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Fast and Robust Multiple ColorChecker Detection
using Deep Convolutional Neural Networks

Pedro D. Marrero Fernandez, Fidel A. Guerrero-Pefia, Tsang Ing Ren, Member, IEEE, and Jorge J. G. Leandro

Abstract—ColorCheckers are reference standards that profes-
sional photographers and filmmakers use to ensure predictable
results under every lighting condition. The objective of this
work is to propose a new fast and robust method for automatic
ColorChecker detection. The process is divided into two steps:
(1) ColorCheckers localization and (2) ColorChecker patches
recognition. For the ColorChecker localization, we trained a
detection convolutional neural network using synthetic images.
The synthetic images are created with the 3D models of the
ColorChecker and different background images. The output of
the neural networks are the bounding box of each possible
ColorChecker candidates in the input image. Each bounding
box defines a cropped image which is evaluated by a recognition
system, and each image is canonized with regards to color and
dimensions. Subsequently, all possible color patches are extracted
and grouped with respect to the center’s distance. Each group
is evaluated as a candidate for a ColorChecker part, and its
position in the scene is estimated. Finally, a cost function is
applied to evaluate the accuracy of the estimation. The method
is tested using real and synthetic images. The proposed method
is fast, robust to overlaps and invariant to affine projections. The
algorithm also performs well in case of multiple ColorCheckers
detection.

Index Terms—ColorChecker Detection, Photograph, Image
Quality, Color Science, Color Balance, Segmentation, Convolu-
tional Neural Network.

I. INTRODUCTION

The illumination of a scene highly influences the reproduc-
tion of the colors in images captured with digital cameras.
Given a camera sensor with a Spectral Sensitivity, color
renderings can deviate significantly from colors perceived by
human eyes depending on the Color Stimulus, that is, the
product between the Spectral Power Distribution of the incom-
ing light and the Spectral Reflectance of the object. However,
accurate color reproduction still requires colorimetric camera
calibration for different illuminations that is usually done
using a ColorChecker (CC) that shows predefined regions with
specified colors. Manufacturers offer various checker models
for specific applications [/1[.

ColorChecker Targets are reference standards that profes-
sional photographers and filmmakers use to ensure predictable
results under every lighting condition. The use of the CC
speeds up the color adjustment in the process of obtaining
accurate colors. Therefore, minimizing tedious work of trial
and error color adjustments while editing or color grading. In
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Fig. 1. Examples of the X-Rite ColorCheckers: a) ColorChecker®) Classic;
b) ColorChecker ® Digital SG.

order to scale the assessment of the color accuracy and auto
white balance for a large number of images, it is necessary to
automate this process, thus automating CC detection is also
required.

Currently, there are several published papers in the litera-
ture on geometric camera calibration. However, only a few
publications on the detection of ColorChecker in images.
Many types of ColorCheckers exist, each one specifically
designed for a different class of device and for the prop-
erty to assess. Fig. [I] shows two of the most used Col-
orChecker’s: X-Rite ColorChecker® Classic (CCC) and X-
Rite ColorChecker®) Digital SG (CSG). The CCCisan 8 x 11
inch chart which consists of 24 patches with 18 familiar colors
and six grayscale levels having optical densities from 0.05 to
1.50 and a range of 4.8 f-stops. The colors are not highly
saturated, and the ColorChecker quality is very high. Each
patch is printed separately using controlled pigments, and the
patches have a smooth matte surface. The CCC is a standard
color target. The exact description of these ColorCheckers can
be found on the X-Rite websitd!]

Tajbakhsh and Grigat proposed an algorithm for semi-
automatic CCC detection in distorted images [2]. Initially,
the user selects four corners in the ColorChecker image, and
the system estimates the position of all color patches using
projective geometry. The image is processed with a Sobel
kernel, a morphological operator, and a threshold is applied
converting it into a binary image and the connected patches
are found.

Kapusi et al. proposed a method combining geometric
and colorimetric camera calibration with a unified calibration
checker [3]. A black and white chessboard pattern is used
for the geometric calibration, and 24 circular reference color
patches are placed in squares center for the color calibra-
tion. The chessboard pattern detection is obtained using the
OpenCV library [4]. A subsequent region growing algorithm

Uhttp://xritephoto.com/colorchecker-targets
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segments the circular color regions [3].

