
 Repositorio Institucional de la Universidad Autónoma de Madrid
https://repositorio.uam.es

 Esta es la versión de autor del artículo publicado en:
 This is an author produced version of a paper published in:

Information Systems 108 (2022): 102019

DOI: https://doi.org/10.1016/j.is.2022.102019

Copyright: © 2022. This manuscript version is made available under the
CC-BY-NC-ND 4.0 licence http://creativecommons.org/licenses/by-nc-nd/4.0/

 El acceso a la versión del editor puede requerir la suscripción del recurso
Access to the published version may require subscription

https://repositorio.uam.es/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofA Reproducible POI Recommendation Framework:

Works Mapping and Benchmark Evaluation

Heitor Wernecka, Nı́collas Silvab, Adriano Pereira*b, Matheus Carvalhoa,
Alejandro Belloǵın+c, Jorge Martinez-Gil+d, Fernando Mourãoe, Leonardo

Rochaa

aUniversidade Federal de São João del-Rei, São João del-Rei — Brazil
werneck@aluno.ufsj.edu.br,{lcrocha,matheuscviana}@ufsj.edu.br

bUniversidade Federal de Minas Gerais, Belo Horizonte — Brazil
{ncsilvaa,adrianoc}@dcc.ufmg.br

cUniversidad Autónoma de Madrid, Escuela Politécnica Superior, Madrid, Spain.
alejandro.bellogin@uam.es

dSoftware Competence Center Hagenberg, Softwarepark 32a, Hagenberg, Austria
jorge.martinez-gil@scch.at

eSeek, Belo Horizonte — Brazil
fmourao@seek.com.au

Abstract

This work is a companion reproducibility paper that presents a framework to re-

produce our previous experiments and results reported in Werneck et al. (2021).

In that previous paper, we introduced a systematic mapping process of points-

of-interest (POI) recommendation methods and provided a uniform evaluation

methodology based on metrics covering different aspects besides accuracy. Due

to the lack of reproducible and extensible benchmarks, our work introduces a

reproducibility framework for POI methods based on a collection of Python soft-

ware libraries and a Docker image. Our proposal is composed of: (1) a package

to perform a protocol that reproduces our systematic mapping process (Werneck

et al., 2021), containing all collected data, insightful views on current advances

and opened challenges; and (2) an extensible benchmark to perform a protocol

to reproduce experimental evaluations on POI recommendation, considering dif-

ferent datasets, metrics, and the strongest baselines in the literature. This work

∗Corresponding author
Email address: adrianoc@dcc.ufmg.br (Adriano Pereira*)
+Reviewer

Preprint submitted to Information Systems March 7, 2022

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofalso demonstrates all processes required to instantiate its framework. Moreover,

our work can be considered at least weakly reproducible, since we were able to

reproduce the results of the previous paper, leading us to the same conclusions.

Keywords: POI Recommendation, Benchmark, Works Mapping

1. Introduction

Nowadays, Location-Based Social Networks (LBSNs) have become an essen-

tial tool for users to share and discover new points-of-interest (POI), such as

restaurants, museums, libraries, and others. There, users can express their cur-

rent opinion about a place in distinct ways from traditional systems (Liu et al.,5

2019; Sun et al., 2020). For example, users can upload location-tagged photos

to a social networking service, comment on an event at the exact place where

the event is happening, share their present location on a website for organizing

a group activity in the real world, record travel routes with GPS trajectories

to share travel experiences in an online community, and many others. It has10

boosted the emergence of a large and growing number of distinct Recommender

Systems (RSs) with characteristics and peculiarities for this scenario.

Our previous paper (Werneck et al., 2021) introduces a theoretical and ex-

perimental survey based on a systematic mapping of recent works published

between 2017 and 2019 about POI recommendations. There, we highlighted:15

(1) Most works have focused on the generic POI recommendation problem, al-

though we could identify a significant number of efforts addressing specific prob-

lems in the area, such as Next POI, and In/Out-of-Town Recommendations; (2)

While the user preferences, geographical, temporal, and social information are

the most explored in the current models, textual data is largely ignored; (3)20

Most of the new methods proposed by the selected papers apply Collaborative

Filtering, Factorization, Probabilistic, and Hybrid strategies; (4) Most of the

selected works have only evaluated the accuracy of the proposed methods; and

(5) There is a lack of comparative studies among the existing proposals.

Regarding the last two highlights, we observed in our previous work that25

2

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofdespite the recognized importance of accuracy, there is a consensus in the RS

community that other quality dimensions, such as novelty and diversity, are

also essential to assess the practical effectiveness of recommendations. More-

over, most of the works are not concerned with evaluating their methods in

distinct dimensions. These observations point out the potential damage to re-30

producibility and straightforward comparison of results in the area (Dacrema

et al., 2021). In this sense, this work aims to introduce a framework for

a uniform and fair evaluation of POI recommendation methods to

bridge the lack of reproducibility resources in this line of research.

Our framework is composed of a collection of Python software libraries and a35

Docker image in order to perform two protocols on POI recommendation area:

(1) Reproduction of the literature review : It is performed by a package that re-

produces the systematic mapping process (Werneck et al., 2021), with collected

data, insightful views on current advances and opened challenges (Figure 1(a)).

(2) Reproduction of experimental evaluations: It is composed of a package to40

support the evaluation of new POI recommendation methods with baselines

from literature by using the same hardware/software to execute them; using

distinct datasets with many check-ins and user’s reviews; measuring metrics of

accuracy, novelty and diversity; and applying statistical tests (Figure 1(b)).

For this paper, we use the framework to reproduce the same results reported45

in our previous paper (Werneck et al., 2021). However, it is possible to extend

it by introducing new datasets, recommendation models, or evaluation metrics.

Through our framework, researchers can evaluate their new methods of POI

recommendation to get statistical results and compare them with previously

existing methods under similar conditions. It also provides a way to make pa-50

per results reproducible since it configures a standard to perform experimental

tests of POI recommendation methods, whose configuration details were pre-

viously defined and repeatedly tested. In an experimental test, we ran this

reproducible package and achieved the same results, tables and plots by draw-

ing the same conclusions as the previous paper on POI RSs (Werneck et al.,55

2021). Moreover, this framework is extensible to other methods and different

3

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofpoi-rss-map/

map.bib

scripts/

utility library/

util.py

constants.py

views applications/

plot datasets count.py

plot metrics count.py

print table.py

plot map.py

results/

(a) Mapping Package.

data/

datasets/

checkin/

train/

test/

poi/

poi full/

user/friend/

neighbor/

categories.json

results/

reclist/

metrics/

util/

(b) Benchmark Data.

algorithms/

library/

methods/

metrics.py

RecRunner.py

constants.py

application/

run base.py

eval base metrics.py

run final.py

eval final metrics.py

print table.py

(c) Benchmark Algorithms.

/
poi-rss-benchmark/

Figure 1: Framework directory structure.

analyses by easily accepting several new characteristics about them. It can also

guide future proposals to address adequate, novel and relevant problems in the

field that have not been tackled yet. Indeed, we ask future systematic mappings

to increment, rework or extend our mapping with future advances in the area.60

We organize the remainder of this paper as follows. Section 2 presents the

protocol to reproduce the results of our systematic mapping process. Section

3 presents the protocol of our reproducibility benchmark. Finally, Section 4

presents the conclusions of this work.

