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Abstract

This paper describes a network that captures multimodal correlations over arbi-

trary timestamps. The proposed scheme operates as a complementary, extended

network over a multimodal convolutional neural network (CNN). Spatial and

temporal streams are required for action recognition by a deep CNN, but over-

fitting reduction and fusing these two streams remain open problems. The ex-

isting fusion approach averages the two streams. Here we propose a correlation

network with a Shannon fusion for learning a pre-trained CNN. A Long-range

video may consist of spatiotemporal correlations over arbitrary times, which

can be captured by forming the correlation network from simple fully connected

layers. This approach was found to complement the existing network fusion

methods. The importance of multimodal correlation is validated in compar-

ison experiments on the UCF-101 and HMDB-51 datasets. The multimodal

correlation enhanced the accuracy of the video recognition results.
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1. Introduction

Video recognition, particularly the recognition of human actions, has pro-

gressed from handcrafted to deep learning, which extract the necessary rich

spatiotemporal information. The established handcrafted features include dense

trajectories [1] and their descriptors of Histogram of Flows (HOF), Histogram

of Gradients (HOG), Motion Boundary Descriptors (MBH), an improved ver-

sion of dense trajectories [2], action bank that apply steerable filters of spatio

temporal space [3], MOFAP [4] and cross correlation [5]. Following the rise of

deep CNNs, state-of-the-art methods have gradually come to use deep-learned

features because of their scalability and richness of information. However, if

there are insufficient training data, deep CNNs give equivalent performance to

handcrafted features [6]. In this case, one possibility is to use transfer learning

from a bigger dataset followed by fine tuning.

CNNs have been intensively applied to many computer vision tasks, partic-

ularly action recognition since it has significantly increased the image classifi-

cation accuracy on ImageNet challenge. The challenging part, however, is to

fuse information from different sources into a combined perception. Recently,

action recognition techniques have employed spatial and motion information,

which complement one another. Research on information fusion has integrated

statistical learning with deep learning fusion schemes for pattern recognition

applications. The baseline recognition method over spatiotemporal domains is

average pooling, as used by Simonyan et al. [7] for two-stream network and

Feichtenhofer et al. [8] for two-stream network fusion. However, the problem

of overfitting means that there is still a gap between the training and testing

datasets. Simple fusions such as sum, average, or multiply can potentially lead

to lose the relationship information of both streams, which (if present) would

increase generalization of the approach. Moreover, the usual two-stream net-

work adopts a frame-wise training scheme that cannot infer the long-range video

classification. Yudistira et al. [9] proposed a softmax gating mechanism as an

additional network for handling stream selection. However, this requires the
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gating stream to be tuned, which is computationally expensive if the gating

stream is also a deep network. If the number of modalities is high, such gating

network will be advantageous. However, if there are only two or three modes, it

is better to apply a simple network. Instead of using weighted gating scheme,

we explore class relationship correlation between streams. The advantages of

latter method are capturing long range information and its streams correlation.

Recently, fusion based on an independent stream or convolutional stack has

been studied, but the associated correlation information has not yet been inves-

tigated. If we contemplate with neural code of brain [10], independent model

will cause loss information in stochastic decoding. It relates to deep learning

since our optimization is stochastic gradient descent (SGD) by using statistical

estimation to minimize objective function.

While the output of CNN using logistic regression and softmax crossentropy

are basically probability in nature, however there is still no consideration of

correlation between two output modalities. The further discussion and intensive

experiment of using correlation network is direction of our investigation. There

are several methods of correlation from multi source such as joint probability

using element-wise product [11] or concatenation [12] for task of collaborative

filtering. However, it captures less correlation between sources compared to

outer correlation [13]. The latter method captures rich interaction map from two

embedding inputs. It is then fed into CNN and increase its previous methods.

For the case of video recognition, long-range temporal information should

be considered to obtain better perception. Limin et al. [14] extended the two-

stream approach by providing a segmented training scheme. The temporal

structure of this scheme improves performance compared with the usual snippet

sampling [7]. However, the aggregation process can result in some information

loss. A correlation network has the potential to identify this information loss on

a frame-by-frame basis over arbitrary timestamps for the entire video. Several

methods have been proposed to capture temporal information on CNN such

as [15], [16], [17]. However, these are mainly based on dense sampling and a

predefined temporal range. Our proposed method has the potential to provide
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complementary information for multi-modal networks.