Bianco et al. [5] presented a method for single CCC
detection. The method locates the ColorChecker by finding
the coordinates on the local color descriptors spaces using the
SIFT descriptors and recognizes the ColorChecker using an
optimization function.

Ernst et al. proposed a robust algorithm to detect and
track color calibration checkers in images [1]]. The automatic
CCC detection procedure uses a cost function to find the
checker in an image. The cost function compares the colors
of the patches with the reference colors and the standard
deviations of the colors within the patch regions. Four corners
of the checker model are projected with the use of the Direct
Linear Transformation to find the coordinates in an image.
The coordinates of the CCC are obtained by minimizing the
cost function using the Levenberg-Marquardt algorithm. The
procedure can detect ColorChecker if it is in front of the
camera within an allowed operating range.

Andrzej et al. present an algorithm for automatic Col-
orChecker detection and color patch value extraction. The
algorithm can detect different types of CC in various images.
This method performs a k-means kind of clustering over the
RGB color space, using 25 colors as centroids (24 color
chart + 1 background), which generates a segmentation of
the regions corresponding to the patches. In the sequel, it
eliminates some of the regions according to a criterion of
shape and area. It then groups the regions by area and by the
distance between centers of the patches. Finally, it estimates
the bounding parallelogram (hypothesis) on the convex hull of
the obtained groups [6]]. This method assumes that the final
hypothesis is a parallelogram, which is not necessarily true
[7].

Software tools to detect CCC, such as CCFin(f] and Mac-
Dufff] are freely available. CCFind is implemented in Matlab
(Mathworks Inc.) and returns the coordinates of the center
points of the color patches. By not using colors as a cue, it
can be used with unconventional lighting and multispectral
sensors. On the other hand, MacDuff is implemented in C++
and uses OpenCV library. By performing geometrical oper-
ations (rotations, scaling, etc.) and by computing a distance
metric between the colors, the ColorChecker is finally found.

Some commercial software is also capable of doing a semi-
automatic ColorChecker target detection. Examples are the
X-Rite ColorChecker Passport Camera Calibration Softwareﬂ
Imates{’| and BabelColor PatchTool?] which tries to perform an
initial automatic detection. These softwares however usually
rely on human intervention to manually mark or correct the
detected reference target (by dragging the cursor), after which
color correction is performed. Since manual intervention is not
practical in mass digitalization processes for obvious reasons
of cost and speed, it is interesting to develop a fully automatic
tool for the detection of one or several ColorChecker targets
in digital images.

Zhttp://issl.udayton.edu/index.php/research/ccfind/
3https://github.com/ryanfb/macduff
Ahttp://www.xrite.com/
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The objective here is to propose a fast and robust method
for automatic multiple ColorChecker’s detections in the image.
We applied a convolutional neural network for the localization
of the CCC trained over a synthetic dataset (the generation pro-
cess of this dataset is shown in Fig.[2)) and a new ColorChecker
patch recognition method.

II. PROPOSED METHOD

We present a novel methodology for the detection and
recognition of multiple ColorChecker’s Classic. This algorithm
is easily adaptable to any ColorChecker that has a set of
uniformly colored patches and a parallelogram shape. Fig. [3]
shows an overview of our system pipeline. The method is
comprised of two primary stages: (1) CCC candidates location
in the image and (2) CCC color patches recognition and pose
estimation. The code for the ColorChecker-detection] was
made available in a repository.

Stage (1) is responsible for the localization of all the CCC
in the image. Once the CCCs are localized, the stage (2),
focuses on the image regions analysis with a high probability
of containing a CCC. The initial localization in stage (1)
increases the speed of the system and its accuracy as will
be shown in the experiment section. Each component of the
pipeline is described in this section.

A. Deep Learning ColorChecker Localization

The first step of the proposed method is the localization
of all possible ColorChecker candidates. In [5] the SIFT
descriptor is employed for this task. However, this class of
methods is not robust to changes in the illumination (over or
underexposed) and has problems with scalability for multiple
ColorChecker’s in the image. Moreover, SIFT is a patented
invention. A Convolutional Neural Network model provides
an end-to-end solution suited for this problem.

In recent years, convolutional neural networks (CNN) with
deep architectures have outperformed traditional machine
learning approaches for several computer vision tasks, where
a large amount of labeled training data is available. Generally,
the harder the task, the deeper the needed neural network, and
more training data is also required [S]].