2. Reproducible Protocol for the Literature Systematic Mapping65

This section describes the first protocol of our reproducibility framework to

allow the reproduction of our systematic mapping process, which is a scientific

study methodology to summarize a research area in order to categorize and

structure relevant efforts and results (Petersen et al., 2008). Unlike a system-

atic review, which focuses on in-depth descriptions and analysis of the literature,70

systematic mapping provides a coarse-grained overview. It brings undeniable

benefits for reproducibility since each mapping step should be precise and deter-

4

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofministically defined. Thus, it is possible to track research evolution by applying

the same process at distinct moments over time.

Our systematic mapping process is consisted of five steps: (1) definition of75

the research questions to delimit its scope; (2) definition of study search pa-

rameters (i.e., language, period of publication, repositories, search engines, and

keywords); (3) definition of inclusion and exclusion criteria of studies; (4) the

classification scheme to organize the relevant studies; and (5) the paper map-

ping, in which we apply the classification scheme and a ranking function to the80

relevant studies. A more detailed explanation of each step can be found in our

previous paper (Werneck et al., 2021).

The first stage aims to analyze a set of metadata manually collected from the

papers of our Systematic Literature Review (SLR) (Werneck et al., 2021). Its

package structure is centered in the bibliographic database extracted from the85

SLR (Figure 1 (a)). The code package comprises: (1) a bibliographic database,

defined by using a .bib file; (2) a set of Python scripts to perform the visualiza-

tion of our analyses; and (3) a directory to store the results. The .bib file works

as a bibliography database, storing the metadata of selected papers in the SLR.

Each entry of the .bib file records a paper by listing a metadata m ∈ M and the90

value v(m) measured by this characteristic. They are described in Table 1.

Metadata Description

problem Problem addressed by each work (e.g., Next-POI).

methodology Methodology applied by the model (e.g., collaborative filtering, factorization).

information Informations used to mitigate the problem (e.g., geographical, textual).

dataset Datasets selected in the evaluation (e.g., Foursquare, Yelp).

metrics Metrics used to evaluate the models (e.g., precision, intra-list diversity).

model_name Refer to the corresponding work RSs proposals names.

num_citations Number of citations extracted in Werneck et al. (2021).

baselines Models used in the experimental evaluation.

Table 1: Description of metadata used to classify POI RSs works in the SLR.

In the .bib file parsing, we apply a specific Python library for parsing Bib-

5

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofTeX, named bibtexparser2. For the data visualizations we always use the mat-

plotlib3, a popular Python library. The most important files are (1) util.py,

which contains a function to format the bibliographic database to allow further95

processing; (2) constants.py, which defines the datasets, parameters, metrics

and also the language to produce results (available Portuguese and English);

(3) plot_datasets_count.py to reproduce the plot around the frequency of

each dataset; (4) plot_metrics_count.py to reproduce the plot around the

frequency of each metric; (5) print_table.py to reproduce the mapping table;100

(6) and plot_map.py to plot the mapping in a bubble plot. Thus, every user can

reproduce the results and figures found during the systematic literature review

in the paper (Werneck et al., 2021). The results directory stores the resulting

tables and figures obtained from the script applications execution.

Our framework is flexible and straightforward to other researches increment,105

rework and extend our mapping. We modularize this package into three com-

ponents (i.e., bibliographic database, utility library and visualizations scripts).

Future studies can use our literature mapping results to: expand it with new

studies; increment the mapping with new classifications; and reuse visualiza-

tions in a new collection of works. Also, providing the raw data, it is more110

friendly to check the mapping to critics on the mapping results.

3. Reproducible Protocol for Benchmarks on POI Recommendation

We defined the framework using only one programming language – Python,

to provide code consistency. We adopt the version Python 3.8.10. All the soft-

ware is freely distributed for commercial and non-commercial usage under the115

Creative Commons License (CC BY 4.0). Aiming to ease the reproduction of ex-

periments, we created a Docker image using Docker 20.10.7 with Ubuntu 20.04.3.

This Docker image contains the framework and the datasets used to provide all

the results of the previous paper (Werneck et al., 2021). The permanent image

2https://github.com/sciunto-org/python-bibtexparser
3https://matplotlib.org/

6

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of(i.e., the version used for this article to reproduce all results) is available at120

Mendeley Data. The files in it are presented in Table 2. The overview about

all framework sources and the software information is summarized in Table 3.

Mendeley dataset data files File size Description

benchmark-datasets.zip 74 MB Datasets used in the benchmark.

benchmark-results.zip 213 MB Raw and processed benchmark output

files.

Dataset_Challenge_Dataset_

Agreement.pdf

99 KB Yelp dataset terms of use.

poi-rss.tar.gz 2.5 GB Docker image that can reproduce our ex-

periments.

Table 2: Mendeley dataset content summary.

POI RSs Reproducible Framework Description

GitHub benchmark repository https://github.com/heitor57/

poi-rss.git

Benchmark code version used in this work benchmark

GitHub mapping repository & data https://github.com/heitor57/

poi-rss-map.git

Mapping code version used in this work v1.1

Code language Python 3.8.10

Code license Creative Commons Attribution 4.0 In-

ternational License (CC BY 4.0)

Docker version used to build the docker image 20.10.7

Docker image with all code & data used for this work https://data.mendeley.com/datasets/

8sh5f96dfp/4

Table 3: Framework overview about sources and software information.

The benchmark for POI recommendations structure is composed of 2 main

components, data and algorithms, as shown in Figures 1 (b) and (c), includ-

ing four modules: (1) the datasets, included in data component, providing raw125

material to the evaluation tests performed with our benchmark; (2) results, also

included in data component, containing saved recommendation lists of the meth-

ods, metrics evaluations, result table, and general information; (3) library of rec-

ommender systems, in the algorithms component, containing metrics, methods,

and execution managers; and (4) the end-user applications, in the algorithms130

component, containing command-line interfaces to execute the RS pipeline.

7

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofRegarding the datasets, we adopted the Yelp Open Dataset4 for our bench-

mark, considering the US cities of Phoenix and Las Vegas filtered, as described

in Werneck et al. (2021). The two cities have the most considerable portions of

visit logs collected between 2004 and 2018 (details are shown in Table 4).135

Dataset # POIs # users # visit logs

Las Vegas 12,375 6,180 220,329

Phoenix 41,808 18,502 701,152

Table 4: Informations about the datasets of the benchmark obtained from the Yelp Open

Dataset.

In the dataset file structure (datasets), the folders contain a file for each

city ({city}.pickle) with their information to further simulate the recommen-

dation scenario, as presented in Table 5.

Dataset artifact Description

checkin Contains two folders with the training and testing datasets.

poi Includes the POI categories information without pre-processing.

poi_full Holds the POI categories and their geographical locations (i.e., latitude

and longitude), where categories are pre-processed with mapping to inte-

ger numbers [0,+∞].

user/friend Contains files with user’s friends.

neighbor Has files with cities POI’s neighbors POIs.

categories.json Defines the datasets category tree.