In past research [18], the long-range temporal information has been captured

by long short term memory (LSTM). It was introduced to improve Recurrent

Neural Network (RNN) [18]. In action recognition, such approach was done

by [19] using BN-Inception backbone. The higher accuracy of LSTM than av-

eraging highlights the importance of including sequential information. This

approach, however, is resource-intensive task requiring addition, multiplication,

and forget branch to train the paths from previous cells to current one that

form complicated network. We propose simpler training procedure that per-

forms comparably to LSTM, and even outperforms LSTM on some datasets.

Motivated by aforementioned problems, we make the following contributions

to video recognition research:

1. Propose a correlation training model that captures spatiotemporal corre-

lation on a frame-by-frame basis without time correspondence.

2. Introduce Shannon fusion to select features based on distribution entropy.

3. When applied to a temporally segmented network, the proposed method is

shown to provide complementary information for long-range video recog-

nition.

The remainder of our paper is organized as follows. Section 2 introduces

correlated and independent data. Section 3 explains the proposed correlation

network (Corrnet) architecture. Section 4 defines loss function and optimization

in this work. Then, section 5 describes the training and testing strategies for

Corrnet. Section 6 and section 7 experimentally setup and validate our method

on the UCF-101 and HMDB-51 datasets. Drawbacks and advantages of our

approach are discussed in Section 8, and Section 9 concludes the paper.

2. Correlated and Independent Data

Any given data distribution contains independent and correlated data. The

correlated data are the overlapping data of two distributions. These data contain
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RGB 
H(X|Y)

FLOW
H(Y|X)
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       I(X,Y)

H(X) H(Y)

H(X,Y) = H(X) + H(Y)

Figure 1: Venn diagaram of independent and correlation stream.

rich information for the deep learning fusion. Action recognition also applies

these terminologies, as it recognizes the complementary of multimodal informa-

tion such as RGB and optical flows. Typical averaging fusion averages only the

independent streams without considering their correlated information. More-

over, how the independent streams are correlated would reveal the semantic

relationships between classes. Based on information theory [20], Figure 1 shows

two individual entropies (RGB and flow streams) and their mutual informa-

tion (MI) (correlation: dark red area). The MI is considered to represent the

mutual dependence between the variables. The variable information is usually

measured by the Shannon entropy, which defines the information amount in a

given random variable. Entropy is maximized when all members in the vari-

able space are uquiprobable (have equal probability), and minimized when all

variable members have unequal probabilities. The entropy of the RGB, flow,

and the combined variables are denoted as H(X), H(Y ), and H(X,Y ), respec-

tively. H(X) and H(Y ) are independent if H(X,Y ) = H(X) + H(Y ). The

joint entropy H(X,Y ) of two discrete variables is the MI or general version of

correlation. Meanwhile, two variables are independent if H(X|Y ) = H(X) or

H(Y |X) = H(Y ). We aim to capture the correlation information and (as an
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extended data output) how the information is correlated. We then investigate

whether the new information increases the prediction performance on various

action datasets.

3. CNN architecture with correlation network

Consider an image sequence of I = (i0, i1, ...., it1) and flow sequence of F =

(f0, f1, ...., ft2) where t1 is the number of images over time and t2 is the number

of flows over time. Note that each image i contains 3 channels of RGB and

f contains 10 consecutive flow field channels. For each iteration i ∈ I and

f ∈ F are randomly selected. Both are fed into Si(i;Wi) (spatial stream) and

Sf (f ;Wf ) (temporal stream) with model parameters of Wi and Wf , respectively.

Our architecture is based on two expert streams and one correlation stream. The

correlation stream acts as a CNN that can find pattern based on autocorrelation

between the two vector outputs. The input for each stream is an arbitrary

frame such that, in every iteration, we obtain a random combination of output

vectors within the video sequence. This acts as an additional training besides

the independently trained spatial and temporal streams. The output of each

stream is commonly represented by the class prediction after smoothing with

softmax cross-entropy. The spatial and temporal streams use the BN-Inception

network with batch normalization and weighting, as described by Wang et al.

[14].

As shown in Figure 2, the outputs of the two streams are combined into a

correlation map. Two-stream architectures can be based on per-frame training

or long-range temporal training. In the latter type, long-range video frames are

segmented into K parts and the loss function is calculated by summing output

of frames from respective segment. This was proposed to handle long range

recognition, especially for optical flows, because there is different generalization

between one frame and average of all frames.

