

Pós-Graduação em Ciência da Computação

“CLASSIFYING METRICS FOR ASSESSING

OBJECT-ORIENTED SOFTWARE

MAINTAINABILITY: A FAMILY OF METRICS’

CATALOGS”

Por

JULIANA DE A. GONÇALVES SARAIVA

Tese de Doutorado

RECIFE
 2014

 UNIVERSIDADE*FEDERAL*DE*PERNAMBUCO*

CENTRO*DE*INFORMÁTICA*

PÓS5GRADUAÇÃO*EM*CIÊNCIA*DA*COMPUTAÇÃO!

*

JULIANA*DE*ALBUQUERQUE*GONÇALVES*SARAIVA*

“CLASSIFYING*METRICS*FOR*ASSESSING*OBJECT5ORIENTED*
SOFTWARE*MAINTAINABILITY:*A*FAMILY*OF*METRICS’*CATALOGS"*

*
*
*
*

ESTE TRABALHO FOI APRESENTADO À PÓS-GRADUAÇÃO EM
CIÊNCIA DA COMPUTAÇÃO DO CENTRO DE INFORMÁTICA DA
UNIVERSIDADE FEDERAL DE PERNAMBUCO COMO REQUISITO
PARCIAL PARA OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIA
DA COMPUTAÇÃO.

 ORIENTADOR(A): SÉRGIO C. BRANCO SOARES
 CO-ORIENTADOR(A): FERNANDO J. C. DE L. FILHO

RECIFE
2014

Catalogação na fonte
Bibliotecária Alice Maria dos Santos Costa, CRB 4-711

Saraiva, Juliana de Albuquerque Gonçalves.
 Classifying metrics for assessing object-oriented
software maintainability: a family of metrics’ catalogs.
– Recife: O Autor, 2014.
 132 f. : fig., tab.

 Orientador: Sérgio Castelo Branco Soares.
 Tese (Doutorado) - Universidade Federal de
Pernambuco. Cin. Ciência da Computação, 2014.
 Inclui referências e apêndices.

 1. Engenharia de software. 2. Software - Manutenção
. 3. Medição de software. I. Soares, Sérgio Castelo
Branco. (orientador). II. Título.

 005.1 (22. ed.) MEI 2014-100

Tese de Doutorado apresentada por Juliana de Albuquerque Gonçalves Saraiva à
Pós Graduação em Ciência da Computação do Centro de Informática da Universidade
Federal de Pernambuco, sob o título “Classifying Metrics for Assessing Object-
Oriented Software Maintainability: A Family of Metrics' Catalogs” orientada pelo
Prof. Sergio Castelo Branco Soares e aprovada pela Banca Examinadora formada
pelos professores:

 __
 Prof. Paulo Henrique Monteiro Borba
 Centro de Informática / UFPE

 Prof. Fabio Queda Bueno da Silva
 Centro de Informática / UFPE

 Profa. Renata Maria Cardoso Rodrigues de Souza
 Centro de Informática / UFPE

 Prof. Manoel Gomes de Mendonça Neto
 Departamento de Ciência da Computação / UFBA

 __
 Prof. Claudio Nogueira Sant’Anna
 Departamento de Ciência da Computação / UFBA

Visto e permitida a impressão.
Recife, 21 de fevereiro de 2014.

Profa. Edna Natividade da Silva Barros
Coordenadora da Pós-Graduação em Ciência da Computação do
Centro de Informática da Universidade Federal de Pernambuco.

To my mom, Laura A. Mauricio, my life’s example, for her
dedication and effort during her whole life to provide me the

best education.
To my sister, Jeanine de A. Gonalves, for supporting me in

all my achievements.

Acknowledgements

First of all, I would like to thank God, for giving me enough strength to conclude this
cycle of my life.

I would like to thank my husband, Tibrio de A. Saraiva, for making me feel special (at
least for him) and competent when I have to face on any challenge in my life. You are such a lier,
but I believed in you, then I finished it! I love you so much, forever!

I have to thank my son, Joo Victor G. A. Saraiva, and my daughter, Las G. A. Saraiva,
for their patience with me during this period of my life. You two are my engine of motivation to
keep walking.

I am thankful to Evelyn Saraiva (mother in-law) and Joo Saraiva (father in-law) for
believing in my competence to conclude this period of my life.

It is important to remember and thank my advisor and co-advisor for guiding me during
my Ph.D. program. I am sure that the majority of my professional skills, I learned from you two.
Thank you so much!

I also would like to thank the professors and students of the Informatics Center (CIn-
UFPE) that contributed to my education and my project execution. In special, thank the SPG
(Software Productivity Group) for all your feedback and collaboration during my Ph.D. research.

Adauto Filho and Emanoel Barreiros, I am very thankful to have you as my friends.
Thank you so much for supporting me during my Ph.D. research. You are special people that
God send us to make the life better. You are my fellows in my personal and professional life.

I would like to thank the professors Cludio Sant’Anna, Fbio Queda, Manoel Mendona,
Paulo Borba, and Renata Souza for accepting the invitation to compose my Ph.D. committee. It
is my pleasure to have all of you assessing and contributing with my work.

I would like to thank the FACEPE (Foundation for Supporting Science and Technology
of Pernambuco State) and INES (National Institute of Science and Technology for Software
Engineering) for their financial support.

Finally, I would like to thank my family and friends that, directly or indirectly, collab-
orated and helped me in these four years of a hard and persistent work to conclude this Ph.D.
program.

When you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot measure it,

when you cannot express it in numbers, your knowledge is of a meager and
unsatisfactory kind.

—W.T.L.K (William Thomson Lord Kelvin)

Resumo

Atualmente, Programao Orientada a Objetos (POO) um dos paradigmas mais utilizados.
Complementarmente, a manutenibilidade de software considerada um atributo de software
que desempenha um papel importante com relao ao nvel de qualidade. Neste contexto, a
Manutenibilidade de Software Orientado a Objetos (MSOO) foi estudada atravs de anos e vrios
pesquisadores propuseram um elevado nmero de mtricas para a medir. Como consequncia do
nmero e da diversidade de mtricas existentes, alm da no padronizao nas definies e nomenclatura,
a tomada de deciso sobre quais mtricas podem ser adotadas para realizar estudos em MSOO
difcil. Desta forma, um mapeamento sistemtico foi realizado a fim de encontrar quais mtricas
so usadas como indicadores de MSOO. Houve uma seleo inicial de 5175 estudos primrios e
138 artigos foram selecionados, resultando em 568 mtricas encontradas. Analisando as 568
mtricas, foram encontradas inconsistncias na nomenclatura destas mtricas, pois havia mtricas com
nomes iguais mas significados diferentes (8 casos envolvendo 17 mtricas) e tambm mtricas com
nomes diferentes e significados semelhantes (32 casos envolvendo 214 mtricas). Alm disto, uma
categorizao destas mtricas foi proposta, sendo identificadas 7 categorias e 17 subcategorias. Estas
categorias representam os cenrios de adoo de mtricas de MSOO. Adicionalmente, um portal web
de mtricas foi desenvolvido para fornecer informaes sobre as mtricas para outros pesquisadores
e tambm gerar catlogos de mtricas de acordo com o contexto da aplicao das mesmas. Este portal
tambm pode ser alimentado sistematicamente por outros pesquisadores que lidam com mtricas
de MSOO, fazendo com que os resultados deste trabalho possam representar os primeiros passos
para padronizao e compreenso destas mtricas. Por ltimo, um quasi-experimento foi realizado
para checar o grau de cobertura do catlogo proposto pela abordagem aqui apresentada quando o
mesmo comparado com catlogos sugeridos por especialistas. 90% de cobertura foi obtido e este
resultado foi confirmado com 99% de grau de confiana usando o Teste de Wilcoxon. De forma
complementar, houve uma pesquisa de opinio para checar se os especialistas acharam catlogo
gerado usando a nossa abordagem semelhante ou melhor do que o sugerido por eles. Sendo
assim, os resultados da anlise da cobertura dos catlogos pode servir como indcios da utilidade da
abordagem proposta para a escolha de mtricas na avaliao de MSOO.

Palavras-chave: Manutenibilidade de Software. Metricas. Desenvolvimento de Software
Orientado a Objetos. Engenharia de Software Experimental

Abstract

Currently, Object-Oriented Programming (OOP) is one of the most used paradigms.
Complementarily, the software maintainability is considered a software attribute that plays an
important role in quality level. In this context, the Object-Oriented Software Maintainability
(OOSM) has been studied through years, and many researchers have proposed a large number
of metrics to measure it. As a consequence of the number and diversity of metrics, beyond the
no standardization in metrics definition and naming, the decision-making process about which
metrics can be adopted in experiments on OOSM, or even their using in software companies is
a difficult task. Therefore, a systematic mapping study was conducted in order to find which
metrics are used as indicators in OOSM assessments. There was an initial selection of 5175
primary studies and 138 were selected, resulting in 568 metrics found. Analyzing the 568
metrics, inconsistencies in metrics’ naming were found because there were metrics with the same
names but different meanings (8 cases involving 17 metrics) and also, there were metrics with
different names, however with similar meanings (32 cases involving 214 metrics). Moreover,
a metrics’ categorization has been proposed to facilitate decision-making process about which
ones have to be adopted, and 7 categories and 17 subcategories were identified. These categories
represent the evaluation scenarios where OOSM metrics should be used. Additionally, a metrics’
web portal was developed to provide information about the metrics collected in this research,
and to generate metrics’ catalogs according to the context of their adoption. This portal can
also be systematically fed by other researchers that work with OOSM metrics, making the
results of this work the first steps towards metrics’ standardization, and the improvement of the
metrics’ validation. Finally, a quasi-experiment was conducted to check the coverage index of the
catalogs generated using our approach over the catalogs suggested by experts. 90% of coverage
was obtained and this result was confirmed with 99% of confidential level using the Wilcoxon
Test. Complementarily, a survey was conducted to check the experts’ opinion about the catalog
generated by the portal when they were compared by the catalogs suggested by the experts. Thus,
the coverage evaluation can be the first evidences of the usefulness of the proposed approach for
metrics’ choice in OOSM evaluation.

Keywords: Software Maintainability. Metrics. Object-oriented Software Development. Experi-
mental Software Engineering

List of Figures

2.1 Targets of Quality Model (ISO/IEC, 2011). 20
2.2 Software Quality Model Illustration - ISO/IEC 25010:2011 (ISO/IEC, 2011). . 21
2.3 Maintainability Definition (LIN, 2010). 23
2.4 Maintainability Life Cycle Phases. 24
2.5 Software Product Quality Measurement Reference Model (SPQM-RM) - (JEDL-

ITSCHKA; CIOLKOWSKI, 2006). 25
2.6 Measurement Context Model (The Design View) (ABRAN, 2010). 26

3.1 Research Methodology Illustration. 37
3.2 Metrics’ Naming Consolidation Process. 42
3.3 Portal Architecture - UML Package Diagram. 44

4.1 Illustration of OOSM Metrics Categorization. 68
4.2 OOSM Metrics Portal - Catalogs Generator Module. 69
4.3 Example of Catalog Generated by the Portal. 69
4.4 Results of the Questionnaire Respondents’ Profile - Environment. 71
4.5 Results of the Questionnaire Respondents’ Profile - Position. 71
4.6 Results of the Questionnaire Respondents’ Profile - Countries. 72
4.7 Results of the Questionnaire Respondents Expertise in Software Metrics. 73
4.8 Catalogs’ Covering. 75
4.9 CIs Histogram. 77

5.1 Maintainability Index Calculation Form (HEITLAGER; KUIPERS; VISSER,
2007). 85

E.1 Questionnaire - First Part (Page 01). 127
E.2 Questionnaire - Second Part (Page 02). 127
E.3 Questionnaire - Third Part (Page 03). 127
E.4 Questionnaire - Fourth Part (Page 04). 128
E.5 Questionnaire - Last Question (Page 05). 128

F.1 Z0 Calculation Formula (WILCOX, 2004). 130

List of Tables

3.1 Execution Timetable - Primary Studies Selection 39

4.1 Digital Libraries Used in the SMS . 51
4.2 Evolution Primary Studies Selection . 51
4.3 Primary Studies’ Authors . 52
4.4 Number of Selected Primary Studies in Each Journal 53
4.5 Number of Selected Primary Studies in Each Conference Proceedings 53
4.6 Topic Related to Maintainability Metrics . 55
4.7 Tools that Collect Metrics Automatically . 56
4.9 Maintainability Metrics - Same Names and Different Meanings 65
4.10 Examples of Metrics’ Descriptions/Adoption Scenario’s Descriptions that Sup-

port the Categories Definitions . 66
4.11 Questionnaire’s Respondents Affiliation . 72
4.12 Metrics Suggested by Experts that Do not Exist in Portal’s Database 74
4.13 Metrics Suggested by Experts with Inconsistencies in Categorization 75
4.14 All Categories Suggested . 76
4.15 Categories Suggested by Experts - In Detail 76
4.16 Catalogs’ CIs. 77
4.17 Metrics Scenario (Expert Suggestion x Portal Suggestion). 81
4.18 Top of 12 Metrics More Used . 82

5.1 Metrics from Canfora et al. Study (CANFORA et al., 2005) 84

B.1 Documentation . 104
B.2 Timetable . 106

List of Acronyms

AMEffMo Adaptive Maintenance Effort Model . 84

AOSM Aspect-Oriented Software Maintainability . 50

API Application Programming Interface . 43

CC Class Complexity . 85

CK Chidamber and Kemerer . 28

ESE Empirical Software Engineering . 29

FIPA Finnish Information Processing Association . 32

IEC International Electrotechnical Commission . 19

ISO International Organization for Standardization . 19

JSP Java Server Pages . 43

JPA Java Persistence API . 43

MVC Model View Controller .43

OOSD Object-Oriented Software Development . 16

OOP Object-Oriented Programming . 14

OOSM Object-Oriented Software Maintainability .14

RQ Research Question .54

SE Software Engineering . 11

SLR Systematic Literature Review . 34

SMS Systematic Mapping Study . 34

SPM Software Process Model . 84

Summary

1 Introduction 14
1.1 Context and Motivation . 14
1.2 Research Problem and Questions . 16
1.3 Goals . 16
1.4 Solution and Summary of Contribution . 16
1.5 Thesis Structure . 18

2 Background 19
2.1 Software Maintainability . 19

2.1.1 Maintainability Definition . 19
2.1.2 Maintainability and Software Costs 21
2.1.3 Maintainability in Software Life Cycle 23

2.2 Software Metrics . 25
2.2.1 Metric Definition . 25
2.2.2 Metrics Assessment . 27

2.3 Empirical Studies in Software Engineering Software Engineering (SE) 29
2.3.1 Empirical Research Strategies Applied to SE 29

2.3.1.1 Experiment and Quasi-Experiment 30
2.3.1.2 Survey . 31

2.3.2 Research Instrumentation/Data Collection Strategies 32
2.3.2.1 Mapping Studies . 34
2.3.2.2 Questionnaires . 35

3 Research Methodology 37
3.1 Systematic Mapping Study . 38

3.1.1 Mapping Research Questions . 38
3.1.2 Data Source . 38
3.1.3 Primary Studies Search Strategy . 38

3.2 Metrics Naming Consolidation . 40
3.3 Metrics Categorization . 42
3.4 OOSM Metrics Portal Building Process . 43

3.4.1 Portal Architecture . 43
3.4.2 Portal Modules . 45

3.5 Approach Assessment . 46
3.5.1 Experimentation Goals . 46

3.5.2 Quasi-Experiment Design . 46
3.5.3 Data Extraction Method . 48

4 Results Discussion 50
4.1 Systematic Mapping Study (SMS) Results . 50

4.1.1 Digital Libraries . 50
4.1.2 Studies’ Authors . 52
4.1.3 Journal and Conferences Involved . 53
4.1.4 SMS Answer . 54

4.2 Software Maintainability Metrics . 54
4.2.1 Metrics’ Tools . 55
4.2.2 Metrics Naming Inconsistencies . 56
4.2.3 Metrics’ Categories . 65

4.3 OOSM Metrics Portal . 68
4.4 Results of the Approach Evaluation . 70

4.4.1 Respondents’ Profile Assessment . 70
4.4.2 Respondents’ Expertise . 71
4.4.3 Metrics Assessment . 73
4.4.4 Categories Assessment . 73
4.4.5 Assessment of the Catalogs’ Coverage 74

4.5 Answers of the Thesis’s RQs . 78
4.6 Limitations and Threats to Validity . 79

5 Related Works 83

6 Concluding Remarks 88
6.1 Conclusions . 88
6.2 Future Work . 91

References 93

Appendix 100

A Publications and Awards 101
A.1 Awards . 101
A.2 Publications Directly Related to the Research 101
A.3 Other Publications . 102

B Systematic Mapping Protocol 103
B.1 Background . 103
B.2 Review Question . 103

13

B.3 Roles and Responsibilities . 103
B.4 Search Process . 104

B.4.1 Search String . 104
B.4.2 Study Documentation . 104
B.4.3 Study Selection . 104

B.4.3.1 Inclusion Criteria . 105
B.5 Project Timetable . 105
B.6 Data Extraction and Synthesis . 106

C Selected Primary Studies 107

D Object-Oriented Software Maintainability Metrics 114

E Quasi-Experiment Protocol 123
E.1 Experimentation Goal . 123
E.2 Quasi-Experiment Definitions . 123

E.2.1 Quasi-Experiment Subjects . 123
E.2.2 Quasi-Experiment Objects/Units . 123
E.2.3 Factor and Treatment . 123
E.2.4 Independents Variables/Parameter . 124
E.2.5 Dependents Variables . 124
E.2.6 Control Group . 124

E.3 Quasi-Experiment Design . 124
E.3.1 Research Goal and Hypotheses . 124
E.3.2 Research Method . 125
E.3.3 Data Collection Technique (Instrumentation) 125

E.4 Data Assessment . 126
E.5 Questionnaire Applied . 126

F Experts’ Opinion About the Proposed Approach 129

G Invitation Letter for the Questionnaire 131

141414

1
Introduction

This chapter presents the work’s overview. The research context and motivation are
shown in Section 1.1. In sequence, Section 1.2 describes the research problem and the research
questions raised in this work. After that, the study goals are depicted in Section 1.3. The solution
proposed to solve the research problem and the summary of thesis’ contributions are shown in
Section 1.4. Finally, the thesis’ structure is exposed in Section 1.5.

1.1 Context and Motivation

Nowadays, Object-Oriented Programming (OOP) is one of the most widely used pro-
gramming paradigms (TIOBE, 2013). Thus, programming languages that adhere to the OOP
paradigm, such as C#, C++, Visual Basic, Java, Python, .NET, Objective-C, are among the
most popular languages adopted in globally known software development companies such as,
Microsoft (MICROSOFT, 2013), Apple (APPLE, 2013), and so on. In addition, they are lan-
guages predominantly used in source code repositories, such as, Github (GITHUB, 2013), Tigris
(TIGRIS, 2013), JavaForge (JAVAFORGE, 2013), CodeFlex (CODEFLEX, 2013), Source Forge
(FORGE, 2013), and Google Code (CODE, 2013). Consequently, considering the scenario
aforementioned, our research was dedicated to the OOP languages.

Complementarily, maintainability, which is one software attribute observed to measure-
ment of software quality, plays an important role in quality level (LIN, 2010). The less effort/cost
during the software maintenance cycle, the higher the software’s quality level (SOMMERVILLE,
2007). Therefore, it is necessary more research on software maintainability. Thus, the work
presented here is focused on Software Maintainability, specifically, on Object-Oriented Software
Maintainability (OOSM).

Since it is difficult to measure software maintainability directly without measuring the
actual maintenance process, researchers and practitioners often use product metrics as indicators
(BASILI; BRIAND; MELO, 1996; SANTANNA et al., 2003). In this context, OOSM has been
studied throughout the years, and several researchers have proposed a large number of metrics
for software maintainability (ABDI; LOUNIS; SAHRAOUI, 2006; BESZEDES et al., 2007;

15 1.1. CONTEXT AND MOTIVATION

OLIVEIRA et al., 2008; MINGGUANG et al., 2009; KULKARNI; KALSHETTY; G.ARDE,
2010; ALSHAMMARI; FIDGE; CORNEY, 2010; REVELLE; GETHERS; POSHYVANYK,
2011; SARAIVA; SOARES; CASTOR, 2010). As a matter of fact, several metric suites have
been used as indicators in both quantitative and qualitative software engineering research. The
literature provides a large number of maintainability metrics to analyze different characteristics
in object-oriented software.

In general, distinct areas such as Software Development, Project Management, and
Software Research can adopt them as means to summarize information, point out anomalies, and
support decision-making processes. Developers can use metrics to evaluate the level of code
maintainability. With the results in hand, they can, for instance, make decisions about which
technologies they should use to evolve code. Metrics can also help project managers to evaluate
project progress by quantifying issues that should be in constant assessment, such as software
productivity (MANTORO, 2009). In addition, metrics have been used by researchers to evaluate
the impact of new technologies, such as a new design pattern or new programming paradigm
(ABDI; LOUNIS; SAHRAOUI, 2006; ALSHAMMARI; FIDGE; CORNEY, 2010; SARAIVA;
SOARES; CASTOR, 2010).

Nevertheless, there is no standardization or a catalog to summarize the information
about these metrics, helping the researchers/ practitioners in their decision-making about which
metrics can be adopted in OOSM evaluations. In spite of the widespread use of metrics, several
researchers look at this topic with extra caution and skepticism (SHEPPERD; INCE, 1994;
JONES, 2010; MAYER; HALL, 1999; UMARJI; SEAMAN, 1999; KANER; BOND, 2004;
ARKSEY; O’MALLEY, 2005; UMARJI; SEAMAN, 2008; KITCHENHAM, 2010). One of
the reasons for this negative stance is that considering the number of available metrics, many of
them are not empirically evaluated (HUDLI; HOSKINS; HUDLI, 1994; CONCAS et al., 2010;
YAZBEK, 2010; HAN et al., 2010).

Additionally, the large number of metrics poses many challenges to researchers/ practi-
tioners. Firstly, because there are so many metrics and their descriptions are scattered throughout
a number of different papers, where some of them mention the metrics but do not actually explain
them (SARAIVA et al., 2012). Therefore, the metrics’ finding and understanding is a difficult
process. Secondly, because they have different levels of empirical evaluations. There are metrics
that have been employed in tens of studies, whereas others are only mentioned in the paper that
first presented them. Hence, assessing metrics reliability is also difficult.

This situation leads researchers to duplicate metrics or use only metrics of studies they
already know. As a consequence, they might not conduct precise and reliable assessments
because they are unable to find adequate metrics for their purposes. Therefore, the thesis’
research was conducted considering the previously context described, trying to deal with this
huge amount of information and different types of OOSM metrics spread in the literature. It is
important to highlight that OOSM metrics are predictors for software maintainability, however
these metrics can measure other software characteristics and attributes.

16 1.2. RESEARCH PROBLEM AND QUESTIONS

1.2 Research Problem and Questions

Faced by the research motivation presented before, the thesis’ research problem is the
lack of useful information about OOSM metrics that support the decision-making process
about which ones can be adopted in OOSM evaluations. Metrics information means metrics’
name, description, whom proposed/adopted them, tools that collect them automatically, the
process description of metrics’ validation, and so on. This study aims to query the literature and
map maintainability-specific metrics and their use to measure OOSM. Thus, the thesis’ research
questions are:

• RQ1: What metrics were adopted to assess software maintainability in Object-Oriented
Software Development (OOSD)?

• RQ2: What OOSM metrics are most widely adopted?

• RQ3: How to organize information about OOSM metrics to support the decision-making
process in the scenario of metrics adoption?

1.3 Goals

Considering the research problem and research questions previously shown, the main
goal of this work is to provide metrics’ information and support the generation of context-
based catalogs that can be initially used towards the definition of which metrics will be
adopted by researchers/practitioner interested in OOSM evaluation. We expect provide
useful information about OOSM metrics for developers, project managers, and researchers that
do not have experience in metrics adoption. Consequently, they can consult a metrics’ catalog
similar to that one that would be suggested by experts in OOSM metrics. Then, to achieve the
main goal, four specific goals were proposed:

1. To consistently map information about existing OOSM metrics;

2. To disseminate information about OOSM metrics and their applicability;

3. To develop tools that support the decision-making process about the adoption of OOSM
metrics;

4. To evaluate the usefulness of the proposed catalog and associated tools.

1.4 Solution and Summary of Contribution

The main contribution of this work is the categorization of the metrics, and consequently,
the possibility to generate OOSM metrics’ catalogs based on the adoption scenarios. Thus, the

17 1.4. SOLUTION AND SUMMARY OF CONTRIBUTION

availability of a portal with specific information about OOSM metrics implements the solution
proposed to solve the lack of useful information about this type of metrics. It can be accessed
in http://julianasaraiva.info/oosmMetricsPortal. It contains information
about the metrics, such as metrics’ name and description, published papers that addressed
OOSM metrics, metrics’ categorization, and so on. In addition, the portal provides a way for
systematically collaboration from other researchers interested in this subject. They can login
with an specific profile (project collaborator) and insert/update information about the metrics.

In summary, the thesis’ contributions are:

• The gathering and organization of all possible information about object oriented
software maintainability metrics available until June of 2011. We investigated and
summarized all possible information about OOSM through a systematic mapping study
performed. With it, we could identify 568 metrics that have been adopted in OOSM
evaluation in both industrial and academic scenarios.

• The providing of a list with the relevant metrics in OOSM assessments. With all the
metrics’ information in hands, we checked which metrics were most mentioned by other
researchers, different from who proposed them. So, it was possible to observe the relevance
of them. In addition, we analyzed the Google Scholar portal to identify the number of
citations of published papers that addressed metrics in OOSM assessment. From those
papers, we extract the metrics contained in them and listed the most relevant/adopted
metrics, considering the number of citation of them.

• The metrics’ naming inconsistencies identification and solution. Out of 568 metrics
identified, 2 scenarios of naming’ inconsistencies were found: (i) metrics with same names
and different meanings, and (ii) metrics with different names and similar meanings. For
the first scenario, 8 cases were identified, involving 17 metrics. On the other hand, for the
second scenario, 32 cases were identified, involving 214 metrics. These inconsistencies
can be one of the consequences of the lack of the useful information about OOSM metrics.
Different researchers have been proposing new metrics, which are already published, and
sometimes, validated, because they do not know where they can find this kind of metrics
consistently.

• A metrics categorization for characterization of OOSM evaluation context. Through
the 138 published papers that addressed OOSM metrics, selected in the systematic mapping
performed, it was possible to extract information that support a metrics’ categorization.
This categorization was proposed through the assessment of the metrics’ application
context.

• The automatically catalogs’ generation, based on the assessment context. As the
portal has all information about OOSM metrics gathered in this research, it can provide a

http://julianasaraiva.info/oosmMetricsPortal

18 1.5. THESIS STRUCTURE

catalog generation based on the context of OOSM evaluation. The researcher/practitioner
can choose the evaluation context through the metrics’ categorization, and the portal
provides a catalog that can be, at least, initially consulted by researchers/practitioners in
their research. The catalogs provide the metrics information, identify the metrics’ naming
inconsistencies, and rank the metrics based on their relevance. In addition, we performed
a quasi-experiment to check the usefulness of the catalogs generated with our approach.
Complementarily, a survey was done to check the metrics’ expert opinions about the
catalogs generated through our approach.

1.5 Thesis Structure

This section presents the thesis’ structure. The chapters were organized to make easier
for any reader the comprehension of the research context, problem, the methodology applied in
the research, the presentation and discussion of the results, and finally the concluding remarks
with the conclusions and future works. The thesis is composed by six chapters.

First of all, the context and motivation of our research is shown in the current chapter.
Chapter 2 presents the fundamentals and concepts of software maintainability and software
metrics. In addition, the strategies of empirical studies in Software Engineering adopted in this
study are also shown. In Chapter 3, the methods adopted to perform the research are discussed.

After that, the results obtained by the execution of Ph.D. project’s research are discussed
in Chapter 4. The threats to validity are also depicted in the same chapter. The state-of-the-art of
OOSM metrics related to our research are shown in Chapter 5. And finally, Chapter 6 presents
the concluding remarks. This chapter summarizes the conclusions and indicates the future works
scheduled for our research.

191919

2
Background

After presenting the overview about what was done during the Ph.D. research (Chapter 1),
this chapter shows the state of the art in object-oriented software maintainability metrics and
software engineering research methods used for laying the ground for this thesis. Section 2.1
depicts the definitions of software maintainability adopted in this work. The state of the art in
software metrics is shown in Section 2.2. Finally, Section 2.3 details the theories and concepts
about research methods used in Software Engineering that were adopted to conduct the study
presented here.

2.1 Software Maintainability

2.1.1 Maintainability Definition

International Organization for Standardization (ISO)/International Electrotechnical Commission
(IEC) 9126 standard defines a software quality model (SQA, 2012). Its goal is to deal with human
biases that can affect the delivery and perception of a software development project. However, the
SQUARE! (SQUARE!) quality model framework is a series of standards replacing the ISO/IEC
9126 (ISO/IEC, 2011). Three models compose SQuaRE: the quality in use model, the product
quality model, and the data quality model. They are depicted in Figure 2.1. These models
provide a set of quality characteristics relevant to stakeholders, such as software developers,
system integrators, acquirers, owners, maintainers, contractors, quality assurance and control
professionals, and users.

Considering the ISO definitions previously mentioned, the work presented here is focused
just in the product quality model, that categorizes system/software product quality properties
into eight characteristics: functional suitability, performance efficiency, compatibility, usability,
reliability, security, maintainability and portability, which are depicted in Figure 2.2 (ISO/IEC,
2011). Specifically, from this model, our research addresses just the software maintainability
issue.

Based on these concepts, maintainability requirements must be delineated in five sub-

20 2.1. SOFTWARE MAINTAINABILITY

Figure 2.1 Targets of Quality Model (ISO/IEC, 2011).

characteristics: Modularity, Reusability, Analyzability, Modifiability, and Testability (ISO/IEC,
2011). They are shown in the software quality model illustration depicted in Figure 2.2. Firstly,
Modularity is the degree to which a system or computer program is composed by a group of
components that a change to one component has minimal impact on the other components. By
definition, the degree to which an asset can be used in more than one system or in building other
assets is known as Reusability.

Analyzability is the degree of effectiveness and efficiency with which it is possible to
evaluate the impact on a system of an intended change to one or more of its parts, or to diagnose
a product for deficiencies or causes of failures, or to identify parts to be modified. It measures the
maintainers’ effort or resources expended in trying to diagnose deficiencies or causes of failure,
or in identifying parts to be modified. It characterizes the ability to identify the root cause of a
failure within the software (BOURQUE; DUPUIS, 2004).

Following the definitions, Modifiability is the degree to which a product or system can
be effectively and efficiently modified without introducing defects or degrading existing product
quality. And finally, the degree of effectiveness and efficiency with which a test criteria can be
established for a system, product or component and tests can be performed to determine whether
those criteria have been met is called Testability (ISO/IEC, 2011). Testability measures the
maintainers and users effort to test the modified software, characterizing the effort needed to
verify (testing) a system change (BOURQUE; DUPUIS, 2004).

Considering the maintainability definitions aforementioned, software maintenance is
an activity whose social context is rarely addressed. Thus, Sillito and Wynn conducted an
ethnography study at a large technology company observing software engineers (SILLITO;
WYNN, 2007). From their observation, they provided a description on how work was divided
between groups, the social dependencies that exist between the groups, challenges in managing

21 2.1. SOFTWARE MAINTAINABILITY

Figure 2.2 Software Quality Model Illustration - ISO/IEC 25010:2011 (ISO/IEC, 2011).

branches, problems of confidence in testing, and so on. One of their interesting findings was
that changes were often avoided when testing and managing the impacts of those changes
involved dealing with other groups. And more, group structure and geographic locations
of group members influenced the decomposition of source code making architecture-level
changes difficult (SILLITO; WYNN, 2007). They expected that understanding the social context
helped researchers in more effectively addressing challenges faced by practitioners. As their
expectations, we hope that research in OOSM (Object-Oriented Software Maintainability) can
be improved. Thus, this thesis considered the previously exposed definitions to address software
maintainability, regardless of where it is applied.

2.1.2 Maintainability and Software Costs

Maintainability is a characteristic of software commonly related to how easy, accurate,
safety, and economic is the performance of software maintenance. A system should be designed
such that can be maintained without large investments of time, at least cost, with a minimum
impact on environment, and with a minimum expenditure of resources (BLANCHARD; VERMA;
PETERSON, 1995). Therefore, some of the objectives for applying maintainability engineering
principles are to reduce projected maintenance cost and time through design modifications
directed at maintenance simplifications, to use maintainability data for estimating equipment,
availability, and to determine the labor hours and other resources required to perform the software

22 2.1. SOFTWARE MAINTAINABILITY

maintenance (DHILLON, 2006).
In this context, maintainability is considered a software attribute that plays a major role in

the software quality level. The less effort/cost the software maintenance cycle requires, the higher
the software’s quality level. Hence, new software development methods, techniques, and tools
often aim to minimize future costs in the maintenance process (EADDY et al., 2008). Software
Maintenance and Evolution implies a huge cost and slow speed of implementation (BENNETT;
RAJLICH, 2000). Bennett and Rajlich performed a study characterizing an overview of main-
tenance and evolution activities and since that, they mentioned the importance of empirical
studies about maintenance and evolution, including process, organization, and human aspects. In
that context, they identified reverse engineering as one programming technique which has not
been exploited industrially (BENNETT; RAJLICH, 2000). In addition, their work claimed the
position of software evolution as the center of software engineering.

In addition, thinking in minimizing software maintenance cost, Tairas proposed some
techniques that determined novel factors influencing code clone analysis and refactoring (TAIRAS,
2008). He developed a process to unify phases of code clone detection, analysis, and refactoring.
In addition, he also provided an alternative graphical representation of clones maintenance
reducing the total time required for maintenance when compared to other techniques where the
analysis and refactoring phases are still separated.

The assessment of software maintainability is a concern in both, academic and industrial
scenarios. Consequently, there are also researches that address this topic in software companies.
Thus, through years researchers had dedicated their studies to minimize the gap between theory
and practice, trying to make efficient the new adoptions of technologies in industrial environment.
One of this study is the O’Brien et al. work (O’BRIEN; BUCKLEY; EXTON, 2005). They
presented a review of the empirical work carried out in the area of program comprehension
and illustrates that most of the evidence from these studies derives from lab-based experiments,
thus implying a degree of artificial control. After the evaluation of some approaches dedicated
to quantitative and qualitative assessments, they suggested that there is a mandatory role for
both qualitative and quantitative approaches if we hope to gain a more complete and realistic
understanding of industrial programming behavior.

