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ABSTRACT

Evaluating semantic relatedness of Web resources is still an open challenge. This paper focuses on
knowledge-based methods, which represent an alternative to corpus-based approaches, and rely in
general on the availability of knowledge graphs. In particular, we have selected 10 methods from
the existing literature, that have been organized according to adjacent resources, triple patterns,
and triple weights based methods. They have been implemented and evaluated by using DBpedia
as reference RDF knowledge graph. Since DBpedia is continuously evolving, the experimental
results provided by these methods in the literature are not comparable. For this reason, in this work
such methods have been experimented by running them all at once on the same DBpedia release
and against 14 well-known golden datasets. On the basis of the correlation values with human
judgment obtained according to the experimental results, weighting the RDF triples in combination
with evaluating all the directed paths linking the compared resources is the best strategy in order to
compute semantic relatedness in DBpedia.

Keywords Semantic relatedness · knowledge graph · Linked Data · DBpedia.

1 Introduction

How much are two given words related? In general, the way of automatically computing a degree of relatedness
between words falls into one of the following categories of methods [22]: corpus-based methods, which use large
corpora of natural language texts, and exploit co-occurrences of words, as for instance [47]; knowledge-based methods,
which rely on structured resources, as for instance [13]; and hybrid methods, which are a mix of the two, as for instance
[38]. Corpus-based methods benefit from the huge availability of textual documents and the advancements in the field
of natural language processing and, for this reason, they have been widely investigated in the literature for a long time.
Knowledge-based methods mainly depend on the availability and the quality of a proper knowledge base, such as a
knowledge graph or an ontology. These methods require words to be associated with resources in the knowledge base
in order to shift from a pure linguistic dimension to a knowledge-based one. This paper focuses on knowledge-based
methods.

Since the advent of the Semantic Web, ontologies have become significant knowledge representation tools, especially
when advanced reasoning is required. However, ontologies suffer from some drawbacks: (i) they are usually man-
ually or semi-manually created and maintained, and this can be very costly; (ii) general purpose ontologies, such as
WordNet2, contain a limited number of relations between concepts, mainly hierarchical relations (is a and part of )
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and a few non-hierarchical or thematic ones [30]; (iii) domain specific ontologies are available only in a few cases.
Furthermore, when knowledge-based techniques are applied, they often exploit taxonomies and, therefore, the focus
is limited to the notion of semantic similarity [7], which is a particular case of semantic relatedness.

With the advent of Linked Data3, a new frontier appeared, enabling the generation of large knowledge graphs (or
semantic networks), such as DBpedia4, which is the result of an ongoing project aiming at producing structured
content from Wikipedia5. Since the number of published Linked Data datasets is growing, the interest in exploiting
knowledge graphs for knowledge-based applications is increasing as well [23].

Knowledge graphs are fundamental in several research areas, such as for instance pattern mining [19], social network
analysis [11], etc.. In this work the focus is on semantic relatedness, which is a key feature in Word Disambiguation
[61], Entity Linking [42], Recommendation Systems [41], Data Mining [50], Information Retrieval [33], Question An-
swering [64], etc. Semantic relatedness captures two main key dimensions: taxonomic and non-taxonomic relations
[30]. In general, taxonomic relatedness concerns semantic similarity, that has been extensively analyzed in the liter-
ature [7], whereas non-taxonomic relations are fundamental in the evaluation of the more general notion of semantic
relatedness. With this regard, to our knowledge, one of the most recent and relevant surveys on semantic relatedness
is [22], which defines the guidelines to select, develop, and evaluate semantic relatedness measures, although a bench-
marking of the existing methods is not provided. To date, computing semantic relatedness is both conceptually and
practically an open challenge [22].

Among the existing approaches, this paper focuses on the methods for evaluating semantic relatedness of Web re-
sources in DBpedia. As known, DBpedia is a continuously evolving knowledge graph, and the methods defined in the
literature provide their own experimental results, whose correlations with human judgment are often non-comparable
because they have been evaluated in different time periods. Therefore, an experiment on the same DBpedia release
and against the same datasets is missing. For this reason, in this paper we selected and compared 10 representative
proposals, by benchmarking them all at once against 14 golden datasets addressed in the literature, by using the same
DBpedia release. These methods have been compared by providing first an informal description and some intuitive
examples about them. Successively, they have been formally recalled and a technical running example has been given
in order to highlight the key aspects characterizing the different approaches. To the best of our knowledge this work
provides the first comparative experiment in this direction.

The paper is organized as follows. In Section 2 the related work is given, where semantic relatedness has been
analyzed by focusing first on semantic similarity and, then, on methods relying on WordNet, Wikipedia, and Machine
Learning techniques. Section 3 introduces the notion of semantic relatedness, and a classification of semantic relations
in line with [30]. Section 4 provides an introduction about RDF6, the W3C7 specifications for conceptual description
and modeling of information, and DBpedia. In Section 5 the 10 methods are informally presented, by providing
simple examples in order to highlight their differences and commonalities. In particular, they have been organized
according to three groups, namely adjacent resources, triple patterns, and triple weights based methods. In Section 6
the experimentation is presented, with the evaluation of the results and a discussion about them. Section 7 concludes.
Finally, in the Appendix, the 10 methods are formally recalled, and a technical running example is provided in order
to better illustrate the different approaches.

2 Related Work

Semantic relatedness is a fundamental research topic not only in computer science [22], but also in other disciplines,
such as economic and social sciences [56], however it is still a challenge. In the literature there is a significant amount
of works addressing semantic similarity which, as mentioned in the Introduction, is a particular case of semantic relat-
edness [7, 30], and has been investigated also by the authors within Formal Concept Analysis [14, 15], and Semantic
Web search [17, 18]. With the advent of Wikipedia, i.e., the Web of Documents and, successively, Linked Data (and, in
particular, DBpedia), i.e, the Web of Data, further approaches for evaluating semantic similarity have been proposed,
such as for instance [28]. In particular, this work relies on the semi-structured taxonomy called Wikipedia Category
Graph (WCG), and proposes a method to measure the semantic similarity between Wikipedia concepts. In order to im-
prove the efficiency of semantic similarity methods, other approaches exploit the advantages of combining Wikipedia
with WordNet, as for instance [34]. However, the focus of all the aforementioned papers is on semantic similarity
rather than relatedness. It is worth mentioning that, among the various approaches, in [45] the authors propose the

3http://www.w3.org/TR/2015/REC-ldp-20150226/
4https://www.dbpedia.org/
5https://www.wikipedia.org/
6http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
7The World Wide Web Consortium. https://www.w3.org/
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Resim (Resource Similarity) measure for evaluating semantic similarity of DBpedia resources and, successively, in
[44] they address the more general problem of relatedness, and propose an approach that is one of the 10 methods
selected for the experimentation of this work (see Section 5.2 and also Section A.2.2). Note that similarity is funda-
mental also in clustering [6], aimed at partitioning data into similar groups, which has been extensively investigated
in the literature. For example in ontology matching, in order to deal with large scale ontologies, it is necessary to de-
compose the huge number of instances into a small number of clusters. Clustering is addressed for ontology matching
for instance in [10]. In particular, the proposed approach aims at extracting sets of instances from a given ontology
and grouping them into subsets in order to evaluate the common instances between different ontologies. Clustering on
semantic spaces is also used for the summarization of image collections and self-supervision, as for instance in [54].

In the following, we restrict our attention to the literature addressing semantic relatedness, that is the focus of this
paper, rather than the more specific notion of semantic similarity. Note that semantic relatedness measures defined for
specific domains and experimented on specific datasets (as for instance in biomedicine [31]) have not been addressed
in this paper because experiments show that some of them, that are effective for a specific task or an application area,
do not perform well in general [22].

Below, the approaches from the literature have been organized according to three main groups, relying on WordNet,
Wikipedia, and Machine Learning techniques, respectively. Before introducing them, it is worth mentioning two recent
methods presented in [39] and [2], respectively. The former proposes a new measure within recommender systems
which evaluates the closeness of items across domains in order to generate relevant recommendations for new users in
the target domain. Essentially, such a measure is based on the total number of web pages where the words describing
the compared items occur together. According to the latter, semantic relatedness is evaluated for unstructured data by
relying on fuzzy vectors and by using different semantic relatedness techniques. However, both these approaches are
not knowledge-based and for this reason they have not been considered in our experiment.

WordNet. WordNet can be considered as a relatively simple knowledge graph designed to semantically model the
English lexicon. It contains mainly taxonomic relations (is a), and part-whole (part of ) relations, whereas a few
thematic relations are present (see the next section where semantic relations have been recalled). In the literature,
several approaches for computing semantic relatedness have been proposed by leveraging WordNet knowledge graph,
as for instance [57, 5, 33]. In particular, in [57], the problem of measuring semantic relatedness in labeled tree data is
addressed by leveraging the is a and part of hierarchies of WordNet. In [5], the authors state that the majority of the
proposed methods rely on the is a relation, and introduce a new approach to measure semantic relatedness between
concepts based on weighted paths defined by non-taxonomic relations in WordNet. In [33], semantic relatedness is
evaluated by following different strategies in order to improve computation performances, by combining WordNet
with word embedding methods. Furthermore, it is worth recalling that in [59] the authors define an algorithm for
semantic relatedness relying on random walks, i.e., generalizations of paths where cycles are allowed, that has been
evaluated on WordNet. However, as mentioned by the same authors, WordNet is relatively small, and an evaluation
of the performances of their proposal on larger knowledge graphs, such as DBpedia, is missing. In this paper the
approaches designed, and somehow limited, to evaluate semantic relatedness in WordNet have not been addressed
since here the focus is on the methods that have been experimented on larger knowledge graphs, i.e., that contain a
more heterogeneous set of relations.

Wikipedia. Wikipedia is a free, multilingual, online encyclopedia and, to date, the English version edition is composed
of more than 6 million articles written and maintained by a community of volunteers. It can be seen as a large corpus
where entities are described by natural language, and therefore it contains a huge amount of unstructured information.
For this reason, methods for evaluating relatedness between Wikipedia entities require a significant pre-processing
effort in order to extract structured information from the natural language descriptions. With this regard, the WCG
mentioned above is a hybrid structure, i.e, it is not a rigorous is a taxonomy that has been conceived in order to
facilitate the management of Wikipedia articles. Therefore, an interesting research direction concerns the analysis of
the trade-off between the expressivity of natural language queries and their “usability” over Linked Data. For instance,
in [20] the TREO system has been presented where Linked Data are queried by combining entity search, the TF-IDF
method [3] for link weighting, spreading activation models, and WLM (one of the methods selected for comparison in
this work, see Subsection 5.1 and A.1.1). In the same direction, in [60], knowledge graphs are used in combination
with text similarity techniques for improving the efficiency of complex question answering.

In this paper the proposals focusing on the relatedness of entities in Wikipedia have not been addressed because, as
mentioned in the Introduction, in order to analyze and extract keywords from Wikipedia documents, they rely on
corpus-based approaches and, therefore, on natural language processing techniques that go beyond the scope of this
work. However, this does not hold for WLM that is a pure knowledge base approach and, as shown in the next sections,
it has been included in the paper by using its RDF graph formulation.
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Machine Learning. Recently, some works have proposed to apply Machine Learning techniques to compute semantic
relatedness, by encoding the available knowledge as numerical vectors. When the available knowledge is in the form
of textual documents, this step is referred to as word embedding, whereas, when dealing with graph-shaped knowledge,
as graph embedding. Examples about word embedding for semantic relatedness are proposed in [35], [52], and [65].
In particular, [35] aims at achieving a better accuracy on the semantic relatedness of both isolated words and words in
contexts. In [52], word embedding is applied to represent keyphrases in a corpus of textual documents in order to find
similar news articles. In [65], a semantic relatedness graph is constructed in order to detect sentiment polarities in a
long sentence towards multiple aspect categories. However, the first two proposals are corpus-based, whereas the third
one is an hybrid method combining semantic similarity on a taxonomy and a distributional approach over a corpus of
documents. Therefore, these three methods have not been addressed in our experiment. Concerning graph embedding,
in [50] the RDF2Vec approach for evaluating semantic relatedness of Linked Data has been proposed by relying on
Neural Network models. The mentioned paper is, to the best of our knowledge, the first proposal that leverages the
graph structure using neural language modeling for the purpose of entity relatedness and similarity. However, the
computation of embedding is time-consuming [8], and the experiments, even on small RDF datasets, do not terminate
in a reasonable number of days or run out of memory. Along this research direction computational efficiency is still an
open problem [7] that goes beyond the scope of this paper. Finally, it is worth mentioning [26], which applies Machine
Learning techniques to images representing words in order to investigate the cognitive mechanism underlying semantic
relatedness by using deep convolutional neural networks. However, also this approach does not involve graph-based
knowledge that is the focus of our work.

