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Abstract

We analyze the coordination problem of agents deciding to join a group that

uses membership revenues to provide a discrete public good and excludable ben-

efits. The public good and the benefits are jointly produced, so that benefits are

valued only if the group succeeds in providing the public good. With asymmetric

information about the cost of provision, the static membership game admits a

unique equilibrium and we characterize the optimal membership fee. We show

that heterogeneity in valuations for the excludable benefits is always detrimen-

tal to the group. However, in a dynamic contest in which heterogeneity arises

endogenously (returning members receive additional seniority benefits at the ex-

pense of junior members), we show that, in the ex-ante optimal contract, offering

seniority benefits is beneficial for the group, despite the heterogeneity in valua-

tions created.
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1 Introduction

The National Association Study shows the mean and median membership size of US

voluntary associations are 27,575 and 750, respectively, suggesting that, although not

many, very large associations exist. Examples are environmentalist groups like the

National Wildlife Federation (NWF), or the World Wildlife Fund (WWF), professional

and business groups like the American Farm Bureau Federation (AFBF), citizens’

groups like the American Association of Retired People (AARP), and trade unions.1

The main activity of these associations is lobbying for public policy, and their financial

resources mostly derive from due-paying members (Knoke [21], and Walker [28]). Since

the benefits of lobbying (environmental legislation, farm subsidies, tax reliefs, minimum

wage laws) are largely non-excludable to non-members, all these groups are able to

overcome a severe free-rider problem.

The existence of large voluntary associations can be explained if the group provides

selective incentives: goods and services excludable to non-members (Olson [25]). These

benefits can generate utility directly - e.g., publications, information services, insurance

policies, legal advice, advocacy - or they can acquire value through social interaction, as

for reputation or peer pressure.2 Interestingly, the value attached to excludable incen-

tives is often correlated with success of the association in providing a collective good.

For example, as in the case of discounts, the value of selective benefits may be directly

related to the size of the association: larger groups can negotiate better terms with

vendors. At the same time, membership size is a critical factor in the group’s success

in its lobbying efforts. Moreover, success of environmental protection projects—a public

good—may enhance the quality of organized hiking and animal watching activities by

members—a selective incentive (King and Walker [19]). As a result, strategic comple-

mentarities in joining decisions may arise, i.e., the more people join the association,

1WWF and NWF have more than a million members each. The AARP is the largest nonprofit

association in the US with 23 million members. The AFBF has 6 million members. The largest union

in the AFL-CIO is the American Federation of State, County and Municipal Employees, with more

than a million members. Data for the National Association Study are from Knoke [20].
2Indeed, a majority of voluntary associations that have been successful in providing a collective

good offer selective incentives for their members. See, e.g., Walker [28].
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the higher the value of being a member, a well-known observation. However, models

with strategic complementarities are often associated with multiple “extreme” equilib-

ria (i.e., either nobody joins or everybody joins), which are not particularly interesting,

not responsive to fundamentals, and not suited to analyze questions of optimal design

of a membership contract.

To solve the multiplicity problem, we present a natural application of the global

game approach (Carlsson and Van Damme [3] and Morris and Shin [23]) to a member-

ship game with strategic complementarities. We study the decision of agents to join a

group that uses membership revenues to provide a discrete public good and excludable

benefits, in the presence of asymmetric information about the cost of providing the

public good. We assume the public good and selective incentives are jointly produced,

so that excludable benefits acquire value only if the group is successful in securing

enough revenue to cover the provision cost of the public good (Cornes and Sandler [4],

[5], [6]). This approach captures a fundamental characteristic of the incentives pack-

ages we observe in reality, and uncovers the coordination problem agents face, since

their payoff of joining displays strategic complementarities.

The membership game admits a unique equilibrium, with very intuitive compar-

ative statics. Moreover, despite the presence of positive externalities in membership

and asymmetric information, finding the optimal membership fee reduces to solving a

simple monopoly pricing problem. Our first contribution shows that, in a static con-

text, an increase in heterogeneity among prospective members is always detrimental

for the group. To demonstrate this, we first characterize the unique equilibrium of the

membership game with two categories of agents: those with high valuation for selective

incentives, and those with low valuation. We then consider a mean-preserving spread

of valuations, and show such an increase in heterogeneity decreases equilibrium size,

the optimal membership fee, and ultimately the probability of success of the group.

This results follows from low-valuation agents responding in larger numbers to the per-

turbation than high-valuation agents thus reducing the group’s total revenue, because

low-valuation agents face greater strategic uncertainty. They must rely on a larger pro-

portion of agents joining and they must believe the group more likely to succeed than

high-valuation agents do, to be willing to pay the same cost of membership. Therefore,
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because benefits are valued only in case of success, low-valuation members are more

affected by the mean preserving spread, coeteris paribus. The negative externality

imposed by low-valuation agents lowers the incentive to join for all potential members.

Our second contribution is to show that in a dynamic context some form of hetero-

geneity may in fact be beneficial for the group. For example, a common practice by citi-

zens groups is the preferential assignment of resources to returning members in the form

of seniority benefits.3 This practice is a choice of the organization’s management that

endogenously creates heterogeneity among potential members, and it appears surpris-

ing and potentially counterproductive in light of our previous result and of the received

wisdom on the disadvantages of heterogeneity. To investigate the effects of seniority

benefits, we analyze a simple two-period version of the model. The first-period game

is our initial membership game with homogenous agents. In the second-period, hetero-

geneity arises endogenously: returning members receive additional “seniority” benefits

at the expense of junior members. This implies the extra-benefit senior members re-

ceive decreases in first-period membership and, as a result, payoffs are not monotonic

in membership. In this context, we prove existence and uniqueness of equilibrium in

monotone strategies, that is when more favorable information implies that each agent

is more likely to join. More importantly, when the group maximizes a weighted sum

of the probabilities of success in the two periods, we characterize the ex-ante optimal

membership contract, we show that offering seniority benefits is always optimal, and we

prove the optimal level of seniority benefits increases when asymmetries in information

among agents become small.

The sharp difference in the effects of heterogeneity between the static and the

dynamic models arises because in the dynamic model the role played by seniority

benefits is twofold. On the one hand, seniority benefits always increase the value of first-

period membership. On the other hand, they introduce heterogeneity between second-

period prospective members. Offering seniority benefits is always optimal because,

3A typical seniority benefit is the practice of reserving office positions to returning members (see

Moe [22]). In the case of citizens’ groups like Common Cause, where about a third of the members

report that they have politicial aspirations (see Rothenberg [27]), the value of seniority benefits is

clearly related to the success of the group in its lobbying effort.
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when the level of seniority benefits is zero, the negative marginal effect on second-period

membership turns out to be zero. In fact, in this case, agents are homogeneous in the

second period, and both junior and senior members face the same strategic uncertainty.

Therefore, they respond in the same way to the introduction of heterogeneity, and the

overall marginal effect on second-period membership is zero.

Three strands of literature are related to our work. First, Cornes and Sandler [4], [5],

[6] analyze an impure public good model in which the purchase of an intermediate good

makes available, through a joint production function, both a public good and a private

characteristic. Strategic complementarities may arise in this framework. However, the

issue of coordination among agents is not directly addressed.

Second, relevant papers with dynamic applications of global games include Das-

gupta [8], Heidhues and Melissas [15], Giannitsaru and Toxvaerd [11], and Goldstein

and Pauzner [12]. Heidhues and Melissas [15] focus on cohort effects, while Dasgupta

[8] focuses on social learning. In both papers, contrary to our paper, the decision to

contribute is once and for all, therefore there is no heterogeneity among agents that

can take an action in any one period. Giannitsaru and Toxvaerd [11] prove uniqueness

of equilibrium under the assumption of strict supermodularity of the payoff of taking

an action at time t+ 1 with respect to the number of agents that took the action in t.