In the same context, Rombach et al. performed a case study providing evidences of
both success and failure regarding software application in practice (ROMBACH et al., 2008).
Thus their analysis of historic impact chains of research reveals a clear impact of software
engineering research on sustained industrial success for inspections, reviews and walkthroughs.
More importantly, in impact chains where the empirical results have not been established, they
concluded that success has not been achieved or has not been sustained. They found that
companies that report repeatable success tend to employ well-defined techniques for the analysis
of code and other documents. And more, the benefits observed from sustained review programs
have been facilitated by various Software Engineering research results. Finally, they encouraged
the community to provide comments, challenges, or support and additions to their findings.

23 2.1. SOFTWARE MAINTAINABILITY

Figure 2.3 Maintainability Definition (LIN, 2010).

Consequently, it is notable the importance and influence of software maintainability in the
software system.

2.1.3 Maintainability in Software Life Cycle

In terms of software’s life cycle, maintainability is the ability to achieve the optimum
performance throughout the lifespan of a software system within the minimum life cycle cost
(LIN, 2010). It requires a clear understanding of issues associated with durability, serviceability,
and sustainability for the proper selection of materials, components, systems, as well as the
effect of and impact to, the environment. So, maintainability has to provide a system maximized
performance, minimizing the risks and costs as depicted in Figure 2.3.

It is important to highlight that maintainability requirements must be planned for and
included within the overall planning documentation in a software life cycle. So, the maintenance
activity should be specified in the top-level specification, designed in the iterative process of
functional analysis, and measured in terms of adequacy through system evaluation (DHILLON,
1999).

Therefore, the effective practice of maintainability design, and engineering requires a
systematic management approach. So, maintainability issues should be arise throughout the
product life cycle (DHILLON, 1999). Specific maintainability functions are associated with each
of the software life cycle phases. During the concept development phase, the primary task is to
determine the product effectiveness requirements and to determine, from the purpose and intend
operation of the product. In this phase, it is necessary to determine the product utilization rates,
mission time factors, and product life cycle duration, including product use and out-of-service
conditions.

On the other hand, in the validation phase, the maintainability management tasks include
developing a maintainability program plan that meets contractual requirements and other plan
for maintainability testing and demonstration (DHILLON, 1999). After that, in the production
phase, some activities involved reviewing product design with respect to maintainability features,
preparing maintainability design criteria and guidelines, participating in design reviews to safe-
guard the interests of maintainability. Later, maintainability documentation consists of tasks such

24 2.1. SOFTWARE MAINTAINABILITY

Figure 2.4 Maintainability Life Cycle Phases.

as developing maintainability data and feedback reports, establishing and maintaining documents
and information related to maintainability management. Finally, the maintainability coordination
is an activity that interfaces with product engineering and other engineering disciplines. The
whole product maintainability life cycle phases is depicted in Figure 2.4.

It is widely known that many problem factors in the software development phase affect
the maintainability of delivered software systems. Therefore, Chen and Huang performed a study
focused on those software development problem factors which may possibly affect software
maintainability (CHEN; HUANG, 2009). They classified 25 problem factors into 5 dimensions,
and designed a questionnaire and a survey. With that, they suggested that SPI! (SPI!) can help
reducing the severity level of the documentation quality and process management problems, and
it is only likely to enhance software maintainability to a medium level. And more, this study
had provided empirical evidence that problem factors in the software development phase can
negatively affect software maintainability.

In this context, it is possible to understand that maintenance is any actions needed for
retailing a system or product in, or restoring it to, a desired operational state, and it can be
understood as the following categories (DHILLON, 1999):

• Corrective Maintenance: This includes all unscheduled maintenance actions performed,
as a result of system/product failure, to restore the system to a specified condition;

• Preventive Maintenance: This activity include all scheduled maintenance actions per-
formed to retain a system or product in a specified operation situation. It covers periodic
inspections, condition monitoring, critical-item replacement, and periodic calibration;

• Predictive Maintenance: This action is related to a condition-monitoring prevention
for predicting possible degradation, and for the purposes of highlighting areas where
maintenance is required.

Then, considering the organization’s needs for maintenance activity, the fulfillment of
maintainability objectives is highly dependent on the proper mix of resources and the develop-
ment of good communications (BLANCHARD; VERMA; PETERSON, 1995). Consequently,
the success of the implementation of maintainability program requires a thorough understanding
of not only system-level requirements, but also the many organization interfaces that exist. Thus,
it is important to identify all people involved in ’Maintainability Engineering’ to pinpoint the
responsibilities of them in this process.

25 2.2. SOFTWARE METRICS

Figure 2.5 Software Product Quality Measurement Reference Model (SPQM-RM) - (JEDLITSCHKA;
CIOLKOWSKI, 2006).

Therefore, the customer must recognize the maintainability engineering objectives from
the beginning, and the organizational entity needs to be established to ensure that these objectives
met. After all exposed, it is clear the importance of researches in software maintainability, which
is one of our study’s focus. Nevertheless, it is important to highlight that our study is related
only to object-oriented software maintainability.

2.2 Software Metrics

2.2.1 Metric Definition

Software metric is a measure of some property of a piece of software or its specifications.
Since quantitative measurements are essential in all sciences, there is a continuous effort by com-
puter science practitioners and researchers to bring similar approaches to software development
(KAN, 1995). As a matter of fact, software metrics are used in reference to multiple concepts.
However in software engineering, they are associated to measurement and quality and estimation
models (ABRAN, 2010).

Many of the software measures proposed to the industry have not been seriously analyzed,
making them not sufficient mature. In contrast to other fields of science and engineering, these
software measures lack the credibility to be used as a basis for decision-making process. The
impact of the absence of software measure credibility is when objective and quantitative data
are required for decision-making in software engineering. Therefore, software engineering
researchers and practitioners must often design and develop their own individual software
measures and measurement methods, whereas these already exist in other fields of knowledge
(ABRAN, 2010).

Seeking a standardization in software measurement, ISO (International Organization for
Standardization) proposed the ISO/IEC 25020:2006 standard (JEDLITSCHKA; CIOLKOWSKI,

26 2.2. SOFTWARE METRICS

Figure 2.6 Measurement Context Model (The Design View) (ABRAN, 2010).

2006) that deals with the selection and construction of software product quality measures, es-
pecially with respect to their use in conjunction with other SQuaRE series documents: Quality
Management Division (ISO/IEC 2500n), Quality Model Division (ISO/IEC 2501n), Qual-
ity Requirements Division (ISO/IEC 2503n), Quality Evaluation Division (ISO/IEC 2504n),
and SQuaRE Extension Division (ISO/IEC 25050 - 25099) (ISO/IEC, 2011; JEDLITSCHKA;
CIOLKOWSKI, 2006). It is possible to observe with Figure 2.5 that the model describes the
relationship between a quality model and software product attributes with the corresponding
software quality measures, measurement functions, quality measure elements, and measurement
methods.

According this model, there are three different types of software quality measures defined
to correspond to the software product quality life cycle: (i) Internal Software Quality Mea-
sures, (ii) External Software Quality Measures, and (iii) Measures of Quality (JEDLITSCHKA;
CIOLKOWSKI, 2006). The first group is applied to a part of a software product during its
development phases such as, requirements definition, design specification or source code. On the
other hand, External Measures are used to measure the quality of the software product based on
the behavior of the system of which it is a part. And the last one is used to measure the extent
to which a product meets the needs of specific users with respect to their specific personal or
business goals.

The purpose of software metrics is to help answer the questions which arise as the life
cycle progresses (PERLIS; SAYWARD; SHAW, 1981). They help in making decision about
the time to go on the next stage or returning to an earlier stage. There are thousands of metrics
available in every scientific and engineering field. However, it is important to highlight that
software metrics needs to determine the experimental constructs applied to software. A useful
beginning would be the identification of software hypotheses. In this context, experimentation is
crucial if we are interested in substantiating or refuting hypotheses.

Software measurement is definitively a young technology, and, as such, it shares many
of the characteristics of new technologies and as well as the constraints that must be tackled to
facilitate its adoption by industry at large and by individual practitioners (ABRAN, 2010). Then,
in measurement context there are three steps to be followed in this process as depicted in Figure
2.6.

Before measuring, it is necessary to either select a measurement method, if one already
exists, or to design one (Step 01). Once the measurement method has been designed, its rules

27 2.2. SOFTWARE METRICS

are applied to software or a piece of software to obtain a specific measurement result (Step 02).
Finally, the measurement result is exploited in a quantitative or qualitative model, usually in
combination with other measurement results of different types (Step 03).

In the same context, a goal-driven method for developing and maintaining a meaningful
metrics program that is based on three levels: Goals, Questions and Metrics (BASILI; WEISS,
1984; CSIAC, 2012). The approach uses metrics to improve the software development process
(and its resulting software products) while maintaining alignment with organization business and
technical goals. GQM is a top-down approach to establish a goal-driven measurement system
for software development. The team starts with organizational goals, it defines measurement
goals, posing questions to address the goals, and identifying metrics that provide answers to the
questions.

The GQM approach defines a measurement model on three levels: (i) Conceptual level
(goal), where the goal is defined for an object for a variety of reasons, with respect to various
models of quality, from various points of view and relative to a particular environment; (ii)
Operational level (question) where a set of questions is used to define models of the object
of study and then focuses on that object to characterize the assessment or achievement of
a specific goal; and (iii) Quantitative level (metric), where a set of metrics, based on the
models, is associated with every question in order to answer it in a measurable way. The
use of this approach gives us some benefits such as understanding and defining the baseline
for an organization software practices, guiding and monitoring software processes, assessing
new software engineering technologies, and evaluating and certifying improvement activities
(BASILI; WEISS, 1984; CSIAC, 2012).

2.2.2 Metrics Assessment

As aforementioned, the standard ISO/IEC 25020 presents a software quality measurement
(JEDLITSCHKA; CIOLKOWSKI, 2006). It also describes some issues affecting the reliability
and/or validity of metrics. According to the standard authors, the procedures and instruments
used for collecting quality metrics elements and source of data can affect the measurement
reliability. Consequently, trying to minimize the bias during the assessment of measurement
validity and reliability, the quality model have suggested some methods that can help metrics’
users during those evaluation (JEDLITSCHKA; CIOLKOWSKI, 2006).

First of all, considering the measurement validity, they mentioned five (05) ways to
evidence the validity: (i) Correlation, where an measurement user can predict quality charac-
teristics without measuring them directly by using correlated measures; (ii) Tracking, that an
measurement user can detect movement of quality characteristics along a time period without
measuring directly by using those measures that have tracking ability; (iii) Consistency, in which
a measurement user can notice exceptional and error prone components of software by using
those measures which are capable of being consistent; (iv) Predictability, where an measurement

28 2.2. SOFTWARE METRICS

user can predict the movement of quality characteristics in the future by using those measures,
which are within the allowed prediction error range, and; (v) Discrimination, that indicates that a
measure should be able to discriminate between high and low quality for software characteristics
and subcharacteristics.

On the other hand, considering the measurement reliability, it should be approached from
two perspectives: (i) repeatability: the degree of repeated use of the base measure in the same
organizational produces results that can be accepted as being identical, and (ii) reproducibility:
the degree of repeated use of the metric in the same organizational unit following the same
measurement method under different conditions produces results that can be accepted as being
identical (JEDLITSCHKA; CIOLKOWSKI, 2006).

More recent researches in metrics validation have been performed, such as the Shanthi
and Duraiswamy study (SHANTI, 2011). They presented an empirical validation of software
quality metric suites on open source software for fault-proneness prediction in object-oriented
systems. The three metrics used here are Chidamber and Kemerer (CK) Metrics, Robert C.
Martin Metric Suite and McCabe Metric Suite. From the results and empirical analysis, it was
clear that the different metric suites have different efficiency in faults prediction. With the aid of
this empirical analysis, they can suggested software professionals to find out those metric suites
can predict faults while developing the quality metric software products using the OO approach.

Furthermore, there is also research assuming the philosophic spectrum of software
metrics validation. It is the case of Meneely et al. study (MENEELY; SMITH; WILLIAMS,
2012). They debated over what constitutes a valid metric process on software metrics validation
criteria. For that, they conducted a systematic literature review that began with 2,288 papers and
ultimately focused on 20 papers. After extracting 47 unique validation criteria from these 20
papers, they performed a comparative analysis to explore the relationships amongst the criteria.
With the results they concluded that metrics validation criteria provide answers to questions that
researchers have about the merits and limitations of a metric.

In parallel with empirical studies for metrics evaluation, there are some practical as-
sessments of software metrics. Then, Westfall introduced the reader to a practical process for
establishing and tailoring a software metrics program that focuses on goals and information
needs (WESTFALL; ROAD, 2005). The process provides a practical, systematic, start-to-finish
method of selecting, designing, and implementing software metrics. It outlines a cookbook
method that the reader can use to simplify the journey from software metrics in concept to
delivered information. His contribution indicated that a metrics program based on the goals of an
organization will help communicating and measuring progress, and eventually, attaining those
goals is a valuable support.

A large number of software metrics have been proposed in the literature, but there is
little understanding of how these metrics relate to one another. Then, Cinneide et al. proposed
a novel experimental technique, based on search-based refactoring, to assess software metrics
and to explore relationships between them (CINNEIDE et al., 2012). They wanted to improve

29 2.3. EMPIRICAL STUDIES IN SOFTWARE ENGINEERING SE

the program being refactored, but it was necessary to assess the software metrics that guide the
automated refactoring through repeated refactoring experiments. Their results demonstrated that
cohesion metrics disagree with each other in 55% of cases, and showed how their approach can
be used to reveal novel and surprising insights into the software metrics under investigation.

On the other hand, Ciolkowski et al. research was dedicated to develop and evaluate the
measurement instrument in industrial scenario (CIOLKOWSKI et al., 2007). The instrument
is based on the TAM! (TAM!) (DAVIS, 1989) and customized to project controlling. They
illustrated the application and evaluation of this measurement instrument in the context of
industrial case studies and provide lessons learned for further improvement. They concluded
that the scale items for the control center administration view will be completely reworked to
get an acceptable reliability, and that interactions between different control goals will become
an issue in order to detect and resolve goal conflicts. In addition, they supported the idea that
easy-to-use visualizations are a key factor for ease of use and, therewith, for the acceptance of a
project control center in a productive environment.

2.3 Empirical Studies in Software Engineering SE

Many ideas in Software Engineering (SE) are adopted without empirical data to support
them (Juristo; Moreno, 2001). Ideas, whose truthfulness has not been tested against reality,
are continually assumed as truth. Although there are some exhaustive experimental studies in
the computer science literature, this is not the general rule. Consequently, the main idea of
conducting empirical studies in SE is to help empirical investigation of software projects, and
evaluate design principles developed in the research literature and elsewhere (Juristo; Moreno,
2001). Section 2.3.1 presents the research methods applied to SE. The research instrumentation,
and examples of data collection strategies are described in Section 2.3.2.

2.3.1 Empirical Research Strategies Applied to SE

One way of classifying empirical studies is considering two approaches: quantitative and
qualitative (Juristo; Moreno, 2001). The first one aims to get a numerical relationship between
several variables or alternatives under examination. On the other hand, the qualitative approach
aims to examine objects in their natural setting rather than looking for a quantitative or numerical
relationship, attempting to make sense of, or interpret, a phenomenon in terms of explanations
that people bring to them (MILES; HUBERMAN, 1994). The data collected from this study are
usually composed of text, graphics or even images.

In Empirical Software Engineering (ESE), the studies can be classified based on the type.
For some authors, they are classified as (i) laboratory experiment, (ii) quasi-experiment, (iii)
case studies, and (iv) surveys (WOHLIN et al., 2000; Juristo; Moreno, 2001). Nevertheless,
Easterbrook et al. included two other classifications: (v) ethnography, and (vi) action research

30 2.3. EMPIRICAL STUDIES IN SOFTWARE ENGINEERING SE

(JEDLITSCHKA; CIOLKOWSKI, 2008). In this work we consider the later classification, with
6 kinds of studies. However, as we performed just Experiment/Quasi-experiment and Survey,
they are shown in next sections.

2.3.1.1 Experiment and Quasi-Experiment

Experiment can be understood as a test under controlled conditions that is made to
demonstrate a known truth, examine the validity of a hypothesis, or determine the efficacy
of something previously untried (SHADISH; COOK; CAMPBELL, 2002). The result of an
experiment can define cause, effect, and causal relationships. A controlled experiment is an
investigation of a testable hypothesis where one or more independent variables are manipulated
to measure their effect on one or more dependent variables (Juristo; Moreno, 2001). Each
combination of independent variables values is a treatment. Most SE experiments require human
subjects to perform some task. Then, during the experiment it is possible to measure the effect
of the treatments on the subjects (Juristo; Moreno, 2001).

A precondition for conducting an experiment is a clear hypothesis. The hypothesis
(and the theory from which it is drawn) guides all steps of the experimental design, including
the decision about which variables to include in the study and how to measure them. The
hypothesis is drawn from a theory that explains the effect. It is important to mention that
during the experiment reporting process, the research should keep information such as, problem
statement, research objective, research context, goals, experimental units, experimental tasks,
hypotheses, parameters and variables, data analysis process, threat to validity, and conclusion
(JEDLITSCHKA; CIOLKOWSKI, 2008).

The fact that experiments are theory-driven is both a strength and a weakness. It is
a strength because basing analysis on hypotheses derived from theories reduces problems of
“fishing for results”, and if we look for long enough we will find them. On the other hand, being
theory-driven forces researchers to decide in advance which variables to ignore, and they might
turn out to be important outside the laboratory setting (SIM; EASTERBROOK; HOLT, 2003).
Consequently, variants on experiments are possible and can be used in circumstances where a
true experiment is not possible. Quasi-experiments are examples of that.

The experimentation can be classified based on its amplitude (Juristo; Moreno, 2001).
They can be in vitro where the experiments are conducted in laboratories, and in vivo where the
level of experimentation should be carried out on real projects, whose developers are prepared to
take risks with the purpose of learning about the latest technological innovations.

Quasi-experiments share with all other experiments a similar purpose to test descriptive
causal hypotheses about manipulable cause, but there is no random assignment during the process
(SHADISH; COOK; CAMPBELL, 2002). In quasi-experiments, the cause is manipulable and
occurs before the effect is measured. However, quasi-experimental design features usually create
less compelling support for counter factual inferences. In quasi-experiments, the researcher has to
enumerate alternative explanations one by one, deciding which are plausible, and then using logic,

31 2.3. EMPIRICAL STUDIES IN SOFTWARE ENGINEERING SE

design, and measurement to assess whether each one is operating in a way that might explain
any observed effect. The difficulties are that these alternative explanations are never completely
enumerable in advance (SHADISH; COOK; CAMPBELL, 2002). In quasi-experiments the
subjects are not assigned randomly to the treatments (Juristo; Moreno, 2001; SHADISH; COOK;
CAMPBELL, 2002). These variations are less powerful than true experiments, and require more
careful interpretation.

2.3.1.2 Survey

In other areas, like the social sciences, surveys are very common practice. In the case of
SE, surveys would supply knowledge of what development variables affect certain process or
products characteristics. They can be applied to evaluate the mean development productivity
of an organization or to analyze the mean surplus cost in software projects run by the above
organization. Ideally, the more homogeneous the elements examined in the surveys are, the
better the results obtained will be (Juristo; Moreno, 2001).

There are many studies proposing survey building or reporting the application of surveys.
Punter et al. arisen the awareness of on-line surveys and discussed methods how to perform
them in the context of software engineering (PUNTER et al., 2003). In addition, they reported
their experience in performing on-line surveys in the form of lessons learned and guidelines.
Their major contribution is showing that surveys has an important role in SE research and they
allow researchers to learn about the state of the practice, identifying improvement potentials, or
investigating the acceptance of a technology. Also, with the increasing pervasion of the Internet
it is possible to perform surveys easily and cost-effectively on-line.

Other report about the survey application in industry is the work of Jedlitschka and
colleagues (JEDLITSCHKA et al., 2007). They conducted an online survey among German
software industry decision makers trying to get relevant information sources for successful tech-
nology transfer. Their main findings were that information regarding the impact of technologies
on product quality, cost, and development time, as well as on technology cost-benefit ratio is
considered most important among decision makers. The preferred sources of information are
colleagues, textbooks, and industry workshops. It is important to highlight that surveys can only
serve as an initial insight to determine which information researchers should provide to properly
reach industry decision makers.

Later, on 2009, John and Eisenbarth analyzed and compared existing approaches of
surveys/scoping and derived open and partially addressed research questions that can be tackled
by researchers in product line engineering in the next years (JOHN; EISENBARTH, 2009).
They identified 16 scoping approaches that have been developed and used in this decade and
characterized them in a framework for scoping approaches that is derived from state of the art
characterization frameworks for SE methods and for software product line engineering.

Complementarily, Laukkanen and Mantyla surveyed developers from six industrial
software development organizations about the defect report information, from three viewpoints:

32 2.3. EMPIRICAL STUDIES IN SOFTWARE ENGINEERING SE

quality, usefulness, and automation possibilities of the information (LAUKKANEN; MANTYLA,
2011). 72 out of 142 developers completed their survey. They concluded that the quality of
defect reports is a problem in the software industry as well as in the open source community.
Thus, they suggested that part of the defect report should be automated since many of the defect
reporters lack technical knowledge or interest to produce high-quality defect reports.

Another survey in software industry was done by Rodriguez and colleagues (RO-
DRÍGUEZ et al., 2012). They conducted a study on the current stage of agile and lean adoption
and usage in the software industry. Then, they surveyed among Finnish software practitioners in
2011, using the membership registry of The Finnish Information Processing Association (FIPA)
as a sampling frame. In Finland, there exists an independent association of Finnish ICT profes-
sionals and companies called The Finnish Information Processing Association (FIPA). It has
about 16.000 professionals as personal members and the number of company members is more
than 500. 408 responses were collected from 200 software intensive organizations in the study.
The results of the survey reveal that a majority of respondents organizational units are using agile
and/or lean methods (58%). Furthermore, lean appears as a new player, being used by 24% of
respondents, mainly in combination with agile (21%).

2.3.2 Research Instrumentation/Data Collection Strategies

Independent of the study’s nature addressed in SE, consistent research methods should
be applied in empirical studies conducting. Consequently, empirical studies have become an
important part of SE research and practice (JEDLITSCHKA; CIOLKOWSKI, 2008). Therefore,
this section presents discussions on strategies for collecting data, and which strategies are most
appropriate in SE evaluations.

A guideline well know for conduct empirical research in SE was proposed by Shull
et al. in 2008 (JEDLITSCHKA; CIOLKOWSKI, 2008). They proposed a data collection
taxonomy classifying different techniques to perform empirical studies. This classification is
composed by three definitions: (i) direct techniques, (ii) indirect techniques, and (iii) independent
techniques. Direct Techniques require the researcher to have direct involvement with the
participant population. On the other hand, Indirect Techniques require the researcher to have
only indirect access to the participants via direct access to their work environment. Finally,
Independent Techniques require researchers to access only work artifacts, such as source code or
documentation. They believe that selecting an appropriate technique will be influenced by the
questions asked and the amount of resources available to conduct the study (JEDLITSCHKA;
CIOLKOWSKI, 2008).

33 2.3. EMPIRICAL STUDIES IN SOFTWARE ENGINEERING SE

Table 2.1: Empirical Studies Techniques Overview - (JEDLITSCHKA; CIOLKOWSKI,
2008)

Technique
Group

Name Used by researchers to un-
derstand:

Volume of
data

Used by software engineers
for:

Direct

Brainstorming and
focus groups

Ideas and general background
about the process and product,
general opinions (also useful to
enhance participant rapport)

Small Requirements gathering,
project planning

Interviews and ques-
tionnaires

Mental models of product or
process

Small Requirements

Conceptual model-
ing Work diaries

Time spent or frequency of cer-
tain tasks (rough approxima-
tion, over days or weeks)

Medium Time sheets

Think-aloud ses-
sions

Mental models, goals, rationale
and patterns of activities

Medium to
large

UI evaluation

Shadowing and ob-
servation

Time spent or frequency of
tasks (intermittent over rela-
tively short periods), patterns
of activities, some goals and ra-
tionale

Small Advanced approaches to use
case or task analysis

Participant obser-
vation (joining the
team)

Deep understanding, goals and
rationale for actions, time spent
or frequency over a long period

Medium to
large

—

Indirect
Instrumenting
systems

Software usage over a long pe-
riod, for many participants

Large Software usage analysis

Fly on the wall Time spent intermittently in
one location, patterns of activi-
ties (particularly collaboration)

Medium —

Independent

Analysis of work
databases

Long-term patterns relating to
software evolution, faults etc.

Large Metrics gathering

Analysis of tool use
logs

Details of tool usage Large —

Documentation
analysis

Design and documentation
practices, general understand-
ing

Medium Reverse engineering

Static and dynamic
analysis

Design and programming prac-
tices, general understanding

Large Program comprehension, met-
rics, testing, etc.

Table 2.1 shows an overview of these techniques. Column one indicates the group the
represents the techniques. Column two indicates the technique, and column three informs uses
of the technique for researchers. The fourth column represents the volume of data required
to adopt each technique, and finally, the last column indicates for what software engineers
(practitioners) used the technique. Based on the kinds of techniques previously described,
two kinds of techniques were adopted to perform the thesis’ research: (i) literature database
analyses, and (ii) online questionnaires application. The first one was used to map and discovery
what metrics have been used in OOSM context. On the other hand, the online questionnaires
were applied to assess the OOSM metrics catalogs generation approach proposed in this work.
Consequently, systematic mapping study and online questionnaires are presented with more
detail.

34 2.3. EMPIRICAL STUDIES IN SOFTWARE ENGINEERING SE

2.3.2.1 Mapping Studies

Mapping Studies (ARKSEY; O’MALLEY, 2005) try to gather all research related to a
specific topic. Among other information, it should contain the research questions that he/she
wants to answer with the mapping, the literature sources (digital libraries) that will be used in
the study and the inclusion/exclusion primary study (paper) criteria. In general, the mapping is
composed by three phases. Initially, only the title, keywords, and abstracts are taken into account
for paper inclusion. It is important to stress that only papers that are clearly out of scope were
excluded in this phase. Then, all potential primary studies were kept for further analysis.

On the second phase, pairs of researchers are composed and all the potentially relevant
papers are evenly distributed among them. Therefore, each paper is reviewed by at least two
researchers. Each pair has at least one more experienced researcher. The result of this activity
is the selection of the primary studies considering the inclusion/exclusion criteria presented in
Chapter 3. Each researcher read the whole paper and makes a list of studies that did not match
any criteria. If a paper matches at least one of the exclusion criteria, it is excluded from the
mapping. During this phase, each pair builds a report of agreements and disagreements regarding
the exclusion of each paper in the mapping study according to the evaluation criteria.

The third and last phase is the conflict resolution and final selection. A conflict reso-
lution meeting has to be organized and the disagreements discussed. In this final phase each
researcher screen the full paper. During this phase, each pair had a meeting and presented which
inclusion/exclusion criterion(s) was selected for each case of divergence in paper inclusion. This
meeting was supervised by one of professors in order to help the students with the selection
process discussing. The result of this meeting is the final set of primary studies that answer the
research questions raised.

Even if an experiment is well planned, there are still many subjective variables that
are very difficult to isolate, such as human interactions and behaviors in software development
process. One way to aid organizations is providing evidence about the benefits of new technology
applied to some contexts, ideally, real life contexts. However, most companies are not willing to
risk a project using a new technology that was not thoroughly assessed or whose benefits were not
yet demonstrated or justified. Empirical studies, such as Systematic Mapping Study (SMS) and
Systematic Literature Review (SLR), are essential to fill this gap, providing reliable data about
a given technology, easing its transfer from academy to industry, and consequently adoption.
This issue has been widely discussed by several researchers (WOHLIN et al., 2000; TICHY,
1997; BASILI, 1996; ZANNIER; MELNIK; MAURER, 2006; KITCHENHAM, 2009; RIAZ;
MENDES; TEMPERO, 2009; ALMEIDA et al., 2011; BARREIROS et al., 2011; SILVA et al.,
2011).

Systematic review is a method to identify, assess and analyze published primary studies
to investigate research questions (STAPLES; NIAZI, 2007). Staples and Niazi published a
work recommending the using of guidelines to conduct systematic reviews. However, they also

35 2.3. EMPIRICAL STUDIES IN SOFTWARE ENGINEERING SE

suggested that complementary research questions could help clarifying the main questions and
defining selection criteria. This approach is adopted in our work, where we have one main
research question, and auxiliaries research questions. In addition, they discussed possibilities for
automating and increasing the acceptance of systematic review.

There are also empirical studies that addressed and investigated software metrics with
systematic reviews. Riaz et al. (RIAZ; MENDES; TEMPERO, 2009) performed a SLR on
Software Maintainability trying to collect evidence on software maintainability and metrics. In
this study, 15 studies were selected, and their research suggested that there is little evidence on
the effectiveness of software maintainability prediction and models.

Silva et al. (SILVA et al., 2011) performed a tertiary study; a mapping study of Systematic
Literature Reviews published in journals and conference proceedings. They analyzed the relevant
studies, comparing and integrating their findings with two previous tertiary studies. At the end
of their study, their conclusions suggested that the SE research community is starting to adopt
SLRs consistently as a research method.

Considering the significant popularity of SLR in SE, Staples and Babar performed an
investigation using mixed-methods approach (systematically integrating tertiary literature review,
semi-structured interviews and questionnaire-based survey) as it is based on a combination of
complementary research methods which are expected to compensate each others limitations
(STAPLES; NIAZI, 2007). They argued that there is also an apparent and essential need for
evidence-based body of knowledge about different aspects of the adoption of SLRs in SE. With
their study, they expected that the findings could provide valuable information to readers about
what can be expected from conducting SLRs and the potential impact of such reviews.

On the other hand, in Systematic Mapping Study, questions are broader and more general
when compared to the ones present on Systematic Literature Reviews (SLRs) (KITCHENHAM,
2004), for example: What do we know about a topic T? Before the Systematic Mapping Study
(SMS) execution, the researcher have to develop a study protocol (KITCHENHAM; CHARTERS,
2007). Thus, accordingly to the systematic mapping study definition previously presented, we
decided to perform a mapping to get all the information about OOSM metrics in the literature.
The detailed mapping study protocol is shown in Chapter 3.

2.3.2.2 Questionnaires

Questionnaires are a group of questions exposed in written format (JEDLITSCHKA;
CIOLKOWSKI, 2008). It is a technique where the relation between time and cost is efficient.
Researchers do not need to schedule sessions with the software engineers to administer them.
In addition, they can be filled out when a software engineer has time between tasks. There are
two ways to apply them: (i) Paper form-based questionnaires, where they can be transported to
the respondent, and (ii) Web-based questionnaires, that cost less and the data are received in
electronic form. The latter can also easily collect data from a large number of respondents in
geographically diverse locations.

36 2.3. EMPIRICAL STUDIES IN SOFTWARE ENGINEERING SE

However, it is important to pay extra attention during the form designing, since there
is no interviewer, ambiguous and poorly-worded questions can be a problematic issue (JEDL-
ITSCHKA; CIOLKOWSKI, 2008). Even though it is relatively easy for software engineers to
fill out questionnaires, response rates can be relatively low which adversely affects the repre-
sentativeness of the sample. If the objective of the questionnaire is to gather data for rigorous
statistical analysis in order to refute a null hypothesis, then response rates must be high. However,
if the objective is to understand trends, then low response rates may be enough (JEDLITSCHKA;
CIOLKOWSKI, 2008).

The questions can be open or closed (JEDLITSCHKA; CIOLKOWSKI, 2008). In an
open question the respondents are asked to frame their own reply. This kind of question avoids
imposing any restrictions on the respondent. There are many different ways respondents may
choose to answer a question making answers misinterpreted or confused. On the other hand, a
question is closed when the respondents are asked to select an answer from a list of predefined
choices. In Chapter 3 the questionnaire applied during this Ph.D. research is explained in depth.

373737

3
Research Methodology

The methodology adopted to conduct this Ph.D. research is described in this chapter.
Figure 3.1 illustrates the steps executed in the research. First of all, a systematic mapping
study was performed trying to find all possible information about object-oriented software
maintainability (OOSM) metrics. The systematic mapping phases are detailed in Section 3.1.
Metrics’ naming inconsistencies were found during the systematic mapping results’ assessment.
Consequently, a metrics’ naming consolidation was done, and this process is described in
Section 3.2. After that, Section 3.3 presents a metrics’ categorization proposed to make easier the
process of metrics’ catalogs generation. In this context, an OOSM metrics portal that contains
a context-based catalog generator was developed. The portal building process is depicted in
Section 3.4. Finally, the method for assessing the proposed catalogs generation approach is
shown in Section 3.5.

Figure 3.1 Research Methodology Illustration.

38 3.1. SYSTEMATIC MAPPING STUDY

3.1 Systematic Mapping Study

Mapping Studies (KITCHENHAM, 2004; ARKSEY; O’MALLEY, 2005; PETERSEN;
WOHLIN, 2009) try to gather all research related to a specific topic. As we want to know
what metrics have been used as indicators in OOSM assessment in the literature, this method is
appropriated to put together information about what we know about this topic. In consequence,
this section describes the planning and execution of the systematic mapping study performed.
The research questions are presented in Section 3.1.1. After that, Section 3.1.2 shows the digital
libraries used, and finally, the search strategy adopted for primary studies selection is detailed in
Section 3.1.3.

3.1.1 Mapping Research Questions

This study aims to search the literature and map primary studies that describe maintain-
ability metrics and their use to measure (! ((!)OO) software development. Thus, the following
research question was defined: What metrics were adopted to assess software maintainabil-
ity in OOSD?

3.1.2 Data Source

The search strategy encompasses well-known digital library search engines. They were
chosen based on the relevance for the computer science community, and availability of papers
for download. The search process was based on automated search using the following digital
libraries:

• IEEE Computer Society Digital Library;

• ACM Digital Library;

• EI Compendex;

• Science Direct.

Since the search was performed on different days in different search engines, we decided
to limit the final paper publication date to the 1st of June of 2011. Papers published after this
date were not considered so as to produce a more homogeneous result and also to allow a future
precise update of this study, which can consider publications starting at this date.