3 Semantic Relatedness

The Merriam-Webster dictionary defines the term related as: “connected by reason of an established or discoverable
relation”. According to this definition, established can be intrerpreted as explicit, and discoverable as implicit. Let us
consider a knowledge graph where nodes represent entities (concepts or real world objects) and arcs stand for relations
between them. An explicit relation between entities can be seen as an existing edge between the corresponding nodes,
whereas an implicit relation can be identified by a chain of edges connecting the related nodes. For instance, Figure 1
shows a simple semantic network where the node car is related to the node motor-vehicle by means of the explicit (or
established) is a relation, i.e., car → is a → motor-vehicle, whereas motor-vehicle is related to gasoline by means of
an implicit (or discoverable) relation corresponding to the path motor-vehicle → propelled by → engine → fueled by
→ gasoline.

In general, a relation is semantic when it is based on the meaning of the involved words. For example, tire → made of
→ rubber represents a semantic relation because rubber is the material a tire is made of. On the contrary, for instance,
car → rhymes with → star is not a semantic relation because it holds due to the assonance between the words.
According to [30], semantic relations can be organized according to the following classification:

• Taxonomic relation
– Specialization relation (is a)

• Non-taxonomic relation
– Part-whole relation (part of )
– Idiosyncratic relation
– Thematic relation
– Instance relation
– ...

where, with respect to the classification presented in [30], the part-whole relations have been highlighted among the
non-taxonomic ones according to [5]. In general, in the literature, a taxonomic relation refers to the notion of special-
ization, i.e. the well-known is a relation that involves concepts with common features and functions. In particular, this
relation allows the identification of concepts that are semantically similar, as for instance knife and fork that are both
cutlery [36].

Within the non-taxonomic ones, that concern concepts that co-occur in any sort of context, an important role is rep-
resented by the part-whole, or meronymic, relations [5], i.e., semantic relations between a meronym denoting a part
and a holonym denoting a whole. These can be further distinguished according to different types of meronymy, such
as (i) component-integral object, as for instance pedal and bike, (ii) member-collection, as for instance ship and fleet,
(iii) portion-mass, as for instance slice and pie, etc. [62]. Non-taxonomic relatedness is often characterised in terms
of free associations relying on the probability for one concept to evoke another concept [40]. With this regard, the
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idiosyncratic relations originate from subjective perceptions associated with autobiographic memories, as for instance
coffee and beard, that can be related for someone because they are often associated with morning activities, but this
of course may not be true for someone else. Thematic relations involve concepts performing complementary roles
in a given context, as for instance river and bridge. Note that pairs of concepts taxonomically related can also be
thematically related, as for instance doctor and nurse that are similar because they are both health professionals, but
they are also thematically related, because they perform complementary roles, for example during surgery [30].

In a knowledge graph different kinds of semantic relations coexist, as shown for instance by the graph of Figure 1.
In particular, the nodes car and bus are both related by is a arcs to the more general concept motor-vehicle (car →
is a → motor-vehicle, and bus → is a → motor-vehicle). For this reason, car and bus are sibling concepts sharing the
meaning of their parent motor-vehicle and, therefore, are similar [16, 36]. Furthermore, wheel → part of → motor-
vehicle represents an example of meronymy, where wheel is the part and motor-vehicle is the whole. Motor-vehicle →
propelled by → engine, and engine → fueled by → gasoline represent examples of thematic relatedness, since these
relations pertain to a certain theme (i.e., the automotive). Finally, car#21 → instance of → car is an example of an
instance relation, since it involves a real world entity and its type.

Figure 1: A simple knowledge graph

According to [22], in the following “we use the term semantic relatedness in a general sense, i.e. how much connection
humans perceive between two concepts”. Hence, in this paper all kinds of semantic relations have been addressed,
without making any assumption about the causes of a given perception.

4 Resource Description Framework (RDF) and DBpedia

The Resource Description Framework (RDF) is a family of specifications designed as a standard model for data
interchange on the Web. In particular, RDF is used for the conceptual description or modeling of information of Web
resources, each identified by a Uniform Resource Identifier (URI). RDF is based upon the idea of making statements
about resources by means of expressions in the form of triples following a subject−predicate−object pattern. The
subject denotes the resource that is being described, and the predicate expresses a relation between the subject and the
object, which can be a resource or a literal (e.g., a string, a number).

Let R = {r1, r2, ..., rn} be a finite set of URIs each representing a resource, and L = {l1, l2, ..., lm} a finite set of
literals, an RDF triple (or statement) has the form:

⟨s, p, o⟩,
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Figure 2: An example of RDF graph

where s ∈ R is the subject, p ∈ R is the predicate, and o ∈ R ∪ L is the object.

An RDF graph G is a set of RDF triples, where subjects and objects are nodes, and predicates are directed arcs (also
called links, edges or arrows). For instance, in Figure 2 an RDF graph is shown. The triples ⟨geo:Rome, hist:firstKing,
hist:Romolus⟩, and ⟨geo:Rome, gen:foundedIn, 753 BC⟩ express that the first king of Rome was Romolus, and the city
of Rome was founded in 753 before Christ, respectively. In the proposed examples, geo:, hist:, and gen: are prefixes
for namespaces8 that are assumed to contain geographical, historical and generic terms, respectively.

In the following, a triple t = ⟨s, p, o⟩ represents a directed link, labelled as p, from the resource s to the resource o.
The predicate p is said to be outgoing from s and incoming to o.

Given two resources ra and rb, a directed path P of length n from ra to rb is a list of n triples [t1, t2, ... tn] where
ra coincides with s1, the subject of the triple t1, rb coincides with on, the object of the triple tn, and oi, the object
of the triple ti, coincides with si+1, the subject of the triple ti+1, for 1 ≤ i ≤ n − 1. For instance, the sequence of
triples [⟨geo:Rome, hist:firstKing, hist:Romulus⟩, ⟨hist:Romulus, gen:killed, hist:Remus⟩] represents a directed path
of length 2, from the resource geo:Rome to the resource hist:Remus.

An undirected path connecting two resources is a path in which the predicates can be traversed in both directions,
i.e., they represent undirected links. For instance, the list of triples: [⟨geo:Rome, hist:firstKing, hist:Romulus⟩,
⟨hist:Remus, gen:brother, hist:Romulus⟩] represents an undirected path connecting the resources geo:Rome and
hist:Remus, where the predicate gen:brother is traversed from the object hist:Romulus to the subject hist:Remus.

Note that, although an RDF graph can be cyclic, we consider only acyclic paths, i.e., paths where there are no repeti-
tions of nodes, therefore walks [59] are not allowed.

RDF identifies a vocabulary for making assertions on resources. For instance, the predicate rdf:type9 is used to state
that a resource is an instance of another resource. Furthermore, RDF is used for defining further vocabularies. For
instance, the RDF Schema (RDFS)10, and the Web Ontology Language (OWL)11 are two RDF vocabularies. The
former introduces, among the others, the resource rdfs:Class and the predicate rdfs:subClassOf, which can be used
for defining taxonomies, whereas the latter, which is built on top of RDFS, defines more sophisticated constructs for

8A namespace is a collection of terms that allows them to be uniquely identified.
9rdf: is the prefix for the RDF namespace.

10https://www.w3.org/TR/rdf-schema/
11https://www.w3.org/OWL/
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representing computational ontologies. Finally, SPARQL12, which is a recursive acronym for SPARQL Protocol and
RDF Query Language, is an RDF query language based on a SELECT-FROM-WHERE syntax, where variables begin
with a question mark (?). For instance, in SPARQL, ⟨r, ?x, ?y⟩ represents any triple having the resource r as subject.

DBpedia is a very huge RDF knowledge graph, and is the result of an ongoing process aimed at semi-automatically
extracting information from Wikipedia, in order to represent it in RDF. Therefore, for each Wikipedia article a corre-
sponding RDF resource exists. Note that, a significant part of DBpedia comes from the information in the infoboxes
of the Wikipedia articles13. The infobox contains data represented as property-value pairs provided by articles’ editors
that are, in general, an excerpt of the relevant information of a DBpedia resource.

5 Methods for Computing Semantic Relatedness

In this section, we recall 10 methods for computing semantic relatedness in RDF graphs that have been selected from
the literature. These methods have been chosen on the basis of the following criteria:

• They are pure knowledge-based approaches. For this reason, we did not consider any corpus-based and hybrid
method and, in general, any method addressing the use of natural language processing techniques.

• They can be applied to any RDF graph, without making any assumption about the types of nodes and pred-
icates. Therefore, we did not take into consideration the methods defined for specific knowledge graphs, as
for instance WordNet.

Furthermore, these methods have been identified by:

• Searching on Google Scholar, in September 2021, by using the following keywords: [“semantic relatedness”
“rdf”], and by considering only the articles published since 2015.

• Analyzing the first 40 pages of results (400 in total), and by selecting the articles about semantic relatedness
methods, according to the above criteria. This search allowed us to identify 4 methods, namely, Linked Data
Semantic Distance with Global Normalization (here referred to as LDSDGN) [44], Propagated Linked Data
Semantic Distance (PLDSD) [4], Exclusivity-based measure (here referred to as ExclM) [27], and ASRMPm

[13].

• Selecting 6 further methods on the basis of the bibliographic references of the papers about the 4 methods
above. These methods are: Wikipedia Link-based Measure (WLM) [63], Linked Open Data Description
Overlap (LODDO) [66], Linked Data Semantic Distance (LDSD) [43], IC-based measure (here referred to as
ICM) [53], REWOrD [46], and Proximity-based Method (here referred to as ProxM) [32].

In this paper the selected methods have been classified according to the following three groups:

1. Methods based on adjacent resources.

2. Methods based on triple patterns.

3. Methods based on triple weights.

Some of these methods have been originally conceived for computing a distance. Hence, in these cases we adopted the
corresponding relatedness formulation, based on the assumption that the shorter the distance the greater the relatedness.
In the Appendix the 10 methods are formally recalled and, in order to achieve a more effective comparison among
them, a running example is used, based on the graph G shown in Figure 3. Such a graph contains 13 nodes (resources),
linked with directed edges labeled with 4 possible predicates, namely, p1, p2, p3, and rdf:type. Among the 13 resources,
ra and rb are the ones whose relatedness will be addressed when describing each method.

Below the 10 methods are informally summarized, and their main characteristics are recalled, but readers interested in
the formal aspects can refer to the Appendix.

5.1 Methods based on adjacent resources

In this subsection the methods belonging to the first group are described, that are based on resources’ adjacent nodes,
i.e., nodes that are linked to the compared resources via paths of length 1 in the knowledge graph. They are Wikipedia

12http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
13An infobox is a panel that summarizes the key features of the Wikipedia article.

7



Semantic relatedness in DBpedia: A comparative and experimental assessment

Figure 3: The running example graph G

Link-based Measure (WLM), and Linked Open Data Description Overlap (LODDO).

Wikipedia Link-based Measure (WLM). In [63], the Wikipedia Link-based Measure (WLM) is presented. This
measure, which originally exploits the hyperlinks within Wikipedia articles, derives from the well-known Normalized
Google Distance (NGD) [9], which is based on the assumption that, given two terms, the more pages contain them
the more related they are. In this paper, the WLM approach is recalled by applying it to an RDF graph. In particular,
rather than considering the Wikipedia articles or Google pages containing a given term, the set of RDF triples of the
graph whose objects correspond to such a term are addressed. Then, the set of the resources that are the subjects of
such triples are considered.

For instance consider the graph of Figure 3 and the resources ra and rb. In order to evaluate their relatedness,
two sets of RDF triples have to be addressed, one for each of the compared resources. For example in the case
of ra, this set is given by the triples of the graph whose objects correspond to such a resource, i.e., {⟨r4, p2, ra⟩,
⟨r9, p3, ra⟩, ⟨r9, p1, ra⟩, ⟨r11, p2, ra⟩, ⟨rb, p3, ra⟩}. Therefore, regarding ra, the set of resources {r4, r9, r11, rb} will
be considered, i.e., all the resources with incoming predicates to ra.

Linked Open Data Description Overlap (LODDO). The Linked Open Data Description Overlap (LODDO) method
[66] is based on the notion of description of a resource, which is the set of the resources linked to it, either via an
incoming, or an outgoing predicate, excluding rdf:type, and including the resource itself. In other words, a resource
ri, different from r, belongs to the description of r if it participates in a triple with r, either as subject or object. For
instance, in the graph of Figure 3, the description of ra, say D(ra), is given by the following set {ra, rb, r3, r4, r9,
r10, r11}. The approach proposes two strategies, namely LODOverlap and LODJaccard, sharing the rationale that
the more the descriptions of two resources have in common, the greater their relatedness. According to [66], the
LODOverlap strategy performs better than the LODJaccard one, and this is the strategy that has been considered in
our experimentation.

5.2 Methods based on triple patterns

These methods are based on the identification of path patterns in the knowledge graph, i.e., paths satisfying specific
conditions with respect to the compared resources. Note that these methods represent distances and, as mentioned
above, the shorter the distance the greater the relatedness. They are Linked Data Semantic Distance (LDSD), LDSD
with Global Normalization (LDSDGN), and Propagated Linked Data Semantic Distance (PLDSD).