Table 5: POI RSs benchmark datasets artifacts description.

The results (in data component) contains output files from algorithms ex-

ecutions. The output files of each recommendation task simulation are stored140

in reclist in a JSON file containing a list of JSON objects with the user iden-

tification, the ranking of POIs and their respective score, Table 6 shows the files

generated by the execution of recommender systems. metrics folder is where

the metric evaluation is saved as a JSON with the list of JSON objects contain-

ing the user identification and metrics value. Table 7 shows the files generated by145

evaluations of the recommendations lists. The results table is saved in the util

4Yelp Open Dataset — available at https://www.yelp.com/dataset.

8

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofDataset Algorithm Recommendation list files generated by our benchmark

Las Vegas USG lasvegas_usg_80_alpha_0_beta_0.2_eta_0.json

Las Vegas GeoSoCa lasvegas_geosoca_80_alpha_0.3.json

Las Vegas GeoMF lasvegas_geomf_80_K_100_delta_50_gamma_0.01_epsilon_10_

lambda__10_max_iters_7_grid_distance_3.0.json

Las Vegas USG+Geo-Div lasvegas_usg_80_alpha_0_beta_0.2_eta_0_geodiv_20_div_

weight_0.5.json

Las Vegas GeoSoCa+Geo-Div lasvegas_geosoca_80_alpha_0.3_geodiv_20_div_weight_0.5.

json

Las Vegas GeoMF+Geo-Div lasvegas_geomf_80_K_100_delta_50_gamma_0.01_epsilon_10_

lambda__10_max_iters_7_grid_distance_3.0_geodiv_20_div_

weight_0.1.json

Phoenix USG phoenix_usg_80_alpha_0_beta_0.2_eta_0.json

Phoenix GeoSoCa phoenix_geosoca_80_alpha_0.3.json

Phoenix GeoMF phoenix_geomf_80_K_100_delta_50_gamma_0.01_epsilon_10_

lambda__10_max_iters_7_grid_distance_3.0.json

Phoenix USG+Geo-Div phoenix_usg_80_alpha_0_beta_0.2_eta_0_geodiv_20_div_

weight_0.5.json

Phoenix GeoSoCa+Geo-Div phoenix_geosoca_80_alpha_0.3_geodiv_20_div_weight_0.5.

json

Phoenix GeoMF+Geo-Div phoenix_geomf_80_K_100_delta_50_gamma_0.01_epsilon_10_

lambda__10_max_iters_7_grid_distance_3.0_geodiv_20_div_

weight_0.1.json

Table 6: Result files of running the algorithms on different datasets. These raw output files

are stored in /poi-rss-benchmark/data/results/reclist/ and processed later to generated

the result tables.

folder (in .tex and .pdf), containing the datasets, metrics, methods, and the

statistic test. Table 8 shows the post-processing output files of our benchmark.

We structure the algorithms directory as shown in Figure 1 (c), comprising:

(1) a library containing methods, metrics, execution managers, and constants150

definition; and (2) the applications to execute simulations, evaluations, and

visualization. In the library: the methods folder defines POI RS baselines (Ta-

ble 9), metrics.py defines all the metrics (Table 10); RecRunner is a file with

the RecRunner class that handles the RS simulation and evaluation pipeline;

constants.py defines experiment settings and mapping of names of metrics,155

methods and datasets to use on visualizations.

In the application, we define command-line interfaces to the execution han-

9

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofDataset Algorithm Output metric files of recommendations lists with size of 5,

10 and 20 generated by our benchmark

Las Vegas USG lasvegas_usg_80_alpha_0_beta_0.2_eta_0_{5,10,20}.json

Las Vegas GeoSoCa lasvegas_geosoca_80_alpha_0.3_{5,10,20}.json

Las Vegas GeoMF lasvegas_geomf_80_K_100_delta_50_gamma_0.01_epsilon_10_

lambda__10_max_iters_7_grid_distance_3.0_{5,10,20}.json

Las Vegas USG+Geo-Div lasvegas_usg_80_alpha_0_beta_0.2_eta_0_geodiv_20_div_

weight_0.5_{5,10,20}.json

Las Vegas GeoSoCa+Geo-Div lasvegas_geosoca_80_alpha_0.3_geodiv_20_div_weight_0.5_

{5,10,20}.json

Las Vegas GeoMF+Geo-Div lasvegas_geomf_80_K_100_delta_50_gamma_0.01_epsilon_10_

lambda__10_max_iters_7_grid_distance_3.0_geodiv_20_div_

weight_0.1_{5,10,20}.json

Phoenix USG phoenix_usg_80_alpha_0_beta_0.2_eta_0_{5,10,20}.json

Phoenix GeoSoCa phoenix_geosoca_80_alpha_0.3_{5,10,20}.json

Phoenix GeoMF phoenix_geomf_80_K_100_delta_50_gamma_0.01_epsilon_10_

lambda__10_max_iters_7_grid_distance_3.0_{5,10,20}.json

Phoenix USG+Geo-Div phoenix_usg_80_alpha_0_beta_0.2_eta_0_geodiv_20_div_

weight_0.5_{5,10,20}.json

Phoenix GeoSoCa+Geo-Div phoenix_geosoca_80_alpha_0.3_geodiv_20_div_weight_0.5_

{5,10,20}.json

Phoenix GeoMF+Geo-Div phoenix_geomf_80_K_100_delta_50_gamma_0.01_epsilon_10_

lambda__10_max_iters_7_grid_distance_3.0_geodiv_20_div_

weight_0.1_{5,10,20}.json

Table 7: Result of applying evaluation metrics for each algorithm in different datasets. Each

row corresponds to 3 files, where the string “{5,10,20}” from the path name in each of these 3

files corresponds to 5, 10, and 20 (the sizes of the recommendation list). These raw output files

are stored in /poi-rss-benchmark/data/results/metrics/ and processed later to generated

the result tables.

Post-processing output files In previous paper (Werneck et al., 2021)

benchmark_table.pdf table 6 and table 7

benchmark_table.tex table 6 and table 7 (source file)

Table 8: Processed output files from the benchmark experiment, these files are stored at

/poi-rss-benchmark/data/results/util/ in the Docker image.

dler (i.e., RecRunner) to execute the RS evaluation pipeline. We define scripts to

run traditional RS (run_base.py) and evaluate them (eval_base_metrics.py),

given datasets and methods. Moreover, we define scripts to run post-processing160

RS (run_final.py) and evaluate them (eval_final_metrics.py), given datasets,

traditional RS and post-processing RS. Finally, print_table prints a table with

10

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofthe methods, metrics, and cities results with the Wilcoxon statistic test.

Baseline Article Description

USG Ye et al. (2011) USG is a unified collaborative filtering algorithm based

on three main factors, namely: user preference (U); so-

cial influence from friends (S); and geographical influence

from POIs (G).

GeoSoCa Zhang & Chow (2015) Explores the geographical, social, and categorical correla-

tions among users and POIs to recommend POIs.