3.1.3 Primary Studies Search Strategy

This section describes the search strategy to select the primary studies. The first step was
to build a search string. Relevant terms based on key terms used by previous studies and expert
insights were defined. The resulting search string from this process was:

http://ieeexplore.ieee.org
http://dl.acm.org
http://www.engineeringvillage2.org
http://www.sciencedirect.com/science

39 3.1. SYSTEMATIC MAPPING STUDY

Table 3.1 Execution Timetable - Primary Studies Selection

Date Duration Phase Description
06/30/2011 to 08/30/2011 2 months Searching Primary Studies (1st Round).
08/31/2011 to 09/30/2011 1 month Selection of Papers (2nd Round).
09/05/2011 to 09/25/2011 20 days Meeting to discuss conflicts.
09/26/2011 to 11/14/2011 1.5 month Data Extraction and Synthesis.
11/15/2011 to 12/15/2011 1 month Organize and Reporting Results.

“Software Engineering” AND (“Aspect-Oriented Programming” OR “Maintainability” OR
“Aspect-Oriented Software Development” OR “Crosscutting Concern” OR “Maintenance” OR

“Object-Oriented Programming” OR “Object-Oriented Development” OR “Evolution”) AND (“Metrics”
OR “Measurement” OR “Measure”)

After formulating the search string, a team of six researchers (3 Ph.D. students and, 3
MSc students) evaluated the search results. In addition, two professors supervised the whole
process. Table 3.1 depicts that execution timetable of the papers selection:

In Table 3.1, the first column represents the initial and final dates of each phase execution.
The duration of each phase is indicated in second column, and the last column shows the phases.
First of all, in the 1st Round potentially relevant primary studies were selected. After that, during
the 2nd Round, the result of the first selection was evaluated against the inclusion/exclusion
criteria. Lastly, conflicts discussion and final selection were performed.

Initially, during the first round, only the title, keywords and abstracts were taken into
account for paper inclusion. It is important to stress that only papers that were clearly out of
scope were excluded in this phase. This step was performed by me and another Ph.D. student.
Then, all potential primary studies were kept for further analysis. For the second phase of paper
selection, the inclusion/exclusion criteria were considered. Following the systematic mapping
guidelines, some criteria should be proposed to select a more relevant set of papers, trying to
keep only potentially relevant studies after the end of this phase. The inclusion/exclusion criteria
were discussed with all researchers involved in this mapping. The aforementioned exclusion
criteria are:

• The paper is not a complete research paper (presentation slides or extended abstracts);

• The paper is not related to software engineering;

• The paper does not present maintainability/evolution metrics;

• The paper does not present metrics related to OO or AO programming;

• The paper does not present the metrics description.

40 3.2. METRICS NAMING CONSOLIDATION

On the second phase, three pairs of researchers were composed and all the potentially
relevant papers were evenly distributed among them. Each paper was reviewed by at least
two researchers. The result of this activity was the selection of the primary studies. For each
paper assigned to one of the pairs of researchers, each researcher screened the whole paper
to determine whether it matched any exclusion criteria. If a paper matched at least one of
the five exclusion criteria, it was excluded from the mapping. It is important to stress that I
composed a pair to read the papers. During this part of the process, each pair built a report of
agreements and disagreements regarding the permanence of each paper in the mapping study
according to the evaluation criteria previously presented. It is important to highlight that the
words ’maintainability’, ’maintenance’, or ’evolution’ had to appear in the primary study to be
considered a paper that presented a maintainability/evolution metric.

The third and last round was the conflict resolution and final selection. A conflict
resolution meeting was organized with me and my advisors, and the disagreements discussed. In
this final phase each researcher screened the full paper. The result of this meeting was the final
set of primary studies. It is important to highlight that, at the end of the process, a paper was
selected if it had at least one maintainability metric, its description, and it was related to OO. All
primary studies received a unique identifier so that they could be easily referenced throughout
the process. For instance, “SM01” means: Systematic Mapping Study Number 01. For each
primary study, I recorded the following information:

• Reviewers (researchers who evaluated the paper);

• Date of data extraction;

• Author(s);

• Journal/Conference where it was published;

• Year of publication;

• Metrics and their acronyms;

• Descriptions of the metrics and information on how to collect them;

• Paradigm (OO or AO).

3.2 Metrics Naming Consolidation

With the list of metrics obtained through the systematic mapping study, some ambiguities
and inconsistencies in metrics’ naming were an important issue we observed. Consequently,
a naming normalization of the metrics found was needed. For the purpose of this study, we
consider that the term consolidation means to reorganize the information, making it consistent
and summarized (useful).

41 3.2. METRICS NAMING CONSOLIDATION

The consolidation process aims to remove the naming ambiguity and inconsistency from
the obtained metrics. In this context, two cases of inconsistencies were observed: (i) metrics
with different names but essentially representing the same metric, such as DIT! (DIT!) and
DIH! (DIH!), which are metrics defined as the maximum length from the node to the root of the
inheritance tree, and (ii) metrics with the same names and different meanings such as DC, which
can be Degree of Cohesion or Descendants Counting. In face of this fact, an assessment of the
metrics’ definition was demanded to check and identify the naming inconsistencies previously
mentioned. For the first case analyzed, the consolidation process was made through four steps:

1. Metrics Grouping;

2. Identification of Ambiguous Description;

3. Matching Correspondence Metrics (same meaning);

4. Selection of the group representative metric.

Firstly, all metrics were grouped based on the software internal attributes that they are
related with. Six attributes were identified through the assessment of the primary studies that
were selected on the systematic mapping: Size, Inheritance, Coupling, Cohesion, Complexity,
and Software Architecture Constraints. Then, the metrics were associated to a software internal
attribute based on the metric description contained in the primary study that mentioned it.
Figure 3.2 illustrates the process aforementioned.

Afterwards, a metric was chosen to be the representative metric of the group of the
correspondent metrics. The choice of the representative metric considered the quantity of
primary studies that mentioned it. Then, the representative metric was the one mentioned by
the highest number of primary studies. Thus, it was possible to group all the metric. It is
important to stress that none of the metrics grouped were disregarded. They were just grouped
and identified as similar metrics. In addition, it is important to clarify that similar metrics are
not the same metrics. We considered similar metrics, those ones that are associated to the same
software internal attribute, and considers the same programming language structures to measure
the software attribute.

For the second case of naming inconsistency, all metrics that fit this case were ranked
based on the number of times that they appeared on the papers resultant of the systematic
mapping study. Consequently, it was possible to know how the metric is widely known by other
researchers. Once again, it is important to clarify that none of the metrics were disregarded, but
it was possible to identify the naming inconsistency and inform how they are actually understood
by the maintainability metric community.

42 3.3. METRICS CATEGORIZATION

Figure 3.2 Metrics’ Naming Consolidation Process.

3.3 Metrics Categorization

As aforementioned, the goal of this research is to provide context-based object-oriented
metrics’ catalogs to be, at least, initially adopted by researchers and practitioners. Thus, we
assumed that the OOSM context can be represented by categories, specifically, metrics categories.
The main idea is to take the metrics found by the mapping study as a starting point, and trying to
categorize and to summarize these metrics supporting the decision-making process on which
metrics to adopt.

We used a Conceptual Grouping Categorization to define the classification groups (VEL-
ING; VAN DER WEERD, 1999). For this type of categorization, an element can belong to
another group in different levels of pertinence. In this context, a Hierarchy Grouping Assessing
method was performed to define the categories (groups) and the level of pertinence for each
metric (element) (THE CONCEPTUAL GROUPING EFFECT: CATEGORIES MATTER , AND
NAMED CATEGORIES MATTER MORE). The OOSM metrics’ categorization were done
based on the metrics’ definition found in the papers selected in the systematic mapping study
previously performed. We believe that with an appropriated categorization considering various
domains of metrics’ adoptions, a metrics suite will be easily chosen by researchers and software
practitioners using a OOSM metrics’ catalog generation tool. It is important to mention that a
metric can be classified in more than one category because they are not mutually exclusive.

43 3.4. OOSM METRICS PORTAL BUILDING PROCESS

Actually, it is possible that we provide different catalogs for different contexts, based
on the metric categorization required by the researcher or practitioner that is using the ’catalog
generator’. It is important to clarify that we use the term ’catalog generator’ as an infrastructure
that provides a list(s) of metrics’ catalogs that can be suitable for software maintainability
assessment based on the software characteristic to be evaluated. This generator is discussed in
more detail in Chapter 4 - Section 4.3.

It is necessary to highlight that all the categories described were proposed based on the
assessment of the contexts described by the papers selected in the systematic mapping study. All
the contexts were analyzed, and a name was proposed to represent the metric adoption scenario.
The categories and subcategories can be seen in Chapter 4 - Section 4.2.3. Once again, it is
important to point out that a metric can be fit in more than one category or subcategory.

3.4 OOSM Metrics Portal Building Process

Considering the amount of information about metrics found by this research (see Chap-
ter 4 for more details), a web portal was proposed to propagate all information about OOSM
metrics http://julianasaraiva.info/oosmMetricsPortal. It contains relevant
information about metrics, such as authors that wrote about OOSM metrics, tools that support
the automatically metrics collection, published papers related to OOSM metrics, and a tool that
generate OOSM metrics catalogs. In addition, the portal provides a questionnaire module that
was used to perform the catalog generation approach assessment. Thus, the next sections present
the portal building process. Section 3.4.1 presents the portal architecture and project decisions
made to build the portal. The modules that compose the portal are explained in Section 3.4.2.

3.4.1 Portal Architecture

As the portal is a web system, all the project decisions were made based on these
environment constraints. Consequently, the programming language adopted to develop the
portal was Java because it is a multiplatform language, one of the most used object-oriented
programming languages, which supports web development. In addition, Java Server Pages (JSP)
(GROUP, 2013a), JQuery (GROUP, 2013b), and Java Persistence API (JPA) (ORACLE, 2013)
technologies were adopted during the portal building process. The first is a Java technology
used to web development. It supports reusing components, and it can be executed in any JSP
container, independently of the operation system.

Complementarily, JQuery, that is a JavaScript library, was used to simplify the browser
scripts on the client side. JPA was adopted for data persistence. It is a standard Application
Programming Interface (API) that facilitates the communication between the applications and
databases. The database used was PostgresSQL (POSTGRESQL, 2013). We also used the
VRaptor Framework (LAVIERI, 2013), a Model View Controller (MVC) web framework that

http://julianasaraiva.info/oosmMetricsPortal

44 3.4. OOSM METRICS PORTAL BUILDING PROCESS

aids the programmer in repetitive code through resources, such as validations, dependencies
injections, redirection, and so on. The portal adopted layered architecture that can be seen
through Figure 3.3. Complementarily, the portal has four users’ profile:

Figure 3.3 Portal Architecture - UML Package Diagram.

• Visitor: The users can assess the portal information, however they cannot contribute with
the project. They can access Module 01, hereafter explained.

• Project Collaborator: They have the same permissions of the Visitors users, but they
can also insert information about the metrics, such as new metrics, new descriptions,
upload papers in the portal, add new categories/subcategories, and so on. They are directly
associated with the Module 02.

• Quasi-Experiment Participant: This is a complementary profile, generated for our
approach assessment. For these cases, the users have to answer an online questionnaire
that will help us in our approach evaluation. Module 03 is allocated for this profile.

• Portal Administrator: This is a administrator profile to manage the portal. Features such
as permission changing, addition of new users, and others are associated with this profile.
Additionally, they can access and manage any module.

45 3.4. OOSM METRICS PORTAL BUILDING PROCESS

Except of the ’Visitor’ profile, all other users have to access the portal with a valid login
and password. After the login process, the modules options associated with each profile are
shown. Even with differences between the profiles, they are not mutually exclusive. It means
that a same user can be associated with one or more profiles.

3.4.2 Portal Modules

Three basic modules compose the portal: (i) General Information Module, (ii) Project
Information Management Module, and (iii) Catalogs Generation Assessment Module. They were
created to support the spreading of OOSM metrics information, and also to generate metrics’
catalogs. Additionally, the portal has a module for the catalog generation approach evaluation. It
helps us to get some feedback about the proposed approach. All the modules are explained next.

• Module 01 - General Information: This is the basic module of the portal. Throughout its
website http://julianasaraiva.info/oosmMetricsPortal, users around
the world can access the portal. By default, all the users have the ’Visitor’ profile, and they
can access the portal through this module. It contains some metrics information, however
the users can only check (read) them. It seems like a metrics’ website. If the users would
like to collaborate with the project, they have to request a specific profile for the portal’s
administrators.

In addition, the user can choose the metrics categories previously indexed, and based on
that, a family of catalogs can be generated. We called this process as a ’catalog generation’.
After the categories selection, a standard metrics’ catalog is provided with information
such as, metrics’ names, metrics’ description, and the categories associated to each metric.
In addition, the user can configure the catalog content choosing more information to be
shown.

• Module 02 - Project Information Management: The systematic feeding of the portal
is based on the insertion of the information by the experts and researchers in software
maintainability metrics. For this, they need to have the access to this module. Thus, after
the login process, they can insert information about metrics, such as news metrics and
categories/subcategories, upload papers related to maintainability metrics, tools that collect
metrics automatically, and so on.

• Module 03 - Catalogs Generation Assessment: This module is dedicated to provide an
online questionnaire to be answered by the users that has the system profile as ’quasi-
experiment participant’. This module was built because we would like to evaluate the
OOSM metrics’ catalogs generation of the portal through the users’ feedback. Some
survey tools were analyzed, however we could not integrate them with the portal. It is
important to clarify that the user has to be logged in the system to access this module. All
the responses were saved in a database to be statistically assessed.

http://julianasaraiva.info/oosmMetricsPortal

46 3.5. APPROACH ASSESSMENT

3.5 Approach Assessment

The research project described here proposes to provide a useful information about
OOSM metrics through a web portal that contains, among other things, generation of metrics’
catalogs based on the user’s context informed (represented by metrics’ categories). Therefore,
an assessment of the catalog generation was performed to check the feasibility of this approach
adoption. Thus, this section describes the quasi-experiment performed. Section 3.5.1 shows the
experimentation goals and definitions of the quasi-experiment. The quasi-experiment design and
hypotheses are depicted in Section 3.5.2. Finally, Section 3.5.3 presents the method to extract
and evaluate the resultant data.

3.5.1 Experimentation Goals

In Software Engineering, an experiment is an investigation of a testable hypothesis
where one or more independent variables are manipulated to measure their effect on one or
more dependent variables (WOHLIN et al., 2000; Juristo; Moreno, 2001; JEDLITSCHKA;
CIOLKOWSKI, 2008). In a true experiment, the environment control is an important issue.
If you cannot sample randomly, it is considered a quasi-experiment (Juristo; Moreno, 2001;
SHADISH; COOK; CAMPBELL, 2002; SIM; EASTERBROOK; HOLT, 2003; JEDLITSCHKA;
CIOLKOWSKI, 2008).

In our case, there are two issues that classify our research method in quasi-experiment:
(i) we do not know the actual population of researchers and practitioners that adopt OOSM
metrics; (ii) we are not sure about the subjects’ knowledge on OOSM metrics. Consequently we
cannot categorize them in blocks, based on their expertise. It means that our experimental units
were not assigned to conditions randomly. The issues aforementioned make our research method
a quasi-experiment.

The quasi-experiment goal is to check what is the coverage percentage of the OOSM
metrics’ from the catalog proposed by the catalogs generator over the OOSM metrics’
catalogs suggested by researchers based on their expertise in OOSM evaluations. Some
experimental definitions adopted to perform the quasi-experiment can be seen in Appendix E.
It is important to highlight that all this experimental definitions were proposed by published
papers, guidelines, and books related to experimental software engineering (WOHLIN et al.,
2000; Juristo; Moreno, 2001; JEDLITSCHKA; CIOLKOWSKI, 2008).

3.5.2 Quasi-Experiment Design

Two tasks were done during the quasi-experiment design phase: (i) the hypotheses
definition, and (ii) the data collection process definition. Therefore, based on the experimentation
mentioned at Appendix E, we tried to find any evidence about of the coverage percentage of the

47 3.5. APPROACH ASSESSMENT

OOSM metrics’ catalog generated based on the categories choice over the OOSM metrics’ suite
proposed by the experts interviewed.

A Coverage Index (CI) was defined for each catalog generated during the experi-
ment (NIE; KAMBHAMPATI, 2004). The CI is the probability of the metrics suggested
by the experts belongs to the catalog generated using our approach. Assuming that, we can define
Xi as the metrics catalog generated using our approach (categorization choice) by researcher i,
and Yi as the metrics catalog generated by the researcher i expertise. Then, for each researcher
(i) evaluated, a CIi was denoted as:

CIi =
#(Xi\Yi)

#Yi

Where, Xi is the metrics catalog generated using our approach (categorization choice) by
researcher i, Yi is the metrics catalog generated by the researcher i expertise, and # is a function
that returns the number of metrics in a catalog. The goal of this evaluation is to infer that our
catalogs’ coverage is at least 90% over the metrics suggested by experts. Thus, the hypotheses
definitions are:

H0: CI < 0.9. In other words, the catalogs generated using our approach has less than
90% of coverage over the catalogs proposed by experts (null hypothesis).

H1: CI >= 0.9. In other words the catalogs generated using our approach has at least
90% of coverage over the catalogs proposed by experts (alternative hypothesis).

We used a direct technique as experiment instrumentation, specifically questionnaires (JEDL-
ITSCHKA; CIOLKOWSKI, 2008). Direct techniques allow the experimenter to obtain a general
understanding of the software engineering process. It is composed by brainstorming, focus
groups, interviews, questionnaires, and conceptual modeling (JEDLITSCHKA; CIOLKOWSKI,
2008). Interviews and questionnaires are techniques that have been used by researchers when
their goal is to understand general information (including opinions) about process, product, or
even personal knowledge. It can be adopted for small or large volume of data. As interviews
involve at least one researcher talking to at least one respondent, we did not adopt this method,
since we would like to interview researchers around the world, and it would be complicated
because of the time zone and because of the time to finish this project.

Questionnaires are sets of questions administered in a written format. These are the most
common field technique because they can be administered quickly and easily (Juristo; Moreno,
2001; JEDLITSCHKA; CIOLKOWSKI, 2008). As aforementioned, we adopted questionnaires
because they are time and cost effective, researchers do not need to schedule sessions with
the interviewees to administer them, and they can be filled out when each interviewee has
time. Nevertheless, it is important to remember that since there is no interviewer, ambiguous
and poorly-worded questions are problematic. Even though it is easy for who will answer the
questionnaire to fill out them, they still must do so on their own and may not find the time. This
fact can make the response rates relatively low which adversely affects the representativeness of

48 3.5. APPROACH ASSESSMENT

the sample (WOHLIN et al., 2000; Juristo; Moreno, 2001; JEDLITSCHKA; CIOLKOWSKI,
2008).

The questionnaires were applied online, through the OOSM metrics portal. We generated
login and password for each quasi-experiment participant. They could access metrics information
contained in the portal only after answering the questionnaire. The subjects group was composed
by researchers and practitioners around the world that are involved in OOSM evaluations. It is
important to highlight that a dry-run was executed with graduate students and professors of our
research group trying to adjust the questionnaire if necessary. The whole questionnaire applied
in our research can be observed in Appendix E and it is composed by 5 parts:

1. PROFILE: To inform where the subject came from;

2. EXPERTISE: To indicate the subject’s background;

3. METRICS: To collect metrics suggested by the subject for OOSM assessments;

4. CATEGORIES: To characterize the OOSM evaluation’s context;

5. COMPARISON: To capture the difference between the catalogs generated by the tool and
by the subject.

The respondents were invited based on their experience in software maintainability and
software metrics. Their names/emails were collected in the website of known conference proceed-
ings related to the both topics: ICSE (International Conference in Software Engineering), ICSM
(International Conference in Software Maintenance), CSMR (European Conference on Software
Maintenance and Reengineering), SBES (Simpósio Brasileiro de Engenharia de Software -
Brazilian Software Engineering Symposium), SPLASH (ACM Conference on Systems, Program-
ming, Languages and Applications: Software for Humanity), ECOOP (European Conference on
Object-Oriented Programming), METRICS Conference, WETSoM (International Workshop on
Emerging Trends in Software Metrics). It is an auto-selection since that the invitations were sent
based on our individual decision, and we could not sample the subjects randomly.

3.5.3 Data Extraction Method

As the questionnaire was answered in a web system (OOSM metrics portal), it was
possible to keep all the responses in a database. From the profile’s part, information such as,
environment (industrial/academic), position, affiliation and email were kept. The subject’s
expertise in OO development and software maintainability evaluation was also saved. Lastly, the
metrics and categories to be used in OOSM assessment proposed by the subjects were saved.

It is important to highlight that we developed a module specific for applying the question-
naire integrated with the portal because we can compare the catalogs suggested by the subjects
and the catalog generated by the tool (Module 02), considering the same categories previously

49 3.5. APPROACH ASSESSMENT

chosen by the subject. Three tools were tested for building and applying the questionnaire
during the quasi-experiment design: eSurveyPro1, SurveyMonkey2, and eSurveyCreator3. How-
ever, we could not integrate any of them with the catalogs generator module. Consequently, a
questionnaire application module was also developed in the portal.

Complementarily, we would like to check the experts’ opinion about the catalog generated
by our approach. Therefore, during the questionnaire application, the subjects have compared
the catalog suggested by them with the catalog generated by the tool. After that, the two catalogs
were shown, and, the metrics that differed were highlighted. The subjects answered a final
question about the equivalence of the two catalogs. This question had two values (evaluation
attributes):

1. Yes

2. No

For data assessing, a statistic coverage evaluation was performed checking the CI, i.e.,
the probability of a metric proposed by the expert belong to the catalog generated through our
approach (NIE; KAMBHAMPATI, 2004). We used the Wilcoxon Test for one sample to assess
the CI. Additionally, we adopted the Hypotheses Test for a Proportion to assess the experts’
opinion about the catalogs generated (WILCOX, 2004). The result of experts’ opinion is shown
in Appendix F. Therefore, with this statistical measurement, we could check the coverage of
catalogs generated by the tool over the catalogs suggested by the experts, and how useful can be
the proposed approach for researchers that do not have experience in metrics adoption.

1
http://www.esurveyspro.com/

2
https://pt.surveymonkey.com/

3
https://www.esurveycreator.com/

http://www.esurveyspro.com/
https://pt.surveymonkey.com/
https://www.esurveycreator.com/

505050

4
Results Discussion

The results found with the execution of the Ph.D. research project are shown in this
chapter. Section 4.1 presents the results of the Systematic Mapping Study (SMS) performed.
Information such as digital libraries used in the process, authors who have written about the
maintainability metrics, and journal and conferences interested in this kind of metrics are also
depicted. Since the initial goal of our research was the assessment of both, aspect-oriented
and object-oriented metrics, the Aspect-Oriented Software Maintainability (AOSM) metrics
are described in Section 4.1.4. Nevertheless, it is important to remember that after the SMS
execution, we decided to focus our research only on OOSM Metrics, the subject of Section 4.2.
After that, on Section 4.3, the portal developed to support the research results is presented.
Finally, the family of catalogs and its assessment are shown in Section 4.4.

4.1 Systematic Mapping Study (SMS) Results

This section discusses the results found in the systematic mapping study on software
maintainability metrics. Information about the digital libraries used by this study is presented
in Section 4.1.1. The authors of the selected primary studies are shown in Section 4.1.2.
Section 4.1.3 presents information about journals and conferences queried during this study.
At the end of this section, on Section 4.1.4, the questions previously raised by the SMS are
answered. As the main contribution of this mapping was the compilation of a metrics suite to
assess AOSM and OOSM, this section presents some results observed after the execution of the
study. These observations help to figure out the actual perspective of the software maintainability
metrics adopted in both scenarios.

4.1.1 Digital Libraries

Our systematic mapping selected 138 primary studies, and they are listed on Appendix C.
It is relevant to show the digital libraries used in the SMS, and how they helped us in finding
the primary studies. Table 4.1 identifies the digital libraries and their websites. There are many

51 4.1. SYSTEMATIC MAPPING STUDY (SMS) RESULTS

others digital libraries related to Computer Science, however, these were chosen considering
their importance in the area, and the availability of papers for download.

Table 4.1 Digital Libraries Used in the SMS

Source Websites Search Period
ACM http://portal.acm.org 06.01.2011 - 06.05.2011
IEEE http://ieeeexplore.ieee.org 06.05.2011 - 07.10.2011
EI Compendex http://www.engineeringvillage.com 07.10.2011 - 07.13.2011
Science Direct www.sciencedirect.com 07.19.2011 - 07.22.2011

During the systematic mapping some papers have been excluded according to the map-
ping protocol described in Appendix B. For each digital library, Table 4.2 shows the number
of papers initially returned (second column), and the result of the first selection (third column),
which consisted of evaluating the paper’s title, abstract, and keywords. The fourth column
exposes the number of papers selected after the second phase of analysis, which consisted of
the full paper screening. The fifth column indicates the percentage of the final papers selected,
considering the initial number of papers returned. The last column shows the publication year
interval of the primary studies returned by the digital libraries engines. The last row represents
the number of papers after removing all duplicates. For instance, if the same paper was found
on both, ACM and IEEE, digital libraries, it was accounted and considered just once. The
other occurrence of primary study was marked as a duplicate and removed from the final study
selection on the mapping.

Table 4.2 Evolution Primary Studies Selection

Source Quantity #1 Selec. #2 Selec. % Included Interval
ACM 2386 119 41 1.7% 1989 - 2011
IEEE 2180 225 83 3.8% 1982 - 2011
EI Compendex 173 50 25 14.4% 1969 - 2011
Science Direct 881 26 16 1.8% 1985 - 2011
TOTAL 5620 423 165 2.93% 1969 - 2011
TOTAL* 5175 351 138 2.66% 1969 - 2011

*Number of papers after removing all duplicates.

By analyzing Table 4.2, it is possible to see that EI Compendex had the best performance,
with 14.4% of primary studies included. Despite having the lowest number of studies returned,
EI Compendex provided a more accurate list of studies when compared to the other search
engines, adding less noise, consequently, showing higher precision. The ACM digital library had
the worst performance, demanding more work in the studies’ selection.

Table 4.2 also shows that, among the 5175 papers returned by the digital libraries, only
138 were selected. We observed that the queries presented a considerable level of noise, since

52 4.1. SYSTEMATIC MAPPING STUDY (SMS) RESULTS

only 2.7% of the initially studies returned were actually relevant to the mapping. Many factors
can contribute to increase the noise, e.g., we might have not used the ideal set of keywords in
the search string composition. Kitchenham and Charters have already discussed the problem in
using automated search engines like the ones we employed in this mapping (KITCHENHAM;
CHARTERS, 2007). Consequently, other options of search string can be used to test this
hypothesis.

One more time, EI Compendex appears prominently. It returned the oldest primary
study. It is important to notice that after the exclusion process, the oldest study selected
dated of 1992, and the most recent one was published on June 2011. This range shows that
maintainability metrics have been studied and proposed for at least 19 years. Even though
software maintainability metrics have been a research topic through all these 19 years, there is
no catalog for them.

4.1.2 Studies’ Authors

This section presents an analysis over the primary studies’ authors. Table 4.3 shows the
authors that published two or more studies about metrics. It is important to clarify that this count-
ing considered just the primary studies selected (138 studies) based on the inclusion/exclusion
study’s criteria previously shown.

Table 4.3 Primary Studies’ Authors

#Papers Authors
8 Lionel C. Briand.
5 Alessandro Garcia.

4 Avadhesh Kumar, Marcela Genero, Mario Piattini,
P.S. Grover, Rajesh Kumar.

3

Claudio Sant’Anna, Denys Poshyvanyk, Doo Hwan Bae,
Ewan Tempero, Heung Seok, Chae, Jehad Al Dallal,
John W. Daly, Jurgen K. Wust, P. Nesi, R. Nithi,
S. Counsell.

2

Alfred Aho, Andrea De Lucia, Bandar Alshammari, Baowen Xu,
Colin Fidge, Diane Corney, Doo Hwan Bae, Erik Arisholm,
Esperanza Manso, F. Fioravanti, Fernando Castor,
Gail C. Murphy, Hany H. Ammar, Jianjun Zhao, Jonas
Lundberg, Letha Etzkom, Marc Eaddy, Mikael Lindvall,
Nelio Cacho, R. Harrison, Santonu Sarkar, Thais Batista,
Victor R. Basili, Welf Lowe, Yuming Zhou.

1 All the others.

As depicted by Table 4.3, Lionel C. Briand is the researcher who published more papers
on this mapping study’s topic. It is important to highlight that most of the studies found are
only using metrics to perform quantitative and qualitative assessments. This means that just a
minority of the primary studies actually proposes new metrics.

53 4.1. SYSTEMATIC MAPPING STUDY (SMS) RESULTS

4.1.3 Journal and Conferences Involved

This section shows the journals and conferences where the primary studies were pub-
lished. Table 4.4 presents the results. The first column represents how many studies were
published in the journal, and its name is indicated in the second column.

The IEEE TSE! (TSE!) journal is the vehicle that has published more primary studies.
This means that, after all exclusion processes and analysis of the remaining studies, this journal
provided the highest number of relevant papers. This suggests that, if a researcher is interested
in searching for papers that address this topic, TSE can be a good place to start from.

Table 4.4 Number of Selected Primary Studies in Each Journal

of Selected Primary Studies Journal
27 TSE
10 INFSOF
4 JSS
3 Information Sciences
3 ACM-SIGSOFT Software Engineering Notes (Newsletter)
2 Sciences of Computer Programming, SMR
1 ESE, IJSEKE, TOSEM, JSA, SQJ

Regarding conferences, METRICS has the highest number of primary studies. This
result is expected since this conference is completely related to the subject matter of this study.
The result is depicted in Table 4.5.

Table 4.5 Number of Selected Primary Studies in Each Conference Proceedings

of Selected Primary Studies Conference
8 METRICS
7 CSMR, ICSM
4 APSEC, ASWEC
2 AOSD, ESEM, STEP, WETSoM

1

ACE, ACoM, ACSC, ASE, ASEW, CASCON,
CSSE, CW, CYCSYN, ECSA, EMS, FSE, HIS, ICC,
ICCRD, ICECCS, ICETEC, ICIW, ICPC, INFOS,
INMIC, ISESE, ISSTA, MOMPES, PerCom, KAMW,
QSIC, REV, SAC, SBES, SEAA, SEM, SEW,
SIGPLAN, SNPD, SOQUA, TASE, TOOLS, WCIT,
WoSQ, WSCS, ACM-SE, ACM-CSUR, ACM-SIGAda.

CSMR and ICSM come close to METRICS in number of published primary studies,
which it is also expected, since these two conferences are directly related to software maintain-
ability. Another important insight is that most primary studies were published in conferences.
Among the 138 selected papers, 63 (45.7%) were published in journals and 75 (54.3%) were

54 4.2. SOFTWARE MAINTAINABILITY METRICS

published on conference proceedings. We believe that this result could be explained by the larger
number of conferences, when compared to the number of Software Engineering journals, and
the time of evaluation of a paper submission, where this process takes longer for journals than
for conference proceedings.

Moreover, it is well-known that the time between the initial submission and the publi-
cation of a paper in a journal is longer than in a conference. Furthermore, ideas are often first
presented in workshops and conferences, and then they are evolved to a journal publication.

4.1.4 SMS Answer

This section presents the answer to the Research Question (RQ) raised by the systematic
mapping study. To make the presentation clearer, the selected primary studies were assigned
unique identifiers, for example, SM01 means Systematic Mapping Study #01. All the primary
studies selected are listed in Appendix C.

RQ: What metrics were adopted to assess software maintainability in OOSD?: 568
metrics were adopted to assess software maintainability. Table D.1 lists them. The first column
depicts the metrics’ names and the second column their descriptions. The studies that mentioned
the metrics are presented on the third column.

By observing Table D.1 in Appendix D, it is possible to note that the majority of OO
metrics, 391 out of the 568 (68.83%) shown, appeared just in one primary study. With this
scenario we infer that other researchers have not used these metrics. The lack of a catalog with
a list of already proposed metrics could make this situation even worst. Indeed, there are a lot
of cases where a certain metric was proposed, however, it was never used/validated by other
researchers.

The investigation of this phenomenon is not addressed by the current work, and shall
be undertaken by future work. Those cases can indicate some inefficiency of these metrics
regarding the assessment of maintainability. This could happen for a number of reasons, e.g., (i)
the number of available metrics is too high and it is hard to chose which one to use, (ii) most of
the metrics were not validated yet, (iii) there are no tools that can collect them, among others.

4.2 Software Maintainability Metrics

The maintainability metrics identified by this mapping study are candidates to compose a
metrics suite for helping researchers in software maintainability assessment. With a metrics suite
in mind, researchers can more easily choose the ones that better fit their intent when designing
empirical studies (either quantitative or qualitative). In addition, software practitioners can
simplify the decision making process about activities related to software maintenance. There are
various metrics’ features that can be a relevant indicator during this selection process, specifically
when looking into the whole set of 568 metrics. The complete list of all metrics can be found in

55 4.2. SOFTWARE MAINTAINABILITY METRICS

Table 4.6 Topic Related to Maintainability Metrics

Topic # Occurrence Percentage
Cohesion 173 30.4%
Coupling 154 27.1%

Size 149 26.2%
Complexity 30 5.3%
Inheritance 55 9.7%

Software Architecture 7 1.3%
TOTAL 568 100%

Appendix D.
All these metrics were cataloged. Some information about them was saved in a database:

name, description, authors who proposed and who employed the metrics, conference proceedings
and journals that published papers that describe the metrics, how many times the metrics
were used/adopted by other authors, and so on. Those information were shown previously in
Section 4.1.

We have also identified a number software maintainability-topics associated with the
metrics: Software Architecture Constraints, Inheritance, Cohesion, Coupling, Complexity,
and Size. This information about the topics related to the metrics was extracted from the
primary studies selected according metrics’ descriptions presented by their authors. Thus, if
a metric description contained information about cohesion in the primary study selected, we
considered that this metric is directly related to the cohesion topic. This occurred for all other
topics. For instance, there is a metric called AIM! (AIM!) that counts the average of local and
overridden/inherited methods in a system. So, the topic associated with this metric is inheritance.

Table 4.6 shows the results. The first column presents the topics related to maintainability
described by the primary studies. The number of maintainability metrics whose descriptions
claimed to investigate the topic or are related to the topics is shown in the second column. Finally,
the third column shows the percentage of the metrics in the second column considering the total
of 568 maintainability metrics found.

