio of quality to encoded quadtree size are possible, but we
did not further pursue this.

The algorithm prunes the tree in bottom-up order. We also tried a top-down
approach, which turned out to be inferior in the achieved quality. The reason
is that very coarse subdivisions, where nodes cover large areas, have a reverse
quality behavior: The quality loss with one additional subdivision step may
be higher than without, because of edges introduced by the division in the
frame’s interior. These edges disrupt the image structure, resulting in the
observed effect on quality. While this situation basically occurs recursively
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Algorithm 2 Adaptive pruning of the quadtree

// Step 1
rootNode = originalFrame;
pruneQuadtreeNode(rootNode);

function pruneQuadtreeNode(quadtreeNode) {
if (quadtreeNode.subnodes == null)

return; // Step 2
else

foreach (subnode in quadtreeNode.subnodes)
pruneQuadtreeNode(subnode); // Step 3

// Step 4
foreach (subnode in quadtreeNode.subnodes)

if (subnode.subnodes != null) return;

// Step 5
fabricateFallback(rootNode, fallbackFrame = emptyFrame());
// Step 6
qualityLoss1 = compare(fallbackFrame, originalFrame);

// Step 7
temp = quadtreeNode.subnodes;
quadtreeNode.subnodes = null;
fabricateFallback(rootNode, fallbackFrame = emptyFrame());
// Step 8
qualityLoss2 = compare(fallbackFrame, originalFrame);

// Step 9
if (acceptable(qualityLoss2 – qualityLoss1))

temp = null;
else

quadtreeNode.subnodes = temp;
}

function fabricateFallback(quadtreeNode, fallbackFrame) {
if (quadtreeNode.subnodes)

foreach (subnode in quadtreeNode.subnodes)
fabricateFallback(subnode, fallbackFrame);

else
fallbackFrame[quadtreeNode.area] =

quadtreeNode.reference[quadtreeNode.area.coords +
quadtreeNode.vector];

}

with every additional subdivision, the quality increase as the motion vectors
become more fine grained seems to overcompensate for the negative effects of
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Figure 5. Decoding time and replacement (fallback) time histograms, measured over
BBC video (see Table 1)

those edges.

3.4.3 Using and storing the quadtree

When short on resources during decoding, the fallback can be used to gain
some CPU time. As illustrated in Figure 5, the fallback is in average about
9.9 times faster than full decoding. To execute the fallback, the leaves of the
quadtree are required. They cover the entire frame and provide a reference
frame index and a motion vector for each region. The corresponding image
data pointed to by the vector is copied from the reference frame into the
fallback frame. Additional decoder-internal metadata of the fallback frame like
the map of macroblock type information is synthesized as well by filling with
neutral values, because H.264 uses such data for prediction when decoding
subsequent frames.

To do all that, fast access to the leaves of the reference tree is required. There-
fore, the quadtree is created offline by a preprocessor, linearized and its leaves
are stored directly in the H.264 bitstream as one custom NALU (network ab-
straction layer unit) per frame. Since each NALU is prefixed with a start code
not otherwise appearing in the bitstream, NALU boundaries are easy to find.
A decoder can therefore skip over the coded representation of a frame and use
the quadtree data without spending any time on CABAC decoding. As the
next frame will start at a NALU boundary, continuing regular decoding with
the next frame is equally easy. By using custom NALUs, our supplemented
stream can also be played back by standard compliant players that simply
ignore our data.
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3.5 Quality loss

As seen in the previous section, a key building block is the quantification of
quality degradation as perceived by the user. Not only is this needed in the
algorithm presented earlier to prune the quadtree, but it is also the foundation
of our quality-driven video playback architecture we will assemble in Section 4.
The basic problem is to reduce two different, but similar sections of video to
a number that correlates with the decoding error the user sees.

Of course, the “most correct” image quality loss function that can be used
here is subjective evaluation by actual humans. But that is not feasible in
the context of video decoding, where such an analysis would have to be done
for every frame. Hence we looked into existing mathematical models of image
quality loss.

3.5.1 Structural similarity index

The existing quality metrics range from simple mathematical operations to
complex psychophysical models. The most widely used metric is the mean
squared error (MSE), which is convenient, because it is easy to compute.
Unfortunately, MSE does not always match perceived quality loss [16,28],
because errors with an equal impact on the MSE can vary greatly in their
visibility. A related metric is peak signal to noise ratio (PSNR) [7], but being
just a logarithmically scaled version of MSE, it performs equally bad with
respect to perceived quality loss.