The correlation C between the output streams (Figure 2) is calculated as

the outer product between the spatial (u) and the temporal (v) output vectors
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Figure 2: Architecture of correlation network which trains output layer of both trained

streams.
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Figure 3: Testing architecture of correlation network which use both two streams output

information as final prediction.
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of the spatial stream and the temporal stream, respectively:

C = u⊗ v = uvT (1)

Note that both u and v are class scores which may be negative or positive.

Suppose u =


u0

u1

...

un−1

 and v =


v0

v1
...

vm−1

 are vector of spatial and motion with

element index of 1, 2, ..n and 1, 2, ..m, respectively. Note that both n and m are

positive integer. The outer product of both vectors should be 2-dimensional of

size of n×m (eq. 2) in which indexed by two subscripts of n and m. The idea

of using outer product is to express rich semantic relationships. It is not only

subsumes the interaction signal of its diagonal elements which equals to inner

product, but also includes all other pairwise correlations. After L2 normalization

of each row, C becomes:

Ĉ =



u0v0
‖β0‖

u0v1
‖β0‖ . . . u0vM

‖β0‖
u1v0
‖β1‖

u1v1
‖β1‖

u1vm
‖β1‖

...
. . .

...

unv0

‖βn‖
unv1

‖βn‖ . . . unvm
‖βn‖

 (2)

where βn, n, and m are the n-th row of C, the number of elements in the vector

u, and the number of elements in the vector v, respectively. This matrix contains

the interaction map of class relationship, represented not only by the correlations

between each pair of same-indexed elements from the two vectors but also by

combinations of elements with different indices. The semantic relationships

among the classes can then be constructed. In this representation, the data

types are real-valued numbers, that can be positive or negative.

(u ∗ v)[l, k] =

m−1∑
i=0

n−1∑
j=0

u[i, j]v[i + l, j + k] (3)
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In eq. (3), ∗ denotes cross correlation. m and n are numbers of elements in

vector u and v, respectively. It measures whether 2-dimensional cross correla-

tion matrix is either positively correlated (� 0), negatively correlated (� 0),

or not correlated (≈ 0) given large variation of values inside n×m matrix. For

example, if one element contains negative and the other positive signs or vice

versa, their product will contain positives and negatives, in which case the two

can be considered as uncorrelated because the sum of its product approaches

zero. Intuitively, if two vectors have opposite signs, then the integral of the lag

between j and k is small. If both elements are negatives, a negative correlation

is implied. Therefore, there will be high variation of number and sign to infer

that both vectors are correlated or not and it is beneficial for network. For the

case of element wise multiplication, the product of vector has the size of m or n

(same as output of both stream) of which has less variation than outer product.

Tensor C is then flattened and fed to a multilayer perceptron consisting of

three fully connected classifier layers: fc1 whose input dimension is same as the

output of each stream and output dimension is 4096; fc2 with an input and

output dimensions are 4096; and fc3 whose input dimension of 4096 and an

output dimension equaling the number of classes. The fully connected layers

adjust their weights during the training process.

4. Loss Function

To optimize spatial, motion, and correlation stream, we use separate loss

and optimizer of stochastic gradient descent (SGD). The total loss function is

given by:

L = −
B∑

b=1

yb
(

log(zb) + log(pb)
)

(4)

where yb is the ground truth label corresponding to class b while zb and pb are
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softmax output of Corrnet and two stream in index or class b, respectively. We

can elaborate zb and pb as:

zb =
exp(Z(u,v;Wc)b)

B∑
j=1

exp(Zj)

, pb =
exp(gb)

B∑
j=1

exp(gj)

. (5)

In this expressions, Z is the Corrnet model with parameter Wc. z is the Corrnet

output, and B is the number of classes. The spatial and temporal outputs are

summed as g = u + v. If the spatial and the motion streams are fixed, which

is the case for CNN streams that have been trained and fixed, the loss function

is −
∑B

b=1 yb log(zb). Both are the same in terms of optimization. To update

network by backpropagation, we calculate the gradients of the loss function as:

∂L

∂Wc
=

∂L

∂Z

∂Z

∂Wc
(6)

∂L

∂Wi
=

∂L

∂g

K∑
k=0

∂g

∂Si(Tk)

∂Si(Tk)

∂Wi
(7)

∂L

∂Wf
=

∂L

∂g

K∑
k=0

∂g

∂Sf (Tk)

∂Sf (Tk)

∂Wf
(8)

As indicated in eq. (5), Corrnet is optimized independently on the spatial

and temporal streams. Moreover, through the fully connected layers with pa-

rameters Wc, the correlation structure is learned through backpropagation. Eq.