The results show that cohesion, coupling, and size are the most commonly investigated
topics addressing software maintainability in the literature. Almost 84% of the papers mentioned
these topics. Moreover, complexity, inheritance, and software architecture constraints also appear
as important topics directly related to software maintainability among the primary studies.

4.2.1 Metrics’ Tools

Based on the primary studies assessment, it was possible to list some tools that collect
OOSM metrics automatically. It is important to clarify that we listed only the tools that were
mentioned in the 138 primary studies selected in the mapping. Furthermore, some of the tools
are not available for downloading or using. However, Table 4.7 shows all the 21 tools found in

56 4.2. SOFTWARE MAINTAINABILITY METRICS

this study.

Table 4.7 Tools that Collect Metrics Automatically

Tool’s Name Tool’s Website
AdaSTAT http://www.prnewswire.com/news-releases/adastattm-an-ada-static-analysis-tool-

72887862.html
AOP Metrics aopmetrics.tigris.org/metrics.html
ArchE Meter https://sites.google.com/site/julianajags/

CoMETA-Lua Not available
Enterprise Architect http://www.sparxsystems.de/

FLAT tool http://www.cs.mcgill.ca/ martin/cm/
Fraunhofer IESE http://www.fuelairspark.com/Products/FS-’Programmers’-0.aspx

ICR2M Not available
Metrics Eclipse Plug-in http://metrics.sourceforge.net/

Ooram case tool http://pettergraff.blogspot.com.br/2006/02/ooram.html
QMOOD++ http://www.drdobbs.com/web-development/automated-metrics-and-object-oriented-

de/184410338
SD Tool e Sara Tool Not available

Sourcenav http://sourcenav.sourceforge.net
Together http://techpubs.borland.com/together/
TOOMS http://www.researchgate.net/publication/222352538_Metric_framework_for_object-

oriented_real-time_systems_specification_languages
Visual Studio Metrication http://msdn.microsoft.com/en-us/library/bb385910.aspx

M-System Not available
LOGISCOPE Not available

TAC++ Not available
PC-Memc for C++ Not available
Corba Components http://sourceforge.net/projects/ccmtools/files/ccmtools/

4.2.2 Metrics Naming Inconsistencies

In the context of software maintainability metrics, inconsistencies in metrics’ naming
are another important issue to present and discuss. Thus, this section shows the two types of
inconsistencies found in this study: (i) metrics with different names but essentially representing
the same metric, such as DIT! and DIH! , which count the maximum length from a node to the
root of the inheritance tree, and (ii) metrics with the same names and different meanings such as
DC, which can be Degree of Cohesion or Descendants Counting.

Table 4.8 depicts the cases where different metrics were proposed, but they are the same
indicators in the software maintainability assessment. The first column is the metric that can
represent the group of the metrics with the same meaning. It is important to clarify that the
representative metrics of the group were chosen considering how many times they appeared in
the primary studies. Then, the names that appear on the first column are the ones mentioned
by the highest number of primary studies selected in the group of metrics names with the
same meaning. The second and third columns indicate the metric’s name, and its description,
respectively. Finally, the last column indicates which primary studies contain each metric. We
found 32 cases involving 214 metrics.

57 4.2. SOFTWARE MAINTAINABILITY METRICS

Table 4.8: Maintainability Metrics - Different Names and Same Meanings

Representative Metric Description Primary Studies that contain the
metric

CBO

CBMU Coupling between Model Units SM350
CMC Coupling on Method Call SM47, SM49, SM53, SM161,

SM177, SM187, SM325
CBM Coupling Between Modules SM47, SM49, SM92, SM177
CIM Coupling on Intercepted Mod-

ules
SM53, SM140, SM161, SM177,
SM209

CBO_IUB CBO Is Used By SM123
CBO_NA CBO No Ancestors SM123
CBO_U CBO Using SM123
CBO(d) Coupling Between Objects SM66
CBO(f) Coupling Between Objects SM66
CBOIUB Coupling Between Objects is

Used By
SM73

CBONA Coupling Between Objects No
Ancestors

SM73

CBO Coupling between Objects
Classes

SM4, SM8, SM13, SM29, SM38,
SM42, SM47, SM48, SM54, SM70,
SM73, SM75, SM76, SM87, SM92,
SM111, SM119, SM129, SM132,
SM146, SM149, SM151, SM164,
SM166, SM189, SM194, SM200,
SM205, SM209, SM210, SM211,
SM217, SM222, SM266, SM301,
SM313, SM319, SM329, SM341,
SM343, SM346, SM347, SM156

CBOU Coupling Between Objects Us-
ing

SM73

CCBC Conceptual Coupling Between
Components

SM343

CCBO Conceptual Coupling between
Object Classes

SM346

CCOF Component Coupling Factor SM11
COUPLING COUPLING SM212
C Coupling SM37, SM38, SM275, SM323
CC Class Coupling SM7, SM23, SM47, SM54, SM69,

SM86, SM138, SM181, SM198,
SM199, SM203, SM204, SM208,
SM269, SM288, SM335

CBC Coupling Between Components SM112, SM144, SM288
CBMC Coupling Between Module

Classes
SM92, SM165, SM176

CBO’ Coupling between Objects
Classes

SM151, SM341

58 4.2. SOFTWARE MAINTAINABILITY METRICS

Table 4.8: Maintainability Metrics - Different Names and Same Meanings

Representative Metric Description Primary Studies that contain the
metric

CLC Class Level Coupling SM38, SM132, SM203
OLC Object Level Coupling SM38, SM132

EC

EC_CD Export Coupling Dynamic Class SM129, SM130
EC_CC Export Coupling Distinct Class SM129, SM130
EC_CM Export Coupling Distinct

Method
SM129, SM130

EC_OD Export Coupling Dynamic Mes-
sage

SM129, SM130

AEC Exporting Coupling of a module SM193
EC_OM Export Coupling Distinct

Method
SM129, SM130

EOC Export Object Coupling SM132
EC_OC Export Coupling Distinct Class SM130
IOC Import Object Coupling SM132

IC

AIC Import Coupling of a module SM193
IC Import Coupling SM193, SM211
IC_CC Import Coupling Distinct Class SM129, SM130
IC_OC Import Coupling Distinct Class SM129, SM130
IC_OD Import Coupling Dynamic Mes-

sage
SM129, SM130

IC_OM Import Coupling Distinct
Method

SM129, SM130

IC_CD Import Coupling Dynamic Mes-
sage

SM129

IC_CM Import Coupling Distinct
Method

SM129

HC
H Horizontal coupling SM224
HC Horizontal coupling SM23

RFC
RFC Response For a Class SM4, SM13, SM38, SM39, SM47,

SM48, SM54, SM69, SM70, SM73,
SM75, SM76, SM87, SM111,
SM123, SM129, SM132, SM146,
SM156, SM164, SM189, SM194,
SM200, SM205, SM209, SM210,
SM217, SM222, SM266, SM313,
SM319, SM325, SM329, SM343,
SM346, SM347

RFC1 Response For a Class SM151

DAC

PDAC Package Data Abstraction Cou-
pling

SM31

59 4.2. SOFTWARE MAINTAINABILITY METRICS

Table 4.8: Maintainability Metrics - Different Names and Same Meanings

Representative Metric Description Primary Studies that contain the
metric

DAC Data Abstraction Coupling SM4, SM13, SM31, SM35, SM54,
SM76, SM129, SM146, SM151,
SM209, SM319, SM341, SM343,
SM346

DAC’ Data Abstraction Coupling SM151, SM341
CTA Coupling Through Abstract Data

Types
SM54, SM325

COF
CF Coupling Factor SM70, SM76, SM146, SM211
COF Coupling Factor SM11, SM38, SM198, SM211,

SM343, SM346

OMMIC

OMMIC Method-Method interaction be-
tween classes

SM73, SM129, SM151, SM153,
SM341

MM Method-Method Interactions SM38, SM132
MMI Method-Method Interaction SM181
AMMIC Method-Method Interaction be-

tween classes
SM73, SM151, SM341, SM129,
SM153

DOS
DOS Degree of scattering SM169, SM126
ADOS Average the Degree of Scattering SM169

DOF
ADOF Averaging the Degree of Focus SM169
DOF Degree of focus SM169

COH

COH Cohesion SM3, SM68, SM181, SM219,
SM335

CH Cohesion SM193
CHC Cohesion of a Component SM112
DCD Degree of Cohesion SM181
OL2 Cohesion of Class SM165
C3 Cohesion Metric SM166, SM219, SM345

CACI
CAC Class Attribut Complexity SM203, SM226
CACL Class Attribute Complexity Lo-

cal
SM138, SM204

CACI Class Attribute Complexity In-
herited

SM138, SM204, SM208

CPC

PCT Path Complexity SM203
CCPC Class Coupling Path Complexity SM203
PEC Path External Complexity SM203
PIC Path Internal Complexity SM203
CPC Class path complexity SM203, SM112

CCN

VG Cyclomatic Complexity SM7, SM132
MCCABECCCyclomatic Complexity SM290
PSIC Provided Service Interface Com-

plexity
SM203

CyC Cyclomatic Complexity SM7
CCN Cyclomatic Complexity Number SM140, SM146, SM217

60 4.2. SOFTWARE MAINTAINABILITY METRICS

Table 4.8: Maintainability Metrics - Different Names and Same Meanings

Representative Metric Description Primary Studies that contain the
metric

ICC
ICC Internal Class Complexity SM203
CITC Class internal task complexity SM156

NOC
DCAE Descendents from CA-

Interactions
SM38

NOC Number of Children of a Class SM4, SM7, SM13, SM31, SM35,
SM39, SM42, SM48, SM49, SM53,
SM54, SM66, SM69, SM70, SM75,
SM76, SM79, SM87, SM132,
SM156, SM164, SM187, SM189,
SM194, SM200, SM201, SM204,
SM205, SM209, SM210, SM217,
SM222, SM224, SM266, SM290,
SM313, SM319, SM325, SM347

CO Classes that Override something SM55, SM69, SM176, SM277

HAGG
MAXHAGG Maximum HAgg SM136
MOA Measure of Aggregation SM15
HAGG Height of class within aggrega-

tion
SM96, SM337

NOP

ANA Average Number of Ancestors SM15
ANC Ancestor SM211
NAC Number of Ancestors SM226, SM325, SM210
NOA Number of Ancestors SM146, SM209, SM290
CI Classes Inherited SM55, SM138, SM204, SM208
NOP Number of Parents SM7, SM15, SM224, SM290

NSA
NOSA Number of Static Attributes SM290
NSA Number of Static Attributes SM7

NLM
NAM Number of Methods Locally SM138, SM204
NLM Number of Local Methods SM54, SM325

AC

NSUP Number of Superclasses SM204
NUMANC Number of Ancestors SM224
AC Ancestors Count SM38, SM198, SM203, SM211,

SM288
PC Parents Count SM198

CAA
NAD Number of Advices SM82
CAA Counting Aspect Advices SM323, SM343

NP

NOPM Number of Public Methods SM187
CIS Class Interface Size SM15, SM301
MPUB Method Public SM234
NP Number of Public Methods SM3, SM337
NMPUB Number of Public Methods SM224
NUMPUBOPNumber of Public Operations SM224
PM Number of Public Methods SM70, SM288

NMI

NMO Number of Methods Overridden SM55, SM70, SM76

61 4.2. SOFTWARE MAINTAINABILITY METRICS

Table 4.8: Maintainability Metrics - Different Names and Same Meanings

Representative Metric Description Primary Studies that contain the
metric

AIM All Inherited Methods SM75
CMI Coupling Method Inherited SM84
MANC Methods inherited from Ances-

tor
SM211

NOOM Number of Overridden Methods SM194
OM Overridden methods SM288
POM Percentage of Overrided Meth-

ods
SM75

NOI Number of Inherited Methods SM75, SM290
MI Methods that are Inherited SM48, SM55, SM68, SM198,

SM234
MIF Method Inheritance Factor SM48, SM70, SM76, SM194,

SM198
NMI Number of Methods Inherited SM55, SM70, SM129, SM138,

SM204

DIT

DIT Depth of Inheritance Tree SM123, SM4, SM7, SM13, SM31,
SM48, SM49, SM54, SM69,
SM70, SM75, SM76, SM87, SM96,
SM132, SM144, SM164, SM177,
SM187, SM189, SM194, SM200,
SM201, SM204, SM205, SM209,
SM210, SM217, SM222, SM22,
SM266, SM290, SM313, SM319,
SM325, SM347, SM39, SM42,
SM66

MAXDIT Maximum DIT SM136, SM337
WIG Weighted Interaction Graph SM199
ADI Average Depth of Inheritance SM288
AID Average Inheritance Depth of a

Class
SM151

WGT Weighted Graph Tree SM199
DIH Depth of Inheritance SM69
DOIH Degree of Inheritance SM7
DT Depth of Tree SM86
NL Nesting Level SM226
DI Depth of Inheritance SM7, SM288

NA

NAI Number of Attributes SM204, SM224
CAS Class Attribute Size SM203
LA Local Attributes SM69
NUMATTR Number of Attributes SM224
TA Total Attributes SM69
NAL Number of Attributes Locally SM138, SM204
A Number of Attributes SM38, SM234, SM275, SM290

62 4.2. SOFTWARE MAINTAINABILITY METRICS

Table 4.8: Maintainability Metrics - Different Names and Same Meanings

Representative Metric Description Primary Studies that contain the
metric

NA Number of Attributes SM10, SM96, SM136, SM144,
SM203, SM204, SM205, SM208

NC

NC Number of Classes SM96, SM203, SM82, SM226,
SM230, SM288, SM136

BC Base Classes SM288
CS Class Size SM203
CSA Classes SM35
RCS Real Class Size SM203
NCL Number of Classes SM203, SM204, SM208

NOC

SNOC Size Of Number Children SM35
DC Descendants Count SM48, SM198
NOOC Number of Object Children SM7
NSUB Number of Subclasses SM204
NUMDESC Number of Descents SM224
NOC* Number Of Children in sub-tree SM123
TC Total Children SM48, SM69, SM327
NOC Number of Children of a Class SM4, SM7, SM13, SM31, SM35,

SM39, SM42, SM48, SM49, SM53,
SM54, SM66, SM69, SM70, SM75,
SM76, SM79, SM87, SM132,
SM156, SM164, SM187, SM189,
SM194, SM200, SM201, SM204,
SM205, SM209, SM210, SM217,
SM222, SM224, SM266, SM290,
SM313, SM319, SM325, SM347

DCAE Descendents from CA-
Interactions

SM38

NM

NO Number of Operations SM35, SM144
CSO Class Operations SM35
M Method SM38
MA Methods Available SM198
LO Local Operations SM69
MN Methods (New) SM198
N1 Total number of operators SM269
NOO Number of Operations SM194
NUMOPS Number of Operations SM224
TO Total Operations SM69
NMC Number of Methods SM55
TNM Total (System) Number of Meth-

ods
SM208, SM138

NM Number of Methods SM70, SM82, SM96, SM136,
SM204, SM224, SM230, SM288

63 4.2. SOFTWARE MAINTAINABILITY METRICS

Table 4.8: Maintainability Metrics - Different Names and Same Meanings

Representative Metric Description Primary Studies that contain the
metric

NOM Number of Methods SM15, SM35, SM54, SM76,
SM111, SM146, SM290, SM319

WMC

CAI Classified Attributes Interaction
Weight

SM53, SM84

CAIW Classified Attributes Interaction
Weight

SM84, SM282

WOM Weighted Operations in Module SM47, SM49, SM177, SM187
WNCO Weighted Number of Collections

Operation
SM85

CAMC Cohesion Among Methods in a
Class

SM68, SM181, SM211, SM307,
SM335

CMW Classified Methods Weight SM84, SM282
WMPC1 Weighted Methods Per Class SM7
WMC Weighted Methods Per Class SM7, SM8, SM31, SM35, SM39,

SM48, SM54, SM69, SM70, SM75,
SM87, SM111, SM123, SM132,
SM138, SM146, SM156, SM164,
SM189, SM194, SM200, SM201,
SM204, SM210, SM217, SM222,
SM266, SM290, SM313, SM319,
SM325, SM337, SM347

WAC Weighted Attributes per Class SM313, SM319
WMA Weight of Method by Aspect SM205
WOC Weighted Operations per Com-

ponent
SM209

CMICL Class Method Interface Com-
plexity/size Local

SM208

OAC Operation Argument Complex-
ity

SM224

CMICI Class Method Interface Com-
plexity Inherited

SM138, SM208

LCOM

LCOM Lack of Cohesion in Methods SM1, SM3, SM7, SM13, SM35,
SM37, SM39, SM48, SM54,
SM69, SM70, SM75, SM76, SM87,
SM105, SM111, SM123, SM128,
SM146, SM164, SM165, SM189,
SM194, SM200, SM210, SM217,
SM222, SM226, SM66, SM290,
SM307, SM313, SM319, SM325,
SM330, SM331, SM335, SM345,
SM347

LCOMA Lack of Cohesion in Methods SM156
LCOMB Lack of Cohesion in Methods SM156

64 4.2. SOFTWARE MAINTAINABILITY METRICS

Table 4.8: Maintainability Metrics - Different Names and Same Meanings

Representative Metric Description Primary Studies that contain the
metric

TLCOM Transitive LCOM SM335
LCO Lack of Cohesion in Operations SM49, SM87, SM177, SM187,

SM204
LCOM4 Lack of Cohesion in Methods 4 SM3, SM37, SM176, SM181,

SM2667, SM277
LCOM5 Lack of Cohesion in Methods 5 SM3, SM37, SM176, SM181,

SM219, SM267, SM277
LCOM3 Lack of Cohesion in Methods 3 SM3, SM37, SM68, SM176,

SM181, ,SM219, SM267, SM277
LCOM2 Lack of Cohesion in Methods 2 SM3, SM37, SM68, SM176,

SM182, SM219, SM224, SM267,
SM277

LCOM1 Lack of Cohesion in Methods 1 SM3, SM7, SM68, SM176, SM181,
SM219, SM224, SM264, SM267,
SM277

LCC Loose Class Cohesion SM3, SM37, SM68, SM76, SM181,
SM209, SM219, SM236, SM330,
SM331

LOC

LOCC Lines of Class Code SM126, SM187
LOCS Lines of Class Code SM202
SLOC Source Lines of Code SM169, SM189, SM288
LOC Lines of Code SM7, SM10, SM23, SM47, SM49,

SM74, SM111, SM138, SM140,
SM144, SM146, SM156, SM176,
SM195, SM203, SM208, SM109,
SM217, SM219, SM236, SM269,
SM275, SM293, SM323, SM327

NLOC Number of Lines of Code SM92
NOSLOC Number of Source Lines of Code SM288
TLOC Total Number of Lines of Code SM7, SM138, SM208, SM217,

SM290
KLOC K Lines of Code SM166

As mentioned before, the second case of metrics’ naming inconsistency occurred when
metrics with the same names have different meanings. For this scenario, eight cases were found
involving 17 metrics. Table 4.9 depicts these cases. The first column represents the metrics
names. The metrics descriptions are in the second column and the last column indicates in which
primary study selected the metric appeared.

Both cases of metrics’ naming inconsistencies have happened because there is no con-
vention for naming software metrics. The approach to gather and to list metrics, and after that, to

65 4.2. SOFTWARE MAINTAINABILITY METRICS

Table 4.9 Maintainability Metrics - Same Names and Different Meanings

Metric # Description Primary Study that contains the
metric

DC Degree of Cohesion SM335
Descendants Count SM48, SM198

MN Methods (New) SM158
Methods with No implementations replaced SM55

NAS Number of Class Associations SM119, SM132
Number of Aspects SM82

NC
Number of Clauses in the class SM10

Number of Cycle SM293
Number of Classes SM96, SM203, SM82, SM226,

SM230, SM288, SM136

NLOC Net LOC SM296
Number of Lines of Code SM92

NP Number of Public Methods SM3, SM337
Number of class Paths SM203

RC Relative Cost SM291
Relational Cohesion SM199, SM330

PIM Permitted Interaction Metric SM4
Polymorphically Invoked Methods SM38, SM234, SM341, SM343

generate catalogs based on the research context presented here, can help to address this issue.
Sometimes, researchers have been proposing distinct metrics around the world because they do
not know that the metric already exists.

Therefore, we performed a metrics’ naming consolidation (described in Chapter 3) to
expose the situation where those inconsistencies happened. We believe this can ease the task of
choosing which metrics are more suitable in a given context. Additionally, the inconsistencies
tend to decrease or disappear, since information about maintainability metrics can be found
in one unique place, together and organized. This can be a first step towards standardizing
maintainability metrics naming.

4.2.3 Metrics’ Categories

The large number of metrics shown in Section 4.2 poses many challenges to researchers
intending to conduct OOSM studies and software practitioners whose goal is to assess maintain-
ability. Additionally, the metrics descriptions were scattered throughout a number of different
papers. They had different levels of evaluation, and their names were inconsistent. This issue
was addressed in Section 4.2.2.

As mentioned before, we have categorized the metrics in terms of quality attributes
that they aim to measure. Complementarily we propose a number of additional dimensions for
OOSM metrics categorization, based on the contexts of the studies in which they were employed.

66 4.2. SOFTWARE MAINTAINABILITY METRICS

The complete categorization is discussed in this section.

Table 4.10 Examples of Metrics’ Descriptions/Adoption Scenario’s Descriptions that Support the Cate-
gories Definitions

Category Description to Support the Category Definition
Academic The systems used for this study were developed by students participating in an upper divi-

sion undergraduate/graduate level course offered by the Department of Computer Science
at the University of Maryland.

Industrial We performed a measurement and evaluation of various Java standard libraries like J2SE,
J2EE...

Open Source ...using four open source software systems and 10 cohesion metrics.
Proprietary They are very successful, proprietary, and popular commercial object-oriented systems that

are extensively used in real-world software development.
Coupling Efferent Coupling.

Complexity Class Attribute Complexity.
Size Average Method Size.

Cohesion Cohesion Among Methods of Class.
Inheritance Average Inheritance Depth of a Class.

Architecture Constraint Architecture Design Modified.
Tools Support The metric framework is integrated in a CASE tool named TOOMS.
Changeability Strict adherence to the S-S-V-T structure is beneficial for key test design criteria such as

changeability.
Stability But other important dependencies are clearly not measured or accounted for, and may not

be measurable from code alone, e.g., stability to common requirements.
Testability The use of metrics for the estimation of testability is analyzed.

Analyzability This model relates design properties such as analyzability.
Evaluated This paper first analyzes the limitations of typical cohesion measures for classes in detail.
Validated The proposed approach was validated against an open source software system, namely

GanttProject version 1.10.2.

The large number of OOSM metric that we identified is an obstacle to their use in practice.
Thus, taking these metrics as a starting point, we attempt to categorize and summarize these
metrics to ease the decision-making process about which metrics to adopt. It is important to
clarify that the classification of metrics as OOSM metrics was based on the metrics’ definition
found in the primary studies selected in the systematic mapping study. Table 4.10 shows
some examples of metrics’s descriptions or definition of adoption scenarios that support the
categorization proposed here. The first column represents the categories, and the second column
represents the text extracted from the papers selected from the SMS that support the categories
definition. We propose the following categorization for the metrics:

1. Relevance: This category is composed by two sub-categories: (i) Most Adopted, and
(ii) Most Relevant metrics. For the first one, (i) we counted how many times a metric
appeared (proposed or adopted) in the primary studies selected by the systematic mapping
study. So, they were ranked as most adopted metrics, considering the number of times
they were found in the selected studies. On the other hand, for the Most Relevant metrics
sub-category, the primary studies selected in the systematic mapping were ranked based
on the number of citations of each study. We considered the Google Scholar engine to
count the number of citations. After that, we had the most relevant papers for the area
from the 35 studies best ranked (rank’s 1st quartile). From the most relevant studies, we
extracted the metrics they contained, and classified the metrics according to the number of
times they were used in these 35 best-ranked studies.

67 4.2. SOFTWARE MAINTAINABILITY METRICS

2. Environment: The Environment in which a metric was employed can be (i) Academic,
and (ii) Industrial. The Academic metrics includes metrics that were used in academic
contexts, such as, software engineering academic research or classes. On the other hand, the
Industrial metrics were proposed by or adopted in industrial scenarios by either researchers
or practitioners. It is important to clarify that a metric can be considered as both, industrial
and academic, if it is adopted in both contexts.

3. License Type: This category can classify the metrics in two groups: (i) Open Source
Metrics, that were used in open source software maintainability assessments, and (ii)
Proprietary Metrics that were used in evaluations of proprietary software.

4. Internal Attributes: This classification is composed by the aforementioned five internal
quality attributes related to software maintainability: (i) size, (ii) complexity, (iii) coupling,
(iv) cohesion, and (v) software architecture constraints.

5. Tool Support: This category considers metrics that can be automatically collected by a
tool.

6. External Attributes: The focus of our research is OOSM, nevertheless, other sub-
characteristics and external attributes can be associated or measured by a metric. Conse-
quently, the metrics were also classified considering the following external attributes that
have a relationship with maintainability: analyzability, changeability, stability, testability,
reliability, extendibility, reusability, readability, flexibility, traceability, scalability, usabil-
ity, understandability, adaptability, verifiability, variability, instability, modifiability, fault
proneness, efficiency, capability, availability, replaceability, predictability, comprehensi-
bility, performance, applicability, accessibility, vulnerability, visibility. It is important to
clarify that these external attributes were found in the studies’ context described in the
selected primary studies.

7. Assessment: This category is composed by the metrics that were assessed by any re-
searcher. For this category, the metrics can be classified as (i) Evaluated Metrics, that
were not validated, but evaluated in any way, such as compared or discussed by any
researcher/practitioner; and (ii) Validated Metrics, that is, composed by the metrics that
were validated by any researcher. It is important to highlight that we are considering all
the 47 ways of metrics evaluations found by the work of Meneely (MENEELY; SMITH;
WILLIAMS, 2012), such as Protocol validity, Notation Validity, Non-uniformity validity,
theoretical validity, and so on.

We believe that with an appropriate categorization considering various domains of metrics
adoption, a metrics suite can be more easily chosen by researchers and software practitioners. In
addition, metrics can also be classified in more than one category because the categories are not
mutually exclusive. Figure 4.1 depicts the categories and subcategories proposed. In addition,

68 4.3. OOSM METRICS PORTAL

we believe that in a future work, the feature model that represents the metrics’ categorization can
be improved and expanded.

Figure 4.1 Illustration of OOSM Metrics Categorization.

4.3 OOSM Metrics Portal

We have built a metrics portal to support the dissemination of information about OOSM
metrics (http://julianasaraiva.info/oosmMetricsPortal). The portal is com-
posed by 3 modules, and each one has a specific role as described in Chapter 3 - Section 3.4:
(i) General Information, (ii) Project Information Management, and (iii) Catalogs Generation
Assessment.

Through the first module, the portal’s user can access information such as, the research
members contacts, the portal goals and descriptions, published papers that address OOSM
metrics, authors that published about this type of metrics, and so on. Any user can access this
module. Additionally, metrics’ catalogs can be generated according to the categories chosen by
the users. They can save the catalogs as PDF files or they can see them in the portal screens.

Nevertheless, due to space constraints, the catalogs generated in this module are not
kept in the portal’s database. Figures 4.2 and 4.3 depict the screen where users can select the
appropriate categories and the catalog generated through the categorization, respectively. We
believe that these facilities can support the dissemination of information about OOSM metrics
and decrease the time spent by researchers looking for metrics that can be adopted in their
studies.

Users associated with the ’Project Collaborator’ profile can access the second module.
It is important to highlight that adding new categories/subcategories is only possible to users
registered as Project Collaborators. Other information, such as new metrics, new descriptions, or
even, uploading papers that address OOSM evaluation, can also be added to the portal through
this module.

It is possible to observe the portal’s functionalities available for this profile. This

http://julianasaraiva.info/oosmMetricsPortal

69 4.3. OOSM METRICS PORTAL

Figure 4.2 OOSM Metrics Portal - Catalogs Generator Module.

Figure 4.3 Example of Catalog Generated by the Portal.

module allows researchers around the world to feed the portal systematically. Consequently, the
information about maintainability metrics can be more accurate and standardized. Therefore,
this scenario can represent the first steps for standardization of maintainability metrics naming,
searching, and adoption.

70 4.4. RESULTS OF THE APPROACH EVALUATION

The last module is the Catalogs Generation Assessment Module. It is important to
highlight that this module was developed just to support our approach’s assessment, as discussed
in Section 4.4. At the end of the questionnaire application, the resultant catalogs were saved for
future comparison and statistical assessments. This module allowed us to collect opinions from
experts from different countries about our proposal.

4.4 Results of the Approach Evaluation

This section presents and discusses the results of the quasi-experiment performed to
assess the proposed approach for metrics’ catalogs generation. Experts in software maintainability
metrics answered the questionnaire. These experts were chosen because they have written papers
that addressed software maintainability and/or software metrics. Their names/emails were
obtained through the website of the major conferences in Software Engineering, Software
Maintainability, and Software Metrics mentioned in Section 3.5.2.

An invitation was sent to them explaining the goal of the questionnaire application, and
also, a login/password for accessing the portal’s restricted area to answer the questionnaire.
Seven authors did not answer the questionnaire claiming that although they have published
papers about the software maintainability metrics, they did not consider themselves as experts
in this topic. In those situations, they sent us an email justifying their position. On the other
hand, other researchers, besides answering the questionnaire, gave us a feedback about our
research. Researchers such as, Chris Francis Kemerer, who proposed the well-known CK
metrics (CHIDAMBER; KEMERER, 1994), sent us emails evaluating positively our research.

Out of 130 invitations sent, just 47 (36.15%) people answered it. The questionnaire was
available online during one month (12/06/13 to 01/06/14). We believe that the low number of
answers may have been caused by the work holidays that occur during this period. Therefore,
researchers and practitioners did not get the invitation email. This number can change in the
future if new researchers answer the questionnaire. The following sections show and discuss the
results of the evaluation of the proposed approach.

4.4.1 Respondents’ Profile Assessment

The first part of the questionnaire was related to the respondent profile. Figures 4.4 and
4.5 show the profile results. The majority of the respondents are from academic environment.
This result is expected since authors of conference proceedings papers, which in most of cases are
academic researchers, composed the list of potentially respondents. The industrial respondents
that answered the questionnaire were researchers/practitioners of companies that has some how
employees dedicated to software research.

It is possible to observe through Table 4.11 and Figure 4.6 where the respondents came
from. The majority of the respondents are from the United States of America. Another issue

71 4.4. RESULTS OF THE APPROACH EVALUATION

Figure 4.4 Results of the Questionnaire Respondents’ Profile - Environment.

Figure 4.5 Results of the Questionnaire Respondents’ Profile - Position.

to point out is the diversity of countries involved in the quasi-experiment. Overall, researchers
and practitioners from 15 countries responded our survey. In addition, the majority of them are
working in universities. This corroborates with the previous results about the work environment
of the respondents. Once again, this result is expected since the source used to compose the
respondents’ database is directly related to academic research scenario: conference papers.

4.4.2 Respondents’ Expertise

The second part of the questionnaire was about the respondents’ expertise in software
maintainability and software metrics. For measuring the expertise, three levels were adopted:
Low Level (0-6 months), Medium Level (> 6 months - 2 years), and High Level (> 2 years).
Surprisingly, all questionnaire participants informed that they have the ’Low Level’ expertise in
software maintainability. Maybe these results stemmed from the respondents not focusing their
research on software maintainability as an isolated topic. On the other hand, Figure 4.7 depicts
the respondent’s expertise in software metrics. It is possible to observe that the majority of the

72 4.4. RESULTS OF THE APPROACH EVALUATION

Table 4.11 Questionnaire’s Respondents Affiliation

Affiliation Name # Occurrences
University of Lille-1 4

Delft University of Technology 2
Eindhoven University of Technology 2

Ecole Polytechnique de Montreal 2
Federal University of Rio Grande do Norte 2

Newcastle University 2
Ozyegin University 2

Southeast University 2
Universidad Politecnica de Madrid 2

University of Pittsburgh 2
Wayne State University 2

Carleton University 1
Federal University of Pernambuco 1

Fraunhofer IESE 1
Gdansk University of Technology 1
Technische Universitat Munchen 1

Keele University 1
Lero Research Centre 1
Microsoft Corporation 1

North Carolina State University 1
Universita’ degli Studi dell’Insubria 1

University of Cagliari 1
University of Illinois 1

University of Maryland 1
University of Nebraska 1

University of Passau 1
University of Quebec 1
University of Tartu 1

Federal University of Bahia 1
PUC-Rio 1

CEFET-MG 1
University of Auckland 1

Visa, Inc. 1
Yale University 1

Figure 4.6 Results of the Questionnaire Respondents’ Profile - Countries.

respondents consider themselves to be experts in software metrics.

73 4.4. RESULTS OF THE APPROACH EVALUATION

Figure 4.7 Results of the Questionnaire Respondents Expertise in Software Metrics.

4.4.3 Metrics Assessment

Each respondents presented a list of metrics that they consider to be appropriate to
assess OOSM. They had to insert the metrics’ name, and a brief description. Considering the
47 respondents, 204 metrics were suggested. An important observation is that out of the 204
metrics suggested by the experts, just 25 metrics did not exist in the portal’s database. In other
words, the set of metrics we identified covered more than 87% of all the metrics suggested by
the respondents).

Table 4.12 shows these metrics. It is important to emphasize that the metrics’ descriptions
presented in Table 4.12 were suggested by the respondents. The first column contains the metrics’
name, and the second column represents the metrics’ descriptions inserted by the respondents. It
is important to highlight that the metrics’ descriptions shown here are the descriptions proposed
by the respondents. Some of them are not in the portal’s database because the collection of
metrics information occurred until July 2011. Some of them may have been published after this
date. In addition, some of these metrics may have appeared in studies that were excluded from
our mapping study due to one of the previously presented exclusion criteria (Section 3.1.3).

Complementarily, there were also metrics that exist in the portal’s database that were
never suggested by the portal. Table 4.13 shows these cases. It occurred because the respondent
fit some metrics in categories that do not match with our database information. For example, the
CBO! (CBO!) metric is classified as a ’Coupling’ category in the portal’s database. However, if
the respondent inserted the ’CBO’ metric, and chose any category other than ’Coupling’, the
portal will never suggest ’CBO’. The occurrences of these cases exposed in Table 4.13 shows
once again the non-standardization of metrics’ naming and adoption, where some of researchers
classify a metric as ’Coupling Metric’, and others classify the same metric as ’Size Metric’.