Motivated by those deficiencies, Wang, Bovik, Sheikh, and Simoncelli devel-
oped the Structural Similarity (SSIM) Index [30], which we chose to use. The
basic assumption of SSIM is that the human visual system is highly adapted to
extract structural information from images. The algorithm therefore emulates
the overall function of the human visual system. SSIM works by iteratively
comparing aligned, limited local areas of two images. Extending SSIM to video
is discussed in [31], where the authors also show SSIM to outperform all con-
tenders of the VQEG Phase I test for video quality metrics.

SSIM fits well into our use case because of the following additional properties:

• It does not operate in the compressed domain, but on standard pixel-based
image representations. This prevents dependencies between the quality met-
ric and the decoder and thus supports the modularity of our whole approach.

• SSIM’s sliding window calculation can operate locally, that is, if changes are
known to be limited to a specific region of the image, SSIM computation
can be accelerated by calculating over that region only.

• SSIM is symmetric. It merely calculates the visual difference between two
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areas from other frames
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Figure 6. Skipped partitions and fallback content.

images, so it does not need any knowledge on which is the original and
which is the degraded version. This is helpful when dealing with existing
H.264 video that is already compressed.

3.5.2 Fallback decoding and quality loss

The quadtree generated offline by the preprocessor describes replacement par-
titions: areas of the frame that can be replaced with areas from previously
decoded frames. What the decoder will later work with are skipped parti-
tions: portions of the bitstream whose decoding can be skipped because the
decoder can be realigned to continue decoding after the skipped partition.
Those two partition types are orthogonal in our approach, but they could be
unified in the future, when encoder and decoder support for H.264’s built-in
partitioning features, namely flexible macroblock ordering (FMO) and arbi-
trary slice ordering (ASO), receive more attention. Currently, these features
are not implemented in common decoders or encoders. Thus, we use regular
horizontal slices as our unit of skipping. It is easy to skip a slice in the bit-
stream and realign the decoder to the next slice by scanning for the NALU
start code.

When the decoder decides to fallback-decode a skipped partition, exactly that
area of the frame covered by the skipped partition is replaced. The fallback
image is patched together from the quadtree’s replacement partitions in that
area as illustrated in Figure 6. By evaluating the motion vectors from the
leaves of the quadtree, content is copied from reference frames.

Of course, when such a fallback decoding happens, the resulting image will be
different from the fully decoded original. To make a sensible decision on which
parts to skip, the scheduler needs information about this quality loss. The
aforementioned SSIM metric provides exactly such a quantification. Once the
offline preprocessor has built the quadtree, it performs a fallback decode for
each slice individually and uses SSIM to calculate the error between fallback
frame and original. These quality loss values are stored with the quadtree in
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custom NALUs.

We have now developed a strategy for a lightweight decoding fallback to save
resources. We formulated an algorithm that exploits existing motion vectors
when creating a quadtree to describe the fallback content. If the decoder
fallback-decodes a slice to save execution time, a quality loss metric enables
the estimation of the error introduced in doing so. But so far, the effect of
such a fallback has only been quantified for the frame in which it takes place.
The upcoming section deals with that limitation.

3.6 Error propagation

Until now, we examined the error caused by fallback decoding within the frame
directly affected. But today’s decoder algorithms in general and H.264 in par-
ticular draw a large part of their compression efficiency from the exploitation
of inter-frame redundancy by using temporal prediction to encode frames. This
causes errors in one frame to be propagated into other frames, which then in
turn cause further frames to have errors. An error introduced in one frame
can affect any number of frames decoded later. In addition, H.264 uses spatial
prediction to exploit intra-frame redundancy, which could lead to errors in one
slice being propagated into other slices of the same frame, spreading the error
over a larger portion of the current frame, which also increases the pollution
of future frames.