(6) and (7) describe the backpropagation flow with respect to the spatial param-

eters (Wi) and temporal parameters (Wf ), respectively. Both gradients adopt

segmental consensus in temporal segment network (TSN) with K segments. Tk

is the selected frame in segment k.

5. Training and testing strategies for the correlation network

A two-stream network architecture was selected because TSNs have proven

successful in previous experiment [14]. The architecture incorporates a BN-

Inception CNN, which effectively balances the accuracy–speed tradeoff. The

learned weights are then transferred and fixed, meaning that no updates are
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(a) (b)

Figure 4: Shannon fusion of Correlation Net and total fusion on (a) training and (b) validation

set.

processed while training the two-stream network. As the dimension of correla-

tion tensor C is dim(u) × dim(v), the correlation architecture can be a CNN

or a multilayer perceptron. The features for testing are selected by Shannon

fusion, which identifies the dominant element by the entropy computation. The

Shannon entropy is defined as:

SE = −
N−1∑
i=0

(q̂i) log2(q̂i) (9)

where q̂i is i-th element of a normalized vector q̂. Corrnet is more easily

distracted by an input vector with sparse entropy than a vector with a few

dominant elements. It is trained using input from converged source streams

(RGB and flow) of which indicate low Shannon entropy (high confidence). Out-

put of trained Corrnet is also converged and thus fusion of all outputs (RGB,

flow, and Corrnet) also have low entropy (Fig 4a). Different from train set,

output of source streams (RGB and flow) in validation set is somewhat in lower

confidence compared to train set. As shown in Fig 4b, outputs of validation

set have either low or moderate entropy. Therefore, Shannon fusion is selection
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method that if eq. (10) is met, the Corrnet output is excluded from the fusion.

SE(softmax( Z(u,v)︸ ︷︷ ︸
Corrnet output

+ u+ v︸ ︷︷ ︸
2 stream output

−min(Z(u,v))−min(u+ v)︸ ︷︷ ︸
normalization

)) ≥ th

(10)

Each Corrnet output and 2 stream output are subtracted by its minimum

element; therefore the lowest value of output vector becomes zero. Threshold of

th is used as limit to decide whether Corrnet is included in fusion or not. Thresh-

old of th is searched heuristically within certain of range (min=0,max=logN ).

Small training simulation by splitting train set into sub-train and sub-val set

can be held to find value of th. In all experiments of using BN-Inception with

TSN backbone, we found that th of 1.0 is achieved after such cross-validation

procedure was done. For experiment done by using I3D backbone, it is found

that th of 2.0 is the best threshold. The final fusion of testing scheme is

softmax(Z(u,v) + u+ v) or softmax(Z(u,v) + 0.5(u+ v)).

The performances of TSN and a two-stream network with and without Cor-

rnet were assessed on equally spaced 24 RGB images and optical flow stacks to

spatial and temporal nets, respectively. We divide the 24 sampled frames into

K equal segments. In our experiments, we set K = 3. For TSN training, in each

sampled frame, we obtained 10 inputs by cropping and horizontally flipping the

four corners and the center region.

6. Experiment

Experiments were conducted on UCF-101 [21], HMDB-51 [22] and Cha-

rades dataset [23]. The UCF101 dataset contains 13320 videos divided into 101,

whereas HMDB51 contains 6766 videos in 51 classes. All videos were collected

from Youtube and have many degree of freedom, which complicate the task of

video or action classification. Both datasets are split three ways with different

combination of training and testing data. To ensure a fair comparison with

previous methods, we trained and tested our scheme on the original dataset.
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The results of split 1 and the average results all over splits were reported for

each dataset. The Charades dataset contains 9848 videos of daily activities,

which have been multi-labeled by Amazon Mechanical Turk. The videos were

recorded by 267 different actors, and are divided into 157 classes with 66500

temporal annotations. To handle the multi-label nature of this dataset, we ap-

plied the sigmoid activation, binary cross-entropy as the loss function, and the

mean average precision (mAP) for evaluation.

The flow modality was the optical flow extracted by the total variation algo-

rithm with data fidelity measured in the L1 norm [24]. The flow was generated

by the OpenCV framework. The magnitude and angular in the flow was linearly

transformed into RGB images in range of 0-255 using a linear transformation.