Linked Data Semantic Distance (LDSD). In [43], Passant proposes a theoretical definition of Linked Data and shows
how relatedness between resources can be evaluated by using the semantic distance measure introduced by Rada [48].
With respect to the traditional approach of Rada which focuses on hierarchical relations, the proposed distance takes
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into account any kind of links. In particular, a family of measures for semantic distance has been defined, named
Linked Data Semantic Distance (LDSD). In the Appendix, the three measures belonging to this family are recalled.
The first one focuses on direct links (LDSDdw), the second one on indirect links (LDSDiw), and the third one on
a combination of both direct and indirect links between the compared resources (LDSDcw). As mentioned by the
author in [43], among these three measures, the best one is LDSDcw, which has been considered in our experiment.
In essence, it addresses direct paths, and indirect paths adhering to a specific pattern, that is, two links labeled with
the same predicate both outgoing from (incoming to) a third resource and incoming to (outgoing from) the compared
resources.

For instance, consider the graph in Figure 3, in comparing the resources ra and rb, besides the direct paths, which are
[⟨ra, p2, rb⟩] and [⟨rb, p3, ra⟩], the following indirect paths contribute: (i) [⟨r4, p2, ra⟩, ⟨r4, p2, rb⟩], whose links are
labeled with p2 and are outgoing from the third resource r4, (ii) [⟨r11, p2, ra⟩, ⟨r11, p2, rb⟩], where links are labeled
with p2 and are outgoing from the third resource r11, and (iii) [⟨ra, p1, r3⟩, ⟨rb, p1, r3⟩], whose links are labeled with
p1 and are incoming to the third resource r3. Note that, as clarified by the formalization of the measures provided
in the Appendix, both the LDSDiw and LDSDcw are not symmetric, i.e., they are independent of the order of the
compared resources.

LDSD with Global Normalization (LDSDGN). The measures presented in [44], in this paper referred to as LDSD
with Global Normalization (LDSDGN), represent an evolution of the approach proposed by Passant [43]. In [44] the
authors present three strategies, namely LDSDα, LDSDβ , and LDSDγ . In the first case, they assume that resources
are more related if there is a great number of them linked to the compared resources via a given predicate. In the
second strategy further assumptions are considered in order to achieve symmetry. In the third case, the contribution
of the indirect paths is normalized with respect to the global number of occurrences of the corresponding patterns in
the whole graph. According to the authors, LDSDγ is the best strategy, and it has been selected for the experiment of
this paper.

In the case of the graph of Figure 3, on the basis of the third strategy, the contribution of the path [⟨ra, p1, r3⟩,
⟨rb, p1, r3⟩], linking ra and rb by means of the predicate p1, is normalized by taking into account the cardinality of
the set of paths having a similar pattern. In this case, they are two links labeled with p1 that are incoming to the same
resource, which by chance is always r3. In particular, this set is the following:

{[⟨ra, p1, r3⟩, ⟨r5, p1, r3⟩], [⟨ra, p1, r3⟩, ⟨r6, p1, r3⟩], [⟨ra, p1, r3⟩, ⟨rb, p1, r3⟩],
[⟨rb, p1, r3⟩, ⟨r5, p1, r3⟩], [⟨rb, p1, r3⟩, ⟨r6, p1, r3⟩], [⟨r5, p1, r3⟩, ⟨r6, p1, r3⟩]}.

Propagated Linked Data Semantic Distance (PLDSD). The measure proposed in [4] originates from the need to
overcome some drawbacks of the families of methods illustrated above. Indeed, according to them, semantic distance
is evaluated by focusing on the resources that are either directly or indirectly linked by means of a single intermediate
resource. Therefore, all the resources belonging to longer paths are not involved in the relatedness evaluation. For
this reason, in the aforementioned paper Alfarhood et al. present a measure, named Propagated Linked Data Semantic
Distance (PLDSD), that extends the previous approaches in this direction. In particular, in the proposed method, all
the paths between the compared resources, up to a given length h, are taken into account, and for each pair of adjacent
resources in these paths the original measure of Passant is computed. Therefore, for each triple of a path, the PLDSD
method applies the LDSDcw to the pair of resources formed by the subject and the object of the triple. For instance,
consider ra and rb in the graph of Figure 3, if we assume h equal to 2, all the paths linking ra and rb with length not
greater than 2 have to be taken into account. For example, if we focus on the path [⟨rb, p3, r4⟩, ⟨r4, p2, ra⟩], LDSDcw

is applied to the pairs of resources (rb, r4) and (r4, ra).

5.3 Methods based on triple weights

In this subsection the third group of methods is described. It concerns five different approaches that, in order to
compute semantic relatedness between resources, require the association of weights with triples that allow to evaluate
the overall paths. They are Information Content-based Measure (ICM), REWOrD, Exclusivity-based Measure
(ExclM), ASRMPm, and Proximity-based Method (ProxM).

Information Content-based Measure (ICM). The method presented in [53], here referred to as Information Content-
based Measure (ICM), relies on the computation of the weights of the triples occurring in the undirected paths con-
necting the compared resources, up to a given length. The weight is evaluated on the basis of the information content
(IC) notion, which needs a probability distribution P (X) over a random variable X to be given, and is defined as
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IC(X) = −logP (X). The method proposes three strategies, that differ for the adopted probability distribution. The
Joint Information Content (jointIC) strategy considers the joint probability of the predicate and the object of a triple
by assuming they are not independent, the Combined Information Content (combIC) addresses again the joint prob-
ability but the predicates and the objects are supposed to be mutually independent, and the Information Content and
Pointwise Mutual Information (IC+PMI) considers the deviation from independence between the predicate and the
object. According to the evaluation presented in [53], combIC outperforms the others and, for this reason, it has been
considered in the experimentation of the present work.

As an example, in order to weigh the triple ⟨ra, p2, rb⟩ in the graph of Figure 3 by using the combIC strategy, the
joint probability of p2 and rb needs to be computed. Then, since the strategy assumes that predicates and objects are
independent, the required probability is given by the sum of the probabilities of p2 and rb. In particular, these two
probabilities are equal to 9

22 and 5
22 , where 9 and 5 are the numbers of occurrences of the triples with predicate p2 and

object rb, respectively, and 22 is the total number triples in the graph.

REWOrD. The REWOrD method [46] is based on the notion of informativeness of predicates, which is inspired by
the Term Frequency-Inverse Document Frequency (TF-IDF). TF-IDF is commonly used in information retrieval to
estimate how important a term w is in a document d belonging to a collection D of documents. When applied to an
RDF graph, TF-IDF deals with predicates instead of terms, and resources and triples instead of documents, therefore
becomes Predicate Frequency-Inverse Triple Frequency (PF-ITF).

According to this approach, we need to distinguish between outgoing and incoming Predicate Frequency (PF). In
particular, the outgoing PF of a predicate p with respect to the resource r, say PF r

o (p), is the ratio between the
number of triples with subject r and predicate p, and the number of triples in which r appears either as subject or
object. Furthermore, the Inverse Triple Frequency of the predicate p, say ITF (p), is equal to the logarithm of the
ratio between the total number of triples in the graph and the number of triples with predicate p. Then PF-ITF r

o (p)
is defined as the product of PF r

o (p) and ITF (p). Analogously, the incoming PF-ITF r
i (p) of the predicate p with

respect to the resource r can be defined.

As a result, the weight of a triple t = ⟨rk, p, rj⟩, also referred to as the informativeness of t, takes into account both
the PF-ITF rk

o (p) and the PF-ITF rj
i (p).

For instance, consider the triple ⟨ra, p2, rb⟩ of the graph in Figure 3. In order to compute ITF (p2), we need: (i) the
total number of triples in the graph, that is 22, and (ii) the number of triples with predicate p2, that is 9. In addition, in
order to compute PFra

o (p2), we have to consider: (i) the number of outgoing links from ra with predicate p2, that is 2,
and (ii) the number of triples with ra either as subject or object, that is 9. Analogously, in order to compute PFrb

i (p2)
we have to address: (i) the number of incoming links to rb with predicate p2, that is 4, and (ii) the number of triples
with rb either as subject or object, that is 9.

According to this method, given an undirected path, its informativeness is the sum of the informativeness of the triples
of the path divided by the length of the path. In particular, the most informative path (mip) is the path with the greatest
informativeness among those connecting the resources, up to a given length.
In order to evaluate the overall relatedness between resources, we need to build their relatedness spaces, i.e., vectors
of weighted predicates computed according to five alternative strategies. The first strategy focuses on the incoming
predicates, the second one on the outgoing predicates, the third one on both the incoming and the outgoing predicates,
the fourth one on the mip, and the fifth one, which has been addressed in the experimentation of this paper (and here
referred to as reword), on both the incoming predicates and the mip.

Exclusivity-based Measure (ExclM). The approach proposed in [27], here referred to as Exclusivity-based Measure
(ExclM), relies on the notion of exclusivity of triples. The assumption is that, given two resources connected through
a predicate, the less the number of resources linked to them through that predicate, the stronger the relation between
them. In particular, given a triple t = ⟨ri, p, rj⟩ in an RDF graph, the exclusivity of t, which represents the weight of
the triple t, is defined as the probability to randomly select the triple t out of the set of all the triples with predicate p
and subject ri, and all the triples with predicate p and object rj .

As an example, in order to associate a weight with the triple ⟨ra, p2, rb⟩ in the graph of Figure 3, two sets of triples
have to be considered. In particular, according to the SPARQL notation introduced in Section 4, they are the set
of triples of the form ⟨ra, p2, ?x⟩, i.e., the ones with the outgoing predicates p2 from ra, and the set of triples of
the form ⟨?x, p2, rb⟩, i.e., those with the incoming predicate p2 to rb. Then, on the basis of the triple weights, the
set of k undirected paths with the greatest weights between the compared resources are considered. Furthermore,
as experimented in the mentioned paper, longer paths contribute less to the relatedness of the compared resources
according to a given parameter α. In our experiment, k and α are set to 5 and 0.25, respectively, since these are the
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values suggested by the authors.

ASRMPm. In [13], El Vaigh et al. propose the ASRMPm family of relatedness measures, originating from a
previous proposal of the authors, referred to as Weighted Semantic Relatedness Measure (WSRM ) [12]. They state
that a well-founded relatedness measure should meet the following three requirements: (i) to have a formal semantics
in order to be defined on a knowledge graph such as RDF or OWL (as opposed to Wikipedia), (ii) to have a reasonable
computational cost, (iii) to be transitive, in order to capture directly or indirectly related resources, and symmetric.
This family is based on the assumption that the more predicates between resources, the stronger their relatedness. It
relies on the WSRM measure of an ordered pair of resources standing for the subject and the object of a given triple.
In particular, such a measure is given by the number of outgoing links from the first resource, i.e., the triple’s subject, to
the second resource, i.e., the triple’s object, normalized to the total number of outgoing links from the triple’s subject.

For instance, consider the pair of resources ra, rb of Figure 3. Then WSRM(ra, rb) = 1
4 because there is one direct

link from ra to rb, and the total number of outgoing links from ra is 4. This family of measures consists of three strate-
gies, namely ASRMPa

m, ASRMPb
m, ASRMPc

m, that consider all the directed paths between the compared resources,
where paths and triples are aggregated by using fuzzy logic operators. In particular, the first strategy addresses paths
of a given length, say m, the second one of length less than or equal to m, and the third one also provides a criterion
for which paths are weighted depending on their lengths. Since paths are directed, the relatedness of ra to rb is first
evaluated and then, in order to achieve symmetry, also the relatedness of rb to ra is computed and their average is con-
sidered. In our experiment the ASRMPa

m strategy, which is the best measure according the authors, has been addressed.

Proximity-based Method (ProxM). The Proximity-based Method (ProxM) [32] focuses on the notion of proximity,
which has been conceived in order to measure how related two resources are in terms of number of paths between
them, rather than addressing the shortest path (distance) between them. A resource may be at the same distance from
other resources but it may have more connections (in this proposal undirected paths are considered) with one of them
with respect to the others. Therefore, according to the author, the more paths between resources, the higher their
proximity. In order to compute it, in this proposal all the paths connecting the resources, up to a maximum length h,
are considered. However, in general shorter paths contribute more than longer paths. With regard to triple weights, in
the experiment given in [32] they are manually assigned, therefore the method does not provide any built-in function
for weighing triples.

In Table 1, for each of the 10 methods addressed in the paper, some key aspects are summarized that are: the main
features of the method; the contributing links of the compared resources or the contributing paths between them; the
maximum distance (Max dist.) between the compared resources in order to have a non-null semantic relatedness
degree; whether the method is symmetric (Symm.), i.e., if the order of the resources impacts on the results. Note that,
in the case of WLM, LODDO, LDSD, and LDSDGN, if the length of the shortest path between the resources exceeds 2
their relatedness degree is null, whereas the remaining proposals do not have any constraints about this. Furthermore,
all the methods except for LDSD are symmetric.
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6 Experimentation and Evaluation

In order to evaluate the 10 methods recalled in the previous section, we performed an experimentation by applying them
to 14 benchmark golden datasets, and considering a subgraph of the whole DBpedia knowledge graph, as described
below. For each dataset, we compared the semantic relatedness values obtained for each method against the human
judgment values provided in the dataset. In the next subsections, the portion of the DBpedia knowledge graph and the
selected benchmark datasets are outlined. Furthermore, additional details about the set up of the experiment are given
and, finally, the evaluation of the methods is illustrated.