When labeled training data is unavailable, synthetic data can
be generated to compensate for this lack of data. Unsupervised
generative model is a recent promising approach but generally,
has a slow test-time inference, because it needs new data.
Remarkable results have been obtained using synthetic data
solutions, including the limited form of data augmentation [9]],
[10].

An interesting work on text recognition in the wild [11]—
[13]] is an example, which was achieved by training a neural
network to recognize text using synthetically generated real-
istic renders. Goodfellow et al. [[14] addressed the problem of
the recognition of house numbers in images from the Google
Street View in a supervised fashion, also solving reCaptcha
[15] images using synthetic data to train a recognition neural
network from image to latent text. They were able to access

Thttps://github.com/pedrodiamel/colorchacker-detection
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Fig. 2. The synthetic dataset generation process: from a) Original initial image, b) generated 3d model, ¢) random placement of the ColorChecker and d)

final synthetic image.
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Fig. 3.

the actual reCaptcha generative model. Therefore, they could
generate millions of labeled instances to use in a standard
supervised learning pipeline. More recently, Stark et al.
also used synthetic data for captcha solving and Wang et al.
for font identification.

Le et al. [8] demonstrated that the use of synthetic data
to train a neural network is equivalent to train an artifact to
do amortized approximate inference [I8]]. In this work, we
created a new layer to generate synthetic data. Fig. [] shows
the training scheme for the DetectNetﬂ using synthetic data.
We describe the generation model similar to that by Le et al.
8]

The proposed synthetic data generation model for Col-
orChecker localization specifies the joint densities p(z, y), that
defines the latent random variable x and the corresponding
ColorChecker image y. The latent structured random variable
x ={C,e1.¢0,i1.c} includes C, the number of ColorCheckers
in the image, €1.¢, a multidimensional structured parameter set
that controls the CCC-rendering such as the various deforma-
tions types (affine deformations, color deformations, etc), and
i1.c, the ColorChecker identities. We use a custom stochastic
CC renderer R to generate each image y. The synthetic data
generator corresponds to the model:

ylz ~ R(z) (1)

In particular, the model places uniform distributions over
different intervals for C, €1.¢, and i1.c, thus generating the
synthetic training data {(x",y™)}, where n is the total number
of images.

8https://github.com/NVIDIA/DIGITS/tree/master/examples/
object-detection
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The overview of the complete proposed system showing its different components.

The renderer R adjusts the illumination of each Col-
orChecker so that it is inserted in the scene more realistically.
To yield a more realistic insertion of the CCC in the scene, an
additional step would be necessary to generate an alpha matte
so that a final composite image of CCC and background could
be constructed. The luminance channel of the ColorChecker
model I.. is adjusted by multiplying it by the factor %
where I, is the luminance of the region that contains it in
the original image. Fig. 5] shows the difference between the
adjusted luminance (b) and the non-adjusted luminance.

For the detection model, we applied the DetectNet. The
Fully-Convolutional Network (FCN) sub-network of Detect-
Net has the same structure as the GoogLeNet without the data
input layers, final pooling layer and output layers [19]. This
has the benefit of allowing DetectNet to be initialized using
a pre-trained GoogLeNet model, thereby reducing training
time and improving final model accuracy. The fully connected
layers predict the output probabilities and coordinates.

B. Patch Color Recognition and Pose Estimation

After the CC localization, the images are cropped using
estimated bounding boxes, and the checker recognition step
is applied to the cropped images. The proposed recognition
method can be applied to the images without the previous CC
detection step, but the performance is affected as shown in the
results section.

Fig. [6] shows the complete recognition system pipeline. Each
component of this pipeline is labeled with numbers from (01)
to (14) and described in this section. The input of the system
is an RGB image (01), as shown in Fig. m The input image
is rescaled for that the smallest of the dimensions is equal to
400 and to keep the same aspect ratio. Also, we used Wiener
filtering for noise suppression and RGB color normalization.
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Fig. 4. The proposed DetectNet neural network training model with a new
layer (Render). The CNN training is performed using a synthetic data.

Fig. 5.  Example of a) synthetic image without luminance adjustment
(original) and b) image with luminance adjustment.