Our correlation network in the deep learning framework, we used the Chainer

[25] for TSN with Imagenet pre-train, Pytorch [26] for TSN with Kinetics pre-

train, and Tensor Flow [27] for I3D with Kinetics pre-train to train and test

our correlation network. The two-stream network were TSN, I3D and two-

stream network [28] with Caffe-trained weights [29]. The TSN and two-stream

networks were implemented in the BN-Inception and the two-stream VGGNet-

16 networks, respectively. TSN was trained using temporal segment network

essentially two-stream CNN network. The training was segmental to capture

long-range video actions. This network previously achieved state of the art

results on UCF101 and HMBD51. The correlation network was optimized by

stochastic gradient descent (SGD). Mini-batches of 8 were trained through 200

epochs, with momentum of 0.9 and a learning rate of 0.001. For the implemen-

tation of using I3D, each sampled clip contains 64 frames for both RGB and

optical flows. In testing, the output of Corrnet from I3D streams is weighted

by 0.01 to make it equal to the output of spatial and motion stream.

As the HMDB-51 dataset has fewer training data than UCF101, a transfer

learning approach was used in which network was trained on UCF-101 split 1,

and then applied to all splits of HMDB-51. Because the HMDB-51 output has

51 classes whereas UCF 101 has 101 classes, the number of trained weights in

the first layer of the correlation network was increased to 101 by a tiling strategy
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(fc1). The network was then fine-tuned for training on the HMDB-51 dataset.

This procedure was used in order to speed up learning even though there is no

evidence about increasing performance.

As the RGB and flow in the Charades dataset, we used the I3D stream

trained on the Kinetics dataset. Again, the correlation network was optimized

by SGD. Mini-batches of 4 runs were trained through 64000 steps, with a mo-

mentum of 0.9 and a learning rate of 0.001.

We evaluated two types of late fusion in correlation net: the averaged and

non-averaged final fusion of both streams. We compared the performances of

TSN and the two-stream network without correlation net and with additional

correlation network. The TSN is pre-trained on Imagenet or Kinetics. The

latter pre-trained dataset contains approximatey 650000 video clips [30]. The

TSN was trained on three segments.

7. Results

Table 1: Accuracy performance of TSN and the two-stream methods on UCF-101 split 1

accuracy

Two stream 89.4

avg(Two stream) + Corrnet 89.7

Two stream + Corrnet 89.9

TSN (Imagenet pre-trained) 93.5

avg(TSN) + Corrnet (Imagenet pre-trained) 94.2

TSN + Corrnet (Imagenet pre-trained + Shannon fusion) 94.2

TSN (Kinetics pre-trained) 94.3

avg(TSN) + Corrnet (Kinetics pre-trained) 94.6

TSN + Corrnet (Kinetics pre-trained + Shannon fusion) 94.5

I3D (Kinetics pre-trained) 97.8

I3D + Corrnet (Kinetics pre-trained) 98.1

I3D + Corrnet (Kinetics pre-trained + Shannon fusion) 98.1
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As clarified in Table 1, the method using Corrnet improved the performance

on UCF-101 Split 1. The results of TSN and the two-stream network were based

on the weights transferred from their original Caffe implementation. TSN per-

formance was improved by the correlation network, highlighting the importance

of additional spatiotemporal correlation. On Split 1, the correlation network

improved the TSN and the original two-stream network by 0.7% and 4.8%, re-

spectively. When using Kinetics pre-trained, TSN performance is better than

Imagenet pre-train by 0.8% as well as its fusion with Corrnet by 0.3%. When

I3D backbone with Kinetics pre-trained is used, better performance is achieved

by 97.8%. With correlation network, the performance is improved by 0.3%

becoming 98.1%.

Table 2: UCF-101 pre-trained on Imagenet all splits accuracy

split 1 split 2 split 3 average

spatial 85.9 84.9 84 84.9

motion 87.9 90.3 91 89.7

Corrnet 88.3 87.6 87.9 87.9

s+m 93.5 94.5 94 94

avg(s,m)+Corrnet 94.2 94.6 94.1 94.3

s+m+Corrnet (Shannon fusion) 94.2 94.7 94.2 94.4

On UCF-101 splits 2 and 3 pre-trained by Imagenet (Table2), the correlation

network improved the TSN performance 0.2%. The overall average of TSN

with Corrnet using Shannon fusion was 94.4%, further confirming that Corrnet

achieved higher recognition fidelity than TSN and the two-stream network.
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Table 3: HMDB-51 pre-trained on Imagenet all splits accuracy

split 1 split 2 split 3 average

spatial 54.3 50.2 50.4 51.6

motion 62.3 63.5 64.2 63.3

Corrnet 66.6 65.8 65.5 66

s+m 69.9 67.1 67.1 68

avg(s,m)+Corrnet 70.6 67.9 67.8 68.8

s+m+Corrnet (Shannon fusion) 70.6 67.9 68.1 69

Table 3 reports the accuracy result on HMDB-51 pre-trained by Imagenet.