The most accurate way to quantify the propagated error would be to measure
it similarly to the error directly induced by the fallback decoder. But what
was straightforward for this direct error is a lot more complex for the prop-
agated error: Errors are potentially propagated over great distances, only an
IDR frame definitely inhibits all propagations. Therefore, any slice’s error can
depend on the errors in every slice back to the previous IDR. The number
of those slices can reach 100 and more and is generally unbounded. Every
single one of those slices could be skipped or not, which would change the
error inflicted on the current slice. So for a comprehensive error measurement,
given a slice that is n slices away from the previous IDR, 2n different slice skip
patterns would have to be simulated and measured. This procedure would be
repeated for every slice. It is quite clear that this way of measuring the error is
completely infeasible. Therefore, we will estimate the error instead of measur-
ing it. In the following, we first analyze a single propagation step in order to
predict any propagation path later (for the interested reader: a more in-depth
discussion of error propagation and our analysis of it can be found in [22]).
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Figure 7. Measured and estimated error propagation when skipping one slice. The
unmentioned slices 0, 1, and 2 of this 5-slices-per-frame video (BBC, see Table 1)
showed no error in either estimation or propagation.

3.6.1 Single propagation step

The key property of referencing potentially degraded slices is that the error
from that reference slice is copied to a certain degree into the current slice.
The approach we pursued is to estimate that error in a straightforward way by
checking motion vectors to see, what fraction of a particular reference slice’s
area is used by the current slice. The referenced area of one motion vector can
differ in size due to motion vector subblocking, so some vectors will contribute
a smaller area, others contribute larger ones. Of course, the actual temporal
prediction is a lot more complex than just simple copying of reference frame
data, but we will show that the simple approach of using motion vectors to
determine area fractions being copied is sufficient for the intended purpose.

The result of motion vector analysis is a per-slice table that stores for each
slice of each reference frame the area fraction that is copied into the current
slice. The actual error estimation for a slice is then calculated by multiplying
the error estimates of the reference slices with their respective area fraction
and summing up these individual contributions.

3.6.2 Propagation paths

The estimation for single step error propagation can be straightforwardly com-
posed to estimating error for entire propagation paths. Figure 7 shows an ex-
emplary error propagation path when skipping one slice. Although the initial
error is quite high, it can be observed that the error diminishes over time,
which is caused by three effects:

• The decoding of a frame can use any frame currently available in the refer-
ence frame buffer. If a frame preferably uses references with smaller errors
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or no error at all, it will in turn show a smaller error or even be error free.
• The reference frame buffer is of limited size. Therefore, frames are regularly

pushed out of this buffer as new frames are added to it. If a frame with a
high error is removed and a frame with a lower error is added, the potential
for future frames to show errors is decreased.

• Even the intercoded slice types (P- and B-slices) can contain intracoded
macroblocks. Because such macroblocks do not need any reference frames,
they usually reduce the error.

3.6.3 Error accumulation

Now that we have analyzed single propagation steps and propagation paths,
we will discuss error accumulation from multiple skipped slices in this section.
So far, we have only analyzed the situation of a slice being fully decoded,
but receiving an error from existing errors in reference frames. Those errors
are initially caused by a slice being fallback decoded. But what happens, if
the fallback decoding of a slice is further degraded by using already degraded
reference frames, has not been investigated yet.

As the replacement copies data from various reference frames to fill in the
skipped slice, it is obvious that we will use the same approach of using area
fractions to quantify, how much the error of the reference in use will propa-
gate into the current slice. This error estimate will only tell, how much the
degraded fallback differs from the real fallback. But what is needed for error
accumulation to be estimated properly is the difference between the degraded
fallback and the original. During the creation of the motion vector quadtree,
the preprocessor already measured the difference between the undegraded fall-
back and the original. To obtain the full difference, we add both difference
contributions, which should work thanks to the linearity of SSIM.

With error accumulation, we have all the tools for the complete error propa-
gation estimation algorithm at hand:

(1) If a slice is not skipped, its error estimate is calculated by multiplying all
area fractions with the error estimate of the respective reference slice.

(2) If a slice is skipped and fallback decoded, its error estimate is calculated
by multiplying area fractions with the error estimate of the respective
reference slice and adding the error directly induced by the fallback, which
was determined by preprocessing.

Note that this method is completely agnostic to the type of the slices in
question (I, P, B), only the referencing behavior which dictates the amount
of pixels reused from references matters. Of course, I slices do not use any
references, so they will contribute most to the diminishment of propagated
errors.
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In the next section, we explain how all elements of quality estimation and
resource usage prediction fit together in a quality-aware playback architecture.