An adaptive thresholding (03) is applied to the canonical
image, and morphological operations (04) techniques are ap-
plied to remove the undesired regions in the image border and
isolated pixels that might appear due to the thresholding (see
Figure 6 steps (03) and (04)). The candidate patches regions
are analyzed and many false positive regions are discarded.
The following features for each obtained region, which is a
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Fig. 6. The block diagram of the ColorChecker recognition system showing
the 14 steps applied to obtain the CC estimated position.

candidate patch, in the previous step are calculated (the best
values for the parameters were selected after several trials):

« Convexity: The proportion of the number of pixels in the
convex hull that are also in the region which is computed
as cc = Area/ConvexArea. The selected threshold
value was cc > 0.90.

o Axes: An inscribed ellipse is determined for each re-
gion. Axes are defined as the relationship between the
major and minor axis of this ellipse that has the same
normalized second central moments as the region. This
value is computed as ac = AzisMin/AzisMax and the
criterion of ac > 0.4 was applied.

o Circularity: It measures the similarity between the shape
of the region and a circumference. The circularity factor
is computed as cf = (4% 7 Area)/Perimeter? and the
range of 0.65 < cf < 0.97 was applied.

« Homogeneity: This feature corresponds to the entropy,
which measures the level of information/disorganization
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Fig. 7. The output of the image for the steps 01, 03, 04, 05, 06 and 08 from
the pipeline sequence for the ColorChecker recognition, as shown in Fig. [¢]

present in the patch. Since color patches belonging to
ColorCheckers are designed to be homogeneous, we
define hc = —>,p(x;)logyp(x;). The criterion of
hc < 4.9 was applied.

From the obtained region in the previous step, we are
interested in the regions that are shaped as quadrilaterals
(05). Quadrilaterals are the result of perspective deformations
of the CC model. To determine these type of regions, the
Ramer-Douglas-Peucker algorithm [20], [21] is applied to
approximate the region into a polygonal shape. Then, the
polygons that contain only four points are selected. The
minimal bounding parallelogram is applied to improve the
results [6]].

The second objective of this procedure is to assess all
possible ColorChecker candidates in the scene (steps 08, 09,
10 and 11). Because of that, a variant of the Hierarchical
Compact Algorithm (HCA) [22] is applied to the obtained
groups of patches, as shown in Fig. [/} step (08). This method
of clustering is based on the graph representation and the Bj-
similarity [22] concept for generating graphs. In this case,
the graph vertices are the centers of the detected patches.
A weight, based on the area ratio of the patches (defined in
equation [2), between each pair of nodes of the similarity graph
is also established. The distance function is defined as:

dij = wij * || Xi — Xjl[2 2)

where X; is the i-th patch center, w;; =

Fig. 8. The estimation of the ColorChecker Classic position and orientation,
showing the four corners of the parallelogram.

Fig. 9. The quadrilateral that best fits the ColorChecker is obtained applying
the MEQ algorithm. The image shows an example of the output of Algorithm
1.

the area corresponding to the ¢-th patch (node in the graph).
For all pairs of vertices of the graph {X;, X}, there exists
an edge if d;; < By,;. A dynamic value for By; was applied
which is defined as:

By; = AxisMax; * 1.65 3)

The groups of patches are formed by taking the connected
components of the graph. Subsequently, each group is ana-
lyzed, and groups that have few elements (less than 4 in this
case) are eliminated. In the next step, a CC estimated position
is calculated (10). Also, the CC orientation in the image is
identified, as shown in Fig

The quadrilateral that best fits the ColorChecker in that
group is calculated for each obtained group. An example is
shown in Fig. [0 and the procedure is described in Algorithm
1. Unlike the method proposed by Schwarz et al. [6], this al-
gorithm is more robust to affine transformations under several
different conditions. Given the obtained minimum enclosing
quadrilateral (MEQ), the center position of the missing patches
and the homography matrix H are estimated with respect to
the plane of the CC model, as shown in Fig. [I0}

For missing point estimation, all centers points are projected
into x and y axis of the estimated quadrilateral (see Fig. [TT).
The new points set is created with the combination of x and
y projections.

Then, the parameters 6 and ¢ are estimated. They repre-
sent, respectively, the rotation and the shift of the detected
ColorChecker patches with respect to the original CC model.