Since in our model this assumption is violated, their results do not apply.4 The closest

work is Goldstein and Pauzner [12]. Indeed, their proof of uniqueness of equilibrium

with heterogeneous agents applies in our model as well. Their goal is to explain conta-

gion of financial crises across countries. They investigate a “first-order” perturbation

where, following an earlier crisis in one country, one set of agents becomes poorer and

more risk-averse, and hence more likely to run in a second country. On the contrary, in

our analysis of heterogeneity we investigate a “second-order” perturbation, where the

rewards to the risky action increases for one set of agents, and decreases for the others.

Moreover, our perturbation changes the utility of joining directly, not its argument.

One may effectively consider agents to be risk-neutral in our analysis of heterogeneity.

Third, regarding the effect of heterogeneity on membership decisions, the closest

4A violation of supermodularity appears in Goldstein and Pauzner [13] as well.
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paper is Alesina and La Ferrara [1]. In a static model, they show homogeneity within

a community leads to higher participation in social activities. In their model member-

ship is costless, group size has no effect on individual utility, and individuals have an

exogenous preference for homogeneity within a social group.

The remainder of the paper is organized as follows. Section 2 presents the basic

structure of the static model and contains our results on the effect of heterogeneity on

the equilibrium group size. Section 3 contains a dynamic version of the model in which

heterogeneity emerges endogenously. Finally, in Section 4 we relate our theoretical

results with some empirical observations and conclude.

2 The Model

Consider a continuum of agents of size 1. They decide independently and simulta-

neously whether or not to join a group. Let k > 0 be the cost of membership and

e ∈ [0, 1] be the proportion of agents joining the group.5 The group’s total revenues
ke are used as an input in a binary production function f (ke, θ). If total revenues are

above a threshold θ, the production function jointly generates an amount G of a pure

public good, and an amount x of a non-rival club good that agents enjoy only if they

are members. Henceforth, we say that the group is successful when ke ≥ θ. Otherwise,

G = x = 0. Formally,

f (ke, θ) =

(
(x,G) if ke ≥ θ

(0, 0) otherwise.

Let ui (x,G) denote agent i’s value for the club good and the public good. We assume

ui increasing in both arguments, and we normalize ui (0, 0) to 0. Finally, we assume

money enters linearly in agents’ utility functions. Payoffs can then be represented in

5In assuming a continuum of agents we follow the literature, and ignore the technical issues dis-

cussed in Judd [17] and Feldman and Gilles [9].
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the following table:

join not join

“success”, ke ≥ θ ui (x,G)− k ui (0, G)

“failure”, ke < θ −k 0

What determines i’s decision is the expected net utility from joining: bi Pr (ke ≥ θ)−k,
where bi is the difference between the utility of joining and the utility of not joining,

conditional on success: bi = ui (x,G) − ui (0, G) . We assume success in providing

a public good is a by-product of the operation of selective incentives: it is not the

reason for joining but it is a consequence of members joining. Although one criticism

to this argument is that a competing firm, not burdened by the cost of producing

the public good, can offer just the private benefit at a lower price, we believe that

establishing a brand name through success in providing the public good gives the

association some monopoly power over the private good.6 Moreover, notice that for

our purposes, excludability of selective benefits does not need to be absolute, just

partial. Our specification of f (ke, θ) above is a convenient way to formalize the idea

that the value of selective benefits that are offered by citizens’ associations is often tied

to the success of the association in providing the public good, through the standard

notion of joint-production.7

Consider first the case where all agents are homogeneous, that is bi = b, and assume

b > k to rule out the uninteresting case where joining the group is a dominated strategy.

The value of the threshold θ is not observable, it is drawn from a uniform distribution

on
£
θ, θ
¤
, and each agent i receives a signal θi of the realization of θ. In particular,

we assume that θi = θ + εi, where εi is a noise drawn from a uniform distribution on

6For example, many groups offer free advertising space on the group’s magazine to members, see

Moe [22]. A survey in Walker [28] shows virtually every group in a sample of 206 citizen associations

offers some kind of publication, which is considered one of the most important benefit by members.
7Another relevant specification for the success of a groups is simply group size: lobbying activity

may be carried out through the coordinated grassroot efforts of members. Our model can encompass

such situation with k = 1. In this case, bi is a normalized benefit to cost ratio of becoming a member.

Our results on heterogeneity are qualitatively unaffected.
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[−ε, ε] independent across agents, and independent of θ.8 We also assume that ε is

“small” with respect to the support of θ, namely θ < −2ε, and θ > b+ 2ε.

The expected net utility from joining, conditional on having received signal θi is

bPr (ke ≥ θ|θi)− k, (1)

where now e represents individual i’s belief about the proportion of agents joining the

group, conditional on θi. This game admits a unique equilibrium in which players

follow a cutoff strategy around θb, i.e., they join the group if θi < θb and stay out

otherwise. The uniqueness result derives from iterated deletion of strictly dominated

strategies, it follows [23], [24] and [12], and therefore we omit a proof. Note that for

the first round of deletion we need regions of the signal space where, for sufficiently

unfavorable (favorable) signals, staying out (joining) is a strictly dominant strategy.

Indeed, when e = 1, i.e. under the most optimistic belief about the group, (1) is strictly

negative for any θi ≥ θ − ε > b + ε > k. Likewise, under the most pessimistic belief

about the group, i.e., for e = 0, (1) is strictly positive for any θi ≤ θ+ ε < −ε < 0. To
characterize the equilibrium cutoff θb, we first define the critical state θ∗ as the highest

value of the threshold cost θ for which the group is successful, or

kPr
¡
θi ≤ θb|θ = θ∗

¢
= θ∗, (2)

and equation (2) further implies that θ∗ is the total revenue for the group conditional on

state θ∗ (k times membership conditional on θ∗). Using equation (1) and the definition

of θ∗, since in equilibrium type θb must be indifferent between joining and staying out,

the equilibrium values of θ∗ and θb must satisfy (2) and

bPr
¡
θ ≤ θ∗|θi = θb

¢
= k, (3)

where Pr
¡
θ ≤ θ∗|θi = θb

¢
is the probability of success perceived by the indifferent type.

8The assumption of uniform θ allows closed-form solutions, but is not essential for our results,

as long as the conditions in Morris and Shin [23] are met. Closed-form solutions result also if θ is

normally distributed, as in an earlier version of this paper [2]. Without asymmetric information, the

game has multiple equilibria with well-known undesirable properties (Goldstein and Pauzner[13]).
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The dominance regions described above imply that θb ∈ ¡θ + ε, θ − ε
¢
and therefore,

conditional on θi = θb, the distribution of θ is uniform on
£
θb − ε, θb + ε

¤
. In turn,

θ∗ ∈ £θb − ε, θb + ε
¤
, for (3) to admit a solution. Simple algebra then yields

Pr
¡
θi ≤ θb|θ = θ∗

¢
= 1− k

b
, (4)

in equilibrium. After substituting (4) in (2), we obtain

θ∗ = k

µ
1− k

b

¶
, θb = θ∗ + ε

µ
1− 2k

b

¶
. (5)

The equilibrium value of θb − θ∗ is determined by the last term in (5), it may be

positive or negative, and it captures the fact that joiners pay the membership fee k for

sure, and receive the benefit b only with some probability. The relationship between

θb − θ∗ and k is rather intuitive. When joining is relatively inexpensive (k → 0), an

agent needs a relatively small probability of success and expected benefit of joining to

be indifferent between actions. In fact, (5) implies that when k is small, θb is larger

than θ∗ and, since the posterior probability distribution of θ conditional on θi = θb is

centered around θb, the probability of success perceived by θb is smaller than 1/2. The

opposite occurs when joining is relatively expensive (k → b). In light of this, we can

interpret the difference between θ∗ and θb as a measure of the strategic uncertainty

agents are willing to bear in equilibrium.