GeoMF Lian et al. (2014) Is a method that combines a matrix factorization and

a geographical model based on user’s activity areas and

POIs influence areas.

Geo-Div Han & Yamana (2017) Selects active areas to filter POIs deemed as promis-

ing candidates to the diversification process by clustering

overlapped visitable areas of each user.

Table 9: Information about the baselines of the benchmark.

Metric Acronym Work Description

Precision Prec Ricci et al.

(2011)

It is the percentage of relevant items

recommended considering the number of

recommended items.

Recall Rec Ricci et al.

(2011)

It is the percentage of relevant items rec-

ommended considering the entire set of

relevant items.

Coverage Cov Puthiya Param-

bath et al.

(2016)

It assesses the diversity by the number

of categories of the relevant items recom-

mended for each user.

Intra-list distance ILD Vargas &

Castells

(2011)

It assesses the diversity by the dissimi-

larity between the item categories in the

recommendation list.

Geographical pro-

portional represen-

tation

PRg Han & Ya-

mana (2017)

It assesses the diversity from the geo-

graphic point of view, evaluating the dis-

tribution of recommended POIs in each

subarea of the space.

Expected popularity

complement

EPC Vargas &

Castells

(2011)

It is measured by the expected number of

relevant items not previously seen by the

user (novelty).

Table 10: Information about the metrics of the benchmark.

11

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of4. Deploying the Experimental Setup & Replicating Results

As previously described, we created a Docker image that packs all code and165

data to reproduce the previous results from Werneck et al. (2021). Thus, this

section presents all steps required to deploy this Docker image and reproduce

all results.

Testing platform Type Operating Sys. Configuration Tested by

MINIMAL Desktop Ubuntu 20.04.3 1 Intel Core i3 (fourth gen-

eration or newer) or equiva-

lent, 32 GB RAM, 100 GB

mechanical disk

Authors

Platform1 Server Ubuntu 20.04.3 1 Intel Core i7-3930K CPU

@3.8 GHz, 32 GB RAM, 1

TB mechanical disk

Authors

Platform2 Desktop Windows 10 Pro 1 Intel Core i7-8700 CPU

@3.2 GHz, 32 GB RAM, 512

GB mechanical disk

Reviewer

Platform3 Desktop Ubuntu 18.04.2 1 Processor with 16 cores,

128 GB RAM, 1.5 TB me-

chanical disk

Reviewer

Table 11: Testing platform used to reproduce our experiments.

First of all, to set up the environment of our reproducible framework is re-

quired to have Docker installed in a version equal or higher than that described170

in Table 3. This Docker image will require at least 6.46 GB and it will provide all

code, input data and required software. In a Linux machine with bash and basic

shell commands, it is possible to deploy this environment by the instructions

described in Table 12.

We executed the experiment on only one computer, described in Table 11,175

and the runtime is shown in the Table 13.

4.1. Reproducing Results from the Systematic Literature Review

This part of our framework is the most lightweight and no particular machine

is required. All codes are executed almost instantly, with low memory usage,

and only 3 MB of disk space is sufficient to store the results. The workflow for180

reproducing the results of the systematic literature review is shown in Figure 2.

12

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofStep Step-by-step instructions to deploy the Docker container

1 Install Docker in Ubuntu

$ sudo apt-get update

$ sudo apt-get install apt-transport-https\

ca-certificates curl gnupg lsb-release

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg \

| sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg

$ sudo add-apt-repository \

"deb [arch=amd64] https://download.docker.com/linux/ubuntu\

$(lsb release -cs) stable"

$ sudo apt-get update

$ sudo apt-get install docker-ce

$ sudo apt-get install docker-ce-cli containerd.io

Verify if the Docker Engine is installed correctly

$ sudo docker run hello-world

2 Open a terminal on Linux with bash, create and enter a folder to store the framework.

$ cd /home/ && mkdir poi-rss && cd poi-rss

3 Download the tar.gz file containing the docker image to execute experiments from Mende-

ley Data.

$ wget "https://data.mendeley.com/public\

-files/datasets/8sh5f96dfp/files/\

8a4afc9d-5681-4a68-a30d-072f5790348f/file_downloaded"

$ mv file_downloaded poi-rss.tar.gz

4 Load the docker file and create a new container to posterior running of experiments.

$ docker load -i poi-rss.tar.gz

$ docker run -itd --name poi-rss poi-rss bash

Table 12: Instructions to deploy the Docker container.

Run Testing platform Running time Tested by

1 Platform1 2160 min ≈ 1.5 days Authors

2 Platform2 1265 min ≈ 21.08 hours Reviewer

3 Platform3 703 min ≈ 11.72 hours Reviewer

Table 13: Running time obtained with the testing platform.

Follow the step-by-step guide at Table 14 to reproduce the SLR results. The

main output files are stored as illustrated in Figure 3.

4.2. Reproducing Results of POI Benchmark

In turn, the benchmark of POI recommendation has a moderated size and re-185

quires at least 1.2 GB of disk space to be stored. These experiments take around

36 hours to execute everything for the computer settings previously mentioned.

13

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 2: Reproducibility workflow using Docker in Ubuntu to reproduce SLR results of the

paper (Werneck et al., 2021). The output files of this workflow are the same as the table and

figures from the previous article (Werneck et al., 2021).

Step Step-by-step instructions to reproduce the SLR experiments

1 Requires the docker setup described previously in Table 12.

2 Attach bash to the running container.

$ docker exec -it poi-rss bash

3 Go to the project folder.

$ cd /poi-rss-map/scripts

4 Execute python file to generate the systematic mapping results.

$./run_all

5 Leave session of the Docker container to the host user session.

$ exit

6 Copy result files from the container to the host.

$ docker cp poi-rss:/poi-rss-map/results slr-results

7 Use any pdf viewer and image viewer to check results.

Table 14: Instructions to reproduce the SLR experiments.

It is expected that the experiment requires around 32 GB to run. To demon-

strate the adaptability of our framework, we also include more methods and

datasets than the original ones in the benchmark. They can be easily used with190

the command-line application. Figure 4 shows the workflow for reproducing

14

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of/poi-rss-map/data/results/

datasets count.{png,eps}
metrics count.{png,eps}
map.{png,eps}
map table full.{tex,pdf}

Figure 3: Main output files of the mapping results reproduction.

the benchmark results. The instructions to reproduce the results previously

reported in Werneck et al. (2021) are described at Table 15.

Figure 4: Reproducibility workflow using Docker in Ubuntu to reproduce the benchmark

results of the paper (Werneck et al., 2021). The output files of this workflow are the same as

the tables from the previous article (Werneck et al., 2021).

Executing our benchmark as presented, we can reproduce the results from

the previous paper (Werneck et al., 2021), with the same conclusions. More-195

over, our benchmark offers all the necessary structure to extend it, including

new datasets, metrics and RS methods, with a complete experimental setup

that ensures the quality and correct evaluation of new POI methods.