4 Architecture

The complete method makes use of all the modules presented above individ-
ually:

• prediction of decoding time for upcoming slices,
• quadtree-based fallback decoding, and
• prediction of error propagation in case a slice is skipped.

Existing H.264 bitstreams have to be preprocessed offline, where some ad-
ditional information is embedded into the bitstream. The resulting video can
then be used during playback to schedule slices based on quality and resources.
After briefly summarizing, how the aforementioned modules work together in
the preprocessor, we discuss the design of the online scheduler in detail.

4.1 Offline preprocessor

The preprocessor calculates the motion vector quadtree and stores it in a
linearized fashion. Using the quadtree, the quality degradation between the
original frame and a frame with one slice being fallback decoded is calculated.
This is done for every slice of every frame. This process is costly and takes
about the same time as the initial H.264 encoding. We assume an asymmetric
setup with no execution time or other resource constraints on the encoder side,
so a complex preprocessing is not a problem. For typical pre-encoded content,
this expensive step has to be done only once to benefit a large number of
consumers.

The preprocessor also traverses the video and calculates the area fractions
of reference frames each slice depends on according to the error propagation
model. To simplify the online use of error propagation data, these values are
then combined into a single error emission factor for each slice. This factor
describes the impact a degradation in the given slice will have on all future
slices combined. The preprocessor calculates this by traversing the video back-
wards, summing up the individual error contributions and accounting them
to the slices.

For fast online prediction of resource requirements, the preprocessor also stores
the metrics for decoding time prediction. All the extra data are embedded
into the H.264 bitstream as custom NALUs. Because the decoder will need to
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make decisions based on quality and resource data of future slices, the data
are embedded with a fixed look-ahead, so that linear reading of the stream
will result in data of upcoming slices being available ahead of time. We used
a look-ahead of 25 frames. The resulting video stream is still a standard-
compliant H.264 stream, as an unmodified decoder will simply skip over the
unrecognized NALUs.

Another step to be done offline is the training of the decoding time predictor
as described in Section 2.2.2.

4.2 Online scheduling of slices

The decoding scheduler has to decide for each slice, whether it should be fully
decoded for the sake of visual quality or fallback decoded, favoring lower exe-
cution times. In the following, we discuss what model the scheduling decision
is based on and how the scheduling algorithm works.

4.2.1 Slice benefit model

Compared to a fallback decoded slice, the full decoding has a cost in terms
of additional execution time and a visual effect in terms of smaller quality
loss. A higher expense in execution time makes a slice more preferable as a
skipping candidate. Similarly, a higher quality should discourage the scheduler
from skipping this slice. Therefore, we decided to combine both measures in
a benefit value for each slice.

Using predictions for the execution times of full decoding and fallback decod-
ing we can calculate the time ∆t saved by the fallback decoder. Using the
directly inflicted error and the error emission factor from the bitstream, we
can furthermore calculate the total quality loss ∆q that would be caused by
fallback decoding. The ratio b = ∆q

∆t
thus expresses this slices benefit as a

price-performance-ratio.

A higher benefit implies that the slice should better be decoded, whereas a
lower benefit makes it a candidate for skipping.

4.2.2 Scheduler design

Video playback relies on the decoder being able to deliver decoded frames at
a constant rate. The objective of the slice scheduler is therefore to maintain
the natural deadlines of the frames while keeping the perceived visual quality
as high as possible. Thanks to a look-ahead window, the scheduler knows the
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metadata of upcoming slices ahead of time, so it can look into the future and
accumulate predicted execution times to check, if a deadline is expected to be
missed. If all deadlines inside the look-ahead window appear to be met, no
action is required and slices are to be fully decoded. However, if a deadline will
be missed, the scheduler needs to select a slice for skipping to help meeting
the deadline by reducing the execution time. Because the actual execution
times can still differ from the predicted ones, this deadline checking should
be repeated after every slice to compensate for unexpected overtime during
processing of an earlier slice.

Given a deadline expected to be missed and the execution times for full and
fallback decoding of the individual slices, the core problem is to select a set of
slices for fallback decoding such that the deadline is met and the loss in visual
quality minimized. We can easily see that this problem is equivalent to the
binary Knapsack Optimization Problem. As this problem is NP-hard, we are
going to solve the problem using a greedy algorithm similar to the decreasing
density greedy (DDG) algorithm discussed in [14], with the density being the
benefit value b.