6.1 DBpedia data collections used in the experiment

The knowledge graph addressed in the experimentation is a subgraph of the whole DBpedia obtained by considering
a subset of its data collections according to the following critera. Firstly, we referred to the most recent version of the
essential DBpedia data focused on English14. Secondly, we selected all the data collections containing triples having
a resource as object rather than a literal. This choice is in line with the one made by all the methods considered
in this paper. In the case of data collections containing triples involving literals as objects, such triples have been
removed. Thirdly, we selected the data collections containing the triples representing the hyperlinks that appear
in the texts of Wikipedia articles. It is important to note that all these triples have the same predicate name, i.e.,
dbo:wikiPageWikiLink, and correspond to a very huge number in the DBpedia graph. Such triples, although with the
same predicate name, gather a relevant piece of information for each resource. Hence, including them in the knowledge
graph means to significantly enrich the information provided by the resources’ infoboxes that, often, contain just a
summary of the most representative information of a given resource. For instance, the infobox associated with the
resource Michael Jackson contains the information related to the dates of his birth and death, the names of his spouses,
children, awards, etc. However, it does not specify anything about, for example, the names of his most popular songs,
such as Beat It, Billie Jean, or Thriller that, instead, are described in the corresponding Wikipedia article.

Figure 4: A fragment of the Wikipedia article about Michael Jackson and, on the right side, part of the related infobox

Therefore, excluding the triples with dbo:wikiPageWikiLink as predicate in the experimentation means to have, for each
resource, a significantly less number of triples to be evaluated, and hence semantic relatedness is computed by relying
on the information provided by the resources’s infoboxes, mainly. For this reason, in order to analyse the relevance
of the information contained in the infoboxes in the evaluation of semantic relatedness, we ran two experiments, the

14https://databus.dbpedia.org/dbpedia/collections/latest-core
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first by excluding such triples, and the second by including them. The total dimension of the DBpedia data collections
used in the experimentation is around 61 GB, corresponding to 380,891,403 triples15. By removing the triples with
the dbo:wikiPageWikiLink links, the data decrease to 33 GB, and 207,266,671 triples.

6.2 Benchmark datasets used in the experimentation

Traditionally, computer-aided tasks are evaluated by comparing the behaviour of the computer against the one of
human beings. In the case of methods for automatically evaluating semantic relatedness, they are assessed by setting
up experiments where people are asked to express numerical values representing how much, according to their opinion,
pre-defined pairs of terms are related. These human judgment values are then compared against the automatically
computed ones. Such collections of pairs of terms, where each pair is associated with a human judgment value,
represent benchmark datasets. In the literature, several benchmark datasets have been defined, often referred to as
golden datasets. In this paper, we considered 14 benchmark datasets from the most representative ones presented in
[22]. In particular, we selected the datasets in the English language that have been conceived for evaluating semantic
relatedness. They are16: Atlasify240 (here, Atlasify for short) [24], B0 (25 pairs) and B1 (30 pairs) [67], GM30 [21],
MTurk287 (here, MTurk for short) [49], Rel122 [55], WRG (252 pairs) [1], and KORE (420 pairs) [25] organized into
five datasets, namely, KORE-IT, KORE-HW, KORE-VG, KORE-TV, and KORE-CN. In addition, we included two
datasets, namely, RG65 [51] and MC30 [37], which are traditionally considered milestones in order to assess semantic
similarity.

It is important to observe that, among the above datasets, all the terms in the KORE collections correspond to DBpedia
URIs. All the other datasets contain words that, in some cases, either do not have a straightforward correspondence
with a DBpedia resource, or correspond to different DBpedia resources depending on the possible different meanings
they have. For this reason, in line with [16], a disambiguation step has been introduced, as described below.

For each word occurrence in a given dataset, the corresponding resource in DBpedia has been manually selected in
accordance with the following disambiguation criteria:

• If a word is present in the dataset in a plural form, we transformed it into its singular form.

• If a word in a pair has more than one meaning, and hence can be mapped to more than one DBpedia
resource, we selected the resource whose acceptation is more semantically related to the other word of
the pair. For instance, the word crain, in the MC30 dataset, leads to two DBpedia resources, namely,
http://dbpedia.org/resource/Crane (bird), and
http://dbpedia.org/resource/Crane (machine).
Hence, in the case of the pair (crain, bird), we selected the first resource, which refers to crane as a bird,
whereas in the case of the pair (crain, implementation), we selected the second resource, which refers to
crane as a machine [16].

• If a word is a terminological variant, e.g., a synonym, or an acronym, of the name of a given DBpedia resource,
for such a word we selected that resource. For instance, in the case of the acronym FBI, we considered the
http://dbpedia.org/resource/Federal Bureau of Investigation resource.

According to the above criteria, for each dataset except for the ones in KORE that do not need the disambiguation step,
we built another dataset, and in this paper we refer to the former as the original, and to the latter as the disambiguated
dataset. Hence, we experimented the methods illustrated in Section 5 on the selected datasets, according to both their
original and disambiguated forms.

6.3 Further experimentation details

In the experimentation, for each of the 10 methods we considered the strategy, or variant, that according to the au-
thors provides the best performances. Hence, in the case of LODDO, LDSD, LDSDGN, ICM, REWOrD, ExclM, and
ASRMPm, we have selected the corresponding variants LODOverlap, LDSDcw, LDSDγ , ICM with combIC as
weighting function, reword, ExclM with k = 5 and α = 0.25, and ASRMP a

m with m = 2. Furthermore, as recalled
in Section 5.3 (see also A.3.5), ProxM does not have a built-in function w(pi) for weighting a predicate pi. In par-
ticular, in [32], weights are assigned to predicates by domain experts manually because the graph addressed in the
experiment contains a limited number of predicates. However, assigning weights manually is not a scalable approach

15All the data collections were downloaded on the 3rd September 2021 from the
https://databus.dbpedia.org/dbpedia/collections/latest-core web page, except for the page links en.ttl dataset, which was
downloaded from the https://wiki.dbpedia.org/downloads-2016-10#h26493-2 web page.

16The number appearing in the dataset name stands for the number of pairs contained in the dataset.
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with respect to the number of predicates in the graph. For this reason, due to the dimension of the DBpedia knowledge
graph, in the case of ProxM, in this experiment the weight of a predicate has been defined as its information content,
which is a notion that has been attracting a lot of attention in the literature for years [36]. Therefore, we implemented
w(pi) = −log(Pr(pi)), in accordance with the information content definition provided in Eq. 12.

As mentioned, for those methods that natively compute a semantic distance, i.e., WLM, LDSD, LDSDGN, and PLDSD,
in the experimentation we consider the corresponding relatedness formulation. In particular, this formulation depends
on whether the method returns a value v in the range [0, . . . , 1], as for LDSD, LDSDGN, and PLDSD, or in the range
[0, . . . ,+∞), as for WLM. In the former case, the corresponding relatedness formulation is defined as 1− v, whereas
in the latter case 1

1+v .

It is important to recall that, as experimented in [27], in general the longer the paths the weaker the semantic relation,
in the sense that the smaller the influence of longer paths, the better the correlation with human judgment. Besides
ExclM, this is also the underlying assumption of most of the methods based on triple weights, as for instance ASRMPm,
and it is in line with the implicit assumptions made by WLM and LODDO, which are based on adjacent nodes, and
also in line with LDSD and LDSDGN, which rely on patterns represented by paths of length 2. Therefore, in order to
compare the 10 methods under the same hypotheses, in our experimentation the length of the contributing paths is not
greater than 2.

In the first experiment, the one without the dbo:wikiPageWikiLink links in the knowledge graph, we evaluated
the 10 methods also on clean datasets, i.e., the disambiguated datasets where the pairs of terms that are not con-
nected by any path of length less than or equal to 2 have been removed. Whereas, in the experiment including the
dbo:wikiPageWikiLink links, clean datasets have not been addressed since there is a limited number of such pairs that
can be neglected.

In order to compare the methods against human judgment, we considered both the Spearman’s and Pearson’s correla-
tions. However, for the five KORE datasets we computed only the Spearman’s correlation because for these datasets
only pairwise rankings are provided without relatedness values.

In the case of the experiment with the dbo:wikiPageWikiLink links, we also analyzed the performances of the 10
methods when dealing with pairs of disambiguated terms representing common nouns and proper nouns separately.
For this purpose, from each dataset we extracted two additional smaller datasets, one containing only pairs of common
nouns and the other including only pairs of proper nouns. Then, for each method and each of these additional datasets,
we computed the Spearman’s and the Pearson’s correlations against human judgement.

The experimental results are presented and discussed in the next subsection, and all the data are available at [58].

6.4 Evaluation

In this section the results of the two experiments are presented and are shown in Tables 2 and 3, where the Spear-
man’s and Pearson’s correlations are given, respectively. As mentioned above, the first experiment concerns DBpe-
dia without including the dbo:wikiPageWikiLink links (see columns w/o in the tables, where w/o stands for without
dbo:wikiPageWikiLink), whereas in the second experiment these links have been considered (see columns w in the
tables, where w stands for with dbo:wikiPageWikiLink). In each table, for each dataset, the results corresponding to
the original (o) and disambiguated (d) datasets are shown in the first and the second rows, respectively. In addition,
in the first experiment, i.e., the one without dbo:wikiPageWikiLink links, the values obtained by considering the clean
datasets (c) are given whereas, as mentioned above, in the second experiment these values have not been considered
(see the symbol “−” in rows c in the tables). Furthermore, in the tables, the best values are highlighted in bold, and
the average correlations (Avg.) for each method are also shown.

Experiment 1: DBpedia without dbo:wikiPageWikiLink links.

In the case the triples with the dbo:wikiPageWikiLink predicate are not considered in the knowledge graph, both
the Spearman’s and Pearson’s correlations do not provide satisfactory values (see columns w/o in Tables 2 and 3,
respectively). Indeed, for some methods and some datasets, it is not even possible to compute such correlations.
For instance, if we consider the ASRMPm method, and the original golden dataset B0, for any pair of the dataset
there are no directed paths of length 2 connecting the related resources, and then the relatedness values returned by
the method are null for all the pairs of the dataset (see the symbol “−” in the tables). Note that in the case of the
Spearman’s correlation (see Table 2), LODDO outperforms the other methods in all the three cases, i.e., with original
(0.34), disambiguated (0.49), and clean datasets (0.62). According to Pearson (see Table 3), when the original datasets
are considered, LODDO and ExclM provide the highest, although low, results (0.25) whereas, in the cases of the
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disambiguated and clean datasets, LDSD shows the best results by improving its performances from 0.21 to 0.39 and
0.50, respectively.

Overall, the correlation values with human judgment obtained without the dbo: wikiPageWikiLink triples, i.e., by
relying mainly on the information of the Wikipedia’s infoboxes, are low. Indeed, the removal of almost half of the
triples from the knowledge graph has a great impact on the computation of semantic relatedness because, as shown in
the second experiment, although all these triples have the same predicate name, they convey a significant amount of
information for each resource that cannot be ignored.

Experiment 2: DBpedia with dbo:wikiPageWikiLink links.

In the presence of the dbo:wikiPageWikiLink predicate, for the majority of the methods both the Spearman’s and
Pearson’s correlations significantly increase with respect to the results obtained in the Experiment 1 (see columns w in
Tables 2 and 3, respectively). Note that, analogously to the previous experiment, in general the performances of the 10
methods improve by considering the disambiguated datasets. In particular, with regard to the Spearman’s correlation,
LODDO outperforms the other methods when the original datasets are addressed (0.59) and, overall, the methods
based on adjacent resources show good performances. This result is interesting, especially if we consider that the
methods based on adjacent resources rely on information that are local to the compared resources, and therefore they
require a smaller number of queries and, of course, lower computational complexity costs with respect to the other
methods.

It is worth noting that, in the case of the disambiguated datasets, on average, both the methods based on adjacent
resources and triples patterns give good results. The role of disambiguation is more evident if we observe the results
obtained in Table 2, columns w, for ExclM, with k = 5 and α = 0.25, that outperforms the other methods (0.70).

In the case of the Pearson’s correlation, for instance, LDSDGN increases of 0.21, and both WLM and LDSD of 0.18.
Furthermore, it is interesting to observe that ASRMPm outperforms on average the other methods against both the
original (0.48) and the disambiguated versions of the datasets (0.63). Note that, if we consider the datasets individually,
ASRMPm performs better in half of the cases. More specifically, in the case of the Atlasify, MTurk, and WRG datasets,
ASRMPm provides better results than the other methods, with respect to both the original and the disambiguated
versions.

