
 Repositorio Institucional de la Universidad Autónoma de Madrid
https://repositorio.uam.es

 Esta es la versión de autor del artículo publicado en:
 This is an author produced version of a paper published in:

Future Generation Computer Systems 112 (2020): 589-603

DOI: https://doi.org/10.1016/j.future.2020.02.037

Copyright: © 2020. This manuscript version is made available under the
CC-BY-NC-ND 4.0 licence http://creativecommons.org/licenses/by-nc-nd/4.0/

 El acceso a la versión del editor puede requerir la suscripción del recurso
Access to the published version may require subscription

https://repositorio.uam.es/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Blockchain-based Semi-Autonomous Ransomware

Oscar Delgado-Mohatar1,∗, José María Sierra-Cámarab, Eloy Anguiano1

aEscuela Politécnica Superior, Universidad Autónoma de Madrid, Spain
bKhoury College of Computer Sciences, Northeastern University, USA

Abstract

Blockchain’s benefits and advantages have been extensively studied in literature,
but far fewer works can be found on the dishonest uses of them. In this paper,
we present the first blockchain-based ransomware schemes, which use smart
contracts and simple cryptographic primitives to provide a limited degree of
automation and fair exchange. Specifically, the use of smart contracts would
enable new capabilities for ransomware, such as the possibility of paying for
individual files or the refund of the ransom to the victim if the decryption keys
are not received within a specified period of time.

To demonstrate their feasibility, both technically and economically, these
proposals have been implemented in the Ethereum Ropsten test network. The
results show that running a full ransomware campaign similar to WannaCry,
with more than 300,000 affected users, would have an additional cost of only 3
cents of a dollar per victim.

Finally, we show that there are no feasible countermeasures if these schemes
are implemented in public blockchains. Therefore, we firmly believe that it is
increasingly urgent to recognize and study this matter, in order to create new
policies and technical countermeasures.

Keywords: blockchain, ransomware, smart-contracts

1. Introduction

The blockchain concept, first introduced as an auxiliary technology for Bit-
coin in 2009 [1], has experienced a spectacular growth in the last years, with
potential uses in almost every area of society [2]. However, every technology can
be also used in an evil or criminal way and, blockchain is not an exception. This
is compounded by the fact that new platforms, such as Ethereum [3], provide a
much richer functionality than Bitcoin, through the support of smart contracts,
based in very powerful scripting languages.

These functionalities may enable a plethora of new possibilities for cyber-
criminals. Juels et al. [4] introduces the concept of criminal smart contracts

∗Corresponding author

Preprint submitted to Elsevier February 6, 2024

(CSCs), and warns about their potential to leak confidential information, key
theft, or even the facilitation of real-world crimes, such as murder or terrorism.

In this paper, we present and analyze a new possibility: the implementation
of a semi-autonomous ransomware infrastructure coded as a smart contract.
The benefits of this approach for the criminals would be numerous, specially
those regarding reliability, with a platform virtually immune to authorities and
shutdown.

In addition, the use of smart contracts would provide to ransomware new
ways to interact with victims. For example, victims could pay by the decryption
of individual files, with dynamic prices marked by attackers, depending on the
type of file or other factors. The victims could also have more guarantees about
the ability of the attacker to decrypt their files trough a proof-of-life mechanism,
in which the victim could chose a small subset of files to be decrypted for free.
We believe that all these possibilities would increase the willingness of the victim
to pay the ransom and, in turn, finally benefit the attackers.

In order to study the real viability of these ideas, we have implemented a
proof-of-concept in the Ethereum platform, including the different possibilities
which we foresee could be used by attackers. To keep them as simple as possible,
and minimize their associated execution and storage costs, these schemes use
only symmetric cryptographic primitives, basic arithmetic operations and data
storage in arrays.

Therefore, the key questions we explore in this work are: could a smart
contract-based ransomware be fully implemented in a public blockchain? How
practical this would be? Which would be the associated costs? And, as a result
of the answers to these questions, should this idea be considered a potential
threat to blockchain’s future?

Contributions
Our specific contributions in this work are:

• We present the first architecture of ransomware based in the use of a public
blockchains and smart contracts. In order to minimize its execution costs,
the design is kept as simple as possible, and based only in symmetric
cryptographic primitives.

• We demonstrate its feasibility by implementing a simple but functional
proof-of-concept in Ethereum, and analyzing its execution costs.

• We introduce new ransomware payment paradigms, enabled by the use of
smart contracts, as pay-per-decrypt or proof-of-life, which provide limited
fair-exchange capabilities.

• We discuss some possible mitigation countermeasures.

The rest of the paper is organized as follows. Section 2 provides a brief
introduction to blockchain and ransomware technologies, including some figures
about its current prevalence in cyberthreats. Section 3 introduces the concept

2

of blockchain-based ransomware, and its general working principles and charac-
teristics. Section 4 presents three novel protocols, pay-and-pray, pay-per-decrypt
and proof-of-life, along with their main characteristics and an analysis of their
associated storage and execution costs in Section 5. A discussion about mitiga-
tion and countermeaseures can be found in Section 6. Finally, the conclusions
are presented in Section 7.

2. Background

2.1. Blockchain basics
Despite its enormous potential, the blockchain concept has a modest and re-

cent origin. As defined today, it was firstly described as an auxiliary technology
of Bitcoin in 2009 [1][5], where it is used as a secure mechanism to store economic
transactions between participants. Its recent explosion in popularity is due to
the possibility of also securely storing any kind of digital data, guaranteeing its
integrity.

This automatically enables many new possible uses for the technology: cer-
tification of documentation (as mortgages, securities or any other official docu-
ment [6][7]), assets or intelligent objects [8][9], which can make decisions based
on the information stored in the blockchain, a distributed securities market, de-
posit and custody services [10], which would resolve disputes between customers
and merchants, voting systems [11][12] or improvements in the supply chain for
all types of products [13][14][15].