4.4.4 Categories Assessment

The fourth part of the questionnaire was the categories suggested by the respondents.
They inserted metrics they considered appropriate in software maintainability assessment, and

74 4.4. RESULTS OF THE APPROACH EVALUATION

Table 4.12 Metrics Suggested by Experts that Do not Exist in Portal’s Database

Metric’s Name Description
Atomic Changes Atomic Changes
MBD Maximum Block Depth
Branch_coverage Testing coverage criteria that evaluates the percentage of branches covered by a

regression testing suite
Line_coverage Testing coverage criteria that evaluates the percentage of lines of code covered

by a regression testing suite
IND In Degree of a Class
Moose Similar to C&K
FL File length in LOC
Object Coupling Chidamber
Defects Number of defects found and fixed historically
Change Effort Historic average effort to change code
Comment Density %age of code devoted to comments
Testing Coverage how much the code was tested
CBY Commits by year
SOF Size of Functions
BRL Bug report / Location
Unit Size risk profile A quadruple of percentage of code in a certain category (in this case based on

method length)
Unit Complexity Risk Profile A quadruple of percentage of code in a certain category (in this case based on

McCabe)
Percentage of Duplicated Lines To measure duplication
ATFD Access to Foreign Data
NPF Number of public fields
#owners #people making changes
churn amount of change in past
#changes #previous changes to code
commentability quality/correctness of comments in code
#previous bugs #previous bugs

chose categories/subcategories that match with metrics previously inserted. Then, Table 4.14
shows how many times each category/subcategory was selected. The first column indicates the
name of the category and the second column represents the number of occurrences, i.e., how
many times that category was chosen.

Table 4.14 allows us to infer what specialists take into account when software main-
tainability metrics have to be chosen. It is important to highlight that all of the categories
we proposed were selected by the questionnaire’ participants. This result suggests that the
categories/subcategories proposed in this work have the potential to help researchers in the
decision-making process about which metrics can be adopted in their evaluations. Additionally,
Table 4.15 depicts in detail the categories suggested by the respondents.

4.4.5 Assessment of the Catalogs’ Coverage

This section presents a discussion about the catalogs’ coverage of the metrics’ catalogs
generated using our approach over the catalogs suggested by the experts interviewed. As
mentioned before, the experts had the opportunity to suggest metrics’ catalogs to evaluate
software maintainability when responding to the online questionnaire. Therefore, it was possible
to check the coverage of catalogs generated using our approach when compared to the ones
suggested by the respondents.

75 4.4. RESULTS OF THE APPROACH EVALUATION

Table 4.13 Metrics Suggested by Experts with Inconsistencies in Categorization

Metric’s Name Description
AC Architecture Compliance
ACHS Average Cohesion of a System
ACPS Average Coupling of a System
C Coupling
C3 Cohesion Metric
CAS Class Attribute Size
CBO Coupling between Objects
CC Clone Coverage
CDC Concern Diffusion over Component
CHNL Class Hierarchy nesting level
COH Cohesion
COU Coupling
CR Comment ratio
DIT Depth of Inheritance Tree
Fan-in Number of in-calls
Fan-out Number of out-calls
LCOM Lack of Cohesion in Methods
LCOO Lack of Cohesion
LOC Lines of Code
NAC Number of Active Contributors
ND Nesting Dept
NOA Number of attributes
NOC Number of children (NOC)
NoD Number of Dependencies
NOT Number of types
NP Number of parameters per method
RFC Response For a Class
SLOC LOC without lines contained in comments
TC Testing Coverage
WMC Weighted Methods per Class

Figure 4.8 Catalogs’ Covering.

The main idea is that the decision-making process about the metrics choice that can be
adopted in OOSM evaluation can be facilitated using the proposed approach. It is important
to highlight that our targets are researchers who do not have experience in software metrics
adoption. However, the experts can also use the catalogs generated with our approach to improve
their expertise in this scenario. Figure 4.8 shows the results of the catalogs’ coverage obtained
through the questionnaire answers. It is possible to observe that in the majority of the cases,
the catalogs’ coverage is at least of 90%. This suggests that when a non-expert researcher uses
the catalogs generated by our approach proposed here, the OOSM metrics catalog will closely

76 4.4. RESULTS OF THE APPROACH EVALUATION

Table 4.14 All Categories Suggested

Category # Occurrences
Coupling 32
Academic 31

Tools Support 27
Complexity 26

Changeability 26
Industrial 26

Open Source 27
Size 27

Evaluated 22
Proprietary 18
Cohesion 18
Validated 15

Inheritance 16
Stability 16

Testability 14
Analyzability 14

Architecture Constraint 9

Table 4.15 Categories Suggested by Experts - In Detail

Category Subcategory # Occurrences

Environment Academic 31
Industrial 26

Internal Attribute

Coupling 32
Complexity 26
Size 27
Cohesion 18
Inheritance 16
Architecture Constraint 9

External Attribute

Changeability 26
Stability 16
Testability 14
Analyzability 14

License Type Open Source 27
Property 18

Assessment Evaluated 22
Validates 15

Tool Support - 27

resemble one suggested by an expert.
A CI! (CI!) was defined for each catalog generated during the quasi-experiment (NIE;

KAMBHAMPATI, 2004). The CI definition is detailed in Section 3.5.2. Table 4.16 shows the
CIs of the 47 catalogs generated using our approach. The first columns indicate the number
of the catalog, and the subsequent columns represent the CIs. In addition, Table 4.17 depicts
the number of metrics suggested by the experts and suggested by the portal. The first column
represents the questionnaire participant identification, the second and the third columns represent
the number of metrics suggested by the experts and by the portal, respectively. The fourth
column indicated the coverage percentage, and the last column informs the percentage of the
total metrics (568) suggested by the portal. Based on the CIs of the various catalogs, it was
possible to formulate the following hypotheses:

H0: CI < 0.9 of #(Yi). In other words, the catalog generated using our approach has less

77 4.4. RESULTS OF THE APPROACH EVALUATION

Table 4.16 Catalogs’ CIs.

#Catalog CI #Catalog CI #Catalog CI #Catalog CI #Catalog CI
1 1 11 1 21 0.5 31 1 41 1
2 1 12 0.99 22 0.95 32 1 42 0.85
3 1 13 0.92 23 1 33 1 43 0.90
4 1 14 1 24 1 34 1 44 0.8
5 1 15 1 25 0.69 35 1 45 1
6 1 16 1 26 1 36 1 46 0.75
7 1 17 1 27 0.84 37 1 47 1
8 1 18 1 28 0.78 38 1
9 0.66 19 1 29 1 39 1

10 0.6 20 1 30 0.83 40 1

Figure 4.9 CIs Histogram.

than 90% of coverage over catalogs proposed by experts.
H1: CI >= 0.9 of #(Yi). In other words the catalog generated using our approach has at

least 90% of coverage over catalogs proposed by experts.
It is important to remember that Yi is the metrics catalog generated by the researcher i

expertise. Analyzing the data histogram depicted in Figure 4.9, it is possible to observe a data
asymmetry. Consequently, a non-parametric test was applied to assess the data set (WILCOX,
2004). Specifically, the Wilcoxon Test for one-sample was used, and the Z-Test was adopted as
the statistic of the test.

For these cases, we should reject the H0 hypothesis if Z0 > Za (WILCOX, 2004). For
this assessment, we used a 99% confidence level (CL). It is the probability that a confidence
interval captures the true population parameter given a distribution of samples (WILCOX, 2004).

The values of Za are obtained through the Z Table. It is a mathematical table used to find
the probability of a statistic. Considering 99% of CL, Za is equal to 2.33 (obtained through the
Z Table). Consequently, the Z0 obtained was 5.23. The statistic of the test says that we should
reject the H0 hypothesis if Z0 > Za (WILCOX, 2004). Consequently, we reject H0. This result
indicates that the generated catalogs cover the catalogs suggested by experts in at least 90%.

It is important to highlight that the population was not sampled. Consequently, the

78 4.5. ANSWERS OF THE THESIS’S RQS

conclusion of the quasi-experiment is based on the observed data. In our case the observational
data was the 47 catalogs suggested by the experts and generated using our approach. Nevertheless,
even with the unknown population, it is possible to study some population characteristics through
the observed data. For this quasi-experiment, characteristics such as expertise in software metrics,
and professional profile defined the type of population. Thus, the results assessment is valid for
the observational data.

4.5 Answers of the Thesis’s RQs

This section is dedicated to answer the Research Questions (RQs) raised by the Ph.D.
research. We considered that the lack of useful information about OOSM metrics that support the
decision-making process about which ones can be adopted in OOSM evaluations is a research
problem. Hereafter, the RQs are exposed and discussed:

• RQ1: What metrics were adopted to assess software maintainability in OOSD? The
goal of this question was to map all information about software maintainability metrics.
The answer of this question is presented in Section 4.2, where a large number of metrics
that address this software characteristic is presented. Considering this context, it is clear
that the decision-making process about metrics’ adoption is a hard task.

• RQ2: What OOSM metrics are most widely adopted? This question was proposed
because 568 OOSM metrics came up after we performed the systematic mapping study. It
is infeasible to adopt this large number of metrics in a software maintainability assessment.
Consequently, organizing and listing the most adopted metrics can facilitate the process of
choosing the metrics, since it allows presenting a subset of the 568 metrics to researchers.
This organization is represented by the categories ’Most Relevant’ and ’Most Mentioned’
previously described and discussed.

Table 4.18 depicts a catalog with the top of 12 metrics most often used metrics in the
academia environment. The first column indicates the metric’s name, and the second
column shows a brief metric’s description. Finally, the number of times the metric
appeared in the papers is presented in the last column. It is important to highlight that we
considered the 138 primary studies selected in the systematic mapping to rank the metrics
through the number of times that they appeared in these primary studies.

Nevertheless, we also classified hierarchically these studies according to the number of
citations, using Google Scholar. After that, we extracted the metrics contained in those
studies. The metrics selected by this process ended up being the same metrics shown in
Table 4.18.

• RQ3: How to organize information about OOSM metrics to support the decision-
making process in the scenario of metrics adoption? Analyzing the scenarios of met-

79 4.6. LIMITATIONS AND THREATS TO VALIDITY

rics’ adoption, some features seem to be good indicators of adoption, e.g., tool support,
metrics validation, external attributes related to maintainability, and so on. It is clear that
the number of citation of a metric in academic papers can also be an indicator of metrics
adoption. However, other ways should be take into account to build a useful OOSM
metrics catalog. According to the researcher evaluation scenario, it is possible to pick a
metric’s catalog up to be adopted.

In this context, the categories and subcategories shown in Section 4.2.3 are the base of
this approach. The categories were extracted through the metrics’ descriptions found
in the primary studies selected in the systematic mapping study. They can be used as
references of the metrics’ features the researchers want to observe for measuring software
maintainability. Other facilities, such as tool support and metric’s validation, can also be
decisive for the metrics catalog building process. Some metrics were clearly proposed and
never adopted again by other researchers because of the lack of information about their
use.

However, the representation of the metric’ evaluation scenario by the categories can in-
crease the knowledge about this kind of metrics and make it easier to effectively adopt them.
Therefore, we believe that the categories and subcategories mentioned in Section 4.2.3
answer this question.

4.6 Limitations and Threats to Validity

It is known that threats to validity can influence or limit the interpretation of the research
conclusions (PERRY; PORTER; VOTTA, 2000). Therefore, this section discusses the threats
that can interfere in the research results. Next, the internal, external, construct, and conclusion
validities are presented.

Internal Validity is related to the bias that can occur when the hypothesis captures the
objectives and the generalizability of the findings (PERRY; PORTER; VOTTA, 2000). Generally
it is related to the error occurred during the research instrumentation choices. Thus, the choice of
July of 2011 as the limit date of published studies that address OOSM metrics can be considered
a threat to internal validity. Other metrics may have been proposed after this date and not selected
by us. However, the limitation of a date to collect primary studies during a Systematic Mapping
Study (SMS) is a necessary task.

Another threat to internal validity was the choice of the exclusion criteria of the primary
studies during the SMS. Those criteria may have excluded important studies related to OOSM.
Specifically, the exigency of the metric’s description in the primary study as exclusion criterion
can have excluded important studies. Studies that did not present descriptions for the metrics and
instead pointed to other papers were disregarded. An in-depth analysis of the studies selected
after the 1st round could help to reduce this threat to validity.

80 4.6. LIMITATIONS AND THREATS TO VALIDITY

The last threat to internal validity identified was the subjectivity used to assess in the
metrics’ naming inconsistencies. First of all, we identified some metrics with different names but
same meanings. However, the semantics of each one of the metrics was not evaluated. Because
of the amount of information about this kind of metrics, we just assessed the metrics’ names
and their descriptions and it is possible to find other kind of inconsistencies in OOSM metrics
adoption.

We have identified two threats to the external validity of our results. First, the number of
questionnaire’s respondents cannot represent the whole community of researchers and practition-
ers that deal with OOSM. Just 47 people answered the questionnaire. However, among these
respondents there are some researchers with high level of expertise in metrics. Another issue to
point out as a threat to external validity is the low level of expertise in software maintainability
informed by the quasi-experiment’s participants. With this scenario, it is possible that we cannot
generalize a positive evaluation of the OOSM metrics’ catalogs generation, since researchers who
consider themselves to be experts in OOSM might have answered the questionnaire differently.

We proposed a number of categories to represent the context of the application of OOSM
metrics. Nevertheless, it is possible that some categories do not express the typical scenario
of OOSM metrics adoption. Moreover, other categories could be identified to represent other
contexts of the adoption of this kind of metrics. Since construct validity is related to the choice
of the right measure to be used in a study, we can conclude that the metrics’ categorization
proposed is also a threat to validity.

Another threat to construct validity was the use of the number of times that a metric
appears in a paper to rank it. We assumed that the more relevant metrics were mentioned by the
highest number of papers. It is important to highlight that we considered only the 138 primary
studies selected in the SMS. Nevertheless, maybe a more expressive OOSM metric was ranked
in a low level of this ranking because is not known and other researchers did not employ it.

Considering the statistics adopted for the research evaluation, the hypotheses tests used
to assess the OOSM metrics catalogs’ generation could be insufficient to infer that this approach
is valid to facilitate the decision-making process about the metrics choice in software evaluations.

Conclusion validity is the ability to reach a correct conclusion about the collected data,
the employed statistical test, and the reliability of the measures (PERRY; PORTER; VOTTA,
2000). A threat to conclusion validity identified in this study was the high number of metrics
that compose the catalogs generated by the portal. We know that this is a study that tries to
gather all information about metrics, and that there are many ambiguities and inconsistencies in
OOSM metrics adoption. The actual scenario of OOSM metrics’ adoption can cause redundancy
and consequent increasing the number of metrics proposed for the measure the same software
attribute. Consequently, a decision support system should be developed to make more efficient
the decision-making process about which metrics to adopt in OOSM evaluation.

81 4.6. LIMITATIONS AND THREATS TO VALIDITY

Table 4.17 Metrics Scenario (Expert Suggestion x Portal Suggestion).

Participant_ID #Metrics
(Expert
Suggestion)

#Metrics
(Portal
Suggestion)

Coverage % % of portal metrics x total (568 metrics)

124 8 343 100.00 60.39
78 2 340 100.00 59.86
75 7 250 100.00 44.01
121 4 237 99.58 41.73
162 7 203 100.00 35.74
175 2 158 100.00 27.82
153 10 133 100.00 23.42
91 9 80 100.00 14.08
79 17 53 100.00 9.33
97 6 34 100.00 5.99
127 13 34 100.00 5.99
81 10 29 100.00 5.11
151 4 26 100.00 4.58
94 5 23 100.00 4.05
131 8 22 100.00 3.87
139 11 22 100.00 3.87
111 5 21 90.48 3.70
71 9 20 100.00 3.52
82 10 20 85.00 3.52
84 9 20 100.00 3.52
88 4 20 95.00 3.52
128 7 20 100.00 3.52
74 6 19 100.00 3.35
145 8 19 84.21 3.35
180 4 19 100.00 3.35
59 6 18 100.00 3.17
95 6 18 100.00 3.17
147 9 18 100.00 3.17
62 1 17 100.00 2.99
135 9 17 100.00 2.99
192 7 16 75.00 2.82
53 8 15 100.00 2.64
73 4 15 100.00 2.64
145 5 15 80.00 2.64
114 5 14 92.86 2.46
179 7 14 78.57 2.46
112 7 13 100.00 2.29
138 5 13 69.23 2.29
72 8 12 100.00 2.11
110 7 12 100.00 2.11
125 3 6 100.00 1.06
191 4 6 83.33 1.06
83 3 5 60.00 0.88
189 2 5 100.00 0.88
87 3 3 66.67 0.53
120 1 3 100.00 0.53
117 5 2 50.00 0.35

82 4.6. LIMITATIONS AND THREATS TO VALIDITY

Table 4.18 Top of 12 Metrics More Used

Metric Description # Occurrences
CBO Coupling Between Objects Classes 43
DIT Depth of Inheritance Tree 39

LCOM Lack of Cohesion in Methods 39
NOC Number of Children of a Class 39
RFC Response For a Class 36

WMC Weighted Methods Per Class 33
LOC Lines of Code 25
MPC Message Passing Coupling 17
CC Class Coupling 16

DAC Data Abstraction Coupling 14
TCC Tight Class Cohesion 13
LCC Loose Class Cohesion 10

838383

5
Related Works

This chapter presents a relationship between the thesis’s contributions and the state
of-the-art published in the literature about Object-Oriented Software Maintainability (OOSM)
metrics. There are a lot of works related to software maintainability, addressing specifically
how to measure the maintainability. Riaz et al. conducted a systematic review of software
maintainability prediction and metrics (RIAZ; MENDES; TEMPERO, 2009). The evidence
was gathered from the selected studies against a set of meaningful and focused questions. Their
results suggested that there was little evidence on the effectiveness of software maintainability
prediction techniques and models. Additionally, they showed that maintainability, as understood
in the context of software systems, was in conformance with the definition provided by IEEE
(The Institute of Electrical and Eletronics Engineers, 1990).

In addition, they point out that the commonly used maintainability prediction models
were based on algorithmic techniques and there was no distinction of which models should be
applied to which maintainability sub-characteristic or maintenance type. The most commonly
used predictors were those based on size, complexity and coupling, and gathered at source
code level. The use of prediction techniques and models, as well as measures accuracy and
cross-validation methods was found scarce for validating maintainability prediction models. And
more, they found that the most commonly used maintainability metric employed an ordinal scale
and was based on expert judgment (RIAZ; MENDES; TEMPERO, 2009).

Another study that collected information about software maintainability metrics was
conducted by Kitchenham (KITCHENHAM, 2009). She observed that there are too many papers
describing software metrics. This hinders the assessment of the current status of metrics’ research.
This study confirms that there is a large body of research related to software metrics, and she
suggested that researchers might need to refine their empirical methodology before trying to
answer useful empirical questions.

Indeed, our study’ results corroborate with their results. A systematic mapping study
was performed and 568 OOSM metrics were found. In addition, 138 papers addressing OOSM
metrics were selected, since 1992 to 2011, while Kitchenham listed 75 papers from 2000 to
2005. The OOSM metrics were related to size, complexity, and coupling, as Riaz et al. said.

84

Table 5.1 Metrics from Canfora et al. Study (CANFORA et al., 2005)

Name Description
NA Number of activities of the software process model
NWP Number of work products of the software process model
NDWPIn Number of input dependences of the work products with the activities in the process
NDW-POut Number of output dependences of the work products with the activities in the process
NDWP Number of dependences between work products and activities NDWP(PM) = NDW-

PIn(MP) + NDWPOut(MP)
NDA Number of precedence dependences between activities)

However, other internal attributes such as cohesion, inheritance, and architecture constraint were
also found in our study. Although their work had analyzed the software maintainability metrics,
it is important to highlight that they did not focus in a specific paradigm as our work, which is
focused on object-oriented software maintainability metrics.

Nowadays, software systems are complex and an efficient measurement of software
quality is necessary. Consequently, the adoption of metrics to measure their quality is part
to the development process. However, the lack of standard formalism for defining software
metrics has led to ambiguity in their definitions, hampering their applicability, comparison, and
implementation.

Considering the importance of software maintenance in academic and industrial scenarios,
a way to measure the level of maintainability is using software metrics (BESZEDES et al., 2007;
OLIVEIRA et al., 2008; MINGGUANG et al., 2009; KULKARNI; KALSHETTY; G.ARDE,
2010; REVELLE; GETHERS; POSHYVANYK, 2011; ABDI; LOUNIS; SAHRAOUI, 2006;
ALSHAMMARI; FIDGE; CORNEY, 2010; SARAIVA; SOARES; CASTOR, 2010). Then,
there are lots of studies that adhere to this issue. One of those is the Haynes et al. work, where
they derived a model for estimating adaptive software maintenance effort in person/hours, the
Adaptive Maintenance Effort Model (AMEffMo) (HAYES; PATEL; ZHAO, 2004). With this
estimation, they proposed a method for estimating the effort to perform adaptive maintenance
based on the estimated number of lines of code to be changed and/or the number of operators to
be changed.

At the same time, it is known that the management of software processes is largely
recognized as a key factor for improving both the productivity of an organization and the quality
of the software delivered. Then, Canfora et al. introduced a set of metrics for software process
models and discussed how these can be used as maintainability indicators (CANFORA et al.,
2005). They also reported the results of a family of experiments that assess relationships between
the structural properties, as measured by the defined metrics, of the process models and their
maintainability. Considering their proposal of empirically evaluating a set of representative
metrics to evaluate the maintainability of descriptive Software Process Model (SPM) they
concluded that the following set of metrics (shown in Table 5.1) are good maintainability
indicators.

85

Figure 5.1 Maintainability Index Calculation Form (HEITLAGER; KUIPERS; VISSER, 2007).

Then, Mattsson et al. emphasized the lack of commonly definition of maintainability
models (KAJKO-MATTSSON et al., 2006"). They listed ideas for a maintainability model
providing an initial milestone for ample discussion in software engineering community. They
believed that the maintainability domain is too wide to be done by individual researchers or
groups, consequently, this topic requires a combined academic and industrial mobilization and
word-wide level effort (KAJKO-MATTSSON et al., 2006").

As a software characteristic, the maintainability can be measured in three different ways
(SPINELLIS, 2006): (i) We can check out the system maintainability over time to see how
well we are battling code entropy, the natural tendency of our system design to disintegrate
as it evolves; (ii) We can compare different systems performing the same task to judge which
one is most maintainable; and (ii) We can evaluate parts of a system to see which parts appear
less maintainable and could therefore be a source of maintenance problems. These parts could
also become refactoring targets. So, these parts of a system are the pieces of code that can
impact in cost during the maintenance activity. In the case of OOSD, attributes, methods, classes,
interfaces, packages, and so on will be also analyzed to check the software maintainability level.

Considering the concern about software maintainability previously mentioned, Heitlager
et al. proposed a study discussing the MI! (MI!), which calculates a single number that express
the system maintainability (HEITLAGER; KUIPERS; VISSER, 2007). The higher the MI,
the more maintainable a system is deemed to be. The MI is a composite number, based on
several different metrics for a software system: HV! (HV!), Class Complexity (CC), the average
number of lines of code per module (LOC), and optionally the percentage of COM! (COM!).
It is important to highlight that Halstead Volume, in turn, is a composite metric based on the
number of (distinct) operators and operands in source code. The complete fitting function is
depicted in Figure 5.1.

They indicated and discussed several problems with the MI, and identified a number of
requirements to be fulfilled by a maintainability model to be used in practice. In addition, they
argued that a well-chosen selection measures and guidelines for aggregating and rating them
can provide a useful bridge between source code metrics and the ISO 9126, which standardized
software product quality. It is important to highlight that, for our research we are using the
SQuARE standard, which substituted the ISO 9126, for software maintainability definition.

Focusing on the same scenario, Serban et al. proposed a conceptual framework for
defining metrics for component-based systems (SERBAN; VESCAN; POP, 2010). The proposed
approach defines a metamodel of the corresponding context where metrics are applied. The use
of algebraic sets and relations allows us to formally define metrics, thus providing clear and
precise definitions. As result, the main advantages of their framework are simplicity, clarity,

86

and scalability, where new entities can be added or new properties for the existing entities, for
example, new properties for components.

Observing the studies aforementioned, and the list of OOSM metrics found, it is possible
to note that lot of researchers proposed new metrics without know the actual world of already
proposed/adopted metrics in this context. In consequence of this, lots of metrics’ naming
inconsistencies were found in our study. For the first scenario, there are metrics with the same
names and different meanings, and for the second scenario, there are metrics with the different
names and same meanings. We identified all the cases for the two scenarios and we believe that
with this inconsistencies’ identification, the number of new metrics proposals can decrease and
the validation of the already existent metrics can be improved.

The research done during this Ph.D. did not proposed new metrics, however, a metrics’
categorization was proposed to make easier the decision-make process about which metrics can
be adopted in OOSM evaluations. The categories were proposed based on the description of the
scenarios where the metrics were applied. These definitions were obtained through the papers
selected on the systematic mapping studies. Internal and external software’s attributes, tools
support, static and dynamic characteristics, and others issues are contemplated in this categoriza-
tion. We believe that with the research context definition, the process of metrics selection will be
quicker. In addition, with the OOSM Metrics’ portal available, other researchers can collaborate
with the project and since they can check all the metrics (and their descriptions/categorization)
already proposed. Consequently, they will not propose new metrics with naming inconsistencies.

Other researchers have proposed metrics’ catalogs. For example, Chidamber et al.
(CHIDAMBER; KEMERER, 1994) developed a suite where they propose new metrics to assess
OO design. This particular work also focuses on the improvements the adoption of software
metrics can bring to existing processes, which by that time was a motivating factor for adopting
software metrics in general.

In a similar fashion, Sant’anna et al. (SANTANNA et al., 2003) proposed an assessment
framework tailored to measure reusability and maintainability of aspect-oriented software. In
addition, the framework defines a quality model, which establishes the relationships between the
external attributes, internal attributes, and the metrics. Another work (SULTAN; EN-NOUAARY;
HAMOU-LHADJ, 2008) presents a new set of metrics proposed using the goal/question/metric
method for building secure software systems. Software engineers might use these metrics in
combination with other techniques to detect security risks and prevent these risks from becoming
reality. Despite defining a catalog of metrics, these studies did not looked at the literature in
a wider and rigorous sense as we did as a step to build the metrics catalogs, considering for
example, the context of the OOSM evaluation.

On the other hand, considering the measurement and the development of metrics as
a key research area in software engineering, Vaishnavi et al. proposed a generic framework
has not emerged for structuring work on object-oriented (OO) metrics (VAISHNAVI; PURAO;
LIEGLE, 2007). They believe that the framework allows researchers to examine new metrics

87

for their compliance with the framework. Since the framework is built on a sound theoretical
basis and has been validated with the existing metrics, conformance to the framework should
add considerable weight to new metrics.

So, the different inferences for the framework can help researchers and practitioners
to automatically generate variations of existing metrics. In other words, unless a seed metric
is used such as LOCm! (LOCm!), the framework cannot generate the logical variations such
as avgLOCm (Average of Lines of Code in a Module). While the framework can be used to
generate a large number of metrics variations, this does not mean that the metrics are indeed
meaningful or useful as predictors. Therefore, the framework did not intend to replace research
related to analyses of individual metrics such as characterizing behaviors of metrics in response
to ranges assumed by input parameters or complexity analyses of existing metrics. Instead,
its use can benefit from assurances of appropriate theoretical foundations for measurement of
internal properties.

The work shown here does not propose a unique metrics’ catalog, as the works afore-
mentioned. With our research it was possible to observe that the best metrics suite for an OOSM
assessment depends on the context of the evaluation. Software Maintainability is related to many
subcharacteristics, and can be evaluated by different internal attributes. Consequently, the choice
of which metrics can be fit in OOSM assessment depends on what the researcher would like
to analyze in software system. Additionally, a metrics’ suite can be determined through the
existence of a tool support that makes easier and quicker the metrics collection.

Facing this reality, we proposed a dynamic catalog generation based on the OOSM
evaluation context. The context is defined by the categories, and the researcher/practitioner can
choose which metrics’ categories characterize their context. As all metrics found in this study
are mapped with the categories, the OOSM Metrics’ Portal provides a family of catalogs. We
believe that the results of this thesis can be the first steps of OOSM metrics standardization,
considering metrics’ naming, proposal, description and evaluation/validation.

Besides our research that is analyzing the adoption of OOSM metrics, other researchers
performed studies related to software metrics applying survey. Ragab and Ammar’s work identi-
fied a limited set of metrics that have significant impact on design quality attributes (RAGAB;
AMMAR, 2010). They adopted the notion of defining design metrics as independent variables
that can be measured to assess their impact on design quality attributes as dependent variables.
In addition, they also presented survey of existing object oriented design metrics tools that can
be used to automate the measurement process. Different from their work where they analyzed
four metrics’ tool, in our study we found 26 tools dedicated to automatic metrics collection. The
focus of our research is not directly related to metrics tools. Nevertheless, as the availability of
tool for metrics collection is one issue to be considered in decision-making process about the
choice of the most appropriated metrics suite, we listed some tools that collect OOSM metrics,
which is another contribution.

888888

6
Concluding Remarks

This chapter presents the concluding remarks obtained after the results assessment. The
conclusions are presented in Section 6.1, and Section 6.2 shows the future works based on the
gaps found in the results.

6.1 Conclusions

Hereafter, the conclusions are described considering the results of this thesis. This work
presented a systematic mapping on object-oriented software maintainability (OOSM) metrics.
The studies selection process used in this systematic mapping was detailed in Chapter 3. Based on
that, other researchers can evaluate the adoption scenario of this kind of metrics, and eventually,
they can reproduce it to validate or refute the results obtained.

It is important to notice that the participation of eight people in this mapping (three MSc
students, three PhD students, and two professors) is an important mechanism to try to reduce
the evaluation bias. This diversity of opinions caused conflicts and discussions about the ideal
studies to be selected as the final result of this mapping study. We also show all the information
about the digital libraries, authors, conferences, and journals that addressed the subject analyzed
in this study.

Out of 5175 papers returned by the queries done at four digital libraries (ACM, IEEE,
Science Direct, EI Compendex) were analyzed, 138 primary studies were selected identifying
a set of 568 OOSM metrics. Observing the publication of the primary studies, EI Compendex
was the most effective digital library used in this systematic mapping study. This happened
because this digital library indexes many other publication databases. METRICS Conference is
the conference that published more papers related to software maintainability metrics. This was
expected since the conference is directly related to the study subject. In addition, TSE - IEEE
Transactions on Software Engineering Journal published the highest number of primary studies
selected (27 occurrences). Interestingly, most of the selected papers just proposed the metrics
instead of use other metrics already proposed. This result was concluded because from the 568
metrics found, just 194 (34.15%) appeared in more than 2 different primary studies. Thus, we

89 6.1. CONCLUSIONS

inferred that very few studies actually used the metrics’ suites previously proposed.
Metrics can be used as indicators in the software assessments, supporting both quantita-

tive and qualitative studies. In our previous research, we were not able to find any other work that
lists such an extensive number of metrics like the current mapping. Analyzing the results, it is
possible to notice that the majority of metrics, almost 84%, addressing software maintainability
were related to software cohesion, coupling, and size.

Analyzing the set of the 568 OO metrics found, some inconsistencies and ambiguities
in metrics naming and definition were identified. For instance, there were some metrics that,
despite having different names, had actually the similar meanings. On the other hand, there
were cases where metrics had the same name but different meanings. Thus, we removed these
inconsistencies and ambiguities and called this process as Metrics Naming Consolidation.

For the first case, we grouped the metrics with different names, according the internal
attributes related to them. After that, based on their adoption, we chosen a metric to be a group
representative. We considered the representative metric the one more cited among the most
cited papers in the group. For the second case, we inform the researcher how many times each
metric with the same name was adopted. This could help researchers in their decision-making
process about their adoption. Indeed, the inconsistencies metrics’ naming points out the lack of
information about the metrics. Probably, some authors proposed new metrics because they did
not know about other existent that could be used in their evaluation. We hope these results can
be used towards a standardization of OOSM metrics’ naming and adoption.

After solving the metrics’ inconsistencies, we analyzed the metrics description and we
have identified some categories for the metrics. We believe that these categories can represent
the context of the metrics’ adoption. Consequently, 17 categories was proposed and they were
discussed in Chapter 4. It is important to highlight that during the quasi-experiment performed,
the respondents chosen categories to represent the context of metrics adoption, and all of the
categories proposed by us were selected. Thus, we believe that the categories/subcategories
proposed in this work can help researchers in the decision-making process about which metrics
can be adopted in their evaluations because they represent the scenario of metrics’ adoption.

After all that was exposed, the lack of information about the OOSM metrics is evident,
and this can cause misunderstanding, inconsistencies, and ambiguity in metrics’ using and
proposal, making difficult the process of choosing the metrics. Thus, a portal containing all
the information obtained during this research was developed (http://julianasaraiva.
info/oosmMetricsPortal). At the portal, the information of this type of metrics is
available to be checked by any researcher. In addition, other researchers can contribute inserting
new data of OOSM metrics through the portal, such as new metrics, new papers that address this
type of metrics, new metrics’ descriptions, new tools that collect them automatically, and so on.

The portal also contains a catalog generator. The metrics’ categories were used as
identifiers of assessment context during the OOSM metrics’ catalog generation. The researcher
can choose which category is relevant for his/her evaluation, and the portal informs a list of

http://julianasaraiva.info/oosmMetricsPortal
http://julianasaraiva.info/oosmMetricsPortal

90 6.1. CONCLUSIONS

metrics that belongs to those categories. The idea of the metrics catalogs generation based on the
context of the adoption’s scenario is to facilitate the metrics choice by researchers with none or
low experience in metrics adoption, by only showing a subset of all metrics available.

A quasi-experiment was conducted to identify evidences about the usefulness of the
catalogs generated by the portal. 47 participants (metrics’ experts) answered the online ques-
tionnaire. They suggested a metrics catalog based on their own experience and after that, they
used the portal to select categories to represent their context of maintainability metrics. Using
these categories, the portal generated OOSM metrics’ catalogs using the approach proposed here.
Assessing the generated catalogs, it was possible to observe that the catalogs generated by the
portal had a coverage of at least 90% over the metrics’ catalogs suggested by the experts base
don their experience. A non-parametric test, Wilcoxon Test, was used to confirm this result.

In addition, the majority of experts that participated in our study (87.2%) answered
that the catalogs generated by the portal are equivalent or better than the metrics’ catalogs they
proposed.