So far we have assumed that the membership fee k is exogenous, we now analyze

the problem of finding the optimal membership fee. Typically, in standard global

games, the threshold for success depends only on the measure of agents taking the risky

action. In our model, θ∗ depends on the total amount of financial resources raised by

the group. When k goes to zero, θ∗ converges to zero because per-capita payments

are zero. When k goes to b, θ∗ converges to zero because agents find it very risky to

join, and equilibrium membership conditional on θ = θ∗ in (4) approaches zero. The

maximum θ∗ obtains for a level of k that balances out the positive effect on per-capita

payment and the negative effect on membership. A graphical illustration, similar to

the textbook analysis of a one-price monopoly with zero marginal cost, is presented in

Figure 1. The interpretation is that equation (4) describes a linear demand curve D,
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where the fee k is the price, and expected membership conditional on θ∗ represents the

quantity.

2.wmf

Figure 1

Equation (2) implies that θ∗ (k) is the area of the shaded rectangle. Total revenue,

conditional on θ = θ∗, which equals θ∗ (k), is maximized at the midpoint of the demand

curve, i.e., for k∗ = b/2, where conditional membership is equal to 1/2. In equilibrium,

the ex-ante expected probability that the group is successful is

V ≡ θ∗ (k)− θ

θ − θ
,

and k∗ = b/2 maximizes the probability of success.

Consider now the ex-ante expected probability of success evaluated at the optimal

k∗, which is

V (k∗) ≡
b
4
− θ

θ − θ
=
1

2

b
4
− θ

θ+θ
2
− θ

.

Note that V (k∗) is increasing in b, and it is decreasing in the mean of the cost θ holding

its variance constant (i.e., when the support of θ shifts to the right). By letting Z (k)

denote the ex-ante expected size of the group, we have

Z (k) ≡ θb (k)− θ

θ − θ
, (6)

and it is easy to show that k∗∗ = k∗ − ε is the optimal interior membership fee that

maximizes Z (k). To see why k∗∗ must be smaller than k∗, note that, using (5), Z (k)

9



can be expressed as a linear increasing function of equilibrium conditional total revenue

θ∗ (k), and equilibrium conditional membership 1 − k/b. Maximizing Z (k) can then

be interpreted as having a monopoly that maximizes a weighted average of revenue

and membership. Therefore, the optimal k will be lower than the one that maximizes

revenue alone. Finally, note that Z (k∗∗), i.e., the ex-ante expected size of the group

evaluated at the optimal k∗∗, displays analogous comparative statics properties to those

of V (k∗).

2.1 Heterogeneous Agents

We now consider a population heterogeneous with respect to the benefits from joining.

We assume the population is divided into two classes: for a fraction p ∈ (0, 1) of the
population, bi is equal to J , while for the remaining (1− p) it is equal to S. Moreover,

assume that S ≥ b ≥ J > k and, to save notation, let α ≡ pS + (1− p)J . Our simple

form of heterogeneity describes a situation where an exogenous proportion of agents

receives more value from the selective benefit given the same level of public good. Our

objective is to explore the effect of increasing heterogeneity in the population on the

equilibrium probability of providing the public good, the equilibrium size of the group,

and the optimal fee.

Similarly to the homogeneous benefit case, we can show that a unique equilibrium

exists. Players with benefit J (S) follow a cutoff strategy around θJ
¡
θS
¢
, i.e., they

join the group if θi < θJ
¡
θi < θS

¢
and stay out otherwise. Proposition 1 characterizes

the equilibrium cutoffs.

Proposition 1. An equilibrium of the membership game exists and it is unique.

In equilibrium

θ∗ = k
³
1− k

α

JS

´
, θJ = θ∗ − 2ε

µ
k

J
− 1
2

¶
, θS = θ∗ − 2ε

µ
k

S
− 1
2

¶
. (7)

Proof of Proposition 1. Existence and uniqueness follow by Proposition 1 in

Goldstein and Pauzner [12]. The characterization is similar to the homogenous case.

The critical state θ∗ is determined as conditional revenue, or k times average conditional
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membership:

θ∗ = k
¡
pPr

¡
θi ≤ θJ |θ = θ∗

¢
+ (1− p) Pr

¡
θi ≤ θS|θ = θ∗

¢¢
. (8)

Moreover, in such a cutoff equilibrium, the indifferent type in class S, θS, will satisfy

sPr
¡
θ ≤ θ∗|θi = θS

¢
= k, (9)

and the indifferent type θJ will satisfy

nPr
¡
θ ≤ θ∗|θi = θJ

¢
= k. (10)

The existence of strict dominance regions implies all conditional distributions above

are uniform. Therefore, (9) and (10) and a few algebraic passages deliver that the

equilibrium average membership conditional on θ∗ in (8) is

pPr
¡
θi ≤ θJ |θ = θ∗

¢
+ (1− p) Pr

¡
θi ≤ θS|θ = θ∗

¢
= 1− kα/(JS). (11)

The expression for θ∗, θJ and θS in (7) then follow from (8) and recursive substitutions

in (9) and (10).

The analysis of the optimal k is analogous to the homogenous population case: the

level of k that maximizes the probability of success of the group is k∗het = JS/2α, while

the level of k that maximizes the size of the group is k∗∗het = k∗het − ε.9

We now investigate the equilibrium effects of increasing heterogeneity among agents

when k is set at the value that maximizes the probability of success of the group.10

In particular, we increase the net payoff of the 1 − p agents in class S by ∆ and we

decrease it for the remaining p agents by ∆ (1− p) /p. This spread holds constant the

population mean net payoff. We obtain the following result:

Proposition 2. Increased heterogeneity in the form of a mean preserving spread

in net payoffs decreases the equilibrium probability of success, the ex-ante size of the

group, and the optimal fee charged.

9With the provision that parameter values are such that the resulting optimal k is indeed smaller

than J , so that the group caters to both kind of agents. A sufficient condition is J > S/2, as the

proof of Proposition 2 establishes.
10The results are similar if we instead consider the fee that maximizes the size of the group.
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We leave the complete proof to the appendix and outline the argument here. Figure

2 provides an illustration of the intuition behind this result using the same monopoly

analogy as before. In Figure 2 we depict the demand curve in the homogenous case,

D, derived from equation (4), and the demand curve in the heterogenous case, Dhet,

derived from equation (11). To provide meaningful comparisons between the results of

homogenous and heterogenous cases, we are assuming S = b+∆ and J = b−∆(1−p)/p,
to maintain the population mean net payoff constant at b.

3.wmf

Figure 2

The important observation is that Dhet is smaller than D for the relevant range k < J ,

and the larger ∆, the smaller Dhet. Since monopoly revenue is maximized at the fee

that makes conditional membership equal to 1/2, the optimal fee k∗het is lower than k
∗.

Moreover, the conditional revenue and the level of θ∗ (see Figure 1) are smaller onDhet,

and so is the ex-ante expected membership. To show that Dhet is indeed smaller than

D, we have to prove that, for S > J > k, membership conditional on θ∗, is smaller after

the mean preserving spread. Consider first p = 1/2, so that S increases to S +∆, and

J decreases to J −∆. Intuitively, two opposing externalities come into play. Class S

(J) agents’ net payoff in case of success increases (decreases), so they should join more

(less) often, and by strategic complementarities, all other agents’ should enter more

(less) often. The overall result depends on the relative strength of such externalities.