5. Extending and reusing our reproducible benchmark

Currently, to extend our benchmark to add new metrics, methods, and200

datasets, researchers should only implement the desirable code in the exper-

imental controller (i.e., RecRunner class) and add the parameters/names in the

constants.py file to handle the new feature in the benchmark. The code of

15

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofStep Step-by-step instructions to reproduce the Benchmark experiments

1 Requires the docker setup described previously at Table 12.

2 Attach bash to the running container.

$ docker exec -it poi-rss bash

3 Open the project folder.

$ cd /poi-rss-benchmark/algorithms/application

4 Run the scripts to obtain the benchmark results: recommendation lists; metrics; and

results table. The main parameters (i.e., cities, traditional recommenders and post-

processing steps) are set specifically to reproduce the previous paper.

$./run_all

5 Leave session of the Docker container to the host user session.

$ exit

6 Copy result file from the container to the host.

$ docker cp poi-rss:/poi-rss-benchmark/data/results/util/benchmark_table.pdf .

7 Use any pdf viewer to check results.

Table 15: Instructions to reproduce the SLR experiments.

the metric/method/dataset should be implemented in the correct module by

following the pattern described in Section 3. Table 16 illustrates an example of205

adding a new recommendation system to the benchmark.

Step Step-by-step instructions to implement a new recommender system

1 Create the configurations on the RecRunner class to manage the inputs.

2 In the RecRunner class, in the static method get base parameters, the recommen-

dation model must expose its default parameters by a dictionary.

3 Set and create a handler to execute the recommendation model in RecRunner

BASE RECOMMENDERS attribute.

4 Set in CITIES BEST PARAMETERS dictionary at constants.py the parameters

of the method to use in each city (dataset).

5 Set in RECS PRETTY a name of the RS to appear in visualizations.

Table 16: Step-by-step guide to implement a RS in the benchmark framework.

6. New results generated by our experiments

This section aims to present the benchmark results, which are obtained fol-

lowing the workflow shown in Figure 4. This workflow was executed using the

reviewer’s test platforms described in Table 11, and the execution times are210

presented in Table 13. This section is concerned with the benchmark results,

16

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofconsidering the execution of the SLR workflow presented in Figure 2, to repro-

duce the SLR results. Both reviewers obtained identical results to the primary

work (Werneck et al., 2021).

Table 17 presents the results of the benchmark that aims to reproduce Ta-215

ble 6 of the primary paper (Werneck et al., 2021), in which the results of the

primary paper are presented (i.e., column “paper”) together with the results

obtained by the reviewers (i.e., column “rev1” and column “rev2”). In the same

way, we present in Table 18 a comparison of the results achieved in the primary

paper (Werneck et al., 2021) with the ones achieved by reviewers, regarding to220

Table 7 of the primary paper.

Finally, to guide the discussion about the degree of reproducibility of the

framework in the next section, we present correlation measures of Pearson (r)

and Spearman (ρ) in Table 19 between the paper and reviewers values of each

metric presented in the Table 17. The value of the Pearson correlation evaluates225

the linear relationship of metrics of the primary paper (Werneck et al., 2021)

with the metrics of the reviewers, while the Spearman correlation assesses the

relationship between the ranking of metrics.

17

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofLas Vegas

Prec@5 Rec@5 Cov@5 ILD@5 PRg@5 EPC@5

Algorithm paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2

USG 0.0333 0.0335 0.0336 0.0175 0.0175 0.0176 0.2260 0.2261 0.2261 0.5122 0.5123 0.5123 0.1787 0.1772 0.1770 0.2954 0.2952 0.2954

USG+GeoDiv 0.0370 0.0371 0.0370 0.0194 0.0195 0.0194 0.2200 0.2200 0.2200 0.5211 0.5211 0.5212 0.4434 0.4427 0.4427 0.4858 0.4844 0.4843

GeoSoCa 0.0298 0.0298 0.0298 0.0143 0.0143 0.0143 0.2597 0.2597 0.2597 0.4344 0.4344 0.4344 0.2099 0.2099 0.2099 0.7119 0.7119 0.7119

GeoSoca+GeoDiv 0.0275 0.0284 0.0284 0.0137 0.0138 0.0138 0.2560 0.2569 0.2569 0.4792 0.4771 0.4771 0.3326 0.3340 0.3340 0.7209 0.7243 0.7243

GeoMF 0.0409 0.0393 0.0376 0.0214 0.0208 0.0199 0.2303 0.2324 0.2345 0.5146 0.5166 0.5173 0.2412 0.2442 0.2434 0.5759 0.5745 0.5847

GeoMF+GeoDiv 0.0411 0.0407 0.0396 0.0221 0.0217 0.0212 0.2297 0.2305 0.2319 0.5233 0.5252 0.5246 0.3970 0.3984 0.3972 0.6117 0.6157 0.6247

Prec@10 Rec@10 Cov@10 ILD@10 PRg@10 EPC@10

Algorithm paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2

USG 0.0309 0.0308 0.0308 0.0312 0.0311 0.0312 0.3424 0.3430 0.3430 0.5057 0.5059 0.5060 0.2406 0.2387 0.2385 0.3497 0.3482 0.3482

USG+GeoDiv 0.0331 0.0330 0.0329 0.0343 0.0341 0.0340 0.3289 0.3284 0.3286 0.5288 0.5289 0.5289 0.5525 0.5513 0.5512 0.5193 0.5176 0.5172

GeoSoCa 0.0253 0.0253 0.0253 0.0241 0.0241 0.0241 0.3511 0.3511 0.3511 0.4676 0.4676 0.4676 0.2504 0.2504 0.2504 0.7237 0.7237 0.7237

GeoSoCa+GeoDiv 0.0230 0.0239 0.0239 0.0225 0.0226 0.0226 0.3537 0.3549 0.3549 0.5074 0.5053 0.5053 0.4012 0.4026 0.4026 0.7277 0.7304 0.7304

GeoMF 0.036 0.0363 0.0354 0.0377 0.038 0.0377 0.3412 0.3382 0.3414 0.5323 0.5334 0.5340 0.3190 0.3214 0.3215 0.6002 0.6041 0.6090

GeoMF+GeoDiv 0.0353 0.0354 0.034 0.0373 0.0377 0.0364 0.3369 0.3376 0.3379 0.549 0.5495 0.548 0.5596 0.5607 0.5607 0.6443 0.6473 0.6556

Prec@20 Rec@20 Cov@20 ILD@20 PRg@20 EPC@20

Algorithm paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2

USG 0.0280 0.0278 0.0278 0.0563 0.0559 0.0559 0.4589 0.4587 0.4584 0.5131 0.5133 0.5134 0.3036 0.3021 0.3017 0.4096 0.4080 0.4080

USG+GeoDiv 0.0289 0.0290 0.0289 0.0591 0.0592 0.0591 0.4453 0.4455 0.4454 0.5284 0.5284 0.5283 0.5560 0.5543 0.5541 0.5299 0.5289 0.5283

GeoSoCa 0.0209 0.0209 0.0209 0.0390 0.0390 0.0390 0.4509 0.4509 0.4509 0.5086 0.5086 0.5086 0.2916 0.2916 0.2916 0.7344 0.7344 0.7344

GeoSoCa+GeoDiv 0.0197 0.0205 0.0205 0.0373 0.0375 0.0375 0.4563 0.4576 0.4576 0.5243 0.5223 0.5223 0.4134 0.4143 0.4143 0.7339 0.7362 0.7362