2.2. Ransomware basics
The use of cryptography to mount extortion-based attacks was first proposed

by Young and Yung as early as 1996 [16]. In their seminal paper, they actually
created a new research area called cryptovirology. In their initial proposal, which
remains almost unchanged, the attacker places a public/private pair key in a
malware. The malware then encrypts the victim’s files with a locally generated
random symmetric key, which is in turn encrypted with the public key. Finally, it
provides a ransom note and instructions for payment. After the attacker receives
the payment, the previous symmetric key is decrypted with the corresponding
private key and sent to the victim, who finally recovers the original files.

Amazingly, the first reactions to this potential threat were skepticism and
criticism. They were even denominated as "virtually useless". The fact is
that, in the recent years, ransomware has become one the biggest threats to
information security, with almost daily news about its impact [17][18].

WannaCry phenomenon. Maybe the most known recent example is the Wan-
naCry ransomware campaign, which became a global phenomenon in May 2017,
and has probably been the most significant security incident in recent years. It
had world-wide diffusion, affecting more than 300,000 computers in about 150
countries, and cost thousands of dollars in ransom to regular users and millions
to enterprises in lost productivity [19].

3

Figure 1: Common ransomware scheme, including infection, payment and release of keys

V ictim1. Infection Attacker

2. Files encryption

3. Ransom Payment

4. Decryption keys

5. Files Decryption

Today, scientific research about ransomware goes far beyond the mere study
of the infection and encryption process. For example, some studies analyze the
reasons and circumstances that most influence the willingness of victims to pay
[20], the estimated amount of money that ransomware has raised so far [21], or
attacks in new environments, such as mobile phones [22][23]. In this sense, our
study opens a new perspective, by proposing the implementation of ransomware
by using automated smart contracts.

2.3. Ransomware spreading and infection
Ransomware, like any other form of malware, is delivered to the victims by

using common attack or infection vectors. These include Web, P2P networks
and email, in order of prevalence [24]. The exact infection procedure varies
slightly for each infection vector, but a common scheme can be found in Figure
1.

In brief, the usual steps in the transfer and infection procedure are the
following:

1. Setup: The cybercriminals implement and get ready all the elements
needed for the attack. For example, for an infection via Web, they would
need to previously compromise a Web server (the more visited, the better),
in which they install an exploit code.

2. Infection: From this point, each user visiting the Web page with a vul-
nerable browser gets infected. The process usually includes a small code
snippet, called dropper, that downloads the rest of the ransomware binary.

3. Files encryption: the ransomware encrypts all the files of interest in the
victim’s computer.

Bitcoin as a payment method. Cryptocurrencies provide unique privacy advan-
tages for criminals behind ransomware attacks over traditional payments meth-
ods. For example, Bitcoin transactions are cryptographically signed messages
which embody a fund transfer from one public key to another. Furthermore,
Bitcoin keys are not explicitly tied to real users, although all transactions are
public. Consequently, ransomware owners can protect their anonymity and
avoid revealing any information that might be used for tracing them [25] [26]
[20].

4

Figure 2: High-level architecture of Ethereum, where main concepts of smart-contract, storage,
miners and functions are depicted.

Smart Contract

Miner

Miner Miner Miner

User

Source

code

Storage

Miners listen to

other nodes and

execute smart

contracts calls

made by users

Call to function1()

Call to function2()

Every few seconds,

the results of the

smart contracts

execution are shared

and verified across

the nodes of the

network, and written

to the blockchain

Smart contracts have a permanent storage

space, with an associated cost, called gas.

Ethereum programs are called smart

contracts, and have Turing-complete

capability. They are executed inside a virtual

machine (EVM).

2.4. Blockchains and smart contracts
Blockchain was initially proposed as an auxiliary technology for Bitcoin,

which has solved for the first time, in an effective and decentralized way, the
old anonymous e-cash challenge [27].

On the other hand, Bitcoin introduced the use of proof-of-works (PoW) [28]
as part of a distributed consensus protocol. This way, a Blockchain is able
to verify transactions and maintain a global ledger, shared by each node (i.e.,
miner).

Finally, Bitcoin also offers a limited support for a programmable logic, trough
the use a scripting language. However, this feature has proven to be restrictive
and difficult to use, as demonstrated by previous attempts to build more complex
applications using Bitcoin [29][30][31] .

To overcome these limitations, blockchains with much more powerful com-
putation capabilities have been developed, such as Ethereum [32][33]. This
platform, for example, provides a Turing-complete logic, which enables the im-
plementation of general-purpose smart contracts.

Figure 2 shows a high-level architecture of a platform like Ethereum. In this
case, smart contracts are included in transactions, and are verified in a similar
way to Bitcoin. This way, nodes can reach a consensus, not only about data,
but also about the results of a computation, through the correct execution of
contracts logic.

In addition, due to its intrinsic immutability, smart contract execution can-
not be blocked by anyone, even its creator. This will have important conse-
quences for blockchain-based ransomware, as we will analyze in section 6.

Ether and gas. To encourage the execution of these contracts, Ethereum has
its own associated cryptocurrency, called Ether. Each operation, including both
computation and data storing, has a fixed cost, measured in a unit called gas.
Gas is paid in Ether, which, in turn, can be exchanged by fiat currency.

5

The execution of a contract can fail for many reasons, but it is important to
note that, even in that case, the executor must still pay the proportional fee to
miners.

2.5. Blockchain and crime
Almost since its inception, Bitcoin has always been associated to money

laundering and illicit activities. Indeed, there exist studies of crime enabled
by Bitcoin, such as the infamous Silk Road marketplace [34] or money laun-
dering [35]. It is remarkable, in any case, that these studies also show that
money laundering is not as massive as Bitcoin critics claim, due to automation
mixes, necessary for this activity, cannot operate on large enough volumes to
be significant on a world scale.