Since we are interested in membership conditional on θ∗ in (8), what drives the result
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are the changes in θJ−θ∗ and θS−θ∗. The key observation is that, compared to class-S
agents, low-valuation agents face a larger strategic uncertainty: to be willing to pay the

same fee, they must believe the group more likely to succeed. Figure 3 illustrates this

observation using equations (9) and (10). They imply the areas of the regions ABCD

in the top and bottom halves of Figure 3 must be equal to each other (and to 2εk).

Hence, since S > J , we must have θ∗ − (θJ − ε) > θ∗ − (θS − ε). Since benefits have

value only in case of success, the change in interim expected payoff for the (formerly)

indifferent type θJ is larger than for θS, i.e., the area of the region EFBC depicted in

the top half of Figure 3 is strictly larger than the area of the region EFBC depicted in

the bottom half. It then follows that class-J agents react more to the mean preserving

spread than class-S agents, that is θJ−θ∗ changes more than θS−θ∗ in order to restore
(9) and (10), so that Dhet decreases.

4 before.emf

Figure 3

Departing from p = 1/2, when p is very small almost all agents are helped by the

introduction of heterogeneity. The reason why Proposition 2 holds for any p ∈ (0, 1),
relies on the mean-preserving spread condition (1− p) ·dS+p ·dJ = 0 and on equation
(8). Together, the two equations imply the sign of the change in θ∗ only depends

on the relative magnitude of d
¡
θS − θ∗

¢
/dS and d

¡
θJ − θ∗

¢
/dJ , and Figure 3 shows

that the latter dominates for any value of p. Indeed, beyond the case p = 1/2 in

which changes in net payoffs conditional on success are ±∆, more generally Figure
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3 shows that, because θJ < θS, the same change (not necessarily equal to ∆) in net

payoff in case of success (any height EB) has a larger impact on
¡
θJ − θ∗

¢
than on¡

θS − θ∗
¢
:
¯̄
d
¡
θJ − θ∗

¢
/dJ

¯̄
>
¯̄
d
¡
θS − θ∗

¢
/dS

¯̄
. In other words, while it is true that

when p is very small almost all agents benefit from heterogeneity, the few that are hurt

are badly hurt, as the mean-preserving spread condition implies. Therefore, because

revenue conditional on θ = θ∗ is linear in the two memberships, with the same weights

of the mean-preserving spread condition, the value of p is irrelevant for the sign of the

comparative statics. What matters is that class-S agents react less than class-J agents

to the same change in net payoffs, because class-S agents start from a larger benefit in

case of success (S > J).11

In the next section we will show that the conclusion that (exogenous) heterogeneity

typically hampers participation to social activities can be reversed when heterogeneity

arises endogenously in a dynamic setting.

3 The Dynamic Model

We consider a two-period dynamic extension of our model to explore the effect of se-

niority benefits on membership and retention decisions. In each period t = {1, 2} a
threshold level θt is drawn, agents observe a noisy signal of the true threshold and

decide whether to pay a membership fee kt to join the group or not. The first period is

similar to the homogeneous case in Section 2: all members receive b when the group is

successful. The second period is similar to the heterogenous case in Section 2: in case

of success returning (Senior) members receive S while new (Junior) members receive

J , with S ≥ b ≥ J. For simplicity, we model seniority benefits as an endogenous mean-

preserving spread, that is we assume S (p;∆) = b + p∆ and J (p;∆) = b − (1− p)∆,

where (1− p) is the endogenous fraction of agents who joins in the first period. The

difference S (p;∆)−J (p;∆) = ∆ ≥ 0 represents the total utility value of seniority ben-
11Moreover, this logic implies that, if class-J membership and class-S membership were to change

by the same amount in response to the same change in selective incentives, the effect of the mean-

preserving spread on θ∗ would be zero, regardless of the value of p.
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efits, and we assume that it is distributed among junior and senior members so that the

average utility of selective incentives is unchanged: (1− p)S (p;∆)+pJ (p;∆) = b. This

assumption facilitates the comparison with our results on the exogenous heterogeneity

case.12

We assume k1 and ∆ are chosen optimally by the group at the beginning of the

game, in order to maximize a weighted sum of the probabilities of providing the public

good in the first and second period. Further, we assume that, at the beginning of

the second period, the membership fee k2 is chosen to maximize the probability of

success for any realized (1− p). While all our results are qualitatively unaffected under

reasonable alternative extensive forms, a critical assumption regards the credibility of

committing to the ∆ chosen at the beginning of the game. It is immediate from our

previous results that with no commitment power, that is when the group can revise ∆

in the second period at no cost, the only credible ∆ is zero. Clearly, some degree of

commitment seems both plausible and realistic. Here, for simplicity, we assume perfect

commitment. With such assumption, one rationale for the use of seniority benefits is

to effectively bundle admission for the two periods. Indeed, it is possible to choose ∆

so large that, at the same time, agents do not join in the first period on the merits of

its fundamentals but just not to be excluded in the second period, and the association

does not try to obtain junior members in the second period but only caters to returning

members. To avoid such a radical departure from our earlier framework, along with

perfect commitment we confine our analysis to cases where:

A1) b > k1 > ∆, so that first-period fundamentals are the deciding factor in first-

period membership decisions, and

A2) ∆ ≤ b/2, so that the associations optimally caters to both junior and senior

members in the second period.

Let θ1i = θ1 + εi1, and θ2i = θ2 + εi2 be the signals in the first and second period,

respectively, where θ1 and θ2 are uniformly distributed on
£
θ, θ
¤
, while εi1 and εi2

are uniformly distributed on [−ε, ε]. All these random variables are assumed to be

12Note that the extra-benefit senior members receive with respect to the first period, that is

S (p;∆)− b = p∆, is decreasing in first-period membership. This is one way to capture the notion of

preferential assignment of limited resources to returning members.
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mutually independent.13 Finally, we assume that at the beginning of the second period

agents observe the proportion of those who joined in the first period (1− p).

Note that seniority benefits directly increase the value of retaining membership

status conditional on reaching the production threshold. However, given the result

of Proposition 2, heterogeneity among agents reduces the probability of reaching this

threshold in the second period. Since these opposite effects spill over to the first period,

payoffs may be non-monotonic in the signal, hence we cannot apply existing results to

show existence and uniqueness of an equilibrium.14 In the next proposition we fix ∆

and k1 and we show that an equilibrium exists and is unique in the space of monotone

strategies, that is when more favorable information implies that each agent is more

likely to join in equilibrium.

Proposition 3. Under assumptions A1 and A2, in any subgame following a choice

of k1 > 0 and ∆, if agents use monotone strategies a unique equilibrium of the dynamic

membership game exists. In equilibrium players follow a switching strategy around

θb1 (k1;∆) in the first period, the group sets k2 optimally to k∗2het (p;∆) < J (p;∆) and,

in the second period, players follow a switching strategy around θS2 (p;∆) if they joined

in the first period, and around θJ2 (p;∆) otherwise.

The logic of the proof is simple and proceeds by backwards induction. Proposition

1 ensures existence and uniqueness of an equilibrium in the second period, for any p.

The group then chooses the optimal k2 to serve both groups of potential members,

because ∆ ≤ b/2. Moving back to the first period, payoffs to joining have then two

components. One is related to first-period fundamentals, and is identical to the one

in the static homogenous case. The second is related to the expected difference in

equilibrium payoffs between entering as a senior or a junior members in the second

period. Restricting attention to monotone strategies, we show the first effect dominates,

13If the distributions of the first and second-period states are not independent, the fraction of agents

who joins in the first period may convey information about the realization of the second period state.