An issue that is important to point out is that renowned researchers, such as, Chris Francis
Kemerer, that proposed very known metrics, the CK metrics (CHIDAMBER; KEMERER, 1994)
was one of the questionnaire participants. He gave us a positive feedback about the research and
about the catalogs generated by the portal.

In addition, all the RQs raised by the thesis’ research were answered, and discussed in
Section 4.5. The specific goals of this PhD thesis were also achieved in the following way:

1. To consistently map information about existing OOSM metrics - Achieved with the
systematic mapping study performance.

2. To disseminate information about OOSM metrics and their applicability - Achieved
with the development of the ’General Information Module’ of the OOSM Metrics Portal
http://julianasaraiva.info/oosmMetricsPortal.

3. To develop tools that support the decision-making process about the adoption of OOSM
metrics - Achieved with the development of the ’Project Information Management Module’
of the OOSM Metrics Portal http://julianasaraiva.info/oosmMetricsPortal.

4. To evaluate the usefulness of the proposed catalog and associated tools - Achieved with
the assessment of the catalogs’ coverage over the catalogs proposed by the experts.

Analyzing the whole scenario of OOSM metrics, the unification and standardization of
the naming and adoption is not an easy task. Nevertheless, we believe that this research can be
the first step to better understand the application of them as indicators in software maintainability
assessments.

http://julianasaraiva.info/oosmMetricsPortal
http://julianasaraiva.info/oosmMetricsPortal

91 6.2. FUTURE WORK

6.2 Future Work

As aforementioned, the systematic mapping study covered studies published until June
of 2011. Consequently, a mapping update can be performed starting from July of 2011 to
check the availability of any new metrics proposed. In addition, other digital libraries not
contemplated in the mapping performed can be used in futures mapping trying to cover the gap
of any non-selected studies.

On the other hand, some studies were disregarded during the selection process in the
mapping study because they did not have the metrics’ description. At the majority of cases of
disregarding, they contained known metrics and a reference for its descriptions. Nevertheless,
since they did not have an explicit description in the study, they were not considered for final
evaluation, according to the mapping protocol. Therefore, a depth assessment of these studies
should be done to check how impactful they are. Additionally, an investigation of why there are a
lot of cases where a certain metric was proposed, was never used/validated by other researchers,
and shall be considered by a future work.

The analysis of other concerns that could have relation with software maintainability
is needed. Only software size, cohesion, complexity, coupling, inheritance, and software
architecture constraints were identified. Considering the OOSM metrics, the inconsistencies
found in metrics naming was solved based on the number of adoption of each metric. However,
number of adoption can be not the unique relevant point to taken into account for it. Sometimes,
powerful metrics are not adopted because they are not known. Thus, other ways to solve the
ambiguity in metrics naming have to be analyzed.

The metrics’ categories proposed in this work were based on the metrics’ descriptions
and scenarios of application of these metrics. However, a depth investigation can be done trying
to find other categories or subcategories for metrics’ classification. The categorization is the
engine of the catalog generation. Consequently, the more diversity is the categorization the better
can be the catalog generation.

An alternative way to facilitate the metrics decision-making process can be the mapping
of each metric to the adoption goal and to the question to be answered of the GQM! (GQM!)
Model. This can also help the inconsistencies in metrics’ naming since the ambiguous metrics
(same names different meanings or different names e same meanings) can be chosen based on
the GQM Model for their adoption. This is another way to execute the Metrics Consolidation.

Even with the automatically catalog generation, depending on the categories chosen,
the number of metrics in the catalogs can still be high. The more categories are chosen the
shorter is the catalog. Nevertheless, other ways to optimize and improve the catalog generation
is demanded. This gap reflected directly in the catalog generation assessment. Researchers with
low experience in software maintainability and/or in software metrics did not see the catalog
generated by the portal efficient because of the number of metrics returned to them. Thus, the
questionnaire has to be applied and answered by other expert researchers to decrease this gap.

92 6.2. FUTURE WORK

Finally, case studies using the metrics suites generated by the approach proposed here have to be
performed. Complementarily to catalogs’ coverage evaluation, the using of these catalogs can be
another evidence to validate our approach.

939393

References

ABDI, M. K.; LOUNIS, H.; SAHRAOUI, H. A. Analyzing Change Impact in Object-Oriented
Systems. In: SEAA’06: PROCEEDINGS OF THE 32ND EUROMICRO CONFERENCE ON
SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS. Anais. . . [S.l.: s.n.], 2006.

ABRAN, A. Software Metrics and Software Metrology. Hoboken: John Wiley & Sons Inc,
2010.

ALMEIDA, A. et al. Mecanismos para Guiar Estudos Empiricos em Engenharia de Software:
um mapeamento sistematico. (in portuguese). In: ESELAW’11: PROCEEDINGS OF THE 8TH
EXPERIMENTAL SOFTWARE ENGINEERING LATIN AMERICA WORKSHOP. Anais. . .
[S.l.: s.n.], 2011.

ALSHAMMARI, B.; FIDGE, C.; CORNEY, D. Assessing The Impact of Refactoring on
Security-Critical Object-Oriented Designs. In: APSEC’10: PROCEEDINGS OF THE ASIA
PACIFIC SOFTWARE ENGINEERING CONFERENCE. Anais. . . [S.l.: s.n.], 2010.

APPLE. Apple Company. 2013.

ARKSEY, H.; O’MALLEY, L. Scoping studies: towards a methodological framework.
International Journal of Social Research Methodology, [S.l.], v.8, n.1, p.19–32, 2005.

BARREIROS, E. et al. A Systematic Mapping Study on Software Engineering Testbeds. In:
ESEM’11: PROCEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON
EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT. Anais. . . [S.l.: s.n.],
2011.

BASILI, V. R. The role of experimentation in software engineering: past, current, and future. In:
ICSE’96: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING, Washington, DC, USA. Anais. . . IEEE Computer Society, 1996.
p.442–449.

BASILI, V. R.; BRIAND, L. C.; MELO, W. L. Using structural and textual information to
capture feature coupling in object-oriented software. Journal of Software Engineering, [S.l.],
v.22, n.10, p.751 – 761, 1996.

BASILI, V. R.; WEISS, D. M. A Methodology for Collecting Valid Software Engineering Data.
IEEE Trans. Software Eng., [S.l.], v.10, n.6, p.728–738, 1984.

BENNETT, K.; RAJLICH, V. Software Maintenance and Evolution: a roadmap. The Future of
Software Engineering, [S.l.], p.73–90, 2000.

BESZEDES, A. et al. The Dynamic Function Coupling Metric and Its Use in Software
Evolution. In: CSMR’07: PROCEEDINGS OF 11TH EUROPEAN CONFERENCE ON
SOFTWARE MAINTENANCE AND REENGINEERING. Anais. . . [S.l.: s.n.], 2007.

BLANCHARD, B.; VERMA, D.; PETERSON, E. Maintainability: a key to effective
serviceability and maintenance management. [S.l.]: Wiley, 1995. (New Dimensions In
Engineering Series).

94 REFERENCES

BOURQUE, P.; DUPUIS, R. (Ed.). Software Engineering Body of Knowledge (SWEBOK).
EUA: Angela Burgess, 2004.

CANFORA, G. et al. A family of experiments to validate metrics for software process models. J.
Syst. Softw., New York, NY, USA, v.77, n.2, p.113–129, Aug. 2005.

CHEN, J.-C.; HUANG, S.-J. An empirical analysis of the impact of software development
problem factors on software maintainability. J. Syst. Softw., New York, NY, USA, v.82, n.6,
p.981–992, June 2009.

CHIDAMBER, S. R.; KEMERER, C. F. A metrics suite for object oriented design. Software
Engineering, IEEE Transactions on, [S.l.], v.20, n.6, p.476 –493, jun 1994.

CINNEIDE, M. et al. Experimental assessment of software metrics using automated refactoring.
In: ACM-IEEE INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE
ENGINEERING AND MEASUREMENT, New York, NY, USA. Proceedings. . . ACM, 2012.
p.49–58. (ESEM ’12).

CIOLKOWSKI, M. et al. Evaluating Software Project Control Centers in Industrial
Environments. In: FIRST INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE
ENGINEERING AND MEASUREMENT, Washington, DC, USA. Proceedings. . . IEEE
Computer Society, 2007. p.314–323. (ESEM ’07).

CODE, G. Google Code Repository. 2013.

CODEFLEX. Microsoft’s free open source project hosting site. 2013.

CONCAS, G. et al. Assessing Traditional and New Metrics for Object-Oriented Systems. In:
WETSOM’10: PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON
EMERGING TRENDS IN SOFTWARE METRICS. Anais. . . [S.l.: s.n.], 2010.

CSIAC. SOFTWARE ACQUISITION GOLD PRACTICE. 2012.

DAVIS, F. D. Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS Q., Minneapolis, MN, USA, v.13, n.3, p.319–340, Sept. 1989.

DHILLON, B. S. Engineering Maintainability: how to design for reliability and easy
maintenance. [S.l.]: Elsevier Science, 1999.

DHILLON, B. S. Maintainability, maintenance, and reliability for engineers. Boca Raton:
CRC - Taylor and Francis, 2006. 1 online resource (217 p.)p. Description based on print format
version record.

EADDY, M. et al. Do Crosscutting Concerns Cause Defects? IEEE Transactions on Software
Engineering, [S.l.], v.34, n.4, p.497–515, july-aug. 2008.

FORGE, S. Source Forge Repository. 2013.

GITHUB. Github Repository. 2013.

GROUP, J. JSP Website. 2013.

GROUP, J. JQuery Website. 2013.

95 REFERENCES

HAN, A.-R. et al. Measuring behavioral dependency for improving change-proneness prediction
in UML-based design models. Journal of Systems and Software, [S.l.], v.83, p.222–234, 2010.

HAYES, J. H.; PATEL, S. C.; ZHAO, L. A Metrics-Based Software Maintenance Effort Model.
In: EIGHTH EUROMICRO WORKING CONFERENCE ON SOFTWARE MAINTENANCE
AND REENGINEERING (CSMR’04), Washington, DC, USA. Proceedings. . . IEEE Computer
Society, 2004. p.254–.

HEITLAGER, I.; KUIPERS, T.; VISSER, J. A Practical Model for Measuring Maintainability.
In: INTERNATIONAL CONFERENCE ON QUALITY OF INFORMATION AND
COMMUNICATIONS TECHNOLOGY, 6., Washington, DC, USA. Proceedings. . . IEEE
Computer Society, 2007. p.30–39. (QUATIC ’07).

HUDLI, R. V.; HOSKINS, C. L.; HUDLI, A. V. Software Metrics for Object-Oriented Designs.
In: ICCD’94: PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON
COMPUTER DESIGN: VLSI IN COMPUTERS AND PROCESSORS. Anais. . . [S.l.: s.n.],
1994.

ISO/IEC, B. S. P. Systems and Software Quality Requirements and Evaluation (SQuaRE)
Models. [S.l.]: ISO/IEC, 2011.

JAVAFORGE. JavaForge Repository. 2013.

JEDLITSCHKA, A.; CIOLKOWSKI, M. ISO/IEC 25020: software product quality
requirements and evaluation. In: AZUMA, M. et al. (Ed.). SQuaRE Measurement reference
model and guide. [S.l.]: ISO/IEC JTC1/SC7/WG6, 2006.

JEDLITSCHKA, A.; CIOLKOWSKI, M. Reporting Experiments in Software Engineering. In:
SHULL, F.; SINGER, J.; SJoBERG, D. (Ed.). Guide to Advanced Empirical Software
Engineering. London: Springer-Verlag, 2008.

JEDLITSCHKA, A. et al. Relevant Information Sources for Successful Technology Transfer: a
survey using inspections as an example. In: FIRST INTERNATIONAL SYMPOSIUM ON
EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT, Washington, DC, USA.
Proceedings. . . IEEE Computer Society, 2007. p.31–40. (ESEM ’07).

JOHN, I.; EISENBARTH, M. A decade of scoping: a survey. In: INTERNATIONAL
SOFTWARE PRODUCT LINE CONFERENCE, 13., Pittsburgh, PA, USA. Proceedings. . .
Carnegie Mellon University, 2009. p.31–40. (SPLC ’09).

JONES, C. Software metrics: good, bad and missing. Computer Journal, [S.l.], v.27, n.9, p.98
– 100, 2010.

Juristo; Moreno. Basics of Software Engineering Experimentation. Norwell, MA, USA:
Kluwer Academic Publishers, 2001.

KAJKO-MATTSSON, M. et al. A Model of Maintainability - Suggestion for Future Research.
In: SOFTWARE ENGINEERING RESEARCH AND PRACTICE. Anais. . . CSREA Press,
2006". p.436–441.

KAN, S. H. Metrics and Models in Software Quality Engineering. Reading, MA: Addison
Wesley, 1995.

96 REFERENCES

KANER, C.; BOND, W. P. Software Engineering Metrics: what do they measure and how do
we know? In: METRICS’04: PROCEEDINGS OF THE 10ND INTERNATIONAL
SOFTWARE METRICS SYMPOSIUM. Anais. . . [S.l.: s.n.], 2004.

KITCHENHAM, B. A. What’s up with software metrics? A preliminary mapping study.
International Journal of System and Software, [S.l.], p.37–51, 2009.

KITCHENHAM, B. A. Scoping studies: towards a methodological framework. Journal of
Systems and Software, [S.l.], v.83, n.1, p.37–51, 2010.

KITCHENHAM, B. Procedures for performing systematic reviews. [S.l.]: Keele University,
2004.

KITCHENHAM, B.; CHARTERS, S. Guidelines for Performing Systematic Literature
Reviews in Software Engineering. [S.l.]: Software Engineering Group, School of Computer
Science and Mathematics, Keele University, 2007.

KULKARNI, U. L.; KALSHETTY, Y. R.; G.ARDE, V. Validation of CK metrics for Object
Oriented Design Measurement. In: ICETET.’10: PROCEEDINGS OF 3RD INTERNATIONAL
CONFERENCE ON EMERGING TRENDS IN ENGINEERING AND TECHNOLOGY.
Anais. . . [S.l.: s.n.], 2010.

LAUKKANEN, E.; MANTYLA, M. Survey Reproduction of Defect Reporting in Industrial
Software Development. In: EMPIRICAL SOFTWARE ENGINEERING AND
MEASUREMENT (ESEM), 2011 INTERNATIONAL SYMPOSIUM ON. Anais. . . [S.l.: s.n.],
2011. p.197 –206.

LAVIERI, T. VRaptor Website. 2013.

LIN, M. Maintainability of Facilities: for building professionals. [S.l.]: World Scientific, 2010.

MANTORO, T. Metrics Evaluation for Context-Aware Computing. In: MOMM’09:
PROCEEDINGS OF 7TH INTERNATIONAL CONFERENCE ON ADVANCES IN MOBILE
COMPUTING AND MULTIMEDIA. Anais. . . [S.l.: s.n.], 2009.

MAYER, T.; HALL, T. A Critical Analysis of Current OO Design Metrics. Software Quality
Journal, [S.l.], v.8, n.2, p.97–110, 1999.

MENEELY, A.; SMITH, B.; WILLIAMS, L. Validating Software Metrics: a spectrum of
philosophies. ACM Transactions on Software Engineering and Methodology (TOSEM),
[S.l.], v.21, n.2, p.24–48, 2012.

MICROSOFT. Microsoft Company. 2013.

MILES, M.; HUBERMAN, A. Qualitative data analysis: a sourcebook of new methods. [S.l.]:
Sage Publications, 1994. (Sage Library of Social Research).

MINGGUANG, Z. et al. The Measurement and Evaluation for Large-scale Object-oriented
Software System. In: HIS.’09: PROCEEDINGS OF 9TH INTERNATIONAL CONFERENCE
ON HYBRID INTELLIGENT SYSTEMS. Anais. . . [S.l.: s.n.], 2009.

NIE, Z.; KAMBHAMPATI, S. In: IIWEB. Anais. . . [S.l.: s.n.], 2004. p.123–128.

97 REFERENCES

O’BRIEN, M. P.; BUCKLEY, J.; EXTON, C. Empirically Studying Software Practitioners "
Bridging the Gap between Theory and Practice. In: IEEE INTERNATIONAL CONFERENCE
ON SOFTWARE MAINTENANCE, 21., Washington, DC, USA. Proceedings. . . IEEE
Computer Society, 2005. p.433–442. (ICSM ’05).

OLIVEIRA, M. et al. Software Quality Metrics and their Impact on Embedded Software. In:
MOMPES’08: PROCEEDINGS OF 5TH INTERNATIONAL WORKSHOP ON
MODEL-BASED METHODOLOGIES FOR PERVASIVE AND EMBEDDED SOFTWARE.
Anais. . . [S.l.: s.n.], 2008.

ORACLE. JPA Oracle Website. 2013.

PERLIS, A.; SAYWARD, F.; SHAW, M. Software Metrics: an analysis and evaluation. [S.l.]:
Mit Press, 1981. (The Mit Press Series in Computer Science).

PERRY, D. E.; PORTER, A. A.; VOTTA, L. G. Empirical Studies of Software Engineering: a
roadmap. In: CONFERENCE ON THE FUTURE OF SOFTWARE ENGINEERING, New York,
NY, USA. Proceedings. . . ACM, 2000. p.345–355. (ICSE ’00).

PETERSEN, K.; WOHLIN, C. Context in industrial software engineering research. In:
EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT, 2009. ESEM 2009. 3RD
INTERNATIONAL SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2009. p.401 –404.

POSTGRESQL. PostgreSQL Website. 2013.

PUNTER, T. et al. Conducting On-line Surveys in Software Engineering. Empirical Software
Engineering, International Symposium on, Los Alamitos, CA, USA, v.0, p.80, 2003.

RAGAB, S. R.; AMMAR, H. H. Object oriented design metrics and tools a survey. In:
INFORMATICS AND SYSTEMS (INFOS), 2010 THE 7TH INTERNATIONAL
CONFERENCE ON. Anais. . . [S.l.: s.n.], 2010. p.1 –7.

REVELLE, M.; GETHERS, M.; POSHYVANYK, D. Using structural and textual information
to capture feature coupling in object-oriented software. Journal of Empirical Software
Engineering, [S.l.], v.16, n.6, p.773–811, 2011.

RIAZ, M.; MENDES, E.; TEMPERO, E. A Systematic Review of Software Maintainability
Prediction and Metrics. In: ESEM’09: PROCEEDINGS OF THE 3RD INTERNATIONAL
SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT.
Anais. . . IEEE Computer Society, 2009.

RODRÍGUEZ, P. et al. Survey on agile and lean usage in finnish software industry. In:
ACM-IEEE INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE
ENGINEERING AND MEASUREMENT, New York, NY, USA. Proceedings. . . [S.l.: s.n.],
2012. p.139–148. (ESEM ’12).

ROMBACH, D. et al. Impact of research on practice in the field of inspections, reviews and
walkthroughs: learning from successful industrial uses. SIGSOFT Softw. Eng. Notes, New
York, NY, USA, v.33, n.6, p.26–35, Oct. 2008.

SANTANNA, C. et al. On the Reuse and Maintenance of Aspect-Oriented Software: an
assessment framework. In: SBES’10: PROCEEDINGS OF THE BRAZILIAN SYMPOSIUM
OF SOFTWARE ENGINEERING. Anais. . . [S.l.: s.n.], 2003.

98 REFERENCES

SARAIVA, J. et al. Aspect-Oriented Software Maintenance Metrics: a systematic mapping study.
In: EASE’12: PROCEEDINGS OF 16TH INTERNATIONAL CONFERENCE ON
EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING. Anais. . . [S.l.: s.n.],
2012.

SARAIVA, J.; SOARES, S.; CASTOR, F. Assessing the Impact of AOSD on Layered Software
Architectures. In: ECSA’10: PROCEEDINGS OF THE 4TH EUROPEAN CONFERENCE ON
SOFTWARE ARCHITECTURE. Anais. . . [S.l.: s.n.], 2010.

SERBAN, C.; VESCAN, A.; POP, H. F. A conceptual framework for component-based system
metrics definition. In: ROEDUNET INTERNATIONAL CONFERENCE (ROEDUNET), 2010
9TH. Anais. . . [S.l.: s.n.], 2010. p.73 –78.

SHADISH, W.; COOK, T.; CAMPBELL, D. Experimental and quasi-experimental designs
for generalized causal inference. [S.l.]: Houghton Mifflin, 2002.

SHANTI. An Empirical Validation of Software Quality Metric Suites on Open Source Software
for Fault-Proneness Prediction in Object Oriented Systems. European Journal of Scientific
Research, [S.l.], v.51, n.2, p.168–181, 2011.

SHEPPERD, M.; INCE, D. A critique of three metrics. Journal of Systems and Software,
[S.l.], v.26, n.3, p.197–210, 1994.

SILLITO, J.; WYNN, E. The social context of software maintenance. In: TWENTY-THIRD
IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE (ICSM).
Proceedings. . . [S.l.: s.n.], 2007. p.325–334.

SILVA, F. et al. Six years of systematic literature reviews in software engineering: an updated
tertiary study. International Journal Information and Software Technology, [S.l.],
p.889–913, 2011.

SIM, S. E.; EASTERBROOK, S.; HOLT, R. C. Using benchmarking to advance research: a
challenge to software engineering. In: INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING, 25., Washington, DC, USA. Proceedings. . . IEEE Computer Society, 2003.
p.74–83. (ICSE’03).

SOMMERVILLE, I. Software Engineering. [S.l.]: Addison-Wesley, 2007. (International
Computer Science Series).

SPINELLIS, D. Code Quality: the open source perspective (effective software development
series). [S.l.]: Addison-Wesley Professional, 2006.

SQA. ISO 9126 Software Quality Characteristics. 2012.

STAPLES, M.; NIAZI, M. Experiences using systematic review guidelines. J. Syst. Softw.,
New York, NY, USA, v.80, n.9, p.1425–1437, Sept. 2007.

SULTAN, K.; EN-NOUAARY, A.; HAMOU-LHADJ, A. Catalog of Metrics for Assessing
Security Risks of Software throughout the Software Development Life Cycle. In:
INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND ASSURANCE.
Anais. . . [S.l.: s.n.], 2008. p.461 –465.

99 REFERENCES

TAIRAS, R. Clone maintenance through analysis and refactoring. In: FOUNDATIONS OF
SOFTWARE ENGINEERING DOCTORAL SYMPOSIUM, 2008., New York, NY, USA.
Proceedings. . . ACM, 2008. p.29–32. (FSEDS ’08).

The conceptual grouping effect: categories matter (and named categories matter more).
Cognition, [S.l.], v.108, n.2, p.566 – 577, 2008.

The Institute of Electrical and Eletronics Engineers. IEEE Standard Glossary of Software
Engineering Terminology. 1990.

TICHY, W. F. Should Computer Scientists Experiment More? Los Alamitos, CA, USA:
IEEE Computer Society, 1997. 32-40p. v.31.

TIGRIS. Tigris Repository. 2013.

TIOBE. Tiobe Website. 2013.

UMARJI, M.; SEAMAN, C. Measuring OO Systems: a critical analysis of the mood metrics. In:
TOOLS’99: PROCEEDINGS OF THE CONFERENCE OF TECHNOLOGY OF
OBJECT-ORIENTED LANGUAGES AND SYSTEMS. Anais. . . [S.l.: s.n.], 1999.

UMARJI, M.; SEAMAN, C. Why do programmers avoid metrics? In: ESEM’08:
PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON EMPIRICAL
SOFTWARE ENGINEERING AND MEASUREMENT. Anais. . . [S.l.: s.n.], 2008.

VAISHNAVI, V. K.; PURAO, S.; LIEGLE, J. Object-oriented product metrics: a generic
framework. Inf. Sci., [S.l.], v.177, n.2, p.587–606, 2007.

VELING, A.; VAN DER WEERD, P. Conceptual Grouping in Word Co-occurrence Networks.
In: INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE -
VOLUME 2, 16., San Francisco, CA, USA. Proceedings. . . Morgan Kaufmann Publishers Inc.,
1999. p.694–699. (IJCAI’99).

WESTFALL, L.; ROAD, C. 12 Steps to Useful Software Metrics. Proceedings of the
Seventeenth Annual Pacific Northwest Software Quality Conference, [S.l.], v.57 Suppl 1,
n.May 2006, p.S40–3, 2005.

WILCOX, R. R. Introduction to Robust Estimation and Hypothesis Testing. 2nd.ed. [S.l.]:
Academic Press, 2004. (Statistical Modeling and Decision Science).

WOHLIN, C. et al. Experimentation in software engineering: an introduction. Norwell, MA,
USA: Kluwer Academic Publishers, 2000.

YAZBEK, H. A concept of quality assurance for metrics in CASE-tools. ACM SIGSOFT
Software Engineering Notes, [S.l.], v.35, n.5, p.1–8, 2010.

ZANNIER, C.; MELNIK, G.; MAURER, F. On the Success of Empirical Studies in the
International Conference on Software Engineering. In: ICSE’06: PROCEEDINGS OF THE
INTERNATIONAL CONFERENCE OF SOFTWARE ENGINEERING, Shanghai, China.
Anais. . . [S.l.: s.n.], 2006.

100100100

Appendix

101101101

A
Publications and Awards

A.1 Awards

• SRC-ICSE 2013. 4th place in Student Research Competition on 35th International Confer-
ence on Software Engineering. San Francisco/CA - USA.

A.2 Publications Directly Related to the Research

• 2014 - Saraiva, J., Soares, S., and Castor, F.; Assessment of a Roadmap for Software Main-
tainability Measurement in Object-Oriented Context. Journal of Systems and Software.
(to be submitted)

• 2013 - Saraiva, J. A. G.; A Roadmap for Software Maintainability Measurement. In: 35th
International Conference on Software Engineering (ICSE’13), 2013, San Francisco - USA
(ACM - SRC).

• 2013 - Saraiva, J., Soares, S., and Castor, F.; Towards a Catalog of Object-Oriented
Software Maintainability Metrics. In: 4th International Workshop on Emerging Trends in
Software Metrics (WeTSOM’13), 2013, San Francisco - USA (Short paper).

• 2012 - Saraiva, J., Barreiros, E., Almeida, A., Lima, F., Alencar, A., Lima, G., Soares, S.,
and Castor, F.; Aspect-Oriented Software Maintenance Metrics: A Systematic Mapping
Study. In: Proceedings of 16th International Conference on Evaluation and Assessment in
Software Engineering (EASE’12), 2012, Ciudad Real - Spain (Full paper).

• 2011 - Saraiva, J., Soares, S., and Castor, F.; A metrics suite to evaluate the impact of
AOSD on Layered Software Architectures. In: Proceedings of the Empirical Evaluation of
Software Composition and Techniques (ESCOT’11), 2011, Lancaster, UK (Full paper).

• 2011 - Saraiva, J., Soares, S., and Castor, F.; Assessing a set of metrics used in a testbed
for Aspect-Oriented Software Maintenance. In: Proceedings of the 10th International

102 A.3. OTHER PUBLICATIONS

Conference on Aspect-Oriented Software Development Companion (AOSD’11), 2011,
Porto de Galinhas - Brasil (POSTER).

A.3 Other Publications

• 2012 - Lima, F.; Filho, A. A.; Barreiros, E.; Saraiva, J. A. G.; Alencar, A.; Lima, G.; Soares,
S.; Métodos, Técnicas e Ferramentas para o Desenvolvimento de Software Educacional:
Um Mapeamento Sistemático (In portuguese). In: Brazilian Symposium of Information
Technology in Education (SBIE’12), 2012, Rio de Janeiro - Brasil (Full paper).

• 2011 - Barreiros, E.; Filho, A. A.; Saraiva, J. A. G.; Soares, S.; A Systematic Mapping
Study on Software Engineering Testbeds. In: 5th International Symposium on Empirical
Software Engineering (ESEM’11), 2011, Alberta - Canada (Full paper).

• 2011 - Almeida, A., Barreiros, E., Saraiva, J., and Soares, S.; Mecanismos para Guiar
Estudos Empiricos em Engenharia de Software: Um Mapeamento Sistematico. (In por-
tuguese). In: Proceedings of the 8th Experimental Software Engineering Latin America
Workshop (ESELAW’11), 2011, Rio de Janeiro - Brasil (Full paper).

• 2011 - Saraiva, J., Soares, S., and Castor, F.; Analyzing Architectural Conformance of
Layered Aspect-Oriented Systems with Arche Meter. In: Proceedings of the 10th Interna-
tional Conference on Aspect-Oriented Software Development Companion (AOSD’11),
2011, Porto de Galinhas - Brasil (Full paper).

• 2011 - Saraiva, J., Soares, S., and Castor, F.; Analyzing Architectural Layering Violations
in Aspect-Oriented Software with ArchE Meter. In: Brazilian Software Conference
(CBSoft’11), 2011, São Paulo - Brasil (Full paper).

• 2010 - Saraiva, J., Soares, S., and Castor, F.; Assessing the Impact of AOP on Layered
Software Architectures. In: 4th European Conference on Software Architecture (ECSA’10),
2010, Copenhagen (Full paper).

103103103

B
Systematic Mapping Protocol

B.1 Background

The focus of this work is building a testbed for Object-Oriented Software Maintainability
(OOSM). This testbed will provide end-to-end systematic comparison of OOSD with mainstream
development approaches. In this context, it is necessary a set of metrics that can be suited to
support this proposed environment (testbed). A lot of researchers use a large numbers of metrics
to measure their target systems adopted in their experiments. Thus, we will conduct a systematic
mapping to study and analyze metrics that can be appropriated to help researchers in their both
qualitative and quantitative OOSM assessments. Thus, it is necessary to summarize all possible
existing information about OOSM metrics in order to draw more general conclusion about this
point. Then, this is the actual necessity of the proposed systematic mapping.

B.2 Review Question

• RQ2: What metrics were adopted to assess software maintainability in OOSD?

B.3 Roles and Responsibilities

Juliana Saraiva and Emanoel Barreiros will read and perform the data extraction from
all studies during the first selection. After that, three pairs of researchers will be composed by
Juliana and Gustavo, Aline and Adauto, Emanoel and Flavio. The pairs will be composed based
on their experience in Systematic Literature Review (SLR). Then, we will match a researcher
that already performed a SLR with another that never did. The studies will be shared between
the pairs, and each member of each pair will read and select the study in conformance with
the inclusion criteria. In sequence, the pairs will reach agreement regarding the subjective
evaluations and primary study selection. The pairs will confront their results, supervised by the
professors Sergio Soares/Fernando Castor. After this phase, all the primary studies that will
compose the result of systematic mapping study will be selected.

104 B.4. SEARCH PROCESS

Table B.1 Documentation

Data Source Documentation

Digital Library Name of database, Search strategy for the database,
Date of search, Years covered by search

Conferences Proceedings
Title of proceedings, Name of conference (if differ-
ent), Title translation (if necessary), Journal name (if
published as part of a journal)

B.4 Search Process

The strategy will be search for primary studies that have to include: search terms and
sources (all digital libraries, specific journals and conference proceedings). The search process
for this study will be based on an automated search of the following digital libraries:

• ACM

• IEEE

• EI Compendex

• Science Direct

B.4.1 Search String

All searches will be based on the full text. For all the sources, a set of simple search
strings will be used and the outcome from each of the searches for each source will be aggregated.
The search string was based on the terms that represent the research context. After its proposal,
the string was analyzed and validated with researchers with more expertise (Sergio Soares and
Fernando Castor). Consequently, the final search string was:

SEARCH STRING: (Software Engineering AND (Aspect Oriented Programming,
OR Maintainability OR Aspect Oriented Software Development OR Crosscutting Concern
OR Maintenance OR Object Oriented Programming OR Object Oriented Development OR
Evolution) AND (Metrics OR Measurement OR Measure)).

B.4.2 Study Documentation

In our research, the search processes and results will be registered as follow:

B.4.3 Study Selection

Once the search string has been fully proposed and tested, Juliana Saraiva will use the
string to search studies in the digital libraries aforementioned. The five steps shown below

105 B.5. PROJECT TIMETABLE

compose the whole process:
Stage 1: The title and abstract of each article from each digital library will be reviewed

against the inclusion criteria by Juliana Saraiva and Emanoel Barreiros, and any papers that are
clearly irrelevant will be excluded.

Stage 2: The lists of studies from each digital library will be collated in a search
documentation, and duplicated references will be removed.

Stage 3: Full copies of all the candidate studies remaining after stage 2 will be reviewed
against the inclusion criteria. To complete Stage 3, Juliana Saraiva will assign each paper to
two members (the pair) of the research team, and each person will decide whether or not to
include the paper. Excluded papers will be marked as either an irrelevant paper. Sergio Soares
will mediate any disagreements about the inclusion of a paper. The members of each pair must
discuss the disagreement until the status of the study be finally solved.

Stage 4: During this stage, each pair will do:

• To associate a unique reference number for each primary study.

• To identify as journal article, a conference paper, book chapter, technical report or other.

B.4.3.1 Inclusion Criteria

After the initial selection, the full versions of each paper will be obtained so that we can
perform a more detailed analysis. The following criteria will be applied in order to include or
exclude the paper from the review. It is important to remember that they might be refined during
the extraction process. The inclusion criteria are:

• It is a real paper, not a power point presentation or extended abstract;

• The paper is not a duplicate;

• The paper is related to software engineering;

• The paper presents a maintainability/evolution metric;

• The paper presents at least one metric related to OO or OA programming.

• The paper contains metrics description or a reference where it is described. We understand
that the metric description is the metric definition, the way that it can collected.

B.5 Project Timetable

The Table B.2 indicates the duration of each phase of the mapping process.

106 B.6. DATA EXTRACTION AND SYNTHESIS

Table B.2 Timetable

Data Duration Phase Duration
30/06/2011 to 30/08/2011 2 months Searching Primary Studies. (1st Round).
31/08/2011 to 30/09/2011 1 month Selection of Papers. (2nd Round).
05/09/2011 to 25/09/2011 20 days Meeting to discuss conflicts.
26/09/2011 to 14/11/2011 1.5 month Data Extraction and Synthesis.
15/11/2011 to 15/12/2011 1 month Organize and Reporting Results.

B.6 Data Extraction and Synthesis

This form should be developed to collect information needed to address the review
questions. Data extraction form needs to be piloted on a sample of primary studies. Our form
will be as the model:

• Reviewers: the name of reviewer that includes this paper on the systematic mapping;

• Date of Data Extraction: informs when the information was extracted;

• Title

• Author(s)

• Journal/Conferences

• Metric(s) presented in the paper

• Metric’s description(s)

• Paradigm(s) Associated

107107107

C
Selected Primary Studies

[SM1] Heung Seok Chae, Yong Rae Know. A Cohesion Measure for Classes in Object-Oriented Systems.
METRICS’98.