The complete algorithm, which decides for every slice whether to decode or
to skip it is given now. For a pseudo-code notation, see Algorithm 3.

(1) Initialize the boolean skip variable with false for all slices in the sideband
look-ahead window, meaning that all slices will be decoded.

(2) Calculate the current execution time budget as the difference between
the current frame’s deadline and the current wallclock time. This time is
available for decoding the remaining slices of this frame.

(3) To exclude slices in the order of increasing benefit, the slice with the least
benefit has to be remembered. The variable storing the least beneficial
slice found is invalidated here, meaning that no slice has been examined
yet.

(4) Iterate over all slices from the current one up to the last one in the look-
ahead window.
(a) If the skip variable for this slice is true, deplete the execution time

budget by this slice’s estimated replacement time.
(b) If the skip variable for this slice is false, deplete the execution time

budget by this slice’s estimated decoding time. If the benefit of this
slice is below the one of the currently remembered least beneficial
slice, store this slice as the new least beneficial one.

(c) If the current slice is the last one of a frame, then:
(i) Check if the execution time budget dropped below zero, meaning

we exceeded the deadline for this frame. If so, the remembered
least beneficial slice’s skip variable is set to true and the iteration
bails out to Step 5.

(ii) If the deadline has been met, replenish the execution time bud-
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Algorithm 3 Scheduling decision

function skipCurrentSlice(lookaheadWindow) {
// Step 1
foreach (slice in lookaheadWindow)

slice.skip = false;

do {
deadlineMissed = false;

// Step 2
budget = currentFrameDeadline – time();
// Step 3
leastBeneficialSlice = null;

// Step 4
foreach (slice in lookaheadWindow) {
if (slice.skip) {

// Step 4 a
budget –= slice.replacementTime;
} else {

// Step 4 b
budget –= slice.decodingTime;
if (slice.benefit < leastBeneficialSlice.benefit)

leastBeneficialSlice = slice;
}
// Step 4 c
if (slice.lastSliceOfFrame) {

// Step 4 c i
if (budget < 0) {

deadlineMissed = true;
leastBeneficialSlice.skip = true;
break;
}
// Step 4 c ii
budget += frameDuration;
}
}

} until (!deadlineMissed ——
lookaheadWindow.slice[0].skip); // Step 5

return lookaheadWindow.slice[0].skip;
}

get with the display duration of one frame, because the deadline
of the next frame will be later by this amount of time. Continue
the iteration.
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(5) If no deadlines have been missed or the skip variable of the current slice is
set, the algorithm terminates. Otherwise the algorithm restarts at step 2.

Once the algorithm terminates, the skip variable of the current slice deter-
mines, whether this slice is skipped or decoded. As the actual execution time
might differ from the predicted one, the algorithm is rerun from step 1 for the
next slice.

The worst case runtime complexity of this algorithm is O(n2) for a look-ahead
window of size n, but as the iteration bails out once no deadlines have been
missed or once it has been determined that the current slice is to be skipped,
the average runtime is lower. We measured an average per-slice scheduling
overhead of a mere 15 µs for BBC video. Given that decoding times are in the
magnitude of milliseconds, this overhead is quite acceptable.

4.3 Future integration of H.264 SVC

As mentioned earlier, we designed our architecture with the future of video
coding in mind and are looking ahead to integrate H.264’s scalable extension
[25] into our model as seamlessly as possible. H.264 SVC, once it matures and
becomes adopted by encoder and decoder vendors will provide a powerful and
fine-grained way to trade decoding time for presentation quality. The decoder
will have a lot more options to choose from, because H.264 SVC will allow to
scale quality along three axes:

• Temporal resolution can be varied by changing the number of frames per
second that are decoded.

• Spatial resolution scaling allows decoding individual frames at different res-
olutions.

• Quality scaling can be performed by using different quantization levels for
the same frame and resolution to vary the amount of image detail that is
decoded.

In our model, this scalable technology can completely replace the quadtree
we introduced for exactly the same purpose. This greatly reduces the amount
of processing we have to perform on the videos after encoding. The resulting
data that has to be embedded as custom NALUs into the bitstream would
also be reduced, thus lowering the bitstream size overhead of our technology
tremendously.