This information contagion has been already investigated (see, e.g., Dasgupta [8]).
14In Giannitsaru and Toxvaerd [11] uniqueness of an equilibrium is proven in a general class of

dynamic global games. However, our problem does not satisfy their assumption of strict supermodu-

larity of the payoff to joining in the second period with respect to the number of agents that joined

in the first. In our case, we have an inverse relation for senior members.
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so existence and uniqueness of equilibrium (in cutoff strategies) is preserved.

A natural question to ask is whether offering seniority benefits is ever an optimal

strategy and, if this is the case, what determines the optimal level of ∆. We let w1 and

w2 denote the weights that the group attaches to the probability of providing the public

good in the first and second period, respectively.15 Therefore, the objective function

of the group is

W (k1;∆) ≡ w1 Pr (θ1 < θ∗1 (k1;∆)) + w2Eθ1 (Pr (θ2 < θ∗2 (p,∆))) , (12)

where θ∗1 (k1;∆) is the threshold below which the group is successful in the first period

and θ∗2 (p,∆) is the threshold below which the group is successful in the second period.
16

The number of potential junior members in the second period, p, is itself a function

of the cutoff value θb1 (k1;∆) and of the actual first-period state θ1. Our first result is

to establish that not offering seniority benefits is never optimal for the group. Indeed,

denoting the group’s problem as

maxk1,∆ W (k1;∆)

s.t. A1), A2)
(M)

we have the following:

Proposition 4. There exists a unique solution (k∗1,∆∗) to problem (M). Moreover,

∆∗ > 0 and k∗1 > b/2.

Existence and uniqueness follow from continuity and convexity arguments. The

proof that ∆∗ > 0 relies on the following intuition. The role of seniority benefits is

twofold: they directly increase the value of membership in the first period, and they

introduce heterogeneity between prospective members. When ∆ = 0, the marginal

effect of seniority benefits on second-period equilibrium values is zero. Indeed, without

seniority benefits, there is no agent that receives a smaller utility of membership in the

15If the association was implicitly maximizing some social welfare function, the weight w2 would be

a function of the endogenous p. Since senior members receive larger benefits and because they join

more often, we would have w02 (p) < 0. However, this formulation does not change our main result in

Proposition 4 (details are available upon request). Hence, we consider w2 constant.
16Clearly, the value of θ∗2 is a function of k2 as well. We suppress this argument because the optimal

k2 is itself a function of p and ∆.
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second period, i.e., all agents are facing the same strategic uncertainty. Therefore, at

∆ = 0, the endogenous mean-preserving spread generated by offering some seniority

benefits produces marginal effects on junior and senior members that exactly counter-

balance.17 On the contrary, the marginal effect of ∆ on first-period equilibrium values

remains positive at ∆ = 0. Seniority benefits add an extra-term to the payoff of joining

in the first period in (1): the expected value of re-entering as a senior member and

receiving S, versus joining as a junior member and receiving J in the second-period.

The difference S−J = ∆ is zero at ∆ = 0, but its derivative remains strictly positive.18

Therefore, at ∆ = 0 the marginal positive effect of ∆ on first-period equilibrium values

dominates the marginal negative effect on the second-period ones. As for the optimal

fee k∗1, quite intuitively we have that the association charges more than in the static

case of Section 2, that is more than b/2, since membership is more valuable because of

seniority benefits. It is worth noting that the optimal ∆∗ is non-negative even when

membership fees are exogenously fixed. Hence, the result that offering seniority ben-

efits is optimal obtains as well for the interpretation of our model where success is

determined only by the size of the association.

Assumptions A1 and A2’s main role is to focus attention on the region of the

parameter space that is most relevant, in light of our comparison between the effects

of heterogeneity in the exogenous-static and endogenous-dynamic cases. In particular,

our main result in this section (Proposition 4) is the reversal of the implication of

Proposition 2 that ∆ = 0 is best for the group. Our objective is to establish this

reversal with as little departure as possible from our previous framework. Assumptions

A1 and A2 are sufficient conditions to implement this “small departure” requirement.

Indeed, even without A1 and A2, ∆ = 0 remains not optimal for the group in the

17When ∆ = 0 then
¡
θS − θ∗

¢
=
¡
θJ − θ∗

¢
: all agents face the same strategic uncertainty. An

opportunely redrawn Figure 3 then yields
¯̄
d
¡
θJ − θ∗

¢
/dJ

¯̄
=
¯̄
d
¡
θS − θ∗

¢
/dS

¯̄
, when S = J. Hence,

in equilibrium, the overall change in the probability of success is zero for any value of p.
18The difference (S − J) is received only with some probability. In the proof we show that the extra-

term to be added to equation (1) is the expected value of ∆Pr (θ2 < θ∗2 (p;∆) (1− ε/α)), where θ∗2 is

the critical second-period state. This probability is always strictly positive because of the existence

of lower dominance regions, so that the marginal effect of ∆ is always positive.
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two-period model.19

Proposition 4 leaves open the possibility of a corner solution at ∆∗ = b/2. The

following intuitive lemma establishes that when the weight on the second period is

sufficiently large ∆∗ is interior.

Lemma 1. For any w1 > 0 and any ε > 0, there exists w > w1 such that, for

w2 > w, we have ∆∗ < b/2.

When Lemma 1 holds, it is straightforward to establish that ∆∗ is increasing in b.

Moreover, the group reacts to a smaller asymmetry in information among agents by

increasing the level of seniority benefits, as the next proposition shows.

Proposition 5. If w2 > w, the optimal level of seniority benefits ∆∗ is decreasing

in ε.

The intuition relies again on the twofold role of seniority benefits. Consider first

the negative effects in the second period. When ε decreases, it is more likely that

agents receive similar signals, therefore it is more likely that they choose the same

action. Indeed, in our model, for all realizations of θ1 not in an ε-neighborhood of the

cutoff θb1, all agents either join the group or stay out. Therefore, since ∆ is chosen at

the beginning of the first period, the group’s ex-ante expectation about the degree of

heterogeneity induced by any ∆ in the second period decreases with ε. Therefore, the

smaller ε, the smaller the negative marginal effect of seniority benefits on the second

period. On the contrary, the positive effect of seniority benefits in the first period

increases when ε becomes smaller. When ε decreases, it is more likely that agents

choose the correct action, that is entering only when the group is successful. This

increases the expected payoff of both senior and junior members in the second period,

but more so for senior members, because they receive an extra ∆, which is unaffected

by ε.20 In conclusion, and contrary to the one-shot game in Section 2, the precision of

19To see this, note that without A1 and A2 the constraint set in problem (M) above would just get

larger. However, ∆∗ > 0 determined in Proposition 4 still dominates ∆ = 0. Clearly, in the region of

the parameter space where A1 and A2 do not hold, the calculations for the objective function W in

the appendix would look different.
20This is the reason why the extra-term seniority benefits add to the expected first-period payoff of

joining in equation (1) is decreasing in ε, (see footnote [18]).
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agents’ signals does affect the optimal dynamic membership contract, even when the

group is only maximizing the probability of success. In a model where the precision of

information is an endogenous variable, our result in Proposition 5 provides an incentive

for groups to publicize their efforts.

4 Concluding Remarks

We analyze the coordination problem of agents deciding to join a group that uses mem-

bership revenues to jointly provide a discrete public good and excludable benefits. The

joint production implies that benefits are valued only if the group succeeds in providing

the public good. With asymmetric information about the cost of provision, the mem-

bership game admits a unique equilibrium. The model is rather tractable and delivers

very intuitive comparative statics, which are consistent with several anecdotal obser-

vations. For example, the existing political science literature on group membership

emphasizes the fact that collective action tends to be more successful if individuals

face a threat to their status-quo level enjoyment of a public good (Walker [29] and

Hansen [14]). Although various theories have been proposed to explain such “loss-

averse” behavior (Kahneman and Tversky [18]), a reasonable reduced-form conjecture

to account for this phenomenon in our framework is to assume that the net benefit b is

perceived by agents as being larger when the group is trying to avoid a loss rather than

obtain a gain in the level of public good provided.21 We then see straightforwardly

from (5) that membership is larger when the group is trying to avoid a loss.