GeoMF 0.0313 0.0316 0.0311 0.0649 0.0655 0.0648 0.4528 0.4531 0.4542 0.5513 0.5511 0.5517 0.3953 0.3961 0.3965 0.6353 0.6367 0.6418

GeoMF+GeoDiv 0.0293 0.0294 0.0290 0.0609 0.0615 0.0607 0.4510 0.4543 0.4548 0.5674 0.5673 0.5668 0.6337 0.6348 0.6352 0.6720 0.6726 0.6793

Phoenix

Prec@5 Rec@5 Cov@5 ILD@5 PRg@5 EPC@5

Algorithm paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2

USG 0.0333 0.0236 0.0236 0.0175 0.0103 0.0103 0.226 0.24 0.2399 0.5122 0.3984 0.3984 0.1787 0.0744 0.0744 0.2954 0.4856 0.4856

USG+GeoDiv 0.037 0.0244 0.0244 0.0194 0.0105 0.0105 0.2200 0.2314 0.2314 0.5211 0.3857 0.3858 0.4434 0.3348 0.3348 0.4858 0.7013 0.7017

GeoSoCa 0.0167 0.0167 0.0167 0.0060 0.0060 0.0060 0.2123 0.2123 0.2123 0.4653 0.4653 0.4653 0.0978 0.0978 0.0978 0.8307 0.8307 0.8307

GeoSoca+GeoDiv 0.0150 0.0150 0.0150 0.0055 0.0055 0.0055 0.2037 0.2037 0.2037 0.5064 0.5064 0.5064 0.1915 0.1915 0.1915 0.856 0.856 0.856

GeoMF 0.0300 0.0287 0.0291 0.0124 0.012 0.0121 0.2176 0.2171 0.2191 0.4602 0.4610 0.4607 0.1427 0.1440 0.1440 0.7023 0.7032 0.7042

GeoMF+GeoDiv 0.0287 0.028 0.0285 0.0119 0.0119 0.0118 0.2182 0.2172 0.2190 0.4718 0.4723 0.4732 0.3010 0.3019 0.3020 0.7584 0.7574 0.7577

Prec@10 Rec@10 Cov@10 ILD@10 PRg@10 EPC@10

Algorithm paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2

USG 0.0203 0.0202 0.0202 0.0177 0.0177 0.0177 0.3147 0.3148 0.3148 0.3908 0.3909 0.3909 0.1144 0.1137 0.1136 0.5201 0.5199 0.5200

USG+GeoDiv 0.0215 0.0215 0.0215 0.0187 0.0186 0.0186 0.3212 0.3212 0.3212 0.3977 0.3972 0.3971 0.4009 0.3998 0.3998 0.7055 0.7043 0.7044

GeoSoCa 0.0167 0.0145 0.0145 0.0060 0.0101 0.0101 0.2123 0.2839 0.2839 0.4653 0.4959 0.4959 0.0978 0.1258 0.1258 0.8307 0.8365 0.8365

GeoSoCa+GeoDiv 0.0150 0.0136 0.0136 0.0055 0.0096 0.0096 0.2037 0.2804 0.2804 0.5064 0.5263 0.5263 0.1915 0.2283 0.2283 0.856 0.8561 0.8561

GeoMF 0.026 0.0255 0.0257 0.0214 0.021 0.0211 0.3038 0.3042 0.3050 0.4796 0.4801 0.4804 0.2002 0.2014 0.2012 0.7258 0.7292 0.7295

GeoMF+GeoDiv 0.0245 0.0245 0.0244 0.0201 0.0205 0.0199 0.3061 0.3054 0.3072 0.5030 0.5035 0.5041 0.4181 0.4193 0.419 0.7808 0.7810 0.7810

Prec@20 Rec@20 Cov@20 ILD@20 PRg@20 EPC@20

Algorithm paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2

USG 0.0176 0.0176 0.0176 0.0303 0.0303 0.0303 0.4028 0.4029 0.4029 0.3842 0.3841 0.3841 0.1702 0.1692 0.1691 0.5628 0.5627 0.5626

USG+GeoDiv 0.0192 0.0192 0.0192 0.0331 0.0330 0.0330 0.4002 0.4002 0.4002 0.4015 0.4010 0.4010 0.3899 0.3886 0.3885 0.6932 0.6924 0.6926

GeoSoCa 0.0125 0.0125 0.0125 0.0171 0.0171 0.0171 0.3800 0.3800 0.3800 0.5335 0.5335 0.5335 0.1555 0.1555 0.1555 0.8447 0.8447 0.8447

GeoSoCa+GeoDiv 0.0123 0.0123 0.0123 0.0168 0.0168 0.0168 0.3801 0.3801 0.3801 0.5438 0.5438 0.5438 0.2323 0.2323 0.2323 0.8542 0.8542 0.8542

GeoMF 0.0225 0.0223 0.0225 0.0363 0.0363 0.0366 0.3943 0.3948 0.3949 0.5053 0.5052 0.5057 0.2606 0.2617 0.2620 0.7541 0.7562 0.7568

GeoMF+GeoDiv 0.0216 0.0215 0.0217 0.0358 0.0356 0.0359 0.3981 0.3984 0.3995 0.5198 0.5198 0.5206 0.4451 0.4459 0.4456 0.7927 0.7927 0.7929

Table 17: Reproduction of the Table 6 of our primary paper (Werneck et al., 2021) contrasting

all implemented baseline methods, using the Yelp dataset, and considering six distinct metrics

on top-k (i.e., 5, 10, 20) recommendation lists. The best results with statistical significance

when applying a Wilcoxon test with p-value = 0.05 are marked in bold. The column “pa-

per” stands for the primary paper values, “rev1” and “rev2” are the results obtained by the

reviewers.

18

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofAlgorithm Prec Rec Cov ILD PRg EPC Total

paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2 paper rev1 rev2

USG 0 0 0 0 0 0 3 3 3 0 0 0 0 0 0 0 0 0 3 3 3

USG+GeoDiv 1 0 0 1 0 0 1 2 2 1 1 1 2 2 2 0 0 0 6 5 5

GeoSoCa 0 0 0 0 0 0 1 2 2 0 0 0 0 0 0 1 0 0 2 2 2

GeoSoCa+GeoDiv 0 0 0 0 0 0 1 3 3 2 3 3 0 0 0 6 6 6 9 12 12

GeoMF 3 6 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 9 12 12

GeoMF+GeoDiv 2 5 3 3 5 4 0 0 0 3 3 3 4 4 4 0 0 0 12 17 14

Table 18: Reproduction of the Table 7 of our primary paper (Werneck et al., 2021) that

contains the number of times each baseline was the top performer. The column “paper” stands

for the primary paper values, “rev1” and “rev2” are the results obtained by the reviewers.