Algorithm 1 Minimum Enclosing Quadrilateral (MEQ).
Require: Ch set of charts, where ch; € Ch ch; =
{p1,p2, p3,pa} is a sort clockwise set of 4 corner points.
1: Let L be the set of lines formed by any two consecutive
points on a chart (for a chart ch; {p1,p2,p3,p4},
ch; € Ch, only four straight lines can be obtained

l12, 123,134, 141).
L= {lz] = pi X Py, 1=1,2,3,4; j= 2737471}’ Vch;

2: The straight lines are sorted according to how far they
are from the all points set P. For each [; € L with [; =
[ng, ny, d] in homogeneous coordinates:

ds; = Z(P % [ng,ny|l +d <0)

3. The first four lines were selected, such that:

6 > 30°
with
Liliva
L[l ]
4: The output B = {p1, p2, 3, P4}, represent the intersection
of the selected lines in the previous step.

cos(0) =

Fig. 10. The projection of the detected ColorChecker patches, showing
the subset on the original CC that represents the obtained MEQ, the center
position of the missing ColorChecker patches and the homography matrix H.

Missing point
estimate

<X1.Y1>

Fig. 11. Missing point estimate. The red point is an example of the estimation
missing point.

For the parameters estimation, the following cost function is
defined:

0=6,0=0 0=17,0=90

Fig. 12. Examples for the estimation of the parameters € and ¢ that represent,
respectively, the rotation and the shift of the detected ColorChecker patches.

J(0,6) = ||X* = Rt(Shf(X.,6),0)|l3 4

where Rt is a rotation operator and Shf is a shift operation,
X, is the detected ColorChecker patches subset, and X* is
the original color model template CC. The parameters 6 and
0 that minimize this cost function is defined as (see Fig. [12)):
[0,6] = argr‘rgliénJ(@,é), 3)
for angle 6 € {0,90, 180,270} and step § € {1,2,--- ,n}.
An estimated position of the CC model is obtained with
these parameters. The inverse of the homography matrix H
is applied to obtain a model projection (hypothesis) in the
image as shown in Fig. [8] For the validation of the obtained
hypothesis (11) a cost function similar to the one proposed by
Ernst et al. [[1]] is used:
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where (i, and oy, denotes the mean colors and standard
deviations for each hypothesis p. The parameter 7 is a
reference color in the CC model. In this case, k varies from
1 to 24 since the ColorChecker Classic has 24 patches.

In this case, differently, from Ernst et al. , the cosine
of the angle is used as a similarity function. This function is
more robust to color changes than the Euclidean distance.

Due to the clustering process (step 8), several hypotheses
of the same object could be generated. The last step (13) aims
at eliminating the redundant hypotheses and select those that
represent a CC in the image. The redundant candidates are
those that represent the same CC in the scene. To eliminate re-
dundancy, the hypotheses that present an overlap are selected.
For that, the intersection over union area of the bounding box
of each candidate is used, and the lower cost, F(p), hypotheses
are selected. In general, the number of CCs present in the scene
is known a priori. One of the advantages of this approach is
that it can handle several CCs in the image. Assuming that
N ColorChecker were used in the scene, the selection of the
hypotheses would be determined as follows: (1) select the N
lower cost hypotheses; (2) hypotheses presenting a cost smaller
than a threshold are selected.

III. EXPERIMENTS AND RESULTS

In this section, the performance of the proposed methods
are evaluated. The experiment is performed on a synthetic
and a real ColorChecker dataset (GMCC) [23]|. The proposed



method is referred to as MCCNetFind and a variation of
this method, named MCCFind, which does not contain the
localization step is also analyzed, showing the importance of
the DetectNet in the detection process.

The proposed method is compared with the CCFind and
MacDuff, using the following metrics for the Intersection Over
Union (IOU): True Positive (TP), False Positive (FP), False
Negative (FN), Accuracy (Acc), Precision (Prec), Recall (Rec),
F-Measure (F-Meas) and mean Average Precision (mAP). To
analyze the quality of the results, three metrics based on IOU
and cosine similarity are also used:

_area(By () Bgt)
~ area(B,J Byt)

ciNci
a; = E Z arca(Cy 1 Cy)) ;?ﬂ gt)
N & area(C}JCyy)

ZCOS /”Lgt”up Z ||’u/‘gtl“p

gt| ‘ | |lu’p| |

where NV is the number of charts, B,, is the predicted bounding
box, By is the ground truth bounding box, C’; and C;t are
predicted areas and ground truth areas of patches i respec-
tively, p, and pi4; the mean color vector for each patch color.
The performance measure ag is used to identify the correctly
located CC color target. The metrics a; and ao define the
recognition performance of all charts and its associated colored
patches, respectively.