Moreover, Walker [28], [29], and Hansen [14] mention the attempts to frustrate

antagonist associations by politicians through different means like challenges to their

not-for-profit status, or by raising postal rates. If we consider the latter as an additional

expense for the group equal to t ∈ (0, k) per member, it is a matter of simple algebra
to check that, at the optimal fee, an increase in postal rate decreases the expected

21By denoting the status-quo provision of public good as GSQ, the net utility from joining the group

is b = u (x,G+GSQ)−u (0, G+GSQ) , and, if u12 < 0, we have that b is larger when avoiding a loss,

i.e. G = 0, rather then when obtaining a gain, i.e. for G > 0. The assumption of u12 < 0 can be

justified in the case of benefits like representation before government.
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probability of providing the public good and the expected size of the group.

Furthermore, the existing empirical evidence demonstrates that heterogeneity typ-

ically hampers participation to social activities. For example, Alesina and La Ferrara

[1] show that, after controlling for individual characteristics, people living in more het-

erogeneous communities are less likely to join groups, where heterogeneity is captured

by income inequality. Costa and Kahn [7] find similar results also when heterogene-

ity is measured by birthplace fragmentation. Under the reasonable assumption that

preferences for selective benefits are related to income or to the individual socioeco-

nomic background, our theoretical framework provides a possible interpretation for this

empirical regularity.

Finally, with regards to the dynamic version of our model, it is worth noting that

dynamic considerations are relevant for many membership decisions and the use of

seniority benefits is particularly common. Indeed, if attracting new members is very

important for many organizations, retaining existing members is regarded with the

same if not larger concern.22 Johnson[16] notes that in the case of groups organized

hierarchically, besides the aforementioned common practice of reserving office positions

to returning members, more generally all benefits that acquire value through social

interaction (i.e., solidary benefits) share some characteristics of our seniority benefit.

Furthermore, in the case of trade unions, he argues that the use of an increasing

benefit stream for members is ubiquitous: from the life insurance that unions offer to

members of sufficient seniority to the grievance procedure, which is one of the most

valued service typically offered to their due paying members.23 Our results provide a

possible rationale for these common practices.

22Quoting Rothenberg [27]: “For the majority of interest group entrepreneurs, who depend on

constituent dues as a prime funding source, [organizational] maintenance dictates the need to keep

members contributing [...] and the loss of long-time contributors is perceived as a threat to the entity’s

survival.”
23Johnson[16] argues that: “This led one author to describe the grievance procedure as a semicol-

lective good—one which is in fact treated as a selective benefit by workers (Pencavel, 1971).” He also

notes how this procedure operates in fact as a seniority benefit since with seniority on the job a worker

is more exposed to the consequences of an hold-up problem. Finally, he mentions that: “seniority

benefits can be provided out of funds collected from workers when they are young”(Johnson[16]).

21



Appendix
Proof of Proposition 2.

We first consider the effect of a mean preserving spread on the ex-ante expected

probability of success. If p > (S − 2J) /2 (S − J), the optimal k, i.e., the level of the

fee that maximizes the probability of success, is interior, that is smaller than J , and

it is equal to k∗het = JS/2α. Since p > 0, a sufficient condition for the group to cater

to both classes of agents is 2J > S. When k = k∗het, taking the total differential of

(θ∗ − θ) /
¡
θ − θ

¢
, and substituting dJ = −dS (1− p) /p and dS = 1, yields, using

Proposition 1,

d

µ
θ∗ − θ

θ − θ

¶
=

dθ∗

θ − θ
=

dk∗

2
¡
θ − θ

¢ = d

µ
JS

4α

¶
= −(1− p) (S2 − J2)

4α2
< 0.

Regarding the effect of increased heterogeneity on the expected size of the group, using

Proposition 1, we have pθJ + (1− p) θS = θ∗, and the result follows as above. The

analysis of exogenous heterogeneity when the group caters only to class-S agents is

not interesting here. However, for the endogenous heterogeneity case, it is analyzed in

Proposition 3. Finally, all qualitative predictions are trivially maintained for a group

that maximizes expected membership, that is a group that sets k to k∗∗het = k∗het − ε.

Proof of Proposition 3.

We start with the group’s optimal choice of k2 in the second period. Given any

proportion 1 − p of agents joining in the first period, the association may decide not

to seek new (junior) members by setting k2 > J (p;∆). In this case, the analysis

is similar to the homogenous case in Section 2: the resulting probability of success is

Pr (θ2 < (1− p)S (p;∆) /4). Alternatively, the association may decide to cater to both

junior and senior members by setting k2 ≤ J (p;∆). In this case, from Proposition 1, in

equilibrium, senior (junior) members enter if their signal is below θS2 (p;∆)
¡
θJ2 (p;∆)

¢
,

and the critical state below which the group is successful is θ∗2 (p;∆). The group will

then set k2 to its optimal level

k∗2het =
J (p;∆)S (p;∆)

2α (p;∆)
=
1

2

(b− (1− p)∆) (b+ p∆)

p (b+ p∆) + (1− p) (b− (1− p)∆)
.

Note that k∗2het, θ
∗
2 (p;∆), θ

J
2 (p;∆) and θ

S
2 (p;∆) are all functions of the proportion

of agents joining in the first period and of the utility value of seniority benefits (∆)
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through S (p;∆) and J (p;∆) (and therefore α (p;∆) = pS (p;∆) + (1− p)J (p;∆)).

Keeping this in mind, we henceforth suppress the argument (p;∆) to save notation.

Using Proposition 1, plugging in k∗2het above, we have

θ∗2 =
JS

4α
, θJ2 = θ∗2 − ε

S

α
+ ε, θS2 = θ∗2 − ε

J

α
+ ε. (13)

Simple algebra shows the condition ∆ ≤ b/2 implies, for any realized p, that k∗2het ≤ J

and JS/4α ≥ (1− p)S/4. Therefore, the optimal choice of the association is indeed

to serve both classes of potential members, and set k2 = k∗2het. To bridge first and

second periods, we now define Q (p,∆) as the expected difference in equilibrium payoffs

between senior and junior members in the second period, before θi2 is realized, that isZ θS2

θ−ε
(S Pr (θ2 < θ∗2|θ2i)− k∗2het) dF (θ2i)−

Z θJ2

θ−ε
(J Pr (θ2 < θ∗2|θ2i)− k∗2het) dF (θ2i) .

(14)

Using (13), and

Pr (θ2 < θ∗2|θ2i) =

⎧⎪⎪⎨⎪⎪⎩
0 if θ∗2 < θ2i − ε
θ∗2−(θ2i−ε)

2ε
if θ2i − ε < θ∗2 < θ2i + ε

1 if θ∗2 > θ2i + ε,

(15)

Q (p,∆) simplifies as

Q (p,∆) =
∆

θ − θ

³
θ∗2
³
1− ε

α

´
− θ
´
. (16)

Using (13), one may verify that Q (p,∆) in (16) is non-monotonic in p so, moving back

to the first period, the standard iterated deletion of strictly dominated strategies does

not yield a unique equilibrium. However, it is possible to show that dominance regions

still exist. To see this, let π (θ1i, e) denote the net benefit from joining in the first

period for agent i conditional on receiving signal θ1i, for any strategy followed by all

other agents that induces a proportion e of agents joining in the first period, that is

π (θ1i, e) = E (bPr (k1e > θ1)− k1 +Q (1− e,∆) |θ1i) .
Using (16), we have Q (p,∆) ∈ [0,∆], and since∆ < k1 < b, the existence of dominance

regions for θ1i follows as in Section 2. Indeed, if θ1i < θ + ε,

π (θ1i, e) > bPr (k1 · 0 > θ1|θ1i)− k1 + 0 = b− k1 > 0,
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and if θ1i > θ − ε,

π (θ1i, e) < bPr (k1 · 1 > θ1|θ1i)− k1 +∆ = −k1 +∆ < 0.