At decoding time, we want to switch dynamically from one coding layer to
another, so a very flexible scalability like [24] is needed. Here, the problem
arises that changing quality, especially increasing it, is not possible at arbitrary
points, but only when all required references are available. We plan to examine
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the quality impact and error propagation behavior when switching layers, with
the goal of predicting visual quality for arbitrary points in the quality space
of decoding layers. The preprocessor would have to determine decoding time
metrics and visual quality quantifications of the various levels and analyze and
accumulate the error propagations caused by all conceivable decoder choices.

In the decoder, our idea of combining quality and resource usage would still
apply, but would need to be enhanced to work with the wider choice of op-
tions. For example, in a high motion scene, the decoder should probably prefer
temporal resolution over scalable resolution, as a reduction in frames per sec-
ond would be perceived visually inferior to a reduction in image detail. The
multiple dimensions of scalability pose some interesting research problems, as
the decoder now has to find the path through all the options that leads to
the highest quality under the given resource constraints. We look forward to
accepting these challenges.

5 Evaluation

Our evaluation is twofold. First we present results of the building blocks of
our technology individually. After that, we will evaluate the architecture as a
whole. All timing-related results have been obtained under Linux on an AMD
Opteron 2GHz machine using the FFmpeg H.264 decoder [3]. The videos from
Table 1 were used for the evaluation.

5.1 Individual building blocks

The architecture builds upon three accomplishments: decoding time predic-
tion, fallback decoding and error propagation estimation.

5.1.1 Decoding time prediction

We used the videos Shore, BBC and Pedestrian as the training set to calculate
the prediction coefficients (see Table 2). The prediction results can be found in
Table 3. Especially the results of the Knightshields and Rush Hour sequences,
which were not part of the training set are remarkable. Figure 8 illustrates the
relative error of the Rush Hour prediction. A detail plot in Figure 9 shows,
that the prediction follows the decoding time variations of different frames.
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Table 1
Test videos (all progressive) used throughout the evaluation.

Video Content Frames Resolution Bitrate Slices/ IDR Properties

(Framerate) Frame Frames

Freeway
[2]*

cars on a
freeway

232 704×576
(24p)

1.73Mbit/s 1 1 fixed camera
scene

Golf [2]* golfer making
a swing

311 176×144
(24p)

30 kbit/s 1 1 fixed camera
scene, very
little motion

Shore [2]* flight over a
shoreline at
dawn

682 352×288
(24p)

210 kbit/s 1 1 camera
moving all
the time

BBC [1]** various
combined
broadcast
quality clips
from BBC
motion
gallery

2237 1280×720
(24p)

4.92Mbit/s 5 43 clips with
very
different
properties

Parkrun
[4]**

man running
in a park
with an
umbrella,
trees, snow
and water

504 1280×720
(50p)

8.66Mbit/s 2 3 very
detailed

Knight-
shields
[4]**

man walking
in front of a
wall of knight
shields

504 1280×720
(50p)

9.68Mbit/s 4 3 very
detailed,
zoom at the
end

Pedestrian
[5]**

shot of a
pedestrian
area, people
pass by very
close to the
camera

375 1920×1080
(25p)

7.70Mbit/s 8 2 low camera
angle, large
foreground
motion
objects

Rush
Hour [5]**

rush-hour in
Munich city
with heat
haze

500 1920×1080
(25p)

7.74Mbit/s 8 2 high depth
of focus,
fixed
camera, lots
of motion

* videos have not been reencoded, the original FastVDO encoded material was used
** videos have been encoded using x264 (open GOPs, dynamic IDR interval of
25–250 frames with scene cut detection)

5.1.2 Fallback decoder

Each test sequence was preprocessed to calculate and embed the quadtree
information, resulting in an increased bitstream size. We then randomly se-
lected 10% of the slices. Using SSIM over the entire video, we objectively mea-
sured the quality when dropping the selected frames and replacing them with
the previous frame. We also measured the SSIM quality when using our fall-
back decoding on the selected frames. Both SSIM quality values include errors
propagated through reference frames. The results can be seen in Table 4. The
average per-frame speedup of the fallback compared to full decoding ranges
from 6.8 to 10.5. With quality improvement factors up to 5.1 the algorithm
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Table 2
Prediction coefficient vector to calculate decoding time in milliseconds. Note that
the transform metrics have been ignored by automatic column dropping.