A. Training the DetectNet

For the CCC localization, the DetectNet neural network
using the Caffe frameworkﬂ was applied. We defined a new
renderer layer to generate the synthetic data and the following
hyperparameters were used: size of training set 5000; size of
validation set 1000; image resolution 1024 x 640; learning
rate 107%; epochs 30; batch size 30; learning rate policy
fixed; momentum 0.9; weight decay 10~6. Fig. [13|shows the
evaluation metrics of the training process. The mAP, precision
and recall values obtained for the trained model on the
validation set was 92.67%, 95.11% and 97.09% respectively.

B. Experiment using synthetic images

1) Protocol: The experiments are performed as follows:
Number of instances (images) N = 1000; Rigid transforma-
tion parameters, the rotation matrix Rt = [r,r,r.| where r €
[-7/2,7/2]; and the translation matrix T'r = [t,t,t,] where

€ [-10, —30]; Background (BG) image was obtained from
the gratisography Websitﬂ Number of the ColorChecker
models M = {1,2,3,4,5}.

For each iteration, a new position of the ColorChecker
model is obtained randomly (this is the matrix [Rt|7'r]) and
projected over a randomly selected BG image. Fig. [I4] depicts
some of the 1000 generated images used for this experiment.

%https://github.com/NVIDIA/caffe
10https://gratisography.com/
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Fig. 13.  Plot of the validation metrics, precision, recall and mean average
precision vs the number of iterations of the DetectNet.
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Fig. 14. Examples of images from the synthetic dataset with single and
multiple ColorChecker.

2) Results: Table [I| displays the results obtained using
the synthetic database. For each method, all images were
visually analyzed and the following measures: TP, FP, FN,
Acc, Prec, Rec and F-Measure, were calculated. As can be
seen, the proposed MCCNetFind method presents a precision
of 0.97, which indicates that the method is successful for
automatic ColorChecker detection. In all cases, the proposed
method exhibits an accuracy of 0.85 and an F-Measure of 0.92
which are better results compared to the results by CCFind
and MacDuff. The synthetic dataset presents very complex
examples with changes in position and color of the CC, for
which the MCCNetFind method presented a much better recall
values compared to the other methods.

The ag, a1 and a; metrics were calculated to measure the
quality of MCCNetFind method (only for the CCs detected,
TP and FP). Fig. [I3] shows the localization accuracy of
the detected CC as a function of the correct localization.
The a; metric value shows that more than 70% of detected



TABLE 1
RESULTS FOR THE SYNTHETIC DATASET WITH A SINGLE COLORCHECKER

Methods TP FP FN Total ~Acc  Prec Rec F-Meas
CCFind 334 142 524 1000 033 070 039 050
MacDuff 29 199 772 1000 0.03 0.13 0.04 0.06
MCCFind 536 3 461 1000 054 099 054 0.70
MCCNetFind 855 29 116 1000 0.85 0.97 0.88 0.92

TP: true positive, FP: false positive, FN: false negative, Acc:
accuracy, Prec: precision, Rec: recall, F-Meas: f-measure.
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Fig. 15. Plot of the accuracy of detected CC (TP+FP) against ag, a1 and
a2 values for the MCCNetFind method.

ColorCheckers were obtained for values smaller than 0.75 and
in the case of ag and as more than 95%. Therefore, it is clear
that not only the method is accurate, but the results show a
high quality standard.

The experiments reveals that the proposed method can
perform detection of multiple CC in an image, while both
CCFind and MacDuff are unable to detect multiple Col-
orChecker’s. The Table [[T] presents the results of the method
using a synthetic database with multiple ColorChecker. In the

MCCFind case, it is necessary to know a priori the number of
ColorChecker’s in the scene.

Fig. 17. Examples of images from the GMCC dataset that contain images
with real ColorChecker’s.
TABLE II
RESULTS FOR THE SYNTHETIC DATASET WITH MULTIPLE
COLORCHECKER. . . .
C. Experiment using real images

Methods TP FP FN Total Acc Prec Rec  F-Meas
MCCFind 1287 11 1154 2452 0.52
MCCNetFind 2039

099 053  0.69
094 0.88 0.91

TP: true positive, FP: false positive, FN: false negative, Acc:
accuracy, Prec: precision, Rec: recall, F-Meas: f-measure.