On Splits 1, 2 and 3, the Corrnet improved the TSN performance by 0.7%, 0.8%

and 1.0%, respectively. The overall accuracies of the average and motion-plus-

spatial versions were 68.8% and 69% respectively when the correlation network

was included.

Table 4: Charades dataset accuracy

Val mAP

I3D (RGB) 35.0

I3D (Flow) 10.3

I3D (RGB) + Corrnet (RGB) 35.2

I3D (RGB + Flow) 32.8

I3D (RGB + Flow) + Corrnet 32.8

Table 4 reports the results on the Charades dataset using Corrnet trained on

outputs of pair-wise RGB fused with output of RGB stream, there is improve-

ment of 0.2% over RGB stream, while on Corrnet trained with output of RGB

and flow, fusion with RGB and flow does not make any improvement since the

performance of flow stream is lower than RGB by large margin of 24.7%.

Next, we compared the performance of Corrnet and other methods of fusing

both modalities. The selected methods were averaging (ava), maximum (max),
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multiply [7][31], and canonical correlation analysis (CCA) [32] fusion method

using the same BN-Inception stream backbone. For multi layer perceptron, we

use same network structure of 3 layers of fc layer as described in section 3.

Table 5: Comparison to another fusion methods using BN-Inception network on split 1

Fusion methods classifier ava max multiply CCA Corrnet

UCF101 class score 93.5 91.3 93.3 93.3 -

multi layer perceptron+s+m 93.8 93.6 94.0 94.0 94.2

HMDB51 class score 69.9 64.8 64.9 65.6 -

multi layer perceptron+s+m 70.1 69.7 68.6 68.9 70.6

As in table 5, if vectors generated from operations (ava, max, multiply, and

CCA) are trained to multi layer perceptrons and fused with RGB and flow

stream, there are improvements over raw class scores on both UCF101 and

HMDB51 dataset. Corrnet outperforms trained ava, max, multiply, and CCA

by 0.5%, 0.9%, 5.1%, and 3.9%, respectively. Corrnet outperforms ava, max,

multiply, and CCA trained on multilayer perceptron by 0.4%, 0.6%, 0.2%, and

0.2%, respectively on UCF101 split 1. While on HMDB51 split 1 with regards of

fusion with spatial and motion stream, Corrnet outperforms ava, max, multiply,

and CCA by 0.2%, 0.9%, 2%, and 1.7%, respectively.

In Table 6, we also evaluate the proposed method in comparison with another

architecture such as two stream late fusion of Feichtenhofer (2 VGG-M & 2

VGG-19) [8], multiplicative way (VGG-19) [33] and TSN with gating network

(2 bn-inception & 1 VGG-16) [9]. Independent streams of TSN with Corrnet

gives best performance over multiplicative, late fusion of 2 VGG-M, and late

fusion of 2 VGG-16 with margin of 5%, 8.16%, and 3.48%, respectively on

UCF101 split 1 and same accuracy with gating network on UCF101 split 1 with

fewer number of parameters (>150M of gating network to <100M of ours).
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Table 6: Comparison to the state of the art on UCF-101