[SM3] Letha H. Etzkorna, Sampson E. Gholstonb, Julie L. Fortuneb, Cara E. Steina, Dawn Utleyb, Phillip A.
Farringtonb, Glenn W. Coxa. A Comparison of Cohesion Metrics for Object-Oriented Systems. INFSOF’04.

[SM4] Aaron B. Binkley, Stephen R. Schach. A Comparison of Sixteen Quality Metrics for Object-Oriented
Design. IS’96

[SM7] Hashem Yazbek. A Concept of Quality Assurance for Metrics in CASE Tools. SIGSOFT’10.

[SM8] Camelia Serban. A Conceptual Framework for Object-Oriented Design Assessment. EMS’10.

[SM10] Vu Nguyen, Barry Boehm, Phongphan Danphitsanuphan. A Controlled Experiment in Assessing and
Estimating Software Maintenance Tasks. INFSOF’10.

[SM11] Hironori Washizaki. A Coupling-based Complexity Metric for Remote Component-based Software
Systems Toward Maintainability Estimation. APSEC’06.

[SM13] Youssef Hassoun, Roger Johnson, Steve Counsell. A Dynamic Runtime Coupling Metric for Metalevel
Architectures. CSMR’04.

[SM15] Jagdish Bansiya, and Carl G. Davis. A Hierarchical Model for Object-Oriented Design Quality Assessment.
TSE’02.

[SM23] Tatsuya Miyake, Yoshiki Higo, Katsuro Inoue. A Metric Based Approach for Reconstructing Methods in
Object-Oriented Systems. WoSQ’08.

[SM29] Huan Li. A Novel Coupling Metric for Object-Oriented Software Systems. KAM’08.

[SM31] Thomas Panas, Rudiger Lincke, Jonas Lundberg, Welf Lowe. A Qualitative Evaluation of a Software
Development and ReEngineering Project. SEW’05.

[SM35] Mehwish Riaz, Emilia Mendes, Ewan Tempero. A Systematic Review of Software Maintainability
Prediction and Metrics. ESEM’09.

[SM37] Lionel C. Briand, John W. Daly, and Jurgen K. Wust. A Unified Framework for Cohesion Measurement in
Object-Oriented Systems. TSE’97.

[SM38] Lionel C. Briand, John W. Daly, and Jurgen K. Wust. A Unified Framework for Coupling Measurement in
Object-Oriented Systems. TSE’99.

[SM39] Victor R. Basili, Fellow, Lionel C. Briand, and Walcelio L. Melo. A Validation of Object-Oriented Design
Metrics as Quality Indicators. TSE’96.

108

[SM42] Jill Doake, Ishbel Duncan. Amber Metrics for the Testing and Maintenance of Object-Oriented Designs.
CSMR’98.

[SM45] Amjed Tahir and Rodina Ahmad. An AOP-Based Approach for Collecting Software Maintainability
Dynamic Metrics. ICCRD’10.

[SM47] Jennifer Munnelly, Serena Fritsch, Siobhan Clarke. An Aspect-Oriented Approach to the Modularisation
of Context. PerCom’07.

[SM48] Ayaz Farooq, Rene Braungarten, Reiner R. Dumke. An Empirical Analysis of Object-Oriented Metrics for
Java Technologies. INMIC’05.

[SM49] Rachel Burrows, Fabiano Cutigi Ferrari, Alessandro Garcia, Francois Taiani. An Empirical Evaluation of
Coupling Metrics on Aspect-Oriented Programs. WETSoM’10.

[SM53] Haihao Shen, Sai Zhang, Jianjun Zhao. An Empirical Study of Maintainability in Aspect-Oriented System
Evolution Using Coupling Metrics. TASE’08.

[SM54] W. Lia, L. Etzkorna, C. Davisa, J. Talburt. An Empirical Study of Object-Oriented System Evolution.
INFSOF’00.

[SM55] Ewan Tempero, Steve Counsell and James Noble. An Empirical Study of Overriding in Open Source Java.
ACSC’10.

[SM66] F.G. Wilkiea, B.A. Kitchenham. An Investigation of Coupling, Reuse and Maintenance in a Commercial
C++ Application. INFSOF’01.

[SM68] Jehad Al Dallal, Lionel C. Briand. An Object-Oriented High Level Design Based Class Cohesion Metric.
INFSOF’10.

[SM69] William W. Pritchett IV. An Object-Oriented Metrics Suite for Ada 95. SIGAda’01.

[SM70] R. Harrison, S. Counsell, R. Nithi. An Overview of Object-Oriented Design Metrics. STEP’97.

[SM73] M.K Abdi, H. Lounis, H. Sahraoui. Analyzing Change Impact in Object-Oriented Systems. SEAA’06.

[SM74] Santonu Sarkar, Girish Maskeri Rama, and Avinash C. Kak. API Based and Information Theoretic Metrics
for Measuring the Quality of Software Modularization. TSE’07.

[SM75] Ghassan Allcadi, Doris L. Carver. Application of Metrics to Object-Oriented Designs. TSE’98.

[SM76] Usha Kumari, Sucheta Bhasin. Application of Object-Oriented Metrics to C++ and Java a Comparative
Study. SIGSOFT’11.

[SM79] Juha Gustafsson, Jukka Paakki, Lilli Nenonen, and A. Inkeri Verkamo. Architecture Centric Software
Evolution by Software Metrics and Design Patterns. CSMR’05.

[SM81] Marcela Genero Bocco1, Daniel L. Moody and Mario Piattini. Assessing the Capability of Internal Metrics
as Early Indicators of Maintenance Effort Through Experimentation. SMR’05.

[SM82] Juliana Saraiva, Sergio Soares, Fernando Castor. Assessing the Impact of AOSD on Layered Software
Architectures. ECSA’10.

[SM84] Bandar Alshammari, Colin Fidge, Diane Corney. Assessing the Impact of Refactoring on Security Critical
Object-Oriented Designs. APSEC’10.

[SM85] Luis Reynoso, Esperanza Manso, Marcela Genero and Mario Piattini. Assessing the Impact of Refactoring
on Securitycritical Object-Oriented Designs. IS’10.

109

[SM86] Ebrahim Bagheri, Dragan Gasevic. Assessing the Influence of Import-Coupling on OCL Expression
Maintainability: A Cognitive Theory-Based Perspective. SQJ’10.

[SM87] Giulio Concas, Michele Marchesi, Alessandro Murgia, Sandro Pinna, Roberto Tonelli. Assessing Tradi-
tional and New Metrics for Object-Oriented Systems. WETSoM’10.

[SM92] Mikael Lindvall, Roseanne Tesoriero, Patricia Costa. Avoiding Architectural Degeneration an Evaluation
Process for Software Architecture. METRICS’02.

[SM95] Henk van der Schuur, Slinger Jansen and Sjaak Brinkkemper. Becoming Responsive to Service Usage and
Performance Changes by Applying Service Feedback Metrics to Software Maintenance. ASEW’08.

[SM96] Marcela Genero, Mario Piattini, Esperanza Manso, Giovanni Cantone. Building UML Class Diagram
Maintainability Prediction Models Based on Early Metrics. METRICS’03.

[SM105] Sami Makela, Ville Leppanen. Client Based Cohesion Metrics for Java Programs. SCP’09.

[SM109] Mikhail Perepletchikov, Caspar Ryan, and Keith Frampton. Cohesion Metrics for Predicting Maintain-
ability of ServiceOriented Software. QSIC’07.

[SM111] Rudiger Lincke, Jonas Lundberg and Welf Lowe. Comparing Software Metrics Tools. ISSTA’08.

[SM112] Misook Choi, Injoo J. Kim, Jiman Hong and Jungyeop Kim. Component-Based Metrics Applying the
Strength of Dependency Between Classes. SAC’09.

[SM119] R. Harrison, S. Counsell, R. Nithi. Coupling Metrics for Object-Oriented Design. METRICS’98.

[SM123] M. Ajmal Chaumun, Hind Kabaili, Rudolf K. Keller, Francois Lustman and Guy SaintDenis. Design
Properties and Object-Oriented Software Changeability. CSMR’00.

[SM124] Hong Yul Yang , Ewan Tempero and Rebecca Berrigan. Detecting Indirect Coupling. ASWEC’05.

[SM126] Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav Garg, Gail C. Murphy, Nachiappan
Nagappan, Alfred V. Aho. Do Crosscutting Concerns Cause Defects? TSE’08.

[SM127] T.H. Ng, S.C. Cheung, W.K. Chan and Y.T. Yu. Do Maintainers Utilize Deployed Design Patterns
Effectively? ICSE’07.

[SM128] Varun Gupta, Jitender Kumar Chhabra. Dynamic Cohesion Measures for Object-Oriented Software.
JSA’11.

[SM129] Erik Arisholm, Lionel C. Briand, Audun Fyen. Dynamic Coupling Measurement for Object-Oriented
Software. TSE’04.

[SM130] Erik Arisholm. Dynamic Coupling Measures for Object-Oriented Software. METRICS’02.

[SM131] Y. Hassoun, S. Counsell and R. Johnson. Dynamic Coupling Metric: Proof of Concept. TSE’05.

[SM132] Sherif M. Yacoub, Hany H. Ammar, and Tom Robinson. Dynamic Metrics for Object-Oriented Designs.
METRICS’99.

[SM136] Marcela Genero, Mario Piattini and Coral Calero. Empirical Validation of Class Diagram Metrics.
ISESE’02.

[SM138] Fabrizio Fioravanti, Paolo Nesi. Estimation and Prediction Metrics for Adaptive Maintenance Effort.
TSE’01.

[SM140] Guadalupe Ortiz, Behzad Bordbar, Juan Hernandez. Evaluating the Use of AOP and MDA in Web
Service Development. ICIW’08.

110

[SM141] R. Harrison, L.G., Samaraweera, M.R., Dobie and P.H. Lewis. Evaluation of Code Metrics for Object-
Oriented Programs. IST’96.

[SM144] Fernando Castor Filho, Nelio Cacho, Eduardo Figueiredo, Raquel Maranhao, Alessandro Garcia, Cecilia
Mary F. Rubira. Exceptions and Aspects The Devil is in the Details. FSE’06.

[SM146] Lalji Prasad,Aditi Nagar. Experimental Analysis of Different Metrics (Object-Oriented and Structural of
Software). CYCSYN’09.

[SM148] Eugen C. Nistor and Andre Van der Hoek. Explicit Concern-Driven Development with ArchEvol.
ASE’09.

[SM149] V. Krishnapriya, K. Ramar. Exploring the Difference Between Object-Oriented Class Inheritance and
Interfaces Using Coupling Measures. ACE’10.

[SM151] Lionel C. Briand, Jurgen Wu, John W. Daly, D. Victor Porter. Exploring the Relationships between
Design Measures and Software Quality in Object-Oriented Systems. JSS’00.

[SM153] Michael English, Jim Buckley and Tony Cahill. Fine-Grained Software Metrics in Practice. ESEM’07.

[SM156] Horst Zuse. Foundations Of Object-Oriented Software Measures. METRICS’96.

[SM157] Aram Hovsepyan, Riccardo Scandariato, Stefan Van Baelen, Yolande Berbers, and Wouter Joosen. From
Aspect-Oriented Models to Aspect-Oriented Code? The Maintenance Perspective. AOSD’10.

[SM158] Maria Teresa Baldassarre, Alessandro Bianchi, Danilo Caivano, and Corrado Aaron Visaggio. Full Reuse
Maintenance Process for Reducing Software Degradation. CSMR’03.

[SM161] Avadhesh Kumar, Rajesh Kumar, and P.S. Grover. Generalized Coupling Measure for Aspect-Oriented
Systems. SIGSOFT’09.

[SM164] Bruno Stiglic, Marjan Heri6ko, and Ivan Rozlnan. How to Evaluate Object-Oriented Software Develop-
ment? SIGPLAN’05.

[SM165] Yuming Zhou, Baowen Xu, Jianjun Zhao, and Hongji Yang. ICBMC: An Improved Cohesion Measure
for Classes. ICSM’02.

[SM166] Gabriele Bavota, Andrea De Lucia, and Rocco Oliveto. Identifying Extract Class Refactoring Opportuni-
ties using Structural and Semantic Cohesion Measures. JSS’10.

[SM169] Marc Eaddy, Alfred Aho, and Gail C. Murphy. Identifying, Assigning, and Quantifying Crosscutting
Concerns. Acom’07.

[SM174] M. M. Lehman, D. E. Perry, and J. F. Ramil. Implications of Evolution Metrics on Software Maintenance.
ICSM’08.

[SM176] Heung Seok Chae, Yong Rae Kwon, and Doo Hwan Bae. Improving Cohesion Metrics for Classes by
Considering Dependent Instance Variables. TSE’04.

[SM177] Mario Luca Bernardi and Giuseppe Antonio Di Lucca. Improving Design Pattern Quality using Aspect-
Orientation. STEP’05.

[SM178] Nelio Cacho, Thais Batista, Alessandro Garcia, Claudio Santanna, and Gordon Blair. Improving
Modularity of Reflective Middleware with Aspect-Oriented Programming. SEM’06.

[SM181] Jehad Al Dallal. Improving the Applicability of Object-Oriented Class Cohesion Metrics. INFSOF’11.

[SM182] Charles H. House. Information Worker Tools Selection, Adoption and Evaluation Lessons From Software
Development History. ICSS’05

111

[SM187] Mathupayas Thongmak and Pornsiri Muenchaisri. Maintainability Metrics for Aspect-Oriented Software.
IJSEKE’09.

[SM189] Shyam R. Chidamber, David P. Darcy, and Chris F. Kemerer. Managerial Use of Metrics for Object-
Oriented Software: An Exploratory Analysis. TSE’98.

[SM193] Lionel C. Briand, Sandro Morasca, and Victor R. Basili. Measuring and Assessing Maintainability at the
End of High Level Design. TSE’93.

[SM194] Ahrim Han, Sanguk Jeon, Doohwan Bae, and Jangeui Hong. Measuring Behavioral Dependency for
Improving Change Proneness Prediction in UML Based Design Models. JSS’10.

[SM195] P.S. Grover, Rajesh Kumar, and Avadhesh Kumar. Measuring Changeability for Generic Aspect-Oriented
Systems. SIGSOFT’08.

[SM198] Tobias Mayer and Tracy Hall. Measuring OO Systems: A Critical Analysis of the MOOD Metrics.
TOOLS’99.

[SM199] Tianlin Zhou, Baowen Xu, Liang Shi, Yuming Zhou, and Lin Chen. Measuring Package Cohesion Based
on Context. WSCS’08.

[SM200] G. Manduchi, C. Taliercio. Measuring Software Evolution at a Nuclear Fusion Experiment Site: A Test
Case for the Applicability of OO. INFSOF’02.

[SM201] Philippe Lithiaott, Jessie Kennedy, and John Owens. Mechanisms for Interpretation Of OO Systems
Design Metrics. TSE’98.

[SM202] P. Nesi and M. Campanai. Mendel: A Model, Metrics, and Rules to Understand Class Hierarchies.
ICPC’08.

[SM203] P. Nesi and M. Campanai. Metric Framework for Object-Oriented Real Time Systems Specification
Languages. JSS’96.

[SM204] G. Bucci, F. Fioravanti, P. Nesi, and S. Perlini. Metrics and Tool for System Assessment. ICECCS’98.

[SM205] N. Debnath, L. Baigorria, D. Riesco, and G. Montejano. Metrics Applied to Aspect-Oriented Design
Using UML Profiles. ISCC’08.

[SM208] F. Fioravanti, P. Nesi, and F. Stortoni. Metrics for Controlling Effort during Adaptive Maintenance of
Object-Oriented Systems. ICSM’99.

[SM209] Tassia A. V. Freitas, Thais V. Batista, Flavia C. Delicato, and Paulo F. Pires. Metrics for Evaluation of
Aspect-Oriented Middleware. SBES’09.

[SM210] Frederick T. Sheldon, Kshamta Jerath, and Hong Chung. Metrics for Maintainability of Class Inheritance
Hierarchies. SMR’02.

[SM211] Santonu Sarkar, Avinash C. Kak, and Girish Maskeri Rama. Metrics for Measuring the Quality of
Modularization of Largescale Object-Oriented Software. TSE’08.

[SM212] Christof Ebert and Ivan Morschelb. Metrics for Quality Analysis and Improvement of Object-Oriented
Software. IST’97.

[SM217] Shen Zhang, Yongji Wang, and Junchao Xiao. Mining Individual Performance Indicators in Collaborative
Development using Software Repositories. APSEC’08.

[SM219] Yixun Liu, Denys Poshyvanyk, Rudolf Ferenc, Tibor Gyimothy, and Nikos Chrisochoides. Modeling
Class Cohesion as Mixtures of Latent Topics. ICSM’09.

112

[SM222] Dapeng Liu and Shaochun Xu. New Quality Metrics for Object-Oriented Programs. SNPD’07.

[SM224] Sahar R. Ragab and Hany H. Ammar. Object-Oriented Design Metrics And Tools: A Survey. INFOS’10.

[SM226] Brian Keith Miller, Dr. Pei Hsia, and Dr. Chenho Kung. Object-Oriented Architecture Measures. TSE’99.

[SM230] David Bellin, Manish Tyagi, and Maurice Tyler. Object-Oriented Metrics: An Overview. CASCON’94.

[SM234] Bart Van Rompaey, Bart Du Bois, Serge Demeyer, and Matthias Rieger. On the Detection of Test Smells:
A Metrics Based Approach for General Fixture and Eager Test. TSE’07.

[SM236] Eduardo Figueiredo, Claudio Sant’Anna, Alessandro Garcia, Thiago T. Bartolomei, Walter Cazzola,
and Alessandro Marchetto. On the Maintainability of Aspect-Oriented Software: A Concern Oriented
Measurement Framework. TSE’08.

[SM256] K. Liu, S. Zhou and H. Yang. Quality Metrics of Object Oriented Design for Software Development and
Re-Development. ASWEC’08.

[SM264] Michal Hocko and Tomas Kalibera. Reducing Performance Non-determinism via Cache aware Page
Allocation Strategies. WOSP’10.

[SM266] Yoshiki Higo, Yoshihiro Matsumoto, Shinji Kusumoto, and Katsuro Inoue. Refactoring Effect Estimation
Based on Complexity Metrics. ASWEC’08.

[SM267] Mohammad Alshayeb. Refactoring Effect on Cohesion Metrics. ICC’09.

[SM269] Chandrashekar Rajaraman and Michael R. Lyu. Reliability And Maintainability related Software
Coupling Metrics in C++ Programs. TSE’92.

[SM272] Young Lee and Kai H. Chang. Reusability and Maintainability Metrics for Object-Oriented Software.
ACM-SE’00.

[SM275] Landry Chouambe, Benjamin Klatt, and Klaus Krogmann. Reverse Engineering Software Models of
Component Based. TSE’08.

[SM277] Gyun Woo, Heung Seok Chae , Jian Feng Cui, and Jeonghoon Ji. Revising Cohesion Measures by
Considering the Impact of Write Interactions Between Class Members. INFSOF’08.

[SM282] Bandar Alshammari, Colin Fidge and Diane Corney. Security Metrics for Object-Oriented Class Designs.
QSIC’09.

[SM288] Raghu V. Hudli, Curtis L. Hoskins, and Anand V. Hudli. Software Metrics for Object-Oriented Designs.
TSE’94.

[SM290] Marcio F. S.Oliveira, Ricardo Miotto Redin, Luigi Carro, Luis Da Cunha Lamb, and Flavio Rech Wagner.
Software Quality Metrics and their Impact on Embedded Software. MOMPES’08.

[SM291] William Frakes and Carol Terry. Software Reuse: Metrics and Models. CSUR’96.

[SM293] V. Lakshmi Narasimhan and B. Hendradjaya. Some Theoretical Considerations for a Suite of Metrics for
the Integration of Software Components. IS’07.

[SM296] Taku Fujii and Yahiko Kambayashi. Strategies to Suppress Productivity Degradation with Unknown
Issues under Iterative Development Process. CW’02.

[SM301] Miro Casanova, Ragnhild Van Der Straeten, and Viviane Jonckers. Supporting Evolution in Component
Based Development Using Component Libraries. CSMR’07.

[SM305] Arpad Besze, Tama Gergely, Szabolcs Farago, Tibor Gyimothy, and Ferenc Fischer. The Dynamic
Function Coupling Metric and its Use in Software Evolution. CSMR’07.

113

[SM307] Steve Counsell, Stephen Swift. The Measurement and Evaluation for Large-Scale Object-Oriented
Software System. TOSEM’06.

[SM309] Zhu Mingguang, Zhang Haohua, Qi Weiyi, Ma Shijun and Wang Chuanyin. The Interpretation and
Utility of Three Cohesion Metrics for Object-Oriented Design. HIS’09.

[SM313] Robert C. Sharblet and Samuel S. Cohen. The Object-Oriented Brewery: A Comparison of Two
Object-Oriented Development Methods. SIGSOFT’93.

[SM316] Mikael Lindvall and Magnus Runesson. The Visibility of Maintenance in Object Models: An Empirical
Study. ICSM’98.

[SM319] Reiner R. Diiinke and Ines Kuhrau. Tool Based Quality Management in Object-Oriented Software
Development. TSE’94.

[SM320] Jan Wloka, Robert Hirschfeld, and Joachim Hansel. Tool Supported Refactoring of Aspect-Oriented
Programs. AOSD’08.

[SM323] Shmuel Rotenstreich. Toward Measuring Potential Coupling. TSE’94.

[SM325] Letha Etzkom, Harry Delugach. Towards a Semantic Metrics Suite for Object-Oriented Design. TSE’00.

[SM327] Cristina Marinescu, Radu Marinescu, and Tudor Grba. Towards a Simplified Implementation of Object-
Oriented Design Metrics. METRICS’05.

[SM329] Thiago T. Bartolomei, Alessandro Garcia, Claudio Santanna, and Eduardo Figueiredo. Towards a Unified
Coupling Framework for Measuring Aspect-Oriented Programs. SOQUA’06.

[SM330] Avadhesh Kumar, Rajesh Kumar, and P.S. Grover. Towards a Unified Framework for Cohesion Measure-
ment in Aspect-Oriented Systems. ASWEC’08.

[SM331] Avadhesh Kumar, Rajesh Kumar, and P.S. Grover. Towards a Unified Framework for Complexity
Measurement in Aspect-Oriented Systems. CSSE’08.

[SM335] Jehad Al Dallal. Transitive based Object-Oriented Lack of Cohesion Metric. WCIT’10.

[SM337] Moheb R. Girgis, Tarek. M. Mahmoud, and Rehab R. Nour. UML Class Diagram Metrics Tool. TSE’09.

[SM341] Lionel C. Briand, Jurgen Wust, and Hakim Lounis. Using Coupling Measurement for Impact Analysis in
Object-Oriented Systems. ICSM’99.

[SM343] Malcom Gethers and Denys Poshyvanyk. Using Relational Topic Models to Capture Coupling among
Classes in Object-Oriented Software Systems. ICSM’10.

[SM345] Andrea De Lucia, Rocco Oliveto, and Luigi Vorraro. Using Structural and Semantic Metrics to Improve
Class Cohesion. TSE’11.

[SM346] Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. Using Structural and Textual Information to
Capture Feature Coupling in Object-Oriented Software. ESE’11.

[SM347] Mr. U. L. Kulkarni, Mr. Y. R. Kalshetty, and Ms. Vrushali G. Arde. Validation of CK Metrics for
Object-Oriented Design Measurement. ICETEC’10.

[SM350] Gunter Mussbacher, Daniel Amyot, Joao Araujo, Ana Moreira, and Michael Weiss. Visualizing Aspect-
Oriented Goal Models with Aogrl. REV’07.

114114114

D
Object-Oriented Software Maintainability
Metrics

Table D.1: OO Maintainability Metrics

Metric Description Primary Studies that contain the metric
CBO Coupling between Objects Classes SM4, SM8, SM13, SM29, SM38, SM42, SM47,

SM48, SM54, SM70, SM73, SM75, SM76, SM87,
SM92, SM111, SM119, SM129, SM132, SM146,
SM149, SM151, SM164, SM166, SM189, SM194,
SM200, SM205, SM209, SM210, SM211, SM217,
SM222, SM266, SM301, SM313, SM319, SM329,
SM341, SM343, SM346, SM347, SM156

DIT Depth of Inheritance Tree SM123, SM4, SM7, SM13, SM31, SM48, SM49,
SM54, SM69, SM70, SM75, SM76, SM87, SM96,
SM132, SM144, SM164, SM177, SM187, SM189,
SM194, SM200, SM201, SM204, SM205, SM209,
SM210, SM217, SM222, SM22, SM266, SM290,
SM313, SM319, SM325, SM347, SM39, SM42,
SM66

LCOM Lack of Cohesion in Methods SM1, SM3, SM7, SM13, SM35, SM37, SM39,
SM48, SM54, SM69, SM70, SM75, SM76, SM87,
SM105, SM111, SM123, SM128, SM146, SM164,
SM165, SM189, SM194, SM200, SM210, SM217,
SM222, SM226, SM66, SM290, SM307, SM313,
SM319, SM325, SM330, SM331, SM335, SM345,
SM347

NOC Number of Children of a Class SM4, SM7, SM13, SM31, SM35, SM39, SM42,
SM48, SM49, SM53, SM54, SM66, SM69, SM70,
SM75, SM76, SM79, SM87, SM132, SM156,
SM164, SM187, SM189, SM194, SM200, SM201,
SM204, SM205, SM209, SM210, SM217, SM222,
SM224, SM266, SM290, SM313, SM319, SM325,
SM347

RFC Response For a Class SM4, SM13, SM38, SM39, SM47, SM48, SM54,
SM69, SM70, SM73, SM75, SM76, SM87, SM111,
SM123, SM129, SM132, SM146, SM156, SM164,
SM189, SM194, SM200, SM205, SM209, SM210,
SM217, SM222, SM266, SM313, SM319, SM325, ,
SM329, SM343, SM346, SM347

WMC Weighted Methods Per Class SM7, SM8, SM31, SM35, SM39, SM48, SM54,
SM69, SM70, SM75, SM87, SM111, SM123,
SM132, SM138, SM146, SM156, SM164, SM189,
SM194, SM200, SM201, SM204, SM210, SM217,
SM222, SM266, SM290, SM313, SM319, SM325,
SM337, SM347

LOC Lines of Code SM7, SM10, SM23, SM47, SM49, SM74, SM111,
SM138, SM140, SM144, SM146, SM156, SM176,
SM195, SM203, SM208, SM109, SM217, SM219,
SM236, SM269, SM275, SM293, SM323, SM327

MPC Message Passing Coupling SM13, SM38, SM54, SM66, SM73, SM76, SM132,
SM146, SM151, SM166, SM209, SM301, SM319,
SM341, SM343, SM346, SM234

CC Class Coupling SM7, SM23, SM47, SM54, SM69, SM86, SM138,
SM181, SM198, SM199, SM203, SM204, SM208,
SM269, SM288, SM335

115

Table D.1: OO Maintainability Metrics

Metric Description Primary Studies that contain the metric
DAC Data Abstraction Coupling SM4, SM13, SM31, SM35, SM54, SM76, SM129,

SM146, SM151, SM209, SM319, SM341, SM343,
SM346

TCC Tight Class Cohesion SM3, SM31, SM37, SM68, SM76, SM105, SM111,
SM146, SM176, SM181, SM219, SM277, SM335

LCC Loose Class Cohesion SM3, SM37, SM68, SM76, SM181, SM209, SM219,
SM236, SM330, SM331

LCOM1 Lack of Cohesion in Methods 1 SM3, SM7, SM68, SM176, SM181, SM219, SM224,
SM264, SM267, SM277

LCOM2 Lack of Cohesion in Methods 2 SM3, SM37, SM68, SM176, SM182, SM219,
SM224, SM267, SM277

CDC Concern Diffusion over Components SM126, SM140, SM144, SM169, SM178, SM209,
SM236, SM325

LCOM3 Lack of Cohesion in Methods 3 SM3, SM37, SM68, SM176, SM181, ,SM219,
SM267, SM277

NA Number of Attributes SM10, SM96, SM136, SM144, SM203, SM204,
SM205, SM208

NM Number of Methods SM70, SM82, SM96, SM136, SM204, SM224,
SM230, SM288

NOM Number of Methods SM15, SM35, SM54, SM76, SM111, SM146,
SM290, SM319

CMC Coupling on Method Call SM47, SM49, SM53, SM161, SM177, SM187,
SM325

LCOM5 Lack of Cohesion in Methods 5 SM3, SM37, SM176, SM181, SM219, SM267,
SM277

NC Number of Classes SM96, SM203, SM82, SM226, SM230, SM288,
SM136

CA Afferent Coupling SM7, SM38, SM47, SM290, SM323, SM343
COF Coupling Factor SM11, SM38, SM198, SM211, SM343, SM346
ICP Information Flow-Based Coupling SM38, SM132, SM151, SM341, SM343, SM346
LCOM4 Lack of Cohesion in Methods 4 SM3, SM37, SM176, SM181, SM2667, SM277
AC Ancestors Count SM38, SM198, SM203, SM211, SM288
ACAIC Class-Attribute Interaction Between Classes SM38, SM129, SM151, SM341, SM343
ACMIC Class-Method Interaction Between Classes SM38, SM129, SM151, SM341, SM343
AHF Attribute Hiding Factor SM48, SM79, SM76, SM198, SM211
AMMIC Method-Method Interaction Between Classes SM73, SM151, SM341, SM129, SM153
CAMC Cohesion Among Methods in a Class SM68, SM181, SM211, SM307, SM335
CE Efferent Coupling SM7, SM38, SM47, SM290, SM346
COH Cohesion SM3, SM68, SM181, SM219, SM335
LCO Lack of Cohesion in Operations SM49, SM87, SM177, SM187, SM204
MHF Method Hiding Factor SM48, SM70, SM76, SM198, SM211
MI Methods that are Inherited SM48, SM55, SM68, SM198, SM234
MIF Method Inheritance Factor SM48, SM70, SM76, SM194, SM198
NMI Number of Methods Inherited SM55, SM70, SM129, SM138, SM204
OMMIC Method-Method interaction between classes SM73, SM129, SM151, SM153, SM341
PIM Permitted Interaction Metric SM4, SM38, SM234, SM341, SM343
TLOC Total Number of Lines of Code SM7, SM138, SM208, SM217, SM290
A Number of Attributes SM38, SM234, SM275, SM290
C Coupling SM37, SM38, SM275, SM323
CBM Coupling Between Modules SM47, SM49, SM92, SM177
CF Coupling Factor SM70, SM76, SM146, SM211
CI Classes Inherited SM55, SM138, SM204, SM208
CL Class Locality SM138, SM194, SM204, SM208
CM Code Modified SM10, SM38, SM282, SM327
CO Classes that Override Something SM55, SM69, SM176, SM277
EC Estimated Cost SM7, SM38, SM174, SM193
NHD Normalized Hamming Distance SM68, SM181, SM211, SM307, SM335
NOP Number of Parents SM7, SM15, SM224, SM290
OCAIC Class-Attribute interaction between classes SM129, SM151, SM341, SM343
OCMIC Class-Method interaction between classes SM38, SM129, SM151, SM341
RFM Response For a Module SM49, SM53, SM161, SM329
WOM Weighted Operations in Module SM47, SM49, SM177, SM187
C3 Cohesion Metric SM166, SM219, SM345
CACI Class Attribute Complexity Inherited SM138, SM204, SM208
CBC Coupling Between Components SM112, SM144, SM288
CBMC Coupling Between Module Classes SM92, SM165, SM176
CLC Class Level Coupling SM38, SM132, SM203
COA Classified Operation Accessibility SM84, SM282, SM325
CR Comment Ration SM7, SM55, SM203
CSM Conceptual Similarity between Methods SM345, SM346, SM166
ECD External Class Description SM138, SM203, SM204
FCAEC Friends from CA-Interactions SM38, SM151, SM343
IFCAIC Inverse Friend from CA-Interactions SM38, SM151, SM343
IH_ICP Information Flow-Based Inheritance Coupling SM151, SM341, SM346
NAC Number of Ancestors SM226, SM325, SM210

116

Table D.1: OO Maintainability Metrics

Metric Description Primary Studies that contain the metric
NAGG Number of Aggregation SM96, SM136, SM337
NAGGH Number of Aggregation Hierarchies SM96, SM136, SM337
NCL Number of Classes SM203, SM204, SM208
NCO Number of Comparison Operators SM85, SM111, SM217
NDC Number of Direct Connections SM3, SM210, SM325
NGEN Number of Generalizations SM96, SM337, SM136
NML Number of Methods Locally SM138, SM204, SM208
NMO Number of Methods Overridden SM55, SM70, SM76
NOA Number of Ancestors SM146, SM209, SM290
NOT Number of Tramps SM211, SM313, SM319
PF Polymorphism Factor SM70, SM76, SM194
RCI Ration of Cohesion Interactions SM37, SM1, SM165
SLOC Source Lines of Code SM169, SM189, SM288
SNHD Scaled NHD SM68, SM307, SM335
TC Total Children SM48, SM69, SM327
VG Cyclomatic Complexity SM7, SM132, SM146
VS Vocabulary Size SM144, SM209, SM350
ADT Number of Abstract Data Type SM4, SM69
AM Average Degree of Maintainability SM187, SM210
CAAI Classified Accessor Attribute Interactions SM84, SM282
CAC Class Attribut Complexity SM203, SM226
CACL Class Attribute Complexity Local SM138, SM204
CAIW Classified Attributes Interaction Weight SM84, SM282
CAM Cohesion Among Methods of Class SM15, SM53
CBO’ Coupling between Objects Classes SM151, SM341
CCC Class Clause Complexity SM84, SM203
CCDA Classified Class Data Accessibility SM84, SM282
CCN Cyclomatic Complexity Number SM140, SM217
CDBC Change Dependency Between Classes SM7, SM31
CDM Call-based Dependence between Methods SM166, SM74
CID Interaction Density of a Component SM53, SM293
CIDA Classified Instance Data Accessibility SM84, SM282
CIS Class Interface Size SM15, SM301
CMAI Classified Mutator Attribute Interactions SM84, SM282
CMICI Class Method Interface Complexity Inherited SM138, SM208
CMW Classified Methods Weight SM84, SM282
COC Clients Of Class SM86, SM194
COCC Conceptual Coupling SM343, SM346
CPC Class path complexity SM203, SM112
CSI Critical Superclass Inherited SM84, SM291
CTA Coupling Through Abstract Data Types SM54, SM325
CTM Coupling Through Message Passing SM54, SM325
DAC’ Data Abstraction Coupling SM151, SM341
DC Descendants Count SM48, SM198
DCC Direct Class Coupling SM15, SM301
DCM Dynamic Coupling Metric SM13, SM131
DD Data Declarations SM193, SM320
DI Depth of Inheritance SM7, SM288
DN Normalized Distance from Main Sequence SM85, SM290
DOS Degree of scattering SM169, SM126
DS Data Declaration-Subprogram SM193, SM288
EC_CC Export Coupling Distinct Class SM129, SM130
EC_CD Export Coupling Dynamic Class SM129, SM130
EC_CM Export Coupling Distinct Method SM129, SM130
EC_OD Export Coupling Dynamic Message SM129, SM130
EC_OM Export Coupling Distinct Method SM129, SM130
ECC External Class Complexity SM199, SM203
ECDI External Class Description Inherited SM138, SM204
ECDL External Class Description Local SM138, SM204
HAGG Height of class within aggregation SM96, SM337
IC Import Coupling SM193, SM211
IC_CC Import Coupling Distinct Class SM129, SM130
IC_OC Import Coupling Distinct Class SM129, SM130
IC_OD Import Coupling Dynamic Message SM129, SM130
IC_OM Import Coupling Distinct Method SM129, SM130
ICH Information Based Cohesion SM37, SM76
ICI Internal Class Implementation SM138, SM204
IFMMIC Interaction Friends from Call Method Interactions from