1) Protocol: This experiment was performed on the GMCC
122 291 2452 0.83

dataset [23]]. The images were captured using a high-quality
digital SLR camera in RAW format, as shown in Fig. [I7} so
it is free from any color correction. Using the freely available
software chAW|E| the images were demosaiced and converted
Fig. @ illustrates examples of the results in images of into uncompressed linear 16-bit files. This process was done
multiple CCCs. A desirable feature of this method is the Wwith particular attention to converting the images using always
high processing speed since most of the methods described the same multiplicative gains to bypass the camera Automatic
in the literature are slow. The algorithms implementation ~White Balance (AWB) estimation. The dataset consists of 569
was done using Matlab and C++/Python. The experiments images.
were conducted on an Intel ®Core”™ i7 with 2.8 GHz 2) Results: Table shows the results obtained for the
and a Nvidia GeForce GTX 980 Ti. The system required on ~GMCC dataset. The precision values for the proposed methods
average 0.89 &= 0.43 seconds per image to detect the CCC in is maintained at 0.990. The ColorChecker in real images
the test sequence with the C++/Python implementation. The —usually presents less complex transformations than in the
C++/Python Versiorﬂ was made available in a repository.

synthetic images, so the detection method most of the time
https://github.com/pedrodiamel/colorchacker-detection

Zhttp://www.cybercom.net/~dcoffin/dcraw/


https://github.com/pedrodiamel/colorchacker-detection
http://www.cybercom.net/~dcoffin/dcraw/

Fig. 18. Results of the MCCNetFind method for the GMCC dataset.

shows better results with improved recall rate. In this case,
the results of the proposed MCCFind method present an
accuracy rate of 0.920 and F-Measure of 0.960, showing that
it improves the performance compared to the other methods.
The proposed MCCNetFind method also outperforms (0.972
accuracy) previous algorithms from the Table [Tl and obtains
an F-Measure of 0.986 with very high precision confirming
its capability for automatic ColorChecker detection. Fig. [I8§|
portrays the MCCNetFind method’s results for samples from
the GMCC dataset.

TABLE III
RESULTS FOR THE GMCC DATASET.
Methods TP FP FN Total Acc Prec Rec F-Meas
Kordecki [7] 440 110 19 569 0770 0800 0.960 0.870
X-Rite 306 241 22 569 0.540 0.560 0.930 0.700
CCFind 430 36 103 569 0.760 0920 0.810 0.860
MacDuff 41 180 348 569 0.070  0.190 0.110  0.130
MCCFind 523 3 43 569 0920 0990 0.920 0.960
MCCNetFind 553 3 13 569 0972 0995 0.977 0.986

TP: true positive, FP: false positive, FN: false negative, Acc:
accuracy, Prec: precision, Rec: Recall, F-Meas: F-Measure.

Most errors in the localization step (13 errors out of the 16)
occurs where the ColorChecker’s are too far away from the
camera (see Fig. [I9). The neural network does not manage
to generalize these cases because the render layer generates
the patterns in a defined range distance from the camera
in which examples of this type do not appear. The errors
by the recognition system (3 errors) are due to blurring in
ColorChecker’s that makes it difficult the segmentation of the
charts (see Fig. [20).

In this work, we demonstrate the feasibility of the use of
synthetic images to train convolutional neural networks to
detect ColorChecker’s. Future works will be aimed at the
creation of an end-to-end model based on deep convolutional
networks for the task of detection, color patch recognition and
estimation of the pose of multiple ColorChecke’s types.

Fig. 19. Examples of images that present errors in the localization.

Fig. 20. Examples of images that present errors in the recognition.

IV. CONCLUSION

We presented a deep learning based ColorChecker detection
method that showed a high accuracy and precision rates. The
proposed solution is fast and completely automatic. Also, an
algorithm to find the checker minimum enclosing as well as a
variation of the clustering algorithm HCA ensuring that
the method can detect multiple CC were presented. A synthetic
dataset was generated to evaluate the results. The proposed
method showed an accuracy improvement of over 0.20 other
methods in the state-of-the-art and high precision and recall
rates. The GMCC dataset was used to evaluate real images, and
the obtained accuracy was 0.972, demonstrating a significant
increase compared to other methods in the literature. We also
tested the influence of the deep learning detection step by
applying the recognition method directly in the image. Results
show that the deep learning detection improves the accuracy
in 4% in the GMCC dataset, but for the synthetic dataset, the
improvement was of 31%.
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