Overall, if compared to the corresponding correlation values obtained without the dbo:wikiPageWikiLink triples, the
ASRMPm method significantly improves its performances. In particular, in the case of disambiguated datasets, it
increases on average not only according to Spearman (0.63 with respect to 0.21) but also according to Pearson (0.63
with respect to 0.14). This occurs because this method relies on directed paths, and the absence of such triples implies
that several pairs of the compared resources are not connected in the graph, leading therefore to null relatedness
degrees. Indeed, ASRMPm shows the best performance according to the means of the averages of the Spearman’s and
Pearson’s correlations with dbo:wikiPageWikiLink triples (0.63), as shown in Table 4.

The line plots of the average Spearman’s and Pearson’s correlation values obtained according to the experimental
results are shown in Figures 5 and 6, respectively.

As already mentioned, in the case of the Experiment 2, we also studied the correlations of the 10 methods in the
presence of disambiguated datasets when only pairs of common nouns or pairs of proper nouns are addressed. Tables
5 and 6 show the experimental results about this further analysis for Spearman and Pearson, respectively. Note that the
symbol “−” in the tables means that either the corresponding dataset does not contain pairs of a given type (e.g., GM30
does not include any pair of proper nouns) or it is not possible to compute the Spearman’s correlation (as in the case
of the KORE datasets for which only pairwise rankings are provided without relatedness values). The experimental
results show that, when considering only pairs of common nouns, according to Spearman LODDO outperforms all
the other methods (0.73), whereas the best Pearson’s correlation is achieved by ASRMPm (0.68). However, if we
compute the means of the average Spearman’s and Pearson’s correlations, both ASRMPm and LODDO show the best
performances (0.65). In the case of pairs of proper nouns, ExclM provides the best Spearman’s correlation (0.73),
whereas LDSD shows the best performance according to Pearson (0.72). Furthermore, ExclM outperforms the other
methods if we consider the means of the average Spearman’s and Pearson’s correlations (0.69).
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Figure 5: Average Spearman’s correlations line plot

6.4.1 Discussion

On the basis of the experimentation of this work, the ASRMPm method shows the best performance by considering
disambiguated datasets and DBpedia with the dbo:wikiPageWikiLink predicate. Indeed, a peculiarity of this method
consists in taking into account all the directed paths connecting two resources, rather than selecting one or more of
them according to some criteria (see Eq. 26 in the Appendix). In fact, by summarizing, the WLM method, rather
than addressing paths, relies on the information gathered by the nodes that are adjacent to the compared resources.
The same also holds in the case of LODDO although, according to the assumptions made, it implicitly considers all
the paths of maximum length 2, both directed and undirected. With regard to the methods based on triple patterns,
namely LDSD, LDSDGN, and PLDSD, they aim at verifying the existence of specific configurations of paths, involv-
ing further resources in the graph on the basis of the names of the triples’ predicates. Among these methods, only
PLDSD addresses all the paths, directed and undirected, between the compared resources. Finally, among the methods
based on triple weights, ICM focuses on the information contents of both the predicates and the objects of the triples
and, analogously, ProxM that, according to the assumptions made in order to implement it, relies on the information
contents of the triples’ predicates. REWOrD selects the most informative path among the ones connecting the com-
pared resources, whereas ExclM focuses on the top-k undirected paths between the compared resources. Therefore,
aggregating all the directed paths between resources is a distinctive feature of ASRMPm that contributes to make it the
best strategy in order to compute semantic relatedness in the presence of datasets containing both common nouns and
proper nouns.

In addition, overall ASRMPm and LODDO show the best performances by considering only pairs of common nouns
from disambiguated datasets, whereas ExclM outperforms the other methods when addressing only pairs of proper
nouns.

With regard to time complexity, as mentioned, the motivation of this work is a comparison about the correlations of
the methods with human judgment by running them all at once against the same datasets, and on the same DBpedia
release. For this reason, in this paper, the complexity analysis of the methods has not been given (when present, it
can be found in the original papers where the methods have been proposed). About the running times, we ran the
experimentation on a machine with 32GB of RAM and the Intel® Core™ i7-8665U CPU @ 1.90GHz × 8 octa-core
processor. In Table 8, for each method, the worst running times needed in order to compute the relatedness of a single
pair of resources are shown. In particular, in the table the worst running times for a pair of common nouns and a pair
of proper nouns are distinguished. Such times for common nouns are in general significantly less than the ones needed
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Figure 6: Average Pearson’s correlations line plot

Table 8: Worst running times (in seconds) for a single pair of common (c) and proper nouns (p)
Method c p
WLM [63] 0.6 1.1
LODDO [66] 0.4 0.5
LDSD [43] 11.8 21.0
LDSDGN [44] 5.9 9.0
PLDSD [4] 96.3 840.1
ICM [53] 7.3 8.7
REWOrD [46] 6.3 17.5
ExclM [27] 9.9 78.1
ASRMPm [13] 0.4 1.5
ProxM [32] 9.2 12.6

for evaluating the relatedness of proper nouns. In fact, usually, in DBpedia nodes labeled with common nouns are
involved in less triples than nodes representing proper nouns.

In Table 9, pros and cons of the 10 methods are shown. In the table, d is the distance between the compared resources,
as defined according to the standard notion of shortest-path distance in graph theory. For “straightforward” we mean
that the approach is intuitive and easy to implement, whereas “complex formalization” is related to the complexity of
the underlying formulas (that are shown in the Appendix). “Local” means that the method focuses on the information
provided by the nodes that are adjacent to the compared resources, whereas “global” implies that the information
contained in the whole graph is addressed. Furthermore, “more selectivity” stands for methods defining some criteria
in order to detect the kinds of paths to be considered (as for instance ASRMPm, which focuses on directed paths,
or LDSD and LDSDGN that leverage specific path configurations), whereas “less selectivity” means that any path is
considered a priori. Overall, in the case of ASRMPm, we observe an imbalance in favor of pros with respect to cons,
taking into account in particular the running times, the focus on directed paths that is a proper characteristic of this
approach, and the best overall correlations in general, and in the specific case of common nouns from disambiguated
datasets.
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Table 9: Pros and Cons of the methods where d is the distance between the compared resources
Method Pros Cons
WLM - running time

- straightforward
- local
- predicates are not addressed
- null relatedness values if d > 2

LODDO - running time
- straightforward
- the best overall correlation for common nouns

- local
- predicates are not addressed
- null relatedness values if d > 2

LDSD - straightforward
- more selectivity

- null relatedness values if d > 2

LDSDGN - global
- more selectivity

- non-straightforward
- complex formalization
- null relatedness values if d > 2

PLDSD - non-null relatedness values for any d - running time
- less selectivity
- the worst overall correlation for proper nouns

ICM - global
- non-null relatedness values for any d

- less selectivity

REWOrD - global
- non-null relatedness values for any d

- non-straightforward
- less selectivity
- the worst overall correlation
- the worst overall correlation for common
nouns

ExclM - straightforward
- non-null relatedness values for any d
- the best overall correlation for proper nouns

- tuning parameters
- less selectivity

ASRMPm - running time
- more selectivity
- non-null relatedness values for any d
- the best overall correlation
- the best overall correlation for common nouns

- non-intuitive fuzzy logic operators for triple
and path aggregations

ProxM - global
- non-null relatedness values for any d

- no built-in functions to weigh triples
- less selectivity

7 Conclusion

Evaluating semantic relatedness of resources in RDF knowledge graphs is still a challenge. In this paper, 10 methods
have been selected and experimented against 14 benchmark golden datasets by using DBpedia as reference RDF
knowledge graph. The 10 approaches have been organized according to three representative groups, namely, the
methods based on adjacent resources, triple patters, and triple weights, and their differences and commonalities have
been highlighted.

The experimental results show that, first of all, the disambiguation of the dataset plays a fundamental role in evaluating
semantic relatedness. Furthermore, the triples with the dbo:wikiPageWikiLink predicate represent a significant inte-
gration to the information provided by the resources’ infoboxes, that contain partial summaries of the most important
data associated with the resources. Finally, with regard to the methods, according to the experimental results, overall
the strategy relying on triple weights, when combined with the evaluation of all the directed paths connecting the
compared resources, shows the best performances.

It is important to recall that in this experiment, when for a given method more than one strategy, or variant, is present,
we have considered the one that the authors identify as the best strategy in order to evaluate semantic relatedness.
However, in some cases we realized that in our experiment the best variant for the authors does not correspond to
the one associated with the best correlation values. For this reason, as a future work, we are planning to run a wider
experimentation where all the strategies of the methods are addressed (approximately 30 in total) and compared.
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Appendix

A The 10 selected methods

In this Appendix, the 10 selected methods are described in details, and are compared by using a
running example based on the graph G shown in Figure 3. As mentioned above, it contains 13
nodes (resources), linked with directed edges labeled with the predicates p1, p2, p3, and rdf:type.
For each method, ra and rb are the resources whose relatedness will be addressed in order to
highlight the specific characteristics of the different approaches.

A.1 Methods based on adjacent resources

In the following the methods based on adjacent resources are described.

A.1.1 Wikipedia Link-based Measure (WLM)

According to [63], consider an RDF graph G, and the setR of all the resources as defined according
to the notation recalled in Section 4. Assume ra, rb ∈ R, and let A, B be the sets of the resources
that are subjects of the triples with ra and rb as objects, respectively, i.e.:

A = {rj ∈ R|∃pi : ⟨rj, pi, ra⟩ ∈ G}, B = {rj ∈ R|∃pi : ⟨rj, pi, rb⟩ ∈ G}
According to the SPARQL notation introduced above, the sets A, and B can also be rewritten as
follows:

A = {?x|⟨?x, ?y, ra⟩ ∈ G}, B = {?x|⟨?x, ?y, rb⟩ ∈ G}
The WLM measure between the resources ra and rb, WLM(ra, rb), is a distance rather than a relat-
edness measure since it originates from the Normalized Google Distance, and is defined according
to Eq. 1:

WLM(ra, rb) =
log(max(|A|, |B|))− log(|A ∩B|)
log(|R|)− log(min(|A|, |B|)) (1)

where, for any set S, |S| is the cardinality of S. Note that, in the case both ra and rb never occur
as object in any triple, WLM(ra, rb) = ∞

∞ = 1 is assumed. Furthermore, if ra and rb are linked
to the same resources or ra ≡ rb, then A ≡ B, therefore their distance is null (WLM(ra, rb)
= 0). In the case WLM ≥ 1, ra and rb are very unrelated and, in particular, if there are no
resources linked to both ra and rb, their distance is infinite (WLM(ra, rb) = ∞), and they provide
the minimum relatedness degree. Since WLM ranges in the interval [0, . . . ,+∞), in this paper in
order to experiment and compare it against the other methods, the relatedness formulation 1

1+WLM
has been used.

For instance, consider the nodes labeled with the resources ra and rb of the graph shown in Figure
3. In order to evaluate the relatedness of ra and rb according to WLM, only the nodes (resources)
with outgoing predicates towards ra and rb are considered, that are represented by the sets A = {r4,
r9, r11, rb}, and B = {r4, r7, r8, r11, ra}, respectively. In Figure 7, the related links are highlighted
with bold grey arrows, and long dashed grey arrows, respectively. In particular, the nodes r4 and
r11, having outgoing predicates towards both ra and rb (the intersection of A and B) are filled with
upward diagonals, whereas the nodes of all the other involved resources are in grey. Note that the
resource r9, although having two outgoing predicates towards ra, appears only once because A is
a set.
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Figure 7: WLM applied to the running example graph

A.1.2 Linked Open Data Description Overlap (LODDO)

As mentioned in Section 5.1, the Linked Open Data Description Overlap (LODDO) method is
based on the notion of resource’s description [66]. Given a resource r, the description D of r,
D(r), is the set of the resources17 ri that are directly linked to r, either via an incoming, or an
outgoing predicate, plus the resource r itself. Furthermore, the method does not include inD(r) all
the resources that are linked to r via the predicate rdf:type, exclusively. This is because, according
to the authors of the method, given an RDF knowledge graph, almost every resource has owl:Thing
as type, and therefore the type assertions are considered “noisy links” that have to be ignored. The
description D of the resource r, D(r), can be formally defined according to the SPARQL notation
as follows:

D(r) = {?ri|⟨r, ?pj , ?ri⟩ ∈ G, ?pj ̸= rdf:type}∪
{?ri|⟨?ri, ?pj , r⟩ ∈ G, ?pj ̸= rdf:type}

(2)

For instance, if we consider the resources ra and rb of our running example, D(ra) =
{ra, rb, r3, r4, r9, r10, r11}, and D(rb) = {rb, ra, r3, r4, r7, r8, r11}. In Figure 8, the links that con-
tribute to the descriptions of ra and rb are depicted as long dashed grey arrows and dashed grey
arrows, respectively, whereas the links that contribute to the description of both the resources are
in bold grey. Furthermore, the nodes in D(ra) and D(rb) have been highlighted. It is worth noting
that the resources r2 and r1 are not included in the above descriptions, since they are linked to ra
and rb via the rdf:type predicate only, respectively.