Las Vegas Phoenix

rev1 rev2 rev1 rev2

Metric r ρ r ρ r ρ r ρ

Prec@5 0.9950 1.0000 0.9810 1.0000 0.7971 0.5429 0.7815 0.5429

Rec@5 0.9983 1.0000 0.9898 1.0000 0.7220 0.5429 0.7222 0.5429

Cov@5 0.9988 1.0000 0.9949 1.0000 0.9254 1.0000 0.9480 0.9429

ILD@5 0.9993 1.0000 0.9992 1.0000 -0.5382 -0.4286 -0.5382 -0.4286

PRg@5 0.9999 1.0000 0.9999 1.0000 0.9005 0.8286 0.9005 0.8286

EPC@5 0.9999 1.0000 0.9994 1.0000 0.9423 1.0000 0.9426 1.0000

Prec@10 0.9979 1.0000 0.9970 1.0000 0.9920 1.0000 0.9930 1.0000

Rec@10 0.9995 1.0000 0.9989 1.0000 0.9971 1.0000 0.9984 1.0000

Cov@10 0.9888 1.0000 0.9984 1.0000 0.9619 1.0000 0.9713 1.0000

ILD@10 0.9994 0.9429 0.9990 0.9429 0.9764 0.9429 0.9771 0.9429

PRg@10 0.9999 1.0000 0.9999 1.0000 0.9936 0.8857 0.9936 0.8857

EPC@10 0.9999 1.0000 0.9994 1.0000 0.9998 1.0000 0.9998 1.0000

Prec@20 0.9978 1.0000 0.9984 1.0000 0.9999 1.0000 1.0000 1.0000

Rec@20 0.9996 1.0000 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000

Cov@20 0.9616 0.9429 0.9467 0.9429 0.9998 1.0000 0.9987 1.0000

ILD@20 0.9994 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000

PRg@20 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

EPC@20 1.0000 0.9429 0.9996 0.9429 1.0000 1.0000 0.9999 1.0000

Table 19: Computation of Pearson (r) and Spearman (ρ) correlation between the vectors

defined by the values of each metric in Table 17. It is computed the correlation of reviewers

results (rev1 and rev2) with the primary paper results (Werneck et al., 2021).

19

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of7. Discussion of the new experimental results

This section aims to discuss the differences between the new results obtained230

with the results from our primary paper (Werneck et al., 2021). The minor dif-

ferences in the results were expected because the primary paper was not made

in a reproducible environment, using a Docker image, for instance. However,

the major conclusion made by our previous paper remains the same.

Among the results reported by the reviewers, we identified a small differ-235

ence with the primary paper. In the primary paper, the USG algorithm showed

higher values of coverage (Cov) than those currently reported (see Table 17

and Table 18). This difference is due to a recent change to one of the Python

libraries used (i.e., NumPy) to calculate USG math operations. In a recent

release, the accuracy of NumPy operations has increased from 64-bit to 128-bit.240

Thus, when the reviewers performed the experiments with the new version of the

library, the items presented in the top-5 recommendation list for the Phoenix

database became different from the primary article. Other small differences

from the Table 17 and Table 18 are related to randomness sources of GeoMF

and USG algorithms. More specifically, the geographical component of USG245

is non-deterministic, as it depends on random initialization of two variables,

namely w0 and w1, which are used in a power-law function to fit the data,

presented in Equation 8 of the article (Ye et al., 2011). On the other hand,

GeoMF(Lian et al., 2014) initializes its P and Q matrices, which are users’ la-

tent vectors and POIs’ latent vectors, respectively, with a probabilistic uniform250

distribution. Such changes harmed the correlation presented by the Spearman

and Pearson indicators for the USG results in the ILD@5 metric in the Phoenix

dataset. However, the behavior identified by the other algorithms for the evalu-

ation metrics remained stable. Furthermore, after the authors performed a new

execution with the new experimental environment, considered by the reviewers,255

the results achieved are identical to the results reported by the reviewers in the

new Table 17. It endorses the high consistency in the reproductive character of

the current article.

20

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofConsidering the Definition 1 provided in the reproducibility guidelines, re-

garding the comparison with the primary paper, our computational experiment260

may be considered as weakly reproducible once: (1) the Spearman correlation

between the original and reproduced results is equal to 1; and (2) the Pear-

son correlation value is high enough to allow the confirmation of all previously

reported conclusions. We noticed that some metrics did not fit the previous

definition of weakly reproducible: Prec@5, Rec@5, Cov@5, Cov@20, ILD@5,265

ILD@10, PRg@5 and PRg@10. As explained in the previous paragraph, the

results identified so far were not fully reproducible due to the modifications re-

lated to the USG equations. However, the major conclusion highlighted in the

primary paper remains the same. Indeed, if we contrast the results reported

by the reviewers, we can notice that the results are almost equal. Specifically,270

the correlation between all values from both results (i.e., rev1 and rev2) has a

Pearson and Spearman correlation equal to 1. Thus, all these new experiments

are at least weakly reproducible.

Definition 1 (Weakly reproducible experiment). Given a set of previously

reported experimental results and conclusions, a computational experiment is275

weakly reproducible if the Spearman rank correlation between the original and re-

produced results is equal to 1, and their Pearson correlation value is high enough

to allow the confirmation of all previously reported conclusions, even if the re-

produced results do not reproduce all results exactly. Thus, weak reproducibility

is a performance-rank-preserving notion.280

8. Conclusions

In this work, we presented and described a reproducible framework split into

two packages: (1st) a mapper of the main works recently published in the POI

recommendation literature; (2nd) a benchmark with different recommendation

approaches, a usual dataset and all evaluation methodology. The first one also285

contains the bibliographic mapping data and visualizations scripts that can be

further extended for other Systematic Literature Reviews. The second one pro-

21

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofvides a well-organized methodology to evaluate POI recommendation systems

with baselines and metrics ready to use in current research. They are bundled

in a Docker image that contains all required software used to reproduce results290

from our previous paper and achieve the same conclusions of Werneck et al.

(2021). With a new execution of the benchmark to reproduce the results of the

previous article, done by two reviewers, we report only small differences con-

cerning the results presented in the main article (Werneck et al., 2021), leading

us to consider our work at least weakly reproducible.295

Moreover, this framework can also be applied to other researches for future

explorations in the POI field. Researchers can easily add new baselines, metrics

and datasets to the framework and compare them with the existing ones.

9. Revision comments

We would like to thank the authors for providing this valuable reproducibil-300

ity framework as a first attempt to create a standard for experimentation in this

domain. We think that the present framework presents a triple contribution:

a) it allows the reproduction of the results obtained in the original paper, b) it

allows comparison with the methods that form the state-of-the-art at present,

c) it facilitates the development and evaluation of new methods in the context305

of POI recommendation. This is especially interesting because the challenge of

POI recommendation is expected to attract much more research in the coming

years. The large amount of content and platforms that currently exist need

to offer their users mechanisms that facilitate the identification of items that

may be of interest to them. Therefore, the development of methods and tools310

in this direction is highly desirable. The community will benefit greatly from

reproducible research that allows past results to be used to build new solutions.