Metric Coefficient

pixels 3.602× 10−3

bits 2.860× 10−5

intra 4×4 1.559× 10−3

intra 8×8 1.589× 10−3

intra 16×16 1.665× 10−3

motion 4×4 3.700× 10−5

motion 8×8 3.797× 10−5

motion 16×16 1.935× 10−4

transform 4×4 0

transform 8×8 0

deblock edges 5.962× 10−4

Table 3
Per-slice decoding time prediction for various videos.

Video Avg. Rel. Error Avg. Abs. Error Values within Values within 99 %

(Std. Deviation) (Std. Deviation) ±0.2 Rel. Err. ±1ms Abs. Err. Quantile*

Freeway 0.189 (0.012) 1.52ms (0.18ms) 81.8% 0.0 % -1.386ms

Golf 0.548 (0.099) 0.11ms (0.01ms) 0.3 % 100.0% -0.093ms

Shore 0.286 (0.107) 0.44ms (0.07ms) 23.1% 100.0% -0.207ms

BBC 0.024 (0.108) 0.03ms (0.45ms) 93.1% 98.7% 0.960ms

Parkrun 0.186 (0.146) 2.44ms (2.08ms) 64.2% 14.2% 1.236ms

Knightsh. 0.036 (0.099) 0.20ms (0.93ms) 92.5% 87.0% 1.469ms

Pedestrian -0.021 (0.066) -0.15ms (0.73ms) 98.1% 96.0% 1.396ms

Rush Hour -0.044 (0.043) -0.37ms (0.66ms) 100.0% 97.5% 1.102ms

* Increasing the predictions by this value results in 99 % overestimation
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Figure 8. Relative error histogram of decoding time prediction for Rush Hour video

provides a better quality than frame drops with a reasonable size overhead
of the bitstream. Only for the low-bitrate Golf video, frame drops resulted in

33



absolute error

predicted
measured

T
im

e
 (

in
 M

ill
is

e
co

n
d

s)
0

5

10

15

Slice Number

3000 3100 3200 3300 3400 3500

Figure 9. Prediction detail of Rush Hour video.

Table 4
Fallback decoding evaluation. The SSIM metric is 1.0 for equal frames
and decreases with increasing perceptual difference. To calculate the im-
provement factor, both SSIM results were transformed to linear scale
(QIF = (1− SSIMDrop) / (1− SSIMFallback)).

Test Sequence Compressed Average SSIM SSIM Quality Improvement

Size Overhead Speedup of a Drop of Fallback Factor (QIF)

Freeway 2.2 % 7.264 0.912 0.922 1.134

Golf 13.2% 6.849 0.993 0.993 0.964

Shore 8.8 % 10.21 0.937 0.950 1.253

BBC 3.0 % 9.449 0.975 0.995 5.137

Parkrun 5.0 % 7.806 0.835 0.939 2.704

Knightshields 5.3 % 10.502 0.908 0.962 2.432

Pedestrian 3.6 % 7.887 0.965 0.990 3.639

Rush Hour 3.7 % 8.515 0.977 0.994 4.082

better visual quality than our fallback decoder. But remember that in both
cases slices were dropped randomly and not based on their quality impact.
Because low-bitrate video is not our main focus, we do not further investigate
this anomaly in this work. We experimentally applied bzip2 compression to
our metadata to reduce the size overhead. In an implementation for practical
use, a domain specific compression would have to be devised.

5.1.3 Error propagation estimation

We estimated the resulting error propagation for skipping randomly selected
slices at a rate of one slice out of ten. Comparing this estimate to the real error
yields the differences listed in Table 5. As the difference between estimated
and actual error is about an order of magnitude smaller than the absolute
value of the propagated errors, this estimation will prove to be sufficiently
accurate for our use.
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Table 5
Error propagation estimation for various videos. For each video, randomly selected
slices have been skipped at an average rate of one slice out of ten. The resulting
errors were predicted for each slice and compared to the measured error.