Given two resources, say ra and rb, the following two strategies for computing the semantic relat-
edness between them are proposed, namely, LODJaccard and LODOverlap:

17In [66] the authors state that the description of a resource is a vector without specifying if repetitions are allowed. In this paper,
we assume that repetitions are not considered.
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Figure 8: LODDO applied to the running example graph

LODOverlap. The LODOverlap has a bias towards the resource, between the two, with a less rich
description (Eq. 3), where min stands for the minimum cardinality between the descriptions of ra
and rb.

LODOverlap(ra, rb) =
|D(ra) ∩D(rb)|

min{|D(ra)|, |D(rb)|}
(3)

LODJaccard. LODJaccard resembles the Jaccard similarity coefficient [29], making no dis-
tinction between the two resources (Eq. 4). In fact, in place of the minimum, both the cardinalities
of the descriptions are addressed.

LODJaccard(ra, rb) =
|D(ra) ∩D(rb)|

|D(ra)|+ |D(rb)| − |D(ra) ∩D(rb)|
(4)

For both the strategies, the bigger the intersection between the descriptions of the compared re-
sources the higher their semantic relatedness degree.

The method does not explicitly search for paths linking ra and rb. However, the semantic relat-
edness between ra and rb is non-null if there exists at least one undirected path of length 2 be-
tween them. In fact, only in this case, the intersection between D(ra) and D(rb) is non-empty.
In Figure 8, the intersection between the descriptions D(ra) and D(rb) is represented by the
set {ra, rb, r3, r4, r11}, whose corresponding nodes are filled with upward diagonals. In the case
ra ≡ rb the semantic relatedness between the resources is equal to 1. According to the experimen-
tation given in [66], the LODOverlap strategy performs better than the LODJaccard one.

A.2 Methods based on triple patterns

In this section, the second group of methods is addressed. They are based on the identification of
path patterns that satisfy specific criteria in the knowledge graph with respect to the compared
resources. Since the methods presented in this group represent distances that range in the interval
[0, . . . , 1], in this paper in order to experiment and compare them, if v is the distance obtained
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Figure 9: LDSD applied to the running example graph

according to one of these methods, we use the corresponding 1− v relatedness formulation.

A.2.1 Linked Data Semantic Distance (LDSD)

In [43], the author presents a family of three measures for semantic distance named Linked Data
Semantic Distance (LDSD). These measures are recalled below.

LDSDdw. The first measure is the direct weighted LDSD distance, indicated as LDSDdw, which
considers only the incoming and outgoing direct links between the resources to be compared. In
particular, given a graph G, let Cd be a function that computes the number of direct and distinct
links between resources in the graph as follows. Given two resources ra, rb and the predicate pj ,
Cd(pj, ra, rb) = 1 if there exists a link labeled with pj from the resource ra to the resource rb, i.e.,
a triple ⟨ra, pj, rb⟩, otherwise Cd(pj, ra, rb) = 0. Furthermore, Cd(pj, ra)

18 is the total number of
links labeled with the predicate pj from ra to any node (i.e., the total number of resources that can
be reached from ra via pj). Therefore, given the resources ra and rb, LDSDdw(ra, rb) is defined
according to Eq. 5:

LDSDdw(ra, rb) =
1

1 +
∑

pj∈W

Cd(pj ,ra,rb)

1+log(Cd(pj ,ra))
+

∑
pj∈Z

Cd(pj ,rb,ra)

1+log(Cd(pj ,rb))

(5)

where W ⊆ R is the set of the predicates pj in the graph G such that Cd(pj, ra, rb) = 1, and
Z ⊆ R is the set of the predicates pj in G such that Cd(pj, rb, ra) = 1.

For instance, in the graph of the running example, the links involved in the computation of
LDSDdw(ra, rb) are highlighted with long dashed grey arrows, as shown in Figure 9.

18In the original work [43], this function is defined as Cd(pj , ra, n), where n represents the result of the function Cd(pj , ra).
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LDSDiw. The second measure is the indirect weighted LDSD, indicated as LDSDiw. It basically
considers all the path patterns in the graph identified by those resources linked to both the compared
resources via the same predicate. Let Cio and Cii be functions that compute the number of indirect
and distinct links between resources, outgoing and incoming respectively, as follows. Given two
resources ra, rb and a predicate pj , Cio(pj, ra, rb) = 1 if there exists a resource rn that satisfies both
⟨ra, pj, rn⟩, and ⟨rb, pj, rn⟩, otherwise Cio(pj, ra, rb) = 0. Analogously, Cii(pj, ra, rb) = 1 if there
exists a resource rn that satisfies both ⟨rn, pj, ra⟩, and ⟨rn, pj, rb⟩, otherwise Cii(pj, ra, rb) = 0.
Furthermore, let Cio(pj, ra) and Cii(pj, ra)

19 be the total number of resources indirectly linked to
ra via the predicate pj , outgoing and incoming respectively. Hence, given the resources ra and rb,
LDSDiw(ra, rb) addresses the indirect incoming and outgoing links between the resources, and is
defined according to Eq. 6.

LDSDiw(ra, rb) =
1

1 +
∑

pj∈U

Cio(pj ,ra,rb)

1+log(Cio(pj ,ra))
+

∑
pj∈V

Cii(pj ,ra,rb)

1+log(Cii(pj ,ra))

(6)

where U ⊆ R is the set of the predicates pj in the graph G such that Cio(pj, ra, rb) = 1, and
V ⊆ R is the set of the predicates pj in G such that Cii(pj, ra, rb) = 1.

In the example of Figure 3, the resource r3, with incoming links labeled with the predicate p1 (one
outgoing from ra and the other one from rb), and both the resources r4 and r11, with outgoing links
labeled with the predicate p2 (and incoming to ra and rb, accordingly), satisfy the above conditions
forCio(p1, ra, rb) andCii(p2, ra, rb) respectively, thereforeCio(p1, ra, rb) = 1 andCii(p2, ra, rb) = 1.
Note that only one resource with indirect incoming links is needed in order to have Cii(p2, ra, rb) =
1, for instance r11. For this reason, in order to highlight this point, in Figure 9, besides the indirect
outgoing links related to r3, only the indirect incoming links related to r11 have been drawn in
bold.

LDSDcw. Finally, the author proposes the combined weighted LDSD distance between the re-
sources ra and rb, indicated as LDSDcw(ra, rb), that is a combination of the previous distances,
the direct and indirect ones, defined as follows:

LDSDcw(ra, rb) =
1

1 + f1 + f2
(7)

where:

f1 =
∑

pj∈W

Cd(pj ,ra,rb)

1+log(Cd(pj ,ra))
+

∑
pj∈Z

Cd(pj ,rb,ra)

1+log(Cd(pj ,rb))

f2 =
∑

pj∈U

Cio(pj ,ra,rb)

1+log(Cio(pj ,ra))
+

∑
pj∈V

Cii(pj ,ra,rb)

1+log(Cii(pj ,ra))

and W ⊆ R is the set of the predicates pj in the graph G such that Cd(pj, ra, rb) = 1, Z ⊆ R is
the set of the predicates pj in G such that Cd(pj, rb, ra) = 1, U ⊆ R is the set of the predicates
pj in G such that Cio(pj, ra, rb) = 1, and V ⊆ R is the set of the predicates pj in G such that
Cii(pj, ra, rb) = 1.

19Analogously to the function Cd, in [43], these two functions are defined as Cio(pj , ra, n) and Cii(pj , ra, n), respectively.
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In our running example, the LDSDcw measure involves all the links and the nodes highlighted
in Figure 9. Note that the distance defined according to Eq. 7 is not symmetric. This point is
addressed by the measure recalled in the next subsection. According to the results given in [43],
the LDSDcw measure performs better than the LDSDdw and the LDSDiw measures.

A.2.2 LDSD with Global Normalization (LDSDGN)

The LDSD with Global Normalization (LDSDGN) measure [44] is an evolution of the approach
presented by Passant [43], where the normalization addresses both the compared resources and
the global appearances of specific path patterns in the graph. In a previous work [45], the authors
claim that, given two resources ra and rb, with ra ̸= rb, a distance measure d should satisfy the
following three axioms:

(i) Equal self-distance, i.e., d(ra, ra) = d(rb, rb) = 0.

(ii) Symmetry, i.e., d(ra, rb) = d(rb, ra).

(iii) Minimality, i.e., d(ra, ra) < d(ra, rb).

Hence, they put in evidence that all the measures introduced by Passant do not satisfy both the
axioms (i) and (iii), and this is because the distance between any resource and itself depends on
its incoming and outgoing links. Furthermore, the LDSDcw measure does not even satisfy the
symmetry axiom because Eq. 7 addresses only the total number of resources indirectly linked to
ra, whereas the ones linked to rb are not considered. For this reasons, in order to meet the men-
tioned requirements, in [44] the authors propose a family of LDSD measures satisfying the three
axioms above. In particular, in the following, the distances the LDSDα, LDSDβ and LDSDγ are
recalled.

LDSDα. Given a graph G, analogously to the notation used by Passant in [43], below Cd(pj, ra, rb)
= 1 if in the graph there exists a triple ⟨ra, pj, rb⟩, otherwise Cd(pj, ra, rb) = 0, and the total number
of resources that can be reached from ra by means of the predicate pj is indicated by Cd(pj, ra)
(analogously, Cd(pj, rb)). Similarly, Cio(pj, ra) and Cii(pj, ra) are the total number of resources
indirectly linked to ra via outgoing and incoming links labeled with the predicate pj , respectively.
Furthermore, on the basis of the assumption that resources are more related if there is a great
number of them linked via a given predicate pk, the Cio (Cii) function defined by Passant has been
generalized by using the function C ′

io (C ′
ii) as follows: C ′

io(pk, ra, rb) (C ′
ii(pk, ra, rb)) computes the

total number of resources linked to ra and rb via an outgoing (incoming) predicate pk. Therefore,
given the resources ra, rb, the first distance is the LDSDα(ra, rb) measure defined in Eq. 8.

LDSDα(ra, rb) =
1

1 + f1 + f2
(8)

where:

f1 =
∑

pj∈U

Cd(pj ,ra,rb)

1+log(Cd(pj ,ra))
+

∑
pj∈V

Cd(pj ,rb,ra)

1+log(Cd(pj ,rb))

f2 =
∑

pj∈W

C′
io(pj ,ra,rb)

1+log(Cio(pj ,ra))
+

∑
pj∈Z

C′
ii(pj ,ra,rb)

1+log(Cii(pj ,ra))

and U ⊆ R is the set of the predicates pj in the graph G such that Cd(pj, ra, rb) = 1, V ⊆ R is
the set of the predicates pj in G such that Cd(pj, rb, ra) = 1, W ⊆ R is the set of the predicates
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Figure 10: LDSDGN applied to the running example graph

pj in G such that C ′
io(pj, ra, rb) > 0, and Z ⊆ R is the set of the predicates pj in G such that

C ′
ii(pj, ra, rb) > 0.

In the example of Figure 3, C ′
ii(p2, ra, rb) = 2 since there are two resources, namely r4 and r11,

both with incoming links to ra and rb labeled with the predicate p2. In Figure 10 these resources
are filled with upward diagonals, and the involved links are highlighted in grey.

LDSDβ . With respect to LDSDα, in the LDSDβ measure the last two addenda at the denom-
inator are modified by addressing the averages between Cio(pj, ra), Cio(pj, rb), and Cii(pj, ra),
Cii(pj, rb) respectively, in order to achieve symmetry. In particular, given the resources ra, and rb,
LDSDβ(ra, rb) is defined according to Eq. 9.

LDSDβ(ra, rb) =
1

1 + f1 + f2
(9)

where:

f1 =
∑

pj∈U

Cd(pj ,ra,rb)

1+log(Cd(pj ,ra))
+

∑
pj∈V

Cd(pj ,rb,ra)

1+log(Cd(pj ,rb))

f2 =
∑

pj∈W

C′
io(pj ,ra,rb)

1+log(
Cio(pj,ra)+Cio(pj,rb)

2
)
+

∑
pj∈Z

C′
ii(pj ,ra,rb)

1+log(
Cii(pj,ra)+Cii(pj,rb)

2
)

and U ⊆ R is the set of the predicates pj in the graph G such that Cd(pj, ra, rb) = 1, V ⊆ R is
the set of the predicates pj in G such that Cd(pj, rb, ra) = 1, W ⊆ R is the set of the predicates
pj in G such that C ′

io(pj, ra, rb) > 0, and Z ⊆ R is the set of the predicates pj in G such that
C ′

ii(pj, ra, rb) > 0.
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Therefore, in the LDSDβ(ra, rb) distance further links are captured by the functionCii(p2, rb), that
are highlighted with dashed grey arrows in Figure 10, with the nodes of the involved resources, r7
and r1, in grey.