The existence of dominance regions is very useful in establishing existence and unique-

ness of an equilibrium in monotone (cutoff) strategies. Suppose that all agents follow a

cutoff strategy around θb1. Let θ
∗
1 be the value of θ1 below which the group is successful

in providing benefits in the first period, which is determined by

k1 Pr
¡
θ1i ≤ θb1|θ1 = θ∗1

¢
= θ∗1. (17)

The net benefit from joining in the first period for agent i conditional on receiving

signal θ1i is

π
¡
θ1i, θ

b
1

¢
= bPr (θ1 < θ∗1|θ1i)− k1 +Q

ÃZ θ+ε

θb1

f (θ1i0|θ1i) dθ1i0 ,∆
!
, (18)

where the first argument of Q is the proportion of agents who did not join in the first

period from the point of view of an agent with private signal θ1i, which is non-stochastic

because of the continuum of agents assumption. The existence of dominance regions

implies that π
¡
θb1, θ

b
1

¢
> 0 for θb1 < θ + ε, and that π

¡
θb1, θ

b
1

¢
< 0 for θb1 > θ − ε. Since

π
¡
θb1, θ

b
1

¢
is continuous in θb1, a solution to π

¡
θb1, θ

b
1

¢
= 0 exists, with θb1 ∈

¡
θ + ε, θ − ε

¢
.

Uniqueness of a solution to π
¡
θb1, θ

b
1

¢
= 0 follows because dπ

¡
θb1, θ

b
1

¢
/dθb1 < 0. To see

this, note that given θb1 ∈
¡
θ + ε, θ − ε

¢
the distribution of θ1 conditional on θ1i = θb1

is uniform in
£
θb1 − ε, θb1 + ε

¤
, and the distribution of θ1i0 conditional on θ1i = θb1 is

a symmetric triangular distribution centered on θb1, with support
£
θb1 − 2ε, θb1 + 2ε

¤
.

Hence,
R θ+ε
θb1

f
¡
θ1i0|θ1i = θb1

¢
dθ1i0 = 1/2 for any θb1 ∈

¡
θ + ε, θ − ε

¢
, so that the expected

proportion of agents who do not join in the first period from the point of view of type

θb1 is constant and equal to 1/2. Therefore,

π
¡
θb1, θ

b
1

¢
= bPr

¡
θ1 < θ∗1|θb1

¢− k1 +Q

µ
1

2
,∆

¶
,

so that
dπ
¡
θb1, θ

b
1

¢
dθb1

=

⎧⎨⎩ b
2ε

³
dθ∗1
dθb1
− 1
´
if
¯̄
θ∗1 − θb1

¯̄
< ε

0 otherwise.
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However, if
¯̄
θ∗1 − θb1

¯̄ ≥ ε, we have that either π
¡
θb1, θ

b
1

¢
= (b− k1)+Q

¡
1
2
,∆
¢
> b−k1 >

0, or π
¡
θb1, θ

b
1

¢
= (0− k1) + Q

¡
1
2
,∆
¢
< −k1 + ∆ < 0, contradicting π

¡
θb1, θ

b
1

¢
= 0.

Therefore, it must be
¯̄
θ∗1 − θb1

¯̄
< ε, implying

dπ
¡
θb1, θ

b
1

¢
dθb1

=
b

2ε

µ
dθ∗1
dθb1
− 1
¶
=

b

2ε

µ
k1

k1 + 2ε
− 1
¶
< 0,

where dθ∗1/dθ
b
1 is calculated using (17). The proof is completed by showing that a cutoff

strategy around θb1 is a best response to cutoff strategies around θb1, i.e., by showing

that
dπ
¡
θ1i, θ

b
1

¢
dθ1i

¯̄̄̄
¯
θ1i=θ1c

< 0, (19)

where θ1c is any value of the signal θ1i for which π
¡
θ1c, θ

b
1

¢
= 0. Note first that, by the

definition of θ1c, it must be the case that |θ∗1 − θ1c| < ε, and that θ1c ∈
¡
θ + ε, θ − ε

¢
.

Therefore,

π
¡
θ1i = θ1c, θ

b
1

¢
=

µ
b
θ∗1 − θ1c + ε

2ε
− k1

¶
+Q

ÃZ θ+ε

θb1

f (θ1i0|θ1i = θ1c) dθ1i0 ,∆

!
,

so that

dπ
¡
θ1i, θ

b
1

¢
dθ1i

¯̄̄̄
¯
θ1i=θ1c

= − b

2ε
+

∂Q (p,∆)

∂p

d
³R θ+ε

θb1
f (θ1i0|θ1i) dθ1i0

´
dθ1i

¯̄̄̄
¯̄
θ1i=θ1c

.

Since d
³R θ+ε

θb1
f (θ1i0|θ1i) dθ1i0

´
/dθ1i ≤ 1/2ε, and ∂Q (p,∆) /∂p < b, as we will show

momentarily, we have

dπ
¡
θ1i, θ

b
1

¢
dθ1i

¯̄̄̄
¯
θ1i=θ1c

< − b

2ε
+

b

2ε
< 0.

The proof of ∂Q (p,∆) /∂p < b follows because, from (16), we have

∂Q (p,∆)

∂p
=

∆

θ − θ

µ
∂θ∗2
∂p

³
1− ε

α

´
+ ε

θ∗2
α2

∂α

∂p

¶
, (20)

so that, using ∂α
∂p
= 2∆ and ∂θ∗2

∂p
= ∆α(J+S)−2JS

4α2
, we obtain

∂Q (p,∆)

∂p
=

∆2

4α
¡
θ − θ

¢ µ∆pS − (1− p)J

α
+ ε

2bS − (b+∆)

α2

¶
,
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and a few algebraic passages, involving
¡
θ − θ

¢
> b+ 4ε and ∆ < b/2, show

∂Q (p,∆)

∂p
<

∆2

4 (b−∆)
≤ b

8
< b.

A similar argument can be used to rule out asymmetric equilibria in cutoff strategies,

since the above bound continues to hold.

Proof of Proposition 4.

We proceed ignoring the strict inequality constraint ∆ < k1 < b, and then verify it

is satisfied. Usual continuity arguments ensure existence of a solution to this relaxed

maximization problem. After eliminating constants, maximizing (12) is equivalent to

maximizing

θ∗1 + ŵ2

Z θ

θ

θ∗2 (p,∆) dθ1, (21)

subject to the equilibrium constraints for the first-period cutoff strategy, namely

bPr
¡
θ1 ≤ θ∗1|θ1i = θb1

¢
+Q

µ
1

2
,∆

¶
= k1 (22)

θ∗1 = k1 Pr
¡
θ1i ≤ θb1|θ1 = θ∗1

¢
,

and where, from (13),

θ∗2 (p,∆) =
1

4

J (p,∆)S (p,∆)

α (p,∆)
. (23)

The function p in the maximand and in (23) describes the agents who do not join in

the first period. As a function of the realized state θ1 and equilibrium cutoff θb1, p is

p =

⎧⎪⎪⎨⎪⎪⎩
0 for θ1 ∈

¡
θ, θb1 − ε

¢
1− θb1−θ1+ε

2ε
for θ1 ∈

¡
θb1 − ε, θb1 + ε

¢
1 for θ1 ∈

¡
θb1 + ε, θ

¢
.