UCF-101 HMDB-51

IDT+FV [2] 85.9 57.2

IDT+HSV [34] 87.9 61.1

MoFAP [4] 88.3 61.7

TDD+FV [35] 90.3 63.2

Two-stream [7] 88 59.4

TSN (imagenet pre-train)[14] 94 68

Two-stream I3D (imagenet pre-train) [30] 93.4 66.4

TSN LSTM (imagenet pre-train) [19] 94.1 69

TSN Corrnet (imagenet pre-train) with Shannon fusion (ours) 94.4 69

We also compared proposed Corrnet with state-of-the-art techniques using

HMDB51 and UCF101 datasets. The results in Table 6 compare the handcrafted

to deep learned features. The comparative methods use Fisher Vector (FV) and

Hybrid Supervector (HSV) of improved trajectory (IDT) features [2][34], and

Multi-Level Motion Features (MoFAP) [4]. The good result is obtained by ap-

plying handcrafted of Fisher Vector (FV) encoding on end to end learning of

Trajectory-Pooled Deep-Convolutional Descriptors (TDD) [35]. The full end to

end learning of two stream with SVM fusion gives reliable performance, how-

ever, still performs below our proposed method. CNN learning using temporal

segment strategy of TSN gives better accuracy than previous per frame based

two stream [14]. As shown in Table 6, the results of our TSN and correlation

network outperform TSN by 0.4% and 1% on UCF-101 and HMDB-51, respec-

tively. We also compare the performance results of the proposed method and

LSTM on the UCF101 and HMDB51 since LSTM also capture temporal dy-

namics of video frames. We report the result on UCF101 and HMDB51 dataset

compared with LSTM on average of split 1, 2, and 3. There is improvement of

0.3% over TSN-LSTM on UCF 101 and same performance on HMDB51.

The performances of Corrnet fusion and the two-stream late fusion described

by Feichtenhofer [8], a multiplicative approach [33], and TSN with a gating net-

work [9] are compared in Table 7 in terms of accuracy and number of parameters.
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Table 7: Comparison to another architectures on split 1

Fusion methods # of parameters spatial motions fusion

multiplicative [33] >138M (VGG19) - - 89.1

Two-Stream (late fusion) [8] <181.42M (2 VGG-M) 74.2 82.3 85.94

Two-Stream (late fusion) [8] 257M (2 VGG-16) 82.6 86.3 90.62

Two-Stream (ReLU5 + FC8) [8] 181.68M (2VGG-M) - - 86.04

TSN gating [9] >150M (2 bn-inception & 1 VGG-16) 85.9 87.9 94.2

TSN Corrnet (ours) <100M (2 bn-inception & 1 Corrnet) 85.9 87.9 94.2

Table 7 demonstrates that correlating the independent streams of TSN im-

proved the performance on UCF-101 Split 1 dataset. The improvement margin

was 3.58% over late fusion and 5.1% over the multiplicative and gating net-

work approaches, despite the fewer parameters in our scheme than the earlier

schemes.

8. Discussion

8.1. Advantages and drawbacks

In this section we would like to discuss the drawbacks and advantages of the

proposed method. The proposed method of fusion with Corrnet delivers good

performance when the accuracy of two streams are balanced. However, if the

both two streams produce very high performance, the improvement is small. In

that situation, independent streams leaves little room for correlation network to

contribute. As shown in Table 8, Imagenet pre-trained TSN fused with Corrnet

gives improvement of 0.5% compared to Kinetics pre-trained TSN of which only

gives improvement of 0.3%. On HMDB51 split 1 as shown in Table 3, fusion

with Corrnet improves original TSN with improvement of 0.7%. On contrary,

when dealing with severe imbalanced streams, Corrnet gives no contribution to

performance. As shown in Table 4 on Charades dataset, the performance of

flow stream is very low of 10.3% compared to RGB of 35%. In that situation,

fusion with Corrnet gives same performance with original of 32.8%.

19



Table 8: UCF-101 pre-trained on Kinetics split 1 accuracy

Methods Backbone Imagenet pre-train Kinetics pre-train

Corrnet TSN-BN-Inception 88.3 93.0

RGB + Flow TSN-BN-Inception 93.5 94.3

RGB + Flow + Corrnet TSN-BN-Inception 94.0 94.6

RGB + Flow + Corrnet (Shannon fusion) TSN-BN-Inception 94.2 94.5

RGB + Flow I3D - 97.8

RGB + Flow + Corrnet I3D - 98.1

RGB + Flow + Corrnet (Shannon fusion) I3D - 98.1

Shannon fusion as method to select whether Corrnet is included in fusion

or not as previously defined in section 5 will work best if sum of independent

streams (RGB and Flow in this case) is in moderate performance. As shown in

Table 8, Corrnet with Kinetics pre-trained TSN backbone gives 93% accuracy on

UCF101 of which only 1.3% difference with fusion of RGB and Flow. Whereas,

Corrnet with Imagenet pre-trained TSN backbone on UCF101 delivers difference

of 5.2% of which increase of 0.2% is obtained in contrast with the former which

decreasing performance with 0.1%. The best performance will be achieved using

fusion of Corrnet with 2 stream using I3D backbone of 98.1%. It gains increase

of 0.3% from baseline Kinetics pre-trained I3D. It is comparable with current

state of the art results.