LDSDγ . In [44] the authors state that all the above recalled measures, including Eq. 7 of Passant,
involve a local normalization that takes into account the paths “in the context” of the resources.
For this reason, in the mentioned paper, the authors propose a further measure, namely LDSDγ ,
relying on a global normalization notion that essentially considers the importance of a path be-
tween two resources according to the number of its occurrences in the whole graph G. In the
following, let Cdp(pj) be the global occurrences of the link pj between two resources in G. Fur-
thermore, Cio(pk, rj, ra, rb) = 1 if there exists a resource rj such that ⟨ra, pk, rj⟩ and ⟨rb, pk, rj⟩,
and Cii(pk, rj, ra, rb) = 1 if there exists a resource rj such that ⟨rj, pk, ra⟩ and ⟨rj, pk, rb⟩.
The normalizations of Cio(pk, rj, ra, rb) and Cii(pk, rj, ra, rb) are carried out by using the global
occurrences Ciop(pk, rj) and Ciip(pk, rj) of rj as follows. Ciop(pk, rj) returns the global occur-
rences of rj in the undirected paths [⟨rn, pk, rj⟩, ⟨rs, pk, rj⟩], for any resources rn, rs in the graph
G and, analogously, Ciip(pk, rj) computes the global occurrences of rj in the undirected paths
[⟨rj, pk, rn⟩, ⟨rj, pk, rs⟩], for any resources rn, rs in G.

According to the above assumptions, given ra and rb, LDSDγ(ra, rb) is defined in Eq. 10.

LDSDγ(ra, rb) =
1

1 + f1 + f2
(10)

where:

f1 =
∑

pj∈U

Cd(pj ,ra,rb)

1+log(Cdp(pj))
+

∑
pj∈V

Cd(pj ,rb,ra)

1+log(Cdp(pj))

f2 =
∑

(pk,rj)∈W

Cio(pk,rj ,ra,rb)

1+log(Ciop(pk,rj))
+

∑
(pk,rj)∈Z

Cii(pk,rj ,ra,rb)

1+log(Ciip(pk,rj))

and U ⊆ R is the set of the predicates pj in the graph G such that Cd(pj, ra, rb) = 1, V ⊆ R is
the set of the predicates pj in G such that Cd(pj, rb, ra) = 1, W ⊆ R × R is the set of the pairs
(pk, rj) such that Cio(pk, rj, ra, rb) = 1, and Z ⊆ R × R is the set of the pairs (pk, rj) such that
Cii(pk, rj, ra, rb) = 1.

For instance, in our running example, assume k = 1, and j = 3. Then, Cio(p1, r3, ra, rb) is equal to
1 because there exists the resource r3, and ⟨ra, p1, r3⟩ and ⟨rb, p1, r3⟩ are triples belonging to the
graph. It is normalized according to Ciop(p1, r3), that returns the global occurrences of the resource
r3 in the graph, identified by the links ⟨r5, p1, r3⟩, ⟨r6, p1, r3⟩, highlighted with long dashed grey
arrows in Figure 10.

According to the results presented in [44], LDSDγ performs better than the LDSDα and LDSDβ

measures.

A.2.3 Propagated Linked Data Semantic Distance (PLDSD)

The Propagated Linked Data Semantic Distance (PLDSD) [4] allows the evaluation of the re-
latedness of two resources by considering the distance computed according to LDSDcw (see Eq.
7) between the adjacent resources in all the paths linking the compared resources, up to a given
length. As a result, with respect to the LDSDcw measure, in this approach additional pairs of re-
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Figure 11: PLDSD applied to the running example graph

sources are considered in the semantic relatedness evaluation. Note that the aforementioned paper
focuses on recommendation systems and, in order to face with efficiency problems, the authors
reduce the knowledge graph by addressing only the resources identified by the system in the given
domain.

Given the resources ra and rb in a knowledge graph G, and h > 0 that is the maximum length of the
paths to be considered, the semantic relatedness PLDSDh(ra, rb) can be summarized according
to Eq. 11:

PLDSDh(ra, rb) = max
P∈Ph

length(P )∏
i=1

(1− LDSDcw(si, oi)) (11)

where:

• Ph is the set of the undirected paths P connecting ra and rb with length less than or equal
to h.

• si and oi are the subject and the object, respectively, of the i-th triple in the path P .

• length(P ) is the length of the path P .

According to the above formula, it is possible to see the reason why, with respect to the LDSDcw,
additional resources are considered in the relatedness evaluation. For instance, consider the re-
sources ra and rb of the running example of Figure 3. In Figure 9 we have seen that the resource r4
has been considered in the evaluation of the LDSDcw(ra, rb) since it has outgoing links towards
both ra and rb labeled with the predicate p2, but the resource r7, for instance, is not involved in the
computation. This is not the case of the PLDSD approach, where also r7 is addressed. In fact,
when considering the link highlighted in bold in Figure 11, corresponding to the triple ⟨r4, p2, ra⟩
of the path [⟨r4, p2, ra⟩, ⟨r4, p2, rb⟩], the LDSDcw applied to the pair (r4, ra) (whose resources are
indirectly linked via p2, as shown by the dashed grey arrows drawn in Figure 11) involves r7 since
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it is indirectly connected to r4 via the predicate p2, as highlighted by the additional long dashed
grey arrow of Figure 11.

A.3 Methods based on triple weights

In this subsection the methods belonging to the third group are described, which require the asso-
ciation of weights with triples in order to evaluate the contributions of the different paths.

A.3.1 Information Content-based Measure (ICM)

The Information Content-based Measure (ICM) requires the evaluation of the weights of the triples
belonging to the undirected paths linking the compared resources, up to a given length [53]. Such
a weight is computed on the basis of the information content notion recalled below.

Given a random variable X in the set {xi}, and a probability distribution Pr(X) over X , the
information content (IC) associated with X = xi, i.e., the event that the variable X assumes the
value xi, is defined in Eq. 12:

ICPr(X)(X = xi) = −log(Pr(X = xi)) (12)

that can also be written as IC(xi) = −log(Pr(xi)) for short. Hence, according to the IC notion,
specificity is a good proxy for relevance, and the less the probability of an event, the higher its
information content.

If the random variable X describes only the predicate of a triple, the weight of the triple depends
only on the probability associated with that predicate. Consequently, two triples with the same
predicate have the same weight. However, it can be intuitively assessed that two triples having the
same predicate, but different objects, in general, convey different amounts of information. This is
the case of the following two triples extracted from DBpedia, representing two statements about
the resource dbr:Dante Alighieri:

⟨dbr:Dante Alighieri, rdf:type, dbo:Person⟩
⟨dbr:Dante Alighieri, rdf:type, dbo:Writer⟩
They both have the same predicate, i.e., rdf:type, but since writer is a term more specific than
person, the latter represents a more accurate and richer piece of information. For this reason, in
order to compute the weight of a triple, both the predicate and the object of the triple are considered,
and in the following we assume they are described by the random variables X and Y , respectively.

In [53], the authors propose the following three strategies for computing the weight of a triple
t = ⟨rs, p, ro⟩.

Joint Information Content (jointIC). In the case of the jointIC strategy, the weight of the triple
t, wjointIC(t), is computed according to Eq. 13:

wjointIC(t) = IC(p) + IC(ro|p) (13)

where IC(p) = ICPr(X)(X = p) is the information content associated with probability that the
random variable X assumes the value p, and IC(ro|p) = ICPr(Y ),P r(X)(Y = ro|X = p) is the in-
formation content associated with the conditional probability that the variable Y assumes the value
ro, supposing that the variableX assumes the value p. Note that, wjointIC(t) is equivalent to the IC
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Figure 12: ICM applied to the running example graph

of the joint probability Pr(p, ro)20, that is the probability that the variables X and Y assume the
values p and ro, respectively, and represents the likelihood of randomly selecting, from the consid-
ered RDF graph, a triple with p and ro as predicate and object, respectively. Therefore, Eq. 13 can
be also written as wjointIC(t) = IC(p, ro) = ICPr(Y ),P r(X)(X = p, Y = ro), emphasizing that the
triples that contribute to the computation of jointIC are those with predicate p and object ro. For
instance, if we consider the triple ⟨r4, p2, ra⟩ of the running example, which has been represented
with a grey arrow in the graph of Figure 12, the edges relevant to compute jointIC(⟨r4, p2, ra⟩) are
the triple itself, and the triple ⟨r11, p2, ra⟩, which has been highlighted with a dashed grey arrow in
the same figure, because in the graph there are no other triples with predicates p2 and object ra.

Combined Information Content (combIC). The combIC strategy aims at mitigating the possible
penalization of the jointIC measure, in the case of infrequent objects that occur with infrequent
predicates, as shown by Eq (14):

wcombIC(t) = IC(p) + IC(ro) (14)

where, with respect to Eq. 13, IC(ro) is evaluated independently of the predicate p. In fact, the
combIC approach is applied while making an independence assumption between the predicate and
the object. Consequently, the weight of the triple t results in the sum of the ICs of the predicate
and the object. If we consider again the triple ⟨r4, p2, ra⟩ in the graph of Figure 12, according to
the combIC strategy, additional triples have to be considered with respect to jointIC, that have been
highlighted with long dashed grey arcs in the same figure, i.e., all the triples having either p2 as
predicate or ra as the object.

Information Content and Pointwise Mutual Information (IC+PMI). According to the IC+PMI
strategy, the weight of the triple t can be defined by Eq. 15:

20IC(p) + IC(ro|p) = IC(Pr(X = p)) + IC(Pr(Y = ro|X = p)) = −log(Pr(X = p)) − log(Pr(Y = ro|X =
p)) = −log(Pr(X = p)Pr(Y = ro|X = p)) = −log(Pr(X = p), P r(Y = ro)) = IC(Pr(X = p), P r(Y = ro)) =
IC(Pr(p, ro)) = IC(p, ro).
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wIC+PMI(t) = IC(p) + PMI(p, ro) (15)

where:

PMI(p, ro) = log
Pr(p, ro)

Pr(p)Pr(ro)
(16)

In particular, PMI measures the mutual dependence between the two random variables describ-
ing the predicate and the object of a triple, and can be seen as a measure of the deviation from
independence between the two outcomes. With respect to the previous strategies, by means of
the addendum PMI, IC+PMI represents a balance between the assumptions of full dependence
(jointIC) and independence (combIC) between predicates and objects. In Eq. 15, the IC of the
predicate is summed with PMI in order to bias the weight towards less frequent, and thus more
informative, predicates.

Once a strategy has been adopted, given the resources ra and rb, and the maximum length h > 0 of
the paths to be considered, the semantic relatedness between ra and rb, ICMh(ra, rb), is computed
according to Eq. 17:

ICMh(ra, rb) =
1

min
P∈Ph

∑
ti∈P

(wmax − w(ti))
(17)

where:

• Ph is the set of the undirected paths connecting ra and rb with length less than or equal to
h.

• ti is the i-th triple in the path P of the set Ph.

• w(t) is the weight of the triple t, and wmax is the maximum weight a triple in the graph can
assume, according to one of the above three strategies.

In the case ra ≡ rb the semantic relatedness between the resources is assumed to be equal to 1. On
the basis of the results of the experimentation presented in [53], the measure obtained according to
combIC outperforms the other two.

A.3.2 REWOrD

According to [46], the REWOrD method is based on the notion of informativeness of predicates,
in line with the Term Frequency-Inverse Document Frequency (TF-IDF) approach. TF-IDF is
generally used in information retrieval to evaluate the relevance of a term w in a document d
belonging to a collection D of documents. The Term Frequency (TF) of the term w with respect
to the document d represents the number of times w appears in d divided by the total number of
terms in d. The Inverse Document Frequency (IDF) represents the logarithm of the ratio between
the total number of documents in D and the number of documents containing the term w.

In the case of an RDF graph, say G, TF-IDF deals with predicates instead of terms, and resources
and triples instead of documents, therefore becomes Predicate Frequency-Inverse Triple Frequency
(PF-ITF). As mentioned in Section 5.3, we need to distinguish between incoming and outgoing
Predicate Frequency (PF). In particular, the incoming PF of a predicate p with respect to a resource
r, say PF r

i (p), resembles the TF as defined in Eq. 18:
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PF r
i (p) =

|T r
i (p)|
|T r| (18)

where:

• |T r
i (p)| = |{⟨?ri, p, r⟩}| is the number of triples having predicate p and object r, i.e., in-

coming to r.
• |T r| = |{⟨r, ?pi, ?rk⟩} ∪ {⟨?rh, ?pj, r⟩}| is the number of triples where the resource r

appears.

The Inverse Triple Frequency (ITF) resembles the IDF as defined in Eq. 19:

ITF (p) = log
|G|

|T (p)| (19)

where:

• |G| = |{⟨?ri, ?pj, ?rh⟩}| is the total number of triples in the graph G.
• |T (p)| = |{⟨?ri, p, ?rj⟩}| is the number of triples with p as predicate.