As a first example of other potential misuses of blockchains, we show the case
of the Darkleaks protocol for leakage of secrets [4]. Darkleaks is a decentralized
black market for selling and buying (usually leaked) information.

The main objective of Darkleaks is to provide a solution to the fair exchange
problem between trust-less parties, which is described with more detail in section
3.1. Particularly, in this case, we are dealing with fair payment (FP), in which
one of the parties wants to be sure to pay for a commodity only if it is received,
and the other to send the commodity only if the payment can be assured in
advanced [36].

With documents, or digital goods in general, there is another shortcoming:
how to prove the authenticity of the document before the transaction? To do
so, Darkleaks uses a trust-less probably fair mechanism. First, the leaker splits
the file to be sold into a number of chunks, which are hashed. Then, each hash
becomes a Bitcoin private key, from which a public key and an address are
derived. Finally, each chunk is encrypted with a secret obtained by hashing the
public key.

Then, when the public sale of the file begins, the leaker randomly selects
some of the previous chunks, which will be released free of charge. This allows
the community to verify the veracity of the file and decide whether they want
to pay for the remaining segments.

If so, the buyers send payments to each segment address, till some threshold
quantity is reached. Then, when the leaker decides to claim it, the public key is
revealed, which, in turn, means that the encryption key for that chunk is also
implicitly revealed (because one is derived from the other).

2.6. Threat Model and Security Guarantees
Roughly speaking, we adopt a common thread model, as presented in [4]:

• Blockchain. Trusted for correctness but not privacy. We assume that the
blockchain will always correctly store data and perform computation, and
will always remain available. However, the blockchain exposes all of its
internal states to the public, and retains no private data.

6

Concept Description Concept Description
A attacker, ransomware creator mskv master key for victim V
V victim idv unique identifier for victim V
C smart contract idf unique identifier for file f
dkv decryption symmetric key for all the

encrypted files of victim V
h() hash function

dkf decryption symmetric key for a spe-
cific encrypted file f

enck(),
deck()

encryption and decryption functions
with symmetric key k

Table 1: Notation for main concepts and parties

• Arbitrarily malicious parties. We assume that the parties involved do not
trust each other, and that they act solely to maximize their own profits.
In particular, they may arbitrarily deviate from the prescribed protocol
and prematurely abort the protocol.

• Network influence of the adversary. We assume that messages exchanged
between the blockchain and parties are guaranteed to be delivered within
bounded delay. However, an adversary can arbitrarily reorder these mes-
sages.

2.7. Notational Conventions
The notation for parties and concepts involved in this work are shown in

Table 1.

3. Exchange Fairness and Ransomware Automation

As stated before, one of the biggest concerns for ransomware victims is the
lack of guarantees that, even if ransom is paid, they actually receive the decryp-
tion keys. Indeed, this situation has already happened on numerous occasions
in the past, and may be due to multiple factors, such as scalability problems
(impossibility of manually attending to hundreds of thousands of victims, as in
the WannaCry incident), infrastructure shutdown by authorities or, simply, a
fake ransomware campaign, similar to fake DDoS threats [37].

In this section, we analyze the possibilities for attackers to design more
trustworthy ransomware schemes and, therefore, improve the willingness of the
victim to pay the ransom. For example, attackers could try to provide a limited
fair exchange capability by making make payments conditional on the delivery
of the correct encryption keys. Taking advantage that almost all of ransomware
employs some cryptocurrency as a payment mechanism (typically, Bitcoin), a
ransomware developer could implement a script (such as an Ethereum smart
contract, for example) to guarantee the following property:

The requested payment will be delivered if and only if the attacker reveals a
correct decryption key.

However, the previous idea does not address the problem of scalability for
attackers. So, could the ransomware schemes be automated in such a way that
they don’t require operators or manual intervention?

7

This property is not as feasible to accomplish as fairness, because smart
contracts are usually run in blockhains where all their executions and states
are public. Therefore, they could not store or manage the necessary (secret)
decryption keys. In theory, zero-knowledge techniques could be applied in this
situation, but not in the ransomware scenario. The reason is that, as will be
described in upcoming sections, it is not possible for a smart contract (or any
other program) to automatically determine if a file really belongs to a user, even
if a correct decryption key has been provided.

In summary, from the point of view of an attacker, an ideal ransomware
would have the following two properties:

• Exchange fairness: the payment should be delivered to the attacker if
and only if the user receives a correct decryption key.

• Maximum automation degree: ideally, the ransomware should not
need human operators to process payments and release decryption keys,
and to operate autonomously.

In the following sections, we study these possibilities, and analyze to what
extend they can be achieved. Finally, in section 4 we present several protocols
which implement these ideas.

3.1. Exchange fairness
The fairness in the exchange of items or services is a corcern that naturally

arises in a digital scenario such as the Internet and e-commerce. The funda-
mental question is how to sell an item in such a way that none of the involved
parties can cheat the other [38].

The classical definition of exchange fairness includes two parties, Susan and
Bob, who act as Seller and Buyer, respectively. In this setup, Susan wants to
sell some kind of digital good x to Bob. Obviously, Bob does not know x, but
he can impose some restrictions over it.

For example, he could be define a predicate f : 0, 1∗ → {true, false}, and
be willing to pay Susan for all the values of x which satisfy f(x) = true. f is
usually written as a computer program, and will vary depending on the nature
of x. Typically, if x is some kind of file (e.g., a movie), f(x) would output true
only if the hash of x corresponds to some fixed value h.

Of course, the problem that arises now is: if the seller and buyer do not trust
each other, who should initiate the transaction and how should it be done?