Class
SM38, SM151, SM153

IM Integration and testing SM10, SM288
LCOO Lack of Cohesion in Operations SM330, SM331, SM219
LOCC Lines of Class Code SM126, SM187
LORM Logical Relatedness of Methods SM219, SM325
MAXDIT Maximum DIT SM136, SM337

117

Table D.1: OO Maintainability Metrics

Metric Description Primary Studies that contain the metric
MM Method-Method Interactions SM38, SM132
NAI Number of Attributes SM204, SM224
NAL Number of Attributes Locally SM138, SM204
NAM Number of Methods Locally SM138, SM204
NAMI Number of Attributes and Methods Locally SM138, SM204
NAS Number of Class Associations SM119, SM132
NASSCO Number of Associations SM136, SM337
NDEP Number of Dependencies SM96, SM337
NDEPIN Number of Dependencies In SM149, SM337
NDEPOUT Number of Dependencies Out SM149, SM337
NES Number of Executable Semicolon SM35, SM85
NF Number of times a Class is Reused SM70, SM86
NGENH Number of Generalizations Hierarchs SM96, SM136
NIH Non-Inheritance Coupling SM151, SM341
NIH_ICP Information Flow-Based Non-Inheritance Coupling SM151, SM341
NLM Number of Local Methods SM54, SM325
NMA Number of Methods Added SM151, SM70
NO Number of Operations SM35, SM144
NOI Number of Inherited Methods SM75, SM290
NORM Number of Remote Methods SM7, SM194
NP Number of Public Methods SM3, SM337
NRCI Neutral Ratio of Cohesive Interactions SM37, SM193
OLC Object Level Coupling SM38, SM132
ORCI Optimistic Ratio of Cohesive Interactions SM37, SM193
PM Number of Public Methods SM70, SM288
POF Polymorphism Factor SM48, SM198
PPRIVM Percentage of Private Members SM7, SM194
PPUBM Percentage of Public Members SM7, SM194
PRCI Pessimistic Ratio of Cohesive Interactions SM37, SM193
RC Relational Cohesion SM199, SM330
RTC Relational Topic based Coupling SM343, SM346
SCOM Sensitive Class Cohesion Metric SM181, SM335
SSM Structural Similarity between Methods SM166, SM345
TNM Total (System) Number of Methods SM208, SM138
V Volume SM48, SM269
VC Visibility Control SM193, SM277
VOD Violations of the Law of Demeter SM313, SM319
W Weight of each edge SM166, SM277
WAC Weighted Attributes per Class SM313, SM319
A-EC Exporting Coupling of a Module SM193
A-IC Import Coupling of a module SM193
AA Assessment and Assimilation SM10
AACD Average Active Component Density SM293
AAD Attribute Access Dependencies SM82
ACC Attributes and Methods Cohesion SM68
ACD Active Component Density SM293
ACHS Average Cohesion of a System SM112
ACPS Average Coupling of a System SM112
ACTORS Actors SM230
ADI Average Depth of Inheritance SM288
AFIU Average Fixture Usage SM234
AID Average Inheritance Depth of a Class SM151
AIF Attribute Inheritance Factor SM48
AIM All Inherited Methods SM75
ALV Available Local Variable SM23
AMC Average Method Coupling SM269
AMC_LOC Lines Of Code of Average Method Coupling SM269
AMS Average Method Size SM70
ANA Average Number of Ancestors SM15
ANAC Average Number of Active Components SM293
APIU API Function Usage Index SM74
APIUC API Unit Cohesion SM211
APPM Average Parameters Per Method SM337
AT Attribute Type SM68
ATTRINH Number of inherited attributes SM224
AVNME Average Number of Model Elements SM350
BC Base Classes SM288
BCV Back Call Violation SM82
BMS Budding Classes SM202
BRKZ Brokerage SM87
CAED Clients Access the Encapsulated Data SM288
CALOC Cumulative Added LOC SM296
CAS Class Attribute Size SM203
CBMU Coupling between Model Units SM350

118

Table D.1: OO Maintainability Metrics

Metric Description Primary Studies that contain the metric
CBO_IUB CBO Is Used By SM123
CBO_NA CBO No Ancestors SM123
CBO_U CBO Using SM123
CBO(d) Coupling Between Objects SM66
CBO(f) Coupling Between Objects SM66
CBOIUB Coupling Between Objects is Used By SM73
CBONA Coupling Between Objects No Ancestors SM73
CBOU Coupling Between Objects Using SM73
CC_LOC Lines of Code of Class Coupling SM269
CCBC Conceptual Coupling Between Components SM343
CCBO Conceptual Coupling between Object Classes SM346
CCM Concept Coherency Metric SM74
CCOF Component Coupling Factor SM11
CCPC Class Coupling Path Complexity SM203
CCV Cyclic Call Violations SM82
CDD Class Dynamic Description SM203
CDL Class To Leaf Depth SM151
CH Cohesion SM193
CHC Cohesion of a Component SM112
CHNL Class Hierarchy nesting level SM4
CIC Class Inheritance-related Coupling SM269
CII Class Implementation Instability SM54
CIID Component Incoming Interaction Density SM293
CINT Class Intersection SM156
CITC Class Internal Task Complexity SM156
CMA Company Dependent Coefficient SM203
CMD Coupling Dependecy Metric SM4
CME Coupling Methods Existing SM84
CMI Coupling Method Inherited SM84
CMICL Class Method Interface Complexity/size Local SM208
CMT Comments SM35
CN Classes with No implementations replaced SM55
CNIC ClassNon-Inheritance-related Coupling SM269
COB Class Overlap B SM325
COID Component Outgoing Interaction Density SM293
COMP Average number of internal relationships per

class/interface
SM224

CONNECTORS Connectors SM224
COUPLING COUPLING SM212
CPCC Critical Composed-Part Classes SM84
CPD Component Packing Density SM293
CS Class Size SM203
CSA Classes SM35
CSC Concern Sensitive Coupling SM236
CSD Class Static Description SM203
CSNS Closeness SM87
CSO Class Operations SM35
CSP Critical Super Class SM84
CTC Cross-Tree Constraints SM86
CUNI Class Unification SM156
CyC Cyclomatic Complexity SM7
DAG Ddirected Acyclic Graph SM210
DAM Data Access Metric SM282
DAT Direct Attribute Type SM68
DC Degree of Cohesion-Direct SM335
DC_AAX Dynamic Cohesion due to Reference dependency be-

tween attributes
SM128

DC_AMX Dynamic Cohesion due to Write dependency of At-
tributes on Methods

SM128

DC_MA Dynamic Cohesion due to Read dependency of Methods
on

SM128

DC_MMX Dynamic Cohesion due to Call dependency between
Methods

SM128

DCAE Descendants from CA-Interactions SM38
DCD Degree of Cohesion SM181
DD-
INTERACTIONS

Data declaration-Data declaration (OD)Interaction. SM193

DEP_IN Dependency In SM224
DEP_OUT Dependency Out SM224
DFC Dynamic Function Coupling SM305
DIH Depth of Inheritance SM69
DIST Distance Between Features SM346
DM Design Modified SM10
DMC Dependence Matrix-based Cohesion SM68

119

Table D.1: OO Maintainability Metrics

Metric Description Primary Studies that contain the metric
DMI Direct Method Invocation SM68
DMS Distance from the Main Sequence SM275
DOCX Dynamic Object Cohesion SM128
DOIH Degree of Inheritance SM7
DR Discarded Rate of Operations SM296
DSC Design in Size Class SM15
DT Depth of Tree SM86
DWRH dw Reach SM87
EC_ATTR Externally Class Attribute SM224
EC_OC Export Coupling Distinct Class SM130
EC_PAR Externally Class Parameter SM224
ECF Environment Complexity Factor SM7
ECS External Class Size SM203
EFFSZ Effective Size SM87
EHD Exception Handling Dependencies SM82
EOC Export Object Coupling SM132
EV Encapsulated Variables SM288
EWE Estimated Work Effort SM7
F-
MEASURE

F-MEASURE SM166

FAN-IN FAN-IN SM87
FAN-OUT FAN-OUT SM87
FCR Functionalities Change Rate SM296
FOC Flexibility of Configuration SM86
GLOBAL Global SM193
H Horizontal coupling SM224
HB Hierarchy Brittleness SM226
HC Horizontal coupling SM23
HFC Hybrid Feature Coupling SM346
HIH Height of the inheritance Hierarchy SM4
HLD High-Level Design SM335
HM Helper methods SM288
IC_ATTR Interface Attribute SM224
IC_CD Import Coupling Dynamic Message SM129
IC_CM Import Coupling Distinct Method SM129
IC_PAR Interface Parameter SM224
ICBM Improved Cohesion Measure for Classes SM165
ICC Internal Class Complexity SM203
ID Inheritance Dependencies SM82
IDI Implicit Dependency Index SM74
IDM Inherited Data Members SM288
IDS Independence Degree of a System SM112
IHC Information Flow Based Cohesion SM219
IIF Internal Inheritance Factor SM76
INAG Indirect Aggregation SM341
INCCS Increment of Class Size SM203
INFCY Information centrality SM87
Inheritance
Coupling

Inheritance Coupling SM29

Inheritance
Tree

Inheritance Tree SM212

Invocation
Coupling

Invocation Coupling SM29

IOC Import Object Coupling SM132
IP Implementation Productivity SM296
IPTU Indirect Production-Type Uses SM234
IV Interface Violation SM275
KCI key Class Identity SM325
KE known Errors SM141
KLOC K Lines of Code SM166
LA Local Attributes SM69
LBC Lines of Block Comment SM217
LCIC Lack of Coherence In Clients SM105
LCOKME Lack of Cohesion in Key Model Elements SM350
LCOMA Lack of Cohesion in Methods SM156
LCOMB Lack of Cohesion in Methods SM156
LCSM Lack of Conceptual Cohesion in Methods SM219
LLD Low-Level Design SM335
LO Local Operations SM69
LOCS Lines of Class Code SM202
LOD Lack of Documentation SM31
LSCC LLD Similarity-based Class Cohesion SM181
LSI Latent Semantic Indexing SM346
M Method SM38

120

Table D.1: OO Maintainability Metrics

Metric Description Primary Studies that contain the metric
MA Methods Available SM198
MANC Methods inherited from Ancestor SM211
MAXHAGG Maximum HAgg SM136
MCC Mean value of Class Complexity SM208
MCCABECC McCabe Cyclomatic Complexity SM290
MCD Method Call Dependencies SM82
MDR Multiple Descendant Redefinition SM201
Methods
Structure

Methods Structure SM212

MFA Measure of Functional Abstraction SM15
MII Module Interaction Index SM74
MISI Module Interaction Stability Index SM74
MLOC Method Lines of Code SM290
MLOC New Method Lines Of Code SM7
MMAC Method?Method through Attributes Cohesion SM68
MMI Method?Method Interaction SM181
MMIC Method?Method Invocation Cohesion SM68
MMRE Model performance measures SM10
MN Methods (New) SM198
MN Methods with No implementations replaced SM55
MNA Mean Number of Class Attributes SM208
MNOL Maximum Number of Kevels SM194
MO Method Overridden SM198
MO Methods that are Overriding SM55
MOA Measure of Aggregation SM15
MPUB Method Public SM234
MR Modifications Requested SM141
MR Methods that have implementations Replaced SM55
MSGC Message Complexity SM203
MSGRECV Message Received SM224
MSGSELF Messages Self SM224
MSGSENT Messages Sent SM224
MSOO Maximum Number of Levels SM194
MWE Maximal Weighted Entropy SM219
n1 Number of unique operators SM269
N1 Total number of operators SM269
n2 Number of unique operands SM269
N2 Total number of operands SM269
NAD Number of Advices SM82
NAML Number of Methods Locally and Inherited SM138
NAN Number of Attributes referred through Navigations SM85
NAR Number of Autonomous Requests in the class SM203
NAS Number of Aspects SM82
NASC Number of Autonomous Requests SM203
NASSCOC Number of Association SM96
NASSOC Number of Associations SM337
NASSOCC Number of Associations Between Classes SM149
NAV Number of Assigned Variables SM23
NB NB SM10
NC Number of Clauses in the class SM10
NC Number of Cycle SM293
NC Non-API Function Closedness Index SM74
NCC Number of Collaboration Classes SM4
NCI Number of Classes that Inherit SM55
NCIM Number of Classes Inheriting a Given Method SM4
NCR Number of times a Class is Reused SM70
NCSL Non Comment Source Line SM119
NEI Number of Explicit Iterator SM8
NEV Number of Non-encapsulated Variables SM288
NFOB Number of Fixture Objects SM234
NFPT Number of Fixture Production Type SM234
NIC Number of Indirect Connections SM3
NKW Number of OCL Key Words SM85
NL Nesting Level SM226
NLEAF Number of Leaf Features SM86
NLO Number of Local Methods SM75
NLOC Net LOC SM296
NLOC Number of Lines of Code SM92
NMC Number of Methods SM55
NME Number of Model Elements SM350
NMES Number of Messages SM230
NMIC Number of Methods Inherited SM55
NMNPUB Number of Non-Public Methods SM151
NMPUB Number of Public Methods SM224

121

Table D.1: OO Maintainability Metrics

Metric Description Primary Studies that contain the metric
NNBOC Number of Non Basic Object Classes SM203
NNC Number of Navigated Classes SM85
NNR Number of Navigated Relationships SM85
NOAM Number of added methods SM194
NOBU Number of non test OBject Uses SM234
NOC* Number Of Children in sub-tree SM123
NODP Number of Direct Parts SM337
NOH Number of Hierarchies SM15
NOIS Number of Import Statements SM194
NOO Number of Operations SM194
NOOC Number of Object Children SM7
NOOM Number of Overridden Methods SM194
NOPK Number of Packages SM290
NOPM Number of Public Methods SM187
NOSA Number of Static Attributes SM290
NOSLOC Number of Source Lines of Code SM288
NOVM Number of Overridden Methods SM290
NP Number of class Paths SM203
NPI Number of Polymorphic Invocations SM38
NPII Not-Programming-to-Interfaces Index SM211
NPS Number of Provided Services SM203
NPV Number of Public Variables per class SM70
NRV Number of Referred Variables SM23
NSF Number of Static Attributes SM7
NSM Number of Static Methods SM7
NSSR Number of subsystem-subsystem relationships SM4
NSUB Number of Subclasses SM204
NSUP Number of Superclasses SM204
NTOP Number of Top Features SM86
NUMANC Number of Ancestors SM224
NUMATTR Number of Attributes SM224
NUMDESC Number of Descents SM224
NUMOPS Number of Operations SM224
NUMPARA Number of Parameters SM224
NUMPUBOP Number of Public Operations SM224
NV Number of Variables per Class SM70
NVC Number of Valid Configurations SM86
NVI Novelty Index SM202
NVS Novelty Score SM202
NW Number of Wholes SM337
NWCP Normalized Nr. of Weak Components SM87
OAC Operation Argument Complexity SM224
OAM Operation Access Metric SM282
OCPX Object Cyclomatic Complexity SM132
OL2 Cohesion of Class SM165
OM Overridden methods SM288
OPFS Object Response for Service SM132
OPSIHN Operations Inherited SM224
OQFS Object Request for Service SM132
PC Parents Count SM198
PCRM Percentage of Completely Redefined Methods SM201
PCT Path Complexity SM203
PDAC Package Data Abstraction Coupling SM31
PEC Path External Complexity SM203
PEM Percentage of Extended Methods SM201
PI Productivity Index SM203
PIC Path Internal Complexity SM203
PII Pure Inheritance Index SM226
PIMAS Polymorphism Invocations Method SM341
PINCCS Productivity Increment of Class Size SM203
PNAC Peak number of active components SM293
POM Percentage of Overrided Methods SM75
PPROTM Percentage of Protected Members SM194
PRECISION PRECISION SM166
PRM Percentage of Redefined Method SM201
PSIC Provided Service Interface Complexity SM203
PTCPS Presence of Temporal Constraint for the Provided Ser-

vice
SM203

PTMI Production-Type Method Invocations SM234
QACC Quality - Accuracy SM95
QL Quality - Latency SM95
QREL Quality - Reliability SM95
QREP Quality - Reputation SM95
QSLA Quality - Service Level Agreement SM95

122

Table D.1: OO Maintainability Metrics

Metric Description Primary Studies that contain the metric
QT Quality - Throughput of a Method SM95
QU Quality - Usability SM95
RAI Relationship Abstraction Index SM226
RC Relative Cost SM291
RCC Real Class Complexity SM203
RCS Real Class Size SM203
RD Relative Dependency SM193
RECALL RECALL SM166
Reference
Coupling

Reference Coupling SM29

REFF Reach-Efficiency SM87
RFC1 Response For a Class SM151
RMA Abstractness SM7
RMD Normalized Distance from Main Sequence SM7
RMI Instability SM7
ROV Ratio of variability SM86
RP Relative Productive SM291
RSI Reuse percent SM291
RSIC Required Service Interface Complexity SM203
SAVI State Access Violation Index SM211
SC Subjective assessment of Complexity SM141
SCC Similarity-based Class Cohesion SM68
SCCS Source Code Control Systems SM189
SCOPE SCOPE SM193
SCR Signature Change Rate SM296
SCV Skip Call Violations SM82
SDC Strength of Dependency between Classes SM112
SDI System Design Instability SM54
SERVERS Number of Receiving Classes SM230
SFC Structural Feature Coupling SM346
SII System Implementation Instability SM54
SIMAS Static Method Invocations SM341
SIX Specialization Index SM151
SIZE Size SM87
SLAQ Slice Layer Architecture Quality SM275
SNOC Size Of Number Children SM35
SPN Sum of the avg. variable spans SM35
STMTS Statements SM224
SU Software Understandability SM10
TA Total Attributes SM69
TCF Technical Complexity Factors SM7
TCR True Comment Ration SM7
TFC Textual Feature Coupling SM346
TIES Ties SM87
TKE Time to fix the Known Errors SM141
TLCOM Transitive LCOM SM335
TM Total of modifiability SM210
TMR Time to Implement Modifications SM141
TO Total Operations SM69
TPC Tight Package Cohesion SM31
TRCF Task-relevant code fragments SM10
TU Total of Understandability SM10
UDT User Defined Type SM38
UNFM Programmer?s Unfamiliarity with the software SM10
UPCALLBY Up Call By SM211
Use Case
Complexity

Use Case Complexity SM7

VI Verifiability Index SM203
VOLUME Volume SM212
WFD Weighted sum of all the bug reports at criticality level SM217
WGT Weighted Graph Tree SM199
WIG Weighted Interaction Graph SM199
WIH Width of the Inheritance Hierarchy SM4
WMA Weight of Method by Aspect SM205
WMPC1 Weighted Methods Per Class SM7
WNCO Weighted Number of Collections Operation SM85
WNN Weighted Number of Navigations SM85
WOC Weighted Operations per Component SM209
PIM Polymorphically Invoked Methods SM38, SM234, SM341, SM343

123123123

E
Quasi-Experiment Protocol

E.1 Experimentation Goal

To assess the OOSM metrics catalog(s) generation through a context-based categories
approach. Specifically, to check what is the coverage percentage of the OOSM metrics’ from
the catalog proposed by the catalogs’ generator over the OOSM metrics’ catalogs suggested by
researchers.

E.2 Quasi-Experiment Definitions

This section presents some experimental definitions to be considered throughout the
quasi-experiment planning/execution.

E.2.1 Quasi-Experiment Subjects

The person who applies the treatment to the experimental units. The subjects are the
expert researchers consulted.

E.2.2 Quasi-Experiment Objects/Units

The object on which the quasi-experiment is run. In our case, we have one object per
subject. The objects are each individual contexts of maintainability that each subject has (his/her
point of view). Therefore, both treatments will be applied (in pairs) to the same object for each
subject.

E.2.3 Factor and Treatment

The quasi-experiment has one factor and two treatments. The factor is how maintainabil-
ity metrics are defined by researchers and the treatments are two different ways of doing so. One

124 E.3. QUASI-EXPERIMENT DESIGN

treatment is the researcher expertise and the other is using our catalog generator based on the
metrics’ categorization choice.

E.2.4 Independents Variables/Parameter

The independents variables, also called parameters, are variable we fix (control) in the
experiment since they might change the result if other values are assumed. The independent
variables and their values are:

• Metrics definition domain: Object-Oriented Software Maintainability;

• Expert research set: Authors of papers published at ICSE, SPLASH/OOPLSA, ICSM,
CSMR, SBES, ECOOP, METRICS Conference, WETSoM (2009 to 2013);

• Quasi-Experiment Application Period: December-January;

• The order that the treatments are applied by subject: First the researcher generates the
catalog based on his/her expertise and than using our approach (catalog generator based on
the metrics’ categorization choice). We choose such order since exposing the researchers
to the catalog our approach generates would influence the metrics the researchers would
report based on his/her experience.

E.2.5 Dependents Variables

The dependent variable is the one through we measure the effect of the different treat-
ments. In this quasi-experiment, the dependent variables are the metrics’ catalogs generated.

E.2.6 Control Group

Another way of looking at this quasi-experiment is considering a control group. In this
case the control group for this quasi-experiment is the metrics catalog suggested by the experts
considering their expertise (treatment 1).

E.3 Quasi-Experiment Design

E.3.1 Research Goal and Hypotheses

The research goal here is to assess the statement that the metrics’ catalogs generation
proposed here is useful. We tried to find any evidence about of the coverage percentage of the
OOSM metrics’ catalog generated based on the categories choice over the OOSM metrics’ suite
proposed by the experts interviewed.

125 E.3. QUASI-EXPERIMENT DESIGN

A Coverage Index (CI) was defined for each catalog generated during the quasi-experiment.
The CI is the probability of the metrics suggested by the experts belong to the catalog generated
using our approach.

For each researcher (i) evaluated, a CIi was denoted as:

CIi =
#(Xi\Yi)

#Yi

Where, Xi is the metrics catalog generated using our approach (categorization choice) by
researcher i, Yi is the metrics catalog generated by the researcher i expertise, and # is a function
that returns the number of metrics in a catalog.

The goal of this evaluation is to infer that our catalogs’ coverage is at least 90% over the
metrics suggested by experts. Thus, the hypotheses definition are:

H0: CI < 0.9. In other words, the catalogs generated using our approach has less than
90% of coverage over the catalogs proposed by experts (null hypothesis).

H1: CI >= 0.9. In other words the catalogs generated using our approach has at least 90%
of coverage over the catalogs proposed by experts (alternative hypothesis).

E.3.2 Research Method

Our study is a quasi-experiment because we do not have a random assignment of subjects
to treatment. This occurs mainly because we do not know the actual population of OOSM
researchers and practitioners. In fact, we invited all researchers we could, considering our
definition of metric experts (see independent variables definition at Section E.2.4) and all
participants where exposed to both treatments.

E.3.3 Data Collection Technique (Instrumentation)

We used the Direct Technique, specifically questionnaires for data collection. Direct
techniques allow the experimenter to obtain a general understanding of the software engineering
process. Such techniques are probably the only way to gauge how enjoyable or motivating
certain tools are to use or certain activities to perform. However, they are often subjective, and
additionally do not allow for accurate time measurements. It is composed by brainstorming,
focus groups, interviews, questionnaires, conceptual modeling.

Interviews and questionnaires are techniques that have been used by researchers when
their goal is to understand general information (including opinions) about process, product,
personal knowledge etc. It is can be adopted for small to large volume of data. As Interviews
involve at least one researcher talking to at least one respondent, we did not adopt this method.
Questionnaires are sets of questions administered in a written format. These are the most
common field technique because they can be administered quickly and easily. However, very
careful attention needs to be paid to the wording of the questions, the layout of the forms, and
the ordering of the questions in order to ensure valid results.

126 E.4. DATA ASSESSMENT

E.4 Data Assessment

For data assessing, a statistic coverage evaluation was performed checking the catalog
CI. We calculated the CI based on the description previously shown (Section E.3.1) for each
expert interviewed. It was found a data asymmetry analyzing the histogram of the CIs calculated.
Consequently, a non-parametric test was applied to assess the data set (WILCOX, 2004). Specifi-
cally, the Wilcoxon Test for one-sample was used, and the Z-Test was adopted as the statistic of
the test.

For these cases, we should reject the H0 hypothesis if Z > Za (WILCOX, 2004). For this
assessment, we used a 99% confidence level (CL). It is the probability that a confidence interval
captures the true population parameter given a distribution of samples (WILCOX, 2004). The
values of Za are obtained through the normal distribution. It is a mathematical table used to find
the probability of a statistic. Considering 99% of CL, Za is equal to 2.33 (obtained through the
normal distribution).

It is important to highlight that the population was not sampled. Consequently, the
conclusion of the quasi-experiment is based on the observed data. In our case the observational
data was the 47 catalogs suggested by the experts and generated using our approach. Nevertheless,
even with the unknown population, it is possible to study some population characteristics through
the observed data. For this quasi-experiment, characteristics such as expertise in software metrics,
and professional profile defined the type of population. Thus, the results assessment is valid for
the observational data.

E.5 Questionnaire Applied

This section shows the online questionnaire used in this quasi-experiment. Figures E.1
E.2 E.3 E.4 E.5 depict the online questionnaire pages. The first part is composed by questions
related to interviewee’s background. It is depicted in Figure E.1. Questions 4 and 5, shown in
Figure E.2 measure the interviewee expertise.

Figure E.3 presents how the questionnaire participant can suggest metrics to compose
the his/her catalog. He/she has to inform the metric’s name and metric’s description to compose
his/her catalog. After that, it is necessary to choose which category(s) fit with the metrics
previously added. Figure E.4 shows this questionnaire part. Finally, a catalog is generated
according the information about metrics and categories that the interviewee informed previously.
And, a last question is raised to check the equivalence between the catalog generated by the tool
and the catalog suggested by the expert. It is possible to check this situation in Figure E.5.

127 E.5. QUESTIONNAIRE APPLIED

Figure E.1 Questionnaire - First Part (Page 01).

Figure E.2 Questionnaire - Second Part (Page 02).

Figure E.3 Questionnaire - Third Part (Page 03).

128 E.5. QUESTIONNAIRE APPLIED

Figure E.4 Questionnaire - Fourth Part (Page 04).

Figure E.5 Questionnaire - Last Question (Page 05).

129129129

F
Experts’ Opinion About the Proposed Ap-
proach

The last question of the questionnaire was related to the experts’ assessment of the
catalog generated by the portal. The goal of this question is to check the experts opinion about of
the catalogs generation. The respondents were questioned if the catalog generated was equivalent
or better than the catalog proposed/used by them in OOSM evaluations. It is important to clarify
that is a complementary evaluation to the coeverage assessment presented in Section 4.4.5.

The Hypotheses Test of Proportion (WILCOX, 2004) was used to assess the data. This
is used to test hypotheses related to sample proportion, which is our case. We wanted to check
if the majority of the respondents agree that the catalog generated by the portal is equivalent
or better than the catalog previously suggested by them. Consequently, we assumed that the
majority of the respondents assessed positively the catalog generated by the portal. Based on
that, the hypotheses shown in Section 3.5.2 were raised. This implies that:

1. H0: P̂ = 0.7

2. H1: P0 > 0.7

The statistic for this type of test is to compare the Z value with the value of Za . a is the
probability that represents the CL. For this assessment, we used a CL of 99%. The values of
Za are obtained through the normal distribution. Considering 99% of CL, Za is equal to 2.33
(obtained through the normal distribution).

On the other hand, to calculate Z we use the formula proposed for the statistic of this
test, depicted in Figure F.1. Therefore, considering 47 answers, 41 respondents informed that the
catalog proposed by our approach was equivalent or better than the catalog suggested by them.
Consequently, the Z value obtained was 2.57.

The statistic of the test says that we should reject the H0 hypothesis if Z > Za (WILCOX,
2004). Consequently, we reject the H0. Based on this results, we claim that respondents assessed
the portal positively. Thus, this assessment represents an initial approval of the approach and
idea behind the portal of OOSM metrics.

130

Figure F.1 Z0 Calculation Formula (WILCOX, 2004).

Nevertheless, it is important to highlight that this result has some limitations since the
experts’ opinion is a subjective evaluation and we did not explained what should be considered
good or bad, therefore, what it is good for one researcher might not be good enough for others.
In addition, since the last question of the questionnaire is related to the equivalence of the
catalogs (generated by the portal and suggested by the experts), and it was not clear/explicit
what does mean “equivalent catalogs” during the questionnaire’s answering, the experts might
have misunderstood the question. Also, there was just two options to answer this last question:
“YES” or “NO’. Consequently, there was not a chance for experts to inform what they actually
think about the catalogs’ comparison (generated by the portal and suggested by them). Even
with aforementioned limitations, we believe that it is important register the results found as a
complementary evaluation.

131131131

G
Invitation Letter for the Questionnaire

Dear (RESEARCHER/PRACTITIONER),
I am Juliana Saraiva, a Computer Science Ph.D. student on the Informatics Center at

the Federal University of Pernambuco (http://www.cin.ufpe.br). My research project
is related to Object-Oriented Software Maintainability (OOSM) metrics. One of my work
contributions is to provide a portal (website) that has information about this kind of metrics (e.g.:
Metrics’ Name and Description, the way to collect the metric, papers that address this subject,
authors that proposed or adopted the metrics, and so on). Additionally, this environment contains
a metrics’ catalog generator.

This generator is based on each user’s context of adoption/research (academic research
or industrial practitioner scenarios). The goal of the portal is to simplify the decision making
process about metrics adoption in OOSM context. Indeed, considering the number of existing
metrics, many of them are probably known for very few people besides the ones who designed
them. Because of this, your expert opinion is so important for this research.

Thus, I am emailing you to ask your participation in an opinion research about the
effectiveness of catalog(s) generated by the portal. It is important to highlight that you were
selected for this process because we believe that you are an expert and have some experience in
metrics adoption for software maintainability assessment.

Consequently, you are invited to answer an online questionnaire about metrics composed
by 05 (five) objectives questions and 01(one) open question. The whole process takes between
10 and 15 minutes. In case you agree, you should follow the link below and login (using the
information provided below) in the restricted area. The login and password fields are in the
upper-right part of the page.

WEBSITE: http://julianasaraiva.info/oosmMetricsPortal
USERNAME: XXXX
PASSWORD: XXXXXX
I am very thankful for your attention and I’d really appreciate if you could help us in

evaluation of this portal, more specifically, in the assessment of the OOSM metrics catalogs
generator.

http://www.cin.ufpe.br
http://julianasaraiva.info/oosmMetricsPortal

132

Best Regards,
Juliana Saraiva

	Introduction
	Context and Motivation
	Research Problem and Questions
	Goals
	Solution and Summary of Contribution
	Thesis Structure

	Background
	Software Maintainability
	Maintainability Definition
	Maintainability and Software Costs
	Maintainability in Software Life Cycle

	Software Metrics
	Metric Definition
	Metrics Assessment

	Empirical Studies in Software Engineering SE
	Empirical Research Strategies Applied to SE
	Experiment and Quasi-Experiment
	Survey

	Research Instrumentation/Data Collection Strategies
	Mapping Studies
	Questionnaires

	Research Methodology
	Systematic Mapping Study
	Mapping Research Questions
	Data Source
	Primary Studies Search Strategy

	Metrics Naming Consolidation
	Metrics Categorization
	OOSM Metrics Portal Building Process
	Portal Architecture
	Portal Modules

	Approach Assessment
	Experimentation Goals
	Quasi-Experiment Design
	Data Extraction Method

	Results Discussion
	Systematic Mapping Study (SMS) Results
	Digital Libraries
	Studies' Authors
	Journal and Conferences Involved
	SMS Answer

	Software Maintainability Metrics
	Metrics' Tools
	Metrics Naming Inconsistencies
	Metrics' Categories

	OOSM Metrics Portal
	Results of the Approach Evaluation
	Respondents' Profile Assessment
	Respondents' Expertise
	Metrics Assessment
	Categories Assessment
	Assessment of the Catalogs' Coverage

	Answers of the Thesis's RQs
	Limitations and Threats to Validity

	Related Works
	Concluding Remarks
	Conclusions
	Future Work

	References
	Appendix
	Publications and Awards
	Awards
	Publications Directly Related to the Research
	Other Publications

	Systematic Mapping Protocol
	Background
	Review Question
	Roles and Responsibilities
	Search Process
	Search String
	Study Documentation
	Study Selection
	Inclusion Criteria

	Project Timetable
	Data Extraction and Synthesis

	Selected Primary Studies
	Object-Oriented Software Maintainability Metrics
	Quasi-Experiment Protocol
	Experimentation Goal
	Quasi-Experiment Definitions
	Quasi-Experiment Subjects
	Quasi-Experiment Objects/Units
	Factor and Treatment
	Independents Variables/Parameter
	Dependents Variables
	Control Group

	Quasi-Experiment Design
	Research Goal and Hypotheses
	Research Method
	Data Collection Technique (Instrumentation)

	Data Assessment
	Questionnaire Applied

	Experts' Opinion About the Proposed Approach
	Invitation Letter for the Questionnaire