8.2. Independence and correlation

Given distribution of data, there exist independence and correlated data

(Fig. 1). The performance of Corrnet is affected by underlying distribution of

data. Thus, there is possibility that Corrnet performs better or lower than in-

dependent streams fusion, however, it is reasonable to be complementary with

existing independent outputs of RGB and Flow. As shown in Table 2, even

though the performances of Corrnet are lower than sum fusion of RGB and

flow, its fusion with existing streams increases accuracy on all splits. Same

phenomena occur on HMDB51 dataset in Table 3, which confirms the comple-

mentary information of correlation to independent streams.
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The characteristic of our proposed method is based on assumption of corre-

lation between streams. It gives identical performance with gating CNN of [9]

on UCF101 split 1 as shown in Table 7. We use the same RGB and flow stream

network of BN-Inception with TSN scheme and thus have the same performance

of spatial and temporal stream. Gating CNN requires additional network (gat-

ing stream) functioned as weighting the output of spatial and temporal stream

before fusion. Gating stream has to be capable of weighting spatial stream

more if spatial features such as shapes or objects are more salient than tempo-

ral features (motion), and vice versa. It leads to performance improvement over

original TSN. Similarly, our proposed method uses simple network to perform

correlation learning before fusion. Our network is simpler indicated by lower

number of parameters. Moreover, on HMDB51 split 1, fusion with Corrnet per-

forms better than gating stream which, conclude the beneficial of Corrnet over

gating CNN.
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Figure 5: Top 5 inference results of RGB, Flow, sum fusion, and Corrnet of (a) Playing Cello

and (b) Handstand walking video.

8.3. Correlation Interpretation

Fig. 5a shows top 5 predictions from RGB and flow along with its sum

and output of Corrnet for semantic comparison. Sum is class scores obtained
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by addition between RGB and flows stream, whereas Corrnet is obtained by

correlation network. RGB stream infers playing violin, playing cello, playing

flute, archery, and hulahoop that influenced by shapes or textures. Flow stream

predicts archery, playing cello, golf swing, throw discuss, and taichi that influ-

enced by motions. Given such prediction classes, Corrnet correctly infers playing

cello rather than playing violin which predicted by sum. Top 5 composition of

Corrnet prediction also seems more reasonable in sense that there is no hula-

hoop but rather playing flute which has similar hand motion. Fig. 5b shows

another example of top 5 prediction from handstand walking action. Among

top 5 inferences, Corrnet correctly spots handstand walking, lunge, clean and

jerk, jumping jack, and body weight squat of which make sense since they are

semantically similar action. Whereas, result of sum shows boxing punching bag

and boxing speed bag which very different from actual hand stand walking. It

shows that class predictions are still highly influenced by boxing punch object.

8.4. Comparison with sequence based model of LSTM

LSTM is long standing method for capturing temporal dynamics from se-

quence data like videos. Our TSN-Corrnet shares similarity with that of TS-

LSTM experiment done by [19] in terms of network, data augmentation, and

training and testing. Our baseline TSN without LSTM cell delivers result of

93.5 %. TSN-LSTM is trained on two setting of using the first 10 seconds of

videos and full videos on UCF101 dataset.

Table 9: Accuracy of TSN given duration of clips used for training

accuracy duration

TSN 93.5 1 frame

TSN-LSTM 93.7 10 seconds

TSN-LSTM 94.1 full videos

TSN-Corrnet (Shannon fusion) 94.4 1 frame

As shown in Table 9, LSTM requires sequence of the videos to see temporal
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information. The accuracy becomes better as LSTM captures more frames of

each video (93.7 % to 94.2 %). Our proposed fusion method obtained 94.4%

by looking only 1 frame per segment to achieve performance of which slightly

better than LSTM. This confirms that our proposed method is able to capture

video information with better performance.

9. Conclusion

We have presented correlation network that capture spatiotemporal correla-

tion given arbitrary timestamps. State-of-the-art CNN training of video recogni-

tion, however, is done on frame-by-frame basis using spatial and motion streams.

The final layers of already trained spatial and temporal network are correlated

to form two-dimensional correlation tensor. This is then fed to the three layers

of full connected layers for training. Predictions are formed by fusing the output

of correlation network with that from spatial and temporal stream’s output. Ex-

perimental results show that this correlation network contribute to an increase

in recognition accuracy, revealing the importance of spatiotemporal correlation

for long range video recognition.
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