The protocols and mechanisms designed to manage this situation are called
fair exchange schemes. Although there is a wide variety of protocols with dif-
ferent capabilities, there are some desirable common characteristics that all fair
exchange protocols should provide:

• Fairness: intuitively, a protocol is fair if at the end of its execution there
are only two possible states: either all participants receive the expected
item correctly, or none of them received what they expected. In other
words, the protocol does not allow one user to take advantage of the other.

8

• Timeless: guarantees that any user can abort the protocol at any time,
without the need for the participation of the other user.

• Completeness: the protocol is considered complete if all the honest par-
ties finally get all the desired data from the others participants.

However, it is well-known that all these properties for a fair exchange are
impossible to achieve without a trusted third party (TTP) in real environments
[39]. In this scenario, blockchains can play the role of this trusted entity or
arbiter, with the added advantage that blockchain (specifically, its associated
cryptocurrency) is already being used to make the payments between the parties.

In a first approach, this can be achieved by using a smart contract C on a
public blockchain with semantics similar to the following:

1. The buyer sends to C some amount of cryptocurrency, e.g., 1 BTC, staying
in custody.

2. The seller claims this amount by sending x such that f(x) = true to C.
The smart contract then verifies that x is actually a valid value and, if so,
sends the agreed amount to the seller.

3. If, for any reason, the seller does not claim payment in a period of time t,
C automatically sends the money back to the buyer.

Indeed, the basic primitive suitable for achieving this in Bitcoin already
exists and is called Zero Knowledge Contingent Payment (ZKCP), which was
proposed by Maxwell [40] as early as 2011. However, this initial proposal had
to wait almost 5 years more to become powerful enough to perform general
purpose ZKCPs. Finally, ZKCPs were able to be demonstrated live by Bowe
from ZCash Team [41][42], swapping the solution to a 16x16 sudoku puzzle for
0.1 BTC.

3.2. Zero Knowledge Contingent Payment (ZKCP)
The main idea behind the ZKCP protocol is actually very simple: the seller

(Susan) generates a zero-knowledge proof of the item x and a transaction to
redeem the funds only if the buyer (Bob) can verify this proof successfully.

Specifically, Susan uses a symmetric encryption algorithm enc with a key
k to encrypt x, such that enck(x) = c. She also uses a hash function h to
compute h(k) = y. She then sends these values c and y to Bob, together with
a zero-knowledge proof that c is the ciphertext of x under the key k and that
h(k) = y.

Once the proof has been received and verified by Bob, he creates an smart
contract in a pubic blockchain which pays to Susan the agreed amount if she
provides a valid value for k, such that h(k) = y. Bob, who can recover k from
the smart contract, can finally decrypt c and recover x.

9

3.2.1. Application to malware
At first glance, these ideas seem directly applicable to the automation of

ransomware. This must only choose an encryption key k for each file, and leave
a public hash value y = h(k) in the victim’s system. It is, then, not difficult to
write a script in Bitcoin, by using the ZKCP construction, or a smart contract
in Ethereum, that allows payment if and only if the attacker is able to post the
pre-image of y.

Similarities with the usual uses end here, however. The challenge for the
ransomware scenario is to prove that k is actually a valid decryption key, and
that the victim is able to recover her files with it. One possible solution to
this problem is to use zero-knowledge proof schemes, like zkSNARKS [43][44],
which would make the process non-interactively. Indeed, Ethereum has recently
successfully completed the first integration of this technology, and has added
the arithmetic modular primitives necessary for its implementation.

However, even this primitive would not be enough to solve the problem in
the case of ransomware. The reason is that is not possible to write an automatic
code, inside or outside a blockchain, that verifies that a file is legitimate for a
user. Even if it automatically detects, for example, that it is a semantically
valid PDF file (e.g., applying strict format checks), it is impossible to know if
it is actually the user’s PDF.

After all, taking into account that the type of files targeted by malware is
known and limited (word-processing files, videos, photos, etc.), the malware
could use the strategy of replacing the files with others "syntactically" correct
but semantically empty. That is, it could replace the MP3 files with others
containing simply noise, the PDFs with others with blank pages, etc ...

These files would still decrypt successfully, but they would not correspond
to the original data of the user, which is the only outcome that she cares about.
Note that in this case authenticated encryption or other kind of integrity checks
neither help.

3.3. Ransomware automation
As it is clear, it is not possible to fully automate the ransomware process,

since the "semantic" verification of the decryption of the files must always be
carried out, ultimately, manually by the user. A possible solution would be to
provide the user with a kind of oracle that could examine a file (with all its
metadata, such as complete path, length, timestamps, etc.) and determine if it
really belonged to the user initially. In practice, this could be essentially done
in two ways:

• Collection of digital signatures on the files, which could be verified later.

• Manual inspection of a small subset of files.

Unfortunately, the first possibility doesn’t seem realistic, due to that the
collection should be created in advance, before the ransomware attack. In ad-
dition, it should be keep updated in each modification of the files. For these

10

reasons, a statistical approach would be more appropriate for the second option,
by interactively verifying the encryption process.

The idea is actually very simple: the attacker allows the user to decrypt
some files free of charge (or for a small fee), in a kind of proof of life. If the files
decrypt successfully to the semantically correct files, it is reasonable to assume
that the attacker knows the appropriate decryption keys.

For the attacker interest, this subset should: (i) be selected randomly (to
prevent the victim from deciphering the files of most interest to her and leaving
the rest), and (ii) account for a small percentage of the total number of encrypted
files.

4. Semi-autonomous Blockchain-based Ransomware

In this section we present several novel protocols for implementing blockchain-
based ransomware schemes. We foresee their use in the wild soon, due to the
advantages they provide to cybercriminals over the traditional schemes.