Video Slices/Frame Avg. Difference (Std.
Deviation)

Max. Error Value

Freeway 1 0.0645 (0.0514) 0.128

Golf 1 0.0097 (0.0113) 0.048

Shore 1 0.0662 (0.0830) 0.106

BBC 5 -0.0020 (0.0042) 0.067

Parkrun 2 0.0768 (0.0710) 0.168

Knightshields 4 -0.0156 (0.0136) 0.104

Pedestrian 8 -0.0072 (0.0051) 0.036

Rush Hour 8 -0.0045 (0.0037) 0.020

5.2 Architecture as a whole

The slice scheduling method selects slices for fallback decoding based on their
benefit value. Slices with the lowest benefit are selected first. To evaluate this
method in its entirety, we compared it to various other decoding strategies:

No fallback: Slices are not fallback decoded at all. Instead, when frames miss
their deadline, the previous frame remains visible until playback recovers.
Most current video players behave similarly.

Highest cost: The slice with the highest cost, that is: the highest decoding
time, is skipped first. The reasoning behind this idea is that skipping the
slices with the highest cost, a minimal amount of slices is skipped to meet
the deadlines. This method uses decoding time prediction to estimate future
deadline misses and to decide, which slices to fallback decode. Fallback
decoding uses the quadtree metadata embedded in the bitstream.

Least direct error: The slice with the least directly introduced error, dis-
regarding any error propagation, is skipped first. The assumption behind
this method is that minimizing the first order error will also reduce the
propagated error. Again, the decoding time prediction is used to estimate
deadline misses. Fallback decoding is decided based on the stored error val-
ues for each slice.

Lifetime: Slices are skipped according to the ratio of decoding time and the
frame’s reference lifetime. This lifetime is the number of future frames, which
can access the current frame in the reference buffer. It is current practice
for MPEG-2 to skip B-frames first [18], because they are never used as ref-
erences. This scheduling method extends this idea to H.264. Decoding time
prediction and quadtree metadata are used as in the previously described
approaches. The stored values for the direct error are multiplied with the
frame’s lifetime in the reference buffer.

Least benefit: Finally, this is the method we developed. Least Benefit re-
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Figure 10. SSIM quality losses introduced by the various scheduler methods. The
smaller the value the higher the quality of the video.

fines Lifetime by additionally using the error emission factor instead of the
simplifying lifetime.

To compare the different approaches, we simulated playback on a machine
incapable of decoding the video completely without missing deadlines. For
the Freeway, Golf and Shore videos, we simulated a machine that could only
decode 80% of the frames within their deadline. For all other sequences, we
reduced this fraction to only 50% of the frames, meaning that a machine
with only half the required CPU power is simulated. We evaluated the differ-
ent strategies by running each video through each contender algorithm at the
selected frame rate. The resulting video was compared to the original objec-
tively using SSIM over the entire video. These quality differences can be seen
in Figure 10.

We observe that, from no fallback to least benefit, using more building blocks
of our architecture generally improves the visual quality under the given re-
source constraints. Lifetime and least benefit often perform similarly. However,
in the Shore example, lifetime’s simplification of the propagated error is shown
to be insufficient. Our method may require preprocessing and enlarge the bit-
stream, but we hope to remedy these disadvantages by using H.264 SVC in
the future.
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6 Conclusion

In this article we described a framework for maximizing user-perceived video
playback quality under constrained resources. This framework consists of the
following three key parts:

(1) A method for predicting slice decoding time online. The prediction is
based on metrics extracted from the bitstream, according to a decoder
model. This allows us to estimate the costs associated with decoding each
slice beforehand.

(2) We describe a fallback decoder for providing replacement content for a
slice. This method is used in online adaptation decisions.

(3) We used the SSIM metric [30] for quantifying visual error introduced by
the fallback decoder. We also presented a model for error propagation
into future frames.

These three building blocks combined allow us to make sensible online deci-
sions based on quality and resource usage with a runtime overhead of merely
15 µs per scheduling decision for an example video. To the best of our knowl-
edge this is the first time that resource usage estimation, adaptivity, and a
model for visual error including propagation are combined into one frame-
work. According to our evaluation in Figure 10, our solution outperforms all
competing approaches, supporting the idea of combining the described com-
ponents.

We would like to emphasize here, that our approach is modular in the sense
that the individual components can be improved independently. This will sim-
plify the adoption of H.264 scalable video coding. Further research could also
target extending our approach to other resource types than CPU, namely,
network bandwidth and disk bandwidth.
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