Finally, the incoming PF-ITF of the predicate p with respect to the resource r, PF-ITF r
i (p), is

defined in Eq. 20:

PF-ITF r
i (p) = PF r

i (p) · ITF (p) (20)

and stands for the informativeness of the incoming predicate p with respect to r. Analogously,
the informativeness of the outgoing predicate p with respect to r is indicated as PF-ITF r

o (p). For
example, consider the resource ra and the predicate p2 in the knowledge graph of Figure 3. We
have PF ra

i (p2) =
2
9
= 0.22, since the number of triples with predicate p2 and object ra is 2, and

the number of triples where ra appears is 9. Furthermore, ITF (p2) = log(22
9
) = 0.39, since

the total number of triples in the graph is 22, and the triples with predicate p2 are 9. Therefore,
PF-ITF ra

i (p2), i.e., the informativeness of the incoming predicate p2 with respect to ra, is equal
to 0.22 · 0.39 = 0.08.

The relatedness space of the resource r, say RS(r), is the vector of weighted predicates (either
incoming or outgoing), where weights are the predicates’ informativeness with respect to r. When
addressing semantic relatedness between resources, their relatedness spaces can be enriched with
the informativeness of the predicates occurring in the most informative path (mip) linking them.
The mip is the path with the greatest informativeness, among those connecting the resources, up to
a given length. Note that, the method considers undirected paths. Given an undirected path Pn of
length n, the informativeness of Pn is the sum of the informativeness of the sub-paths of length 1,
i.e., the single triples, divided by n, as defined according to Eq. 21:

I(Pn) = (I(t1) + I(t2) + ...+ I(tn))/n (21)

where, for i = 1 . . .n:

I(ti) = I(⟨ri, pi, ri+1⟩) = (PF-ITF ri
o (pi) + PF-ITF ri+1

i (pi))/2, and ⟨ri, pi, ri+1⟩ is the i-th triple
of the path Pn.

The method proposes five strategies for computing the relatedness between two resources ra and
rb, referred to as reword incoming, reword outgoing, reword average, reword mip, and reword.

39



Semantic relatedness in DBpedia: A comparative and experimental assessment

Figure 13: REWOrD applied to the running example graph

According to reword incoming, the relatedness spaces for ra and rb are built by considering only
the incoming predicates to ra and rb, respectively.

For instance, consider Figure 13, where the incoming predicates to ra and rb are represented with
dashed and long dashed grey arrows, respectively. On the basis of this strategy, the relatedness
spaces of ra, and rb are:

RS(ra) = [ (p1, PF-ITFra
i (p1)), (p2, PF-ITFra

i (p2)), (p3, PF-ITFra
i (p3)) ]

RS(rb) = [ (p2, PF-ITFrb
i (p2)), (p3, PF-ITFrb

i (p3)) ]

each containing the corresponding resource’s incoming predicates, associated with their informa-
tiveness. Analogously, in the case of the reword outgoing, only the outgoing predicates from ra
and rb are considered. The reword average performs the arithmetic mean between the informa-
tiveness computed according to the reword incoming and reword outgoing strategies. In the case
of reword mip, the relatedness between ra and rb is evaluated by relying on the informativeness
of the mip between the resources. Finally, according to the reword strategy, the relatedness spaces
of ra and rb as defined in the case of the reword incoming approach are considered, both enriched
with the informativeness of the predicates in the mip. In particular, for each triple ⟨ri, pj, rk⟩ in the
mip, the predicate pj , and the related informativeness, is added to both the relatedness spaces of ra
and rb and, if pj is already present in one or both the relatedness spaces, its informativeness will
increase the existing ones. For example consider Figure 13, where we assume that the mip connect-
ing ra and rb is the undirected path composed of the triples ⟨ra, p1, r3⟩ and ⟨rb, p1, r3⟩, highlighted
in bold grey. According to the reword strategy, the resulting relatedness spaces become:

RS(ra) = [ (p1, PF-ITFra
i (p1) + I(⟨ra, p1, r3⟩) + I(⟨rb, p1, r3⟩)),

(p2, PF-ITFra
i (p2)), (p3, PF-ITFra

i (p3)) ]

RS(rb) = [ (p1, I(⟨ra, p1, r3⟩) + I(⟨rb, p1, r3⟩)),
(p2, PF-ITFrb

i (p2)), (p3, PF-ITFrb
i (p3)) ]
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Figure 14: ExclM applied to the running example graph

where the informativeness of both the triples of the mip have been added to the informativeness
of the already existing predicate p1 in the relatedness space of RS(ra), whereas a further element
with the same informativeness has been added to the relatedness space of rb since the predicate p1
is not defined in RS(rb).

Finally, the relatedness between ra and rb is computed as the cosine between the two relatedness
spaces. In accordance with the results of the experimentation given in [46], the reword strategy
outperforms the others.

A.3.3 Exclusivity-based Measure (ExclM)

As mentioned in Section 5.3, the Exclusivity-based Measure (ExclM) computes the weight of a
triple on the basis of the notion of exclusivity [27].

Given a triple t = ⟨ri, p, rj⟩, the exclusivity of t is formally defined according to Eq. 22:

exclusivity(⟨ri, p, rj⟩) =
1

|{⟨ri, p, ?rx⟩}|+ |{⟨?ry, p, rj⟩}| − 1
(22)

where:

• {⟨ri, p, ?rx⟩} is the set of triples with subject ri and predicate p.

• {⟨?ry, p, rj⟩} is the set of triples with object rj and predicate p.

Since the triple ⟨ri, p, rj⟩ belongs to both the above sets, 1 is subtracted at the denominator to avoid
that triple being counted twice.

Consider in our running example the triple t = ⟨r4, p2, ra⟩, highlighted with a bold grey arrow in
Figure 14. In addition to t, the triples having predicate p2 and subject r4 are 2, whose edges are
highlighted with dashed grey arrows in the same figure, therefore they are 3 in total. The triples
having predicate p2 and object ra are 2, and are the triple t, and the triple drawn with a long dashed
grey arrow. Therefore, exclusivity(t) = 1/(3 + 2− 1) = 1/4 = 0.25.
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Based on the exclusivity function, a path weighting function is introduced. This approach assumes
that links in an RDF graph can be traversed in both directions and, for this reason, undirected paths
are considered.

Let P = [t1, ..., tn] be a sequence of triples representing an undirected path, the weight of P , w(P ),
is defined in Eq. 23.

w(P ) =
1∑n

1
1

exclusivity(ti)

(23)

Finally, given two resources ra and rb, two integers h and k greater than 0, and a constant α, the
relatedness Eexclαh,k(ra, rb) is defined in Eq. 24:

Exclαh,k(ra, rb) =
∑

Pi∈Ph
k

αlength(Pi) · w(Pi) (24)

where:

• Ph
k is the set of the top-k undirected paths with length less than or equal to h, among the

ones connecting ra and rb, i.e., the k paths with the greatest weights.
• 0 < α ≤ 1 is a constant raised to the power of the length of the path Pi, length(Pi), in Ph

k

that inspired by the Katz’s centrality measure, and aims at penalizing longer paths.
• w(Pi) is the weight of the path Pi defined above.

In [27], the authors consider k ∈ {1, 5, 10}, and α ∈ {0.25, 0.5, 0.75, 1} in their experiment, and
show that k = 5 and α = 0.25 lead to better results.

A.3.4 ASRMPm

As mentioned in Section 5.3, the ASRMPm family of relatedness measures originates from the
previous proposal of the authors named Weighted Semantic Relatedness Measure (WSRM ) [12].
Therefore, let us start by recalling the WSRM measure and, successively, the ASRMPm family.

Consider an RDF graph G, and the set R of all the resources labeling such a graph, as defined in
Section 4. Given two resources ra, rb ∈ R, the WSRM(ra, rb) between ra, rb is defined in Eq. 25:

WSRM(ra, rb) =
|{p|⟨ra, p, rb⟩ ∈ G}|∑

r′∈R |{p′|⟨ra, p′, r′⟩ ∈ G}| (25)

where for any set S, |S| is the cardinality of S. According to the mentioned paper, the authors
propose different strategies to evaluate semantic relatedness.

ASRMPa
m. We start by recalling the ASRMP a

m measure that considers all the paths be-
tween the compared resources of length equal to m. In particular, given two resources ri, rj ,
ASRMP a

m(ri, rj) is defined as shown in Eq. 26:

ASRMP a
m(ri, rj) = ⊕q∈Pm ⊗m

k=1 WSRM(rk, rk+1) (26)

where:

• Pm is the set of the directed paths between ri and rj with length equal to m.
• rk is the kth resource of the path q (therefore r1 = ri, and rm+1 = rj).
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Figure 15: ASRMPm applied to the running example graph

• ⊗ and ⊕ are the t-norm and the related s-norm aggregators, respectively, the former for the
edges of a given path, and the latter for different paths of length m.

Note that, among the different aggregators available in the literature, the fuzzy logic operators t-
norm for ⊗, and the s-norm for ⊕, have been chosen by the authors in order to ensure transitivity.
In particular, according to the experimental results defined in the literature, the Hamacher t-norm
operator recalled in Eq. 27:

TH,0(x, y) =
xy

x+ y − xy
(27)

with its associated s-norm, has been selected by the authors as the best aggregator.

ASRMPb
m. Given the resources ri, rj , the second measure proposed by the authors is

ASRMP b
m(ri, rj) that, with respect the previous one, aggregates all the paths of length less than

or equal to m, as defined in Eq. 28.

ASRMP b
m(ri, rj) = ⊕q∈Pm ⊗|q|

k=1 WSRM(rk, rk+1) (28)

where Pm is the set of the directed paths between ri and rj of length less than or equal to m.
However, the authors state that direct links should represent stronger relations, whereas indirect
ones should account for weaker relations and, therefore, the longer the path, the weaker the relation.
For this reason, they propose a third measure, recalled below.

ASRMPc
m. According to ASRMP c

m(ri, rj), paths are weighted on the basis of their length n, n =
1..m, as shown in Eq. 29:

ASRMP c
m(ri, rj) =

m∑
n=1

∑
q∈Pn

wn ⊗n
k=1 WSRM(rk, rk+1) (29)

where:
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• Pn is the set of the directed paths between ri and rj with length equal to n.
• wn is a length-dependent weight, approximately corresponding to the percentage of paths

of length n.

Finally, in order to achieve symmetry, the three strategies above are reformulated according to the
ψx
m(ri, rj) relatedness measure defined in Eq. 30.

ψx
m(ri, rj) =

1

2
(ASRMP x

m(ri, rj) +ASRMP x
m(rj , ri)), x ∈ {a, b, c} (30)

Consider again the resources ra, rb of the running example of Figure 3, and assume m = 3. In the
case of the measure ψa

3(ra, rb)
21, the paths of length 3 are considered that are represented by the

only path [⟨ra, p1, r3⟩, ⟨r3, p1, r8⟩, ⟨r8, p3, rb⟩], that is highlighted with bold arrows in Figure 15.
Whereas, in the case of the measure ψb

3(ra, rb), besides the previous one, also the paths with lengths
less than 3 are addressed, that are the one of length 2, i.e., [⟨rb, p3, r4⟩, ⟨r4, p2, ra⟩], highlighted
with bold grey arrows in Figure 15, and the ones of length 1, i.e., [⟨ra, p2, rb⟩], and [⟨rb, p3, ra⟩],
represented with long dashed grey arrows in the same figure.

Among the proposed strategies, the authors state that ASRMP a
m is the best one, in particular for

Entity Linking tasks.

A.3.5 Proximity-based Method (ProxM)

According to the Proximity-based Method (ProxM) [32], given the resources ra and rb, and an
integer h standing for the maximum length of a path, the relatedness (proximity) between them,
proxh(ra, rb), is defined in Eq. 31:

proxh(ra, rb) =
1

Ω(G)

h∑
n=1

1

2n∆(G)n
∑

P∈Pn

∑
ti∈P

w(pi) (31)

where:

• Ω(G) is the maximum weight a predicate in G can be associated with.
• ∆(G) is the maximum outdegree of the nodes in G.
• Pn is the set of the undirected paths connecting ra and rb with length 1 ≤ n ≤ h.
• w(pi) is a function that associates the predicate pi of the triple ti with a weight, which is

manually assigned in the experiment provided in [32].

Finally, if ra ≡ rb, proxh(ra, rb) is assumed to be equal to 1.

For instance, consider the graph of our running example. We have ∆(G) = 4 since 4 is the
maximum outdegree of the nodes of the graph. In particular, both ra and rb have outdegree equal
to 4 (see the dashed grey and long dashed grey lines, respectively, in Figure 16). Furthermore,
suppose that the predicates p1, p2, p3, p4, and rdf:type have been associated with the weights 0.5,
0.3, 0.2, 0.7, and 0.6, respectively, then Ω(G) = 0.7 that is the maximum among the predicates
weights.

21Superscript a in the name of the measure ψa
m and subscript a in the name of the resource ra is just a case occurring in this

running example, and analogously later in the case of b, for ψb
m and rb.
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Figure 16: ProxM applied to the running example graph
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