Essentially, these schemes would use smart contracts as a payment escrow
service: the smart contract acts as a judge who withholds payment from the
victim’s ransom until the attacker reveals a correct decryption key. If a certain
amount of time elapses and the attacker has not disclosed a valid decryption
key, the smart contract automatically returns the payment to the victim.

As stated before, this approach would have important benefits from an at-
tacker’s perspective, as an increase of the resilience of the overall system, and
new properties as fair exchange or partial automation. In addition, it would also
provide victims with greater guarantees than in traditional ransomware schemes
and, therefore, increase their likelihood of paying the ransom.

Finally, the use of smart contracts would provide even more additional ben-
efits for attackers:

• The scheme can be entirely designed to use symmetric-key primitives only.
This allows to keep it as simple as possible, and to minimize the execution
costs for the smart contracts.

• The resilience of the ransomware infrastructure is increased. Once a smart
contract is deployed to a blockchain, it is extremely difficult to remove it,
even after being identified as malicious. We will present some possible
solutions in section 6.

• The possibility of establishing a kind of ransomware-as-a-service. This
way, attackers could rent the use of the smart contract to others cy-
bercriminals, who would make use of the same infrastructure to launch
different ransomware campaigns.

By using these premises, we envision the following possible schemes, ordered
in increasing complexity and capabilities:

• Pay-and-pray: the victim has no special guarantees, and pay for the
decryption of all her files as a whole.

11

• Pay-per-decrypt: the victim can pay for the decryption of individual
(chosen) files.

• Proof-of-life: The victim has the guarantee of a limited fair exchange,
that is, to be able to recover her money if the attacker finally does not
deliver a valid key for the decryption of the files.

Although these differences, the protocols share a common initial step:

1. Setup. Prior to the launch of a ransomware campaign, the attacker gen-
erates a random identifier, idv and a master secret key, mskv, both unique
for each victim. These values are embedded in a customized executable
Ev.

As a result, the attackers creates and protects a database B containing
all the previous tuples (idv,mskv). They will later used to reveal the
appropriate decryption key from the identifier provided by a victim.

The aim of this setup phase is to avoid the necessity of a posterior com-
munication with the attacker to send a locally generated decryption key. In
traditional ransomware schemes, which use asymmetric primitives, this step is
performed by encrypting the symmetric decryption key with the attacker’s pub-
lic key.

These schemes are discussed in more detail below.

4.1. Pay-and-pray
As a first approach, this scheme would be conceptually similar to the existing

ransomware models, where there is not any kind of guarantee for the victims
after payment. However, the attackers would still benefit from transferring part
of their infrastructure to a blockchain, thus increasing their resistance.

Informally, the protocol can be summarized in the following steps:

1. Setup. Performed as described in the previous section.

2. Infection and files encryption. After infection, the ransomware exe-
cutable Ev encrypts victim files with a single symmetric key, derived from
her identifier and the victim master key as dkv = h(idv||mskv). It also
calculates a commitment of the decryption key, c = h(dkv), that will be
used by the victim later. After this step, mskv is securely wiped, and the
values idv and c remain stored in the victim’s system.

3. Payment. The victim pays the requested amount to the smart contract C,
including in the request the values of the identifier idv and the commitment
c created by the attacker in the previous step.

4. Disclosure. Attacker retrieves idv from the contract, and reveals the
corresponding mskv. The contract, in turn, checks this value against the
previously stored commitment and, if it is correct, pay the victim’s ransom
to the attacker.

12

5. Key collection. Victims can periodically verify if their decryption keys
have been revealed. If a certain amount of time has elapsed without
successful releasing, the ransom is refunded to the victim.

Of course, nothing forces an attacker to respect the terms of step 1, where
supposedly a commitment of the decryption key is calculated. The attacker
could just fake this value, along with the master key, fooling the smart contract
in the Disclosure step. However, attackers have no incentive to do this, since
the victims would quickly stop paying ransoms when the first cases were publicly
known.

In any case, this protocol would still provide both victim and attackers some
advantages over traditional schemes:

• The victims are guaranteed by the smart contract that they will recover
the ransom if no keys are revealed within a period of time.

• The attackers have a more resilient infrastructure, almost impossible to
be shutdown by authorities.

The contract. The smart contract pseudo-code for this protocol is shown in
Figure 3. It has been implemented using Ethereum [32], Solidity language [3]
and deployed into the Ropsten Ethereum testnet. More details and the source
code can be found in Appendix 8.

A flowchart for the protocol can be found in Figure 4. Attacker and victim
interact by alternately calling the appropriate smart contract functions:

0. init(). Attacker deploys smart contract C to a public blockchain (e.g.,
Ethereum), and initializes it by calling init() function with a ransom
amount. This amount could be even be changed dynamically during the
attack campaign.

1. Infection and files encryption. After infection and files encryption,
the victim identifier and the decryption key commitment, idv and c, are
generated and stored in the victim’s system.

2. payRansom(amount, idv, c). The victim decides to pay the requested
amount by calling this function, with the values (idv, c) as arguments.

3. getVictims(). Attacker periodically calls this function, which returns a
list of victims who has already paid the ransom. For each victim with
identifier idv, the corresponding master secret key mskv is recovered from
database B. Finally, decryption key for each victim is derived as dkv =
h(idv||mskv).

4. revealDecryptionKey(idv, dkv). Then attacker calls this function for
each victim, with the decryption key calculated in the previous step as an
argument. The contract C then verifies that the commitment of each one
of them is correct and release the payment made by the victim.