(24)

Remember that Q (p,∆) is the expected value of seniority benefits. In (22) it is calcu-

lated at p = 1/2 because the indifferent agent θb1 always believes the measure of agents

joining is 1/2. Using (16),

Q

µ
1

2
,∆

¶
=

∆

θ − θ

µ
(b− ε) (4b2 −∆2)

16b2
− θ

¶
.
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Finally, ŵ2 > 0 in (21) is just a rescaling of w2 by w1, and
¡
θ − θ

¢
. The restrictions in

(22) uniquely define θ∗1 and θ
b
1 as functions of k1 and ∆. The derivative of the objective

function for k1 is then

∂θ∗1 (∆, k1)

∂k1
+ ŵ2

Z θ

θ

∂θ∗2 (p,∆)
∂p

∂p

∂θb1

∂θb1
∂k1

dθ1.

Using (24) to change the variable of integration from θ1 to p

∂θ∗1 (∆, k1)

∂k1
+ ŵ2 (2ε)

Z 1

0

∂θ∗2 (p,∆)
∂p

µ
∂p

∂θb1

∂θb1
∂k1

¶
dp,

and, noting that ∂p
∂θb1

and ∂θb1
∂k1

do not depend on p, we have

∂θ∗1 (∆, k1)

∂k1
+ ŵ2 (2ε)

µ
∂p

∂θb1

∂θb1
∂k1

¶Z 1

0

∂θ∗2 (p,∆)
∂p

dp.

Since θ∗2 (1,∆) = θ∗2 (0,∆) = b/4 from (23), the optimal k1 then solves ∂θ∗1 (∆, k1) /∂k1 =

0, or, using (22),

k∗1 =
b+Q

¡
1
2
,∆
¢

2
. (25)

Note how this level of k1 will be strictly larger than b/2 as soon as ∆∗ > 0. Moreover,

k∗1 is strictly smaller than b, since Q
¡
1
2
,∆
¢ ≤ ∆/4, because θ > b, and ∆ ≤ b/2.

Therefore, the constraint ∆ < k1 < b is always satisfied, since, as we show below,

∆∗ > 0. With a similar procedure, the first derivative of (21) with respect to ∆ yields

∂θ∗1 (∆, k1)

∂∆
+ ŵ2

Z θ

θ

µ
∂θ∗2 (p,∆)

∂p

∂p

∂θb1

∂θb1
∂∆

+
∂θ∗2 (p,∆)

∂∆

¶
dθ1 =

=
∂θ∗1 (∆, k1)

∂∆
+ ŵ22ε

Z 1

0

∂θ∗2 (p,∆)
∂∆

dp,

and using (22) and (23), we obtain

k1
b

∂Q
¡
1
2
,∆
¢

∂∆
+ ŵ22ε

Z 1

0

µ
−∆
4
p (1− p)

b+ (pS + (1− p)J)

(pS + (1− p)J)2

¶
dp =

=
k1

b
¡
θ − θ

¢ µ(b− ε)
4b2 − 3∆2

16b2
− θ

¶
− ŵ2ε

(b2 +∆2) ln
¡
b+∆
b−∆

¢− 2∆b

(4∆)2
.
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Substituting the optimal level of k1 in (25), we have that the first derivative of the

objective function (21) with respect to ∆ is

Φall (∆; ε) ≡ Φone (∆; ε) · Φtwo (∆; ε)− ŵ2ε · Φthree (∆; ε) , (26)

where

Φone (∆; ε) ≡ 1

2b
¡
θ − θ

¢ Ãb+ ∆¡
θ − θ

¢ µ(b− ε) (4b2 −∆2)

16b2
− θ

¶!
≥ 0, (27)

Φtwo (∆; ε) ≡ (b− ε)
4b2 − 3∆2

16b2
− θ ≥ 0,

Φthree (∆; ε) ≡ (b
2 +∆2) ln

¡
b+∆
b−∆

¢− 2∆b

(4∆)2
≥ 0.

Note how

lim
∆→0

Φone (∆; ε) · Φtwo (∆; ε) =
1

2
¡
θ − θ

¢ µb− ε

4
− θ

¶
> 0,

since θ + ε < 0. As for Φthree (∆; ε), we have, using de l’Hopital’s rule

lim
∆→0

Φthree (∆; ε) = lim
∆→0

2∆
¡
ln
¡
b+∆
b−∆

¢
+ 2b∆

b2−∆2

¢
32∆

=

=
1

16
lim
∆→0

µ
ln

µ
b+∆

b−∆

¶
+

2b∆

b2 −∆2

¶
= 0.

Therefore, for ∆ close to zero, the objective function (21) is strictly increasing in ∆,

so ∆∗ > 0. Finally, note that to show uniqueness of ∆∗, it is enough to show that at

any ∆̂ such that Φall
³
∆̂; ε

´
= 0, we have

∂Φall (∆; ε)

∂∆

¯̄̄̄
∆=∆̂

< 0.

Indeed, note that

∂Φone (∆; ε)

∂∆
=
1

∆

Ã
Φone (∆; ε)− 1

2
¡
θ − θ

¢!− 1

2b
¡
θ − θ

¢ 2∆2 (b− ε)¡
θ − θ

¢
16b2

<
Φone (∆; ε)

∆
,

∂Φtwo (∆; ε)

∂∆
= −(b− ε) 6∆

16b2
< 0,
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and
∂Φthree (∆; ε)

∂∆
=
1

∆

2b2

b2 −∆2

2∆b− (b2 −∆2) ln
¡
b+∆
b−∆

¢
(4∆)2

.

Since, letting x = ∆/b,

∂Φthree (∆; ε) /∂∆

Φthree (∆; ε) /∆
=

2

1− x2
2x− (1− x2) (ln (1 + x)− ln(1− x))

2x− (1 + x2) (ln (1 + x)− ln(1− x))
,

which can be shown to be larger than one for x = ∆/b ∈ [0, 1/2], we have
∂Φthree (∆; ε)

∂∆
>

Φthree (∆; ε)

∆
.

Therefore,

∂Φall (∆; ε)

∂∆
=

∂Φone (∆; ε)

∂∆
Φtwo (∆; ε) + Φone (∆; ε)

∂Φtwo (∆; ε)

∂∆
− ŵ2ε

∂Φthree (∆; ε)

∂∆
<

<
Φone (∆; ε)

∆
Φtwo (∆; ε)− ∂Φthree (∆; ε)

∂∆
ŵ2ε,

which, when evaluated at a ∆̂ that makes Φall
³
∆̂; ε

´
= 0, yields

∂Φall (∆; ε)

∂∆

¯̄̄̄
∆=∆̂

< ŵ2ε

⎛⎝Φthree
³
∆̂; ε

´
∆̂

− ∂Φthree (∆; ε)

∂∆

⎞⎠ < 0,

and therefore the optimal ∆∗ is unique.

Proof of Lemma 1.

The claim follows from

Φthree (∆ = b/2; ε) =
1

4

µ
5

4
log 3− 1

¶
> 0,

using (27), so that, for ŵ2 large enough, the derivative of the group’s objective function

with respect to ∆, that is Φall (∆; ε) in (26), is negative at ∆ = b/2.

Proof of Proposition 5.

The result follows by applying the implicit function theorem to (26), and noting

that ∂Φall(∆;ε)
∂ε

< 0 since ∂Φone(∆;ε)
∂ε

and ∂Φtwo(∆;ε)
∂ε

are negative, while ∂Φthree(∆;ε)
∂ε

= 0 and

Φthree (∆∗; ε) > 0.
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