The present work confirms that the realization of reproducible science is

far from being a trivial task. Even though reproducibility is one of the require-

ments present from the beginning, this is especially true in the field of computer315

science, where developments rely on a heterogeneous set of tools and technolo-

22

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofgies that are not static but evolve over time, creating an underlying problem of

inter-version compatibility between libraries, systems, and components. Not to

mention the cold starts based on the random information generation of a large

majority of optimization or learning algorithms. In this specific scenario, we320

have encountered some of these recurring issues. In the following, we explain

in detail our experience in evaluating this framework. Thus, we explain which

design and implementation decisions seem to us successful and which factors

have complicated our task in reproducing the experiments.

Among the design decisions that we believe to be sound and that facilitate325

the task of assessing reproducibility are the following:

• Docker containers make it much easier to reproduce the experiments since

the working environment is known in advance, and both the libraries and

the access paths are correctly configured.

• Python as a programming language includes easy syntax, an abundance330

of libraries, good online documentation and community support, and so

on. Furthermore, being an interpreted language, it is possible to open the

source file and check the operation mode when in doubt about a particular

action.

• The generation of documentation, including tables, in a LaTeX format and335

the plotting of the results using figures in a standard format, facilitate both

the interpretation of the results and their integration in other works or the

elaboration of related material.

However, despite the authors followed these standards and had reproducibil-

ity as a goal, we detected some problems during our review:340

• One of the most critical problems discussed with the authors was the

confirmation that the dataset could be shared. This involved reading

legal documents regarding the terms of use of the dataset to find the best

conditions under the dataset and subsequent artifact (Docker instance)

could be shared with the community.345

23

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of• Even when using a Docker instance, some commands included in the in-

structions provided by the authors to run the experiments were not correct.

For example, the name of the scripts or executables was a different one or

they were located in a different path.

• It was not possible to check for strong or weak reproducibility constraints,350

since tables with results were not included. This was fixed in the revised

version and actually allowed to compute correlations between original and

reproduced results, providing a more complete analysis of the extent of

the repeated experiments.

• Sometimes console reporting is difficult to interpret, as it requires in-355

depth knowledge of the algorithms being tested. Most of the doubts can

be solved by consulting the source code. But a more detailed associated

documentation is recommended for user level operators.

In conclusion, we fully support the choice of using containers for these kinds

of reproducibility experiments. Using these technologies makes it extremely360

easy to reproduce previous experiments and obtain comparable results since

several issues such as the availability of the correct version of the libraries or

the required dependencies disappear. Based on this experience, it can be stated

that the proposed framework agrees with the results reported by the authors

in the original paper. In particular, the results differ slightly, so this would365

be the case of weak reproducibility. Such discrepancy has been identified and

explained in the paper. We want to thank the authors for their considerable

effort to provide a valuable software framework to the research community of

this increasingly popular research domain, POI recommendation. We want to

encourage the community to integrate their methods within this solution as a370

final note. The framework is fully prepared for its inclusion, and the automatic

generation of statistics related to the results obtained should make it possible

to compare them easily.

24

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofAcknowledgments

This work was partially supported by CNPq, CAPES, Fapemig, AWS and375

INWEB.

References

Dacrema, M. F., Boglio, S., Cremonesi, P., & Jannach, D. (2021). A trou-

bling analysis of reproducibility and progress in recommender systems re-

search. ACM Transactions on Information Systems (TOIS), 39 , 1–49.380

doi:10/ghwb82.

Han, J., & Yamana, H. (2017). Geographical diversification in poi recommen-

dation: toward improved coverage on interested areas. In Proceedings of the

Eleventh ACM Conference on Recommender Systems (pp. 224–228).

Lian, D., Zhao, C., Xie, X., Sun, G., Chen, E., & Rui, Y. (2014). GeoMF: Joint385

geographical modeling and matrix factorization for point-of-interest recom-

mendation. In Proceedings of the 20th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining KDD ’14 (pp. 831–840). New

York, NY, USA: Association for Computing Machinery. doi:10/gh7hmj.

Liu, C., Liu, J., Wang, J., Xu, S., Han, H., & Chen, Y. (2019). An attention-390

based spatiotemporal gated recurrent unit network for point-of-interest rec-

ommendation. ISPRS International Journal of Geo-Information, 8 , 355.

doi:10/gmmq8j.

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic map-

ping studies in software engineering. In Proceedings of the 12th International395

Conference on Evaluation and Assessment in Software Engineering EASE’08

(p. 68–77). Swindon, GBR: BCS Learning & Development Ltd.

Puthiya Parambath, S. A., Usunier, N., & Grandvalet, Y. (2016). A coverage-

based approach to recommendation diversity on similarity graph. In Proceed-

ings of the 10th ACM Conference on Recommender Systems (pp. 15–22).400

25

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofRicci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender

systems handbook. In Recommender systems handbook (pp. 1–35). Springer.

Sun, K., Qian, T., Chen, T., Liang, Y., Nguyen, Q. V. H., & Yin, H. (2020).

Where to go next: Modeling long-and short-term user preferences for point-of-

interest recommendation. In Proceedings of the AAAI Conference on Artificial405

Intelligence (pp. 214–221). volume 34.

Vargas, S., & Castells, P. (2011). Rank and relevance in novelty and diversity

metrics for recommender systems. In Proceedings of the fifth ACM conference

on Recommender systems (pp. 109–116).

Werneck, H., Silva, N., Viana, M., Pereira, A. C., Mourão, F., & Rocha, L.410

(2021). Points of Interest recommendations: Methods, evaluation, and future

directions. Information Systems, 101 , 101789. doi:10/gmmq79.

Ye, M., Yin, P., Lee, W.-C., & Lee, D.-L. (2011). Exploiting geographi-

cal influence for collaborative point-of-interest recommendation. SIGIR ’11

(pp. 325–334). New York, NY, USA: Association for Computing Machinery.415

doi:10/dt5zgx.

Zhang, J.-D., & Chow, C.-Y. (2015). GeoSoCa: Exploiting geographical, social

and categorical correlations for point-of-interest recommendations. SIGIR ’15

(pp. 443–452). New York, NY, USA: Association for Computing Machinery.

doi:10/gmmq8b.420

26

Journal Pre-proof

A

Jo
ur

na
l P

re
-p

ro
of

rticle Highlights:

● A companion reproducibility paper about POI recommendation;
● An extensible benchmark about POI recommendation;
● A collection of Python software libraries and a Docker image;
● A package to perform a protocol that reproduces our systematic mapping process;
● A detailed reproducibility analysis of the primary work.

Journal Pre-proof

Conflict of Interest
Jo
ur

na
l P

re
-p

ro
of

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

None.

	reproducible_werneck_information_systems_2022_ps.pdf
	plantilla_actualizada_ELSEVIER1.pdf
	reproducible_werneck_information_systems_2022_ps
	A reproducible POI recommendation framework: Works mapping and benchmark evaluation
	Introduction
	Reproducible protocol for the literature systematic mapping
	Reproducible protocol for benchmarks on POI recommendation
	Deploying the experimental setup replicating results
	Reproducing results from the systematic literature review
	Reproducing results of POI benchmark

	Extending and reusing our reproducible benchmark
	New results generated by our experiments
	Discussion of the new experimental results
	Conclusions
	Revision comments
	Declaration of competing interest
	Acknowledgments
	References

	1-s2.0-S0306437922000242-main-preproof (002).pdf