13

Figure 3: Pay-and-pray smart contract pseudo-code
Initially deployed to Ethereum blockchain by an attacker A.
Functions called by attacker
init(owner_address, min_ransom)
· Set smart contract owner address to attacker’s, owner_address := A
· Set minimum ransom amount to be paid to min_ransom.
· Set array victims_ID := {}, containing the IDs of the victims who have
already paid the ransom.

getVictims()

· Return victims_ID.

revealDecryptionKey(idv, dkv)

· Assert victim.commitment = h(dkv).
· Set victim.state := REVEALED
· Set victim.decryptionKey := dkv
· Set ledger[A] := ledger[A] + $amount

Functions called by victims
payRansom(amount, idv, c)

· Assert that $amount ≥ $min_ransom.
· Set victims_IDs:= victims_IDs + idv.
· Set victim.id:= idv, victim.commitment:= c.

getDecryptionKey(idv)

· Assert victim.state = REVEALED
· If victim.state = PAID and T > Tend:

· Set ledger[V] := ledger[V] + $amount

· Return victim.decryptionKey

Figure 4: Pay-and-pray scheme architecture

Smart

contract

0. init()

1. Infection and

files encryption

2. payRansom(amount, idv, c)

Generation of idv and c

3. getVictims()

Obtain Ids for victims who

have paid the ransom

4. revealDecryptionKey(idv, dkv)

Publish decryption key for

victim with ID idv, dkv

5. getDecryptionKey(idv)

Attacker Victim

Get decryption key for victim

with ID idv, dkv. If called after

Tend, the ransom is paid back to

the victim

14

5. getDecryptionKey(idv). Finally, each victim periodically calls this
function, which returns the revealed key to its owner. If the decryption
key has not been revealed before the specified deadline (Tend), the ransom
is refunded to the victim.

Notice that there is no security concerns with the public revelation of idv
and dkv, because none of the values are useful for other parties:

• An user does not benefit from using another user’s identifier, since he
would obtain incorrect decryption keys for himself.

• The decryption key published by the attacker is not valid for another
victim, nor to decrypt other files of the legitimate user.

On the other hand, the use of smart contracts would ease to dynamically
adjust both min_ransom and Tend. In the first case, for example, the amount
of the ransom may increase over time, to encourage victims to pay quickly.
A similar concept could be applied to Tend, so that attackers could establish
different ransom amounts to be paid based on Tend. The lower the Tend, the
higher the min_ransom and vice versa.

4.2. Pay-per-decrypt
The use of a blockchain and smart contracts enable a new possibility for

attackers. We have called it pay-per-decrypt, and it provides the user with the
capability to pay for the decryption of individual files, instead of the full set.
The rationale of this is that, this way, many victims who are reluctant to pay
the entire ransom, are encouraged to pay smaller amounts for a file, or only for
those they really need to recover.

In addition, this approach allows victims to gain trust on the scheme: if the
recovery of the first file is successful, it is reasonable to assume that the rest
will be too, because the attacker would cease to make a profit otherwise. And
if it is not, the loss for the victim would be much less than in the pay-and-pray
approach.

Finally, this scheme allows the attacker to establish several payment condi-
tions, such as different prices depending on the type of file, discounts for volume,
etc.

In brief, the protocol is composed of the following steps:

1. Setup phase. Same as described previously.

2. Infection. In this case a different decryption key is used for each user file.
In this way, for each file f a random ID, idf , is generated. From this value,
a symmetric decryption key dkf = h(mskv, idv||idf) and a commitment
cf = h(dkf) are calculated. All these values are locally stored in the
victim system, along with the encrypted files.

3. Payment. The victim chooses a file to be decrypted, and pays the asso-
ciated ransom by calling the smart contract function payRansom() with

15

arguments idv, idf and cf , the ID of the victim, the ID of the file to
decrypt and the commitment for that file, respectively.

4. Disclosure. Attacker now performs the following operations:

• The list of tuples (idv, idf) for the victims who have paid the ransom
is retrieved by calling getFileIDs().

• For each tuple, the corresponding decryption key dkf = h(mskv, idv||idf)
is derived from the previous values.

• A new list of tuples (idf , dkf) is revealed to the smart contract by
calling revealDecryptionKeys(). The smart contract verifies then each
stored commitment against each revealed key, checking that cf =
h(dkf).

5. Key retrieval. Victims can periodically verify if their decryption keys
have been revealed by calling getDecryptionKey(idf). Again, the victim
payment is refunded automatically by the smart contract if attacker does
not provide decryption keys within a certain period of time.

The smart contract pseudo-code and a general view for the architecture can
be found in Figure 5 and Figure 6, respectively. Of course, in a real environment,
the previous operations could be optimized in several ways. For example, to
avoid the polling of the function getDecryptionKey() by the victim, the smart
contract could use events and an external oracle to notify the victim via email
that their decryption keys have been revealed.

4.3. Proof-of-life
Finally, in this section we present the last scheme that, in our opinion,

could be used by attackers. This scheme takes into account all the previous
considerations, and tries to overcome some of its limitations.

The main improvement is the addition of an interactive "proof of life" proce-
dure, based in a challenge/response scheme. In this way, the user or the smart
contract can choose a small subset of files to be decrypted "for free". The ob-
jective is to increase the victim’s trust in the scheme, and her willingness to pay
for the rest of her files.

The protocol is composed by the following steps:

1. Setup phase, Infection. Same as described for the pay-per-decrypt
scheme, i.e., a different decryption key is generated for each file. However,
in this case only one commitment is generated for the victim’s master key,
c = h(mskv).

2. Challenge. In this step, a proof of life procedure is performed before
payment. To do so, the victim is allowed to choose a small subset of k
files that will be decrypted for free. Of course, k will be determined by
the attacker in a small value (maybe a percentage of the victim’s total
number of encrypted files). Now, the following actions are executed:

16

Figure 5: Pay-per-decrypt smart contract pseudo-code
Initially deployed to Ethereum blockchain by an attacker A.
Functions called by attacker
init(owner_address, min_ransom)
· Set smart contract owner address to attacker’s, owner_address := A
· Set minimum ransom amount to be paid to min_ransom.
· Set array files_ID := {}, containing the IDs of the files whose ransom
has been paid.

getFilesID()

· Return files_ID.

revealDecryptionKeys({(idv, dkf)})
For each tuple (idv, dkf):

· Assert victim.fileID.commitment = h(dkf).
· Set victim.fileID.state := REVEALED
· Set victim.fileID.decryptionKey := dkf
· Set ledger[A] := ledger[A] + $amount

Functions called by victims
payRansom(amount, idv, idf , cf)

· Assert that $amount ≥ $min_ransom.
· Add victim’s ID to paid_IDs array.
· Set victim.fileID.commitment := cf

getDecryptionKey(idf)

· Assert victim.fileID.state = REVEALED
· Return victim.decryptionKey
· If victim.fileID.state = PAID and T > Tend:

· Set ledger[V] := ledger[V] + $amount

Figure 6: Pay-per-decrypt scheme arquitecture

Smart

contract

0. init(ransom)

1. Infection and

files encryption

2. payRansom(ransom, idv, idf, cf)
Pays the ransom to obtain the

decryption key for file idf

Generation of idv, and

idf and cf for each file f

3. getFilesIDs()

Attacker retrieves a list of tuples

(idv, idf) calling this function, and

computes the corresponding list

of decryption keys
5. getDecryptionKey(idf)
Victim recovers decryption

key dk
f
for file idf

Attacker Victim

4. revealDecryptionKeys({(idv, idf)})

Attacker reveals the list of decryption

keys to the smart contract, that checks

the commitment for each key.

17

(a) The victim calls the requestSamplesDecryption() function with a list
{id∗f} containing the IDs of the chosen files as an argument. The
superscript * indicates that this is a free-decrypted file.

(b) The smart contract checks that the length of this list is less than k
and mark these files as "decrypted".

3. Response. The attacker now responds to the previous challenge in a
similar way to the pay-per-decrypt scheme:

• The list of tuples (idv, {id∗f}) is retrieved by calling getFileIDs().

• For each tuple, the corresponding decryption keys dk∗f = h(mskv, idv||id∗f)
are calculated. There will be a maximum of k free decryption keys.

• A new list of tuples (id∗f , {dk∗f}) is revealed to the smart contract by
calling revealSamplesDecryptionKeys().

4. Payment. The victim retrieves these keys by calling getFreeDecryptionKeys(idv).
If satisfied with the result, she pays the requested amount to the smart
contract with the call payRansom(idv, c).

5. Disclosure. In the final step, the attacker reveals mskv to the contract,
that verifies its validity by checking that the set {dk∗f} can be successfully
derived from it. With this master key, the victim can now calculate the
decryption key for any remaining file. As in previous schemes, if after a
specified period of time, the attacker doesn’t reveal mskv, the contract
gives the money back to the victim.

In addition, the attacker might also use an alternative approach by letting
the smart contract to randomly choose the files to be freely decrypted, instead
of the victim.

In this case, the protocol should be slightly modified in order to assign the
IDs of the encrypted files sequentially in the infection phase. After that, the
function requestSamplesDecryption() is no longer called by the victim, and could
be substituted by a code similar to shown in Figure 7. There exist several ways
to generate random numbers in a smart contract, but we propose here a simple
one based on the previous block hash and the SHA3 function. This smart
contract pseudo-code can be found in Figure 8, and a global view of the scheme
is shown in Figure 9.

4.4. Analysis of the C/R stage
As stated in the previous section, the main purpose of the challenge/response

stage is to increase the victim’s confidence that the attacker has valid decryption
keys for all the files (or, at least, most of them).

The natural question is, then, can be this confidence degree measured? The
answer depends on who, victim or attacker, chooses the files to be sampled.

18

Figure 7: Generation of random numbers for the election of free-decryption file IDs.
uint seed = block.blockhash;
function rand(uint min, uint max)

returns (uint){
seed = sha3(seed);
return uint(seed)%(min+max)-min;

}

If the victim is allowed to choose freely, she obviously would always choose
the files she cares most about first, possibly losing the interest in paying for
the rest. The attacker could avoid this by also encrypting the file and directory
names, so the user cannot distinguish which are the files of most interest.

But, even if the victim has no other option than to select the challenges
randomly, the theory of probabilities favors her. Indeed, even a small number
of successful decryptions provides high confidence against cheating.

For estimating this, let nt, nf , and ns be the total number of files, number
of lost or modified files by the attacker, and the number of allowed samples,
respectively. Then, the probability of the user to detect an attacker cheating
attempt, pc, is:

pc = 1−
ns−1∏
i=0

(nt − nf)− i

nt − i

For example, for a total number of 10,000 files, supposing than only 2%
were manipulated and that the user is allowed to check 60 files for free, the final
probability of detecting the fraud is more than 70%.

5. Experimental Results

In this section, the results of the experiments and implementations carried
out are presented and analyzed. Specifically, the associated costs to the exe-
cution and storage of the involved smart contracts are estimated, in order to
determine the viability of the presented protocols. In addition, some possible
improvements for the storage model, which could further reduce the associated
costs, are also discussed. For last, the performance and timing of execution are
evaluated in section 5.2.

5.1. Storage and Execution Costs Analysis
As stated in the objectives description, one of the main goals of this research

was to create a simple proof-of-concept, without the use of complex and expen-
sive homomorphic operations or zero knowledge proofs. For this reason, the
only cryptographic operation implied is a standard hash function (SHA256), in
addition to basic arithmetic checks and data storage in arrays.

19

Figure 8: Proof-of-life scheme smart contract source code
Initially deployed to Ethereum blockchain by an attacker A.
Functions called by attacker
init(owner_address, max_free_files, min_ransom)
· Set smart contract owner address to attacker’s, owner_address := A
· Set the maximum number of files to be decrypted for free by an user to
max_free_files.
· Set minimum ransom amount to be paid to min_ransom.
· Set array free_files_IDs := {}, containing the IDs of files that each
victim has requested to decrypt as a proof of life.

getSamplesIDs()

· Return free_files_IDs.

revealSamplesDecryptionKeys(idv, {id∗f})

· Set victim.free_decryption_keys := dff∗

revealMasterDecryptionKey(idv,mskv)

· Assert victim.commitment = h(mskv)
· Set victim.state := REVEALED
· Set victim.decryptionKey := mskv
· If T < Tend:

· Set ledger[A] := ledger[A] + $amount

Functions called by victims
requestSamplesDecryption(idv, {id∗f}, c)
· Assert that len({id∗f}) ≤ $max_free_files.
· Set victim.free_files_IDs := {id∗f}.

payRansom(amount, idv)

· Assert that $amount ≥ $min_ransom.
· Add victim’s ID to paid_IDs array.

getSamplesDecryptionKeys(idv)

· Return victim.free_decryption_keys

getMasterDecryptionKey(idv)

· Assert victim.state = REVEALED
· If victim.state = PAID and T > Tend:

· Set ledger[V] := ledger[V] + $amount

· Return victim.decryptionKey

20

Figure 9: Proof-of-life scheme architecture

Smart

contract

0. init(ransom)

1. Infection and files encryption

2. requestFreeDecryption(idv, {idf
*}, c)

Victim requests to freely decrypt files with IDs in {idf
*}.

Generation of idv, idf for each file f, and c for mskv

3. getFileIDs()

Attacker retrieves a list of tuples (idv, {idf
*}) calling

this function, and computes the corresponding list

of free decryption keys

7. getDecryptionKey(idf)
Victim recovers decryption key dk

f
for file idf

Attacker Victim

4. revealFreeDecryptionKeys({(idv, idf)})

Attacker reveals the list of free decryption keys to

the smart contract.

5. payRansom(ransom, idv, idf, cf)
Pays the ransom to obtain the decryption

key for file idf

6. revealFreeDecryptionKeys({(idv, idf)})

Attacker reveals the list of free decryption keys to

the smart contract.

21

Table 2: Execution and non-volatile storage costs for the functions of the smart contract
implementing the pay-and-pray scheme in Ethereum. Note that calls to read-only functions
as getVictims() are free of charge (if not made by another smart contract). n is the number
of victims. We have considered a gas price of 3 gwei (1 gwei =10−9ETH), and 1 ETH =$170
(at time of writing, April 2019 [46]).

Step Party Action / Smart contract call Cost Performance

Gas
(EHT) USD

Average
execution time

(secs)

0 Attacker init() 791,412
(0.002374 ETH) $0.4 19.19

1 Attacker Infection and user files encryption - - -

2 Victim payRansom() 133,695
(0.000401 ETH) $0.068 13.20

3 Attacker getVictims() - - 0

4 Attacker revealDecryptionKey() 69,170
(0.000208 ETH)

$0.035
(per victim) 11.37

5 Victim getDecryptionKey() 22,735
(0.000068 ETH) $0.011 14.40

Total Attacker 860,582
(0.002582 ETH) 0.4∗0.035n 38.97

Victim 156,430
(0.000469 ETH) $0.079

The developed smart contract has been written in Solidity language, and
deployed to the Ethereum Ropsten testnet1, where it can be verified with any
blockchain explorer like Etherscan [45]. It has been intentionally not optimized
and its use has been restricted to specific users.

Table 2 shows the execution costs for each step (function) of the pay-and-
pray protocol. The rest of protocols, pay-per-decrypt and proof-of-life, have
similar costs (even slightly smaller) and are not shown for the sake of brevity.

Results show that the costs of running the full protocol are clearly affordable
for all parties, overall considering the usual ransom amounts involved (in the
order of 0.5 BTC or more).

For example, running a full campaign similar to WannaCry, with more than
300,000 affected users, would have an total cost of approximately $10,500 in ex-
ecution and storage fees. However, this cost would not be paid by the attackers,
but would probably be included in the ransom requested from the victims. In
any case, the added cost respect to existing ransomware schemes is less than
one cent of a dollar for each victim.

Specifically, the attack setup phase cost (smart contract deployment) is less
than one dollar (step 0). After that, the ransomware encrypts the victims’
files and they start paying the ransom (steps 1 and 2). Then, attackers receive
an event with each payment (step 3), and the corresponding decryption key is
calculated and revealed calling to the function revealDecryptionKey() (step 4).
Finally, victims are signaled of the revelation with an event, which fires the call

1The smart contract has been deployed to the address
0x103193bff911d8ef979f8ba0015d36fbb3e72c17.

22

Table 3: Non-volatile storage costs in Ethereum. We have considered a gas price of 1 gwei (1
gwei = 10−9 ETH), and 1 ETH = $140 (at time of writing, March 2019).

Operation Gas/KB ETH/KB $/KB
READ 6,400 0.000032 $0.004
WRITE 640,000 0.0032 $0.448

to getDecryptionKey().
As can be observed, some retrieval operations, such as getVictims(), have an

associated storage cost and execution time of zero. This is because this function
uses read-only operations and is therefore free of charge. In addition, it can
also be considered immediate in terms of execution time, since the request is
processed by the local Ethereum node, and does not reach the network.

The total execution costs for attackers would be 0.4 + 0.035n dollars, where
n is the number of victims who have paid the ransom. For victims, the cost is
negligible compared to ransom (and, in any case, included in it). On the other
hand, it is well known that cryptocurrencies usually suffers sharp prices fluctu-
ations. However, even if the value of the Ether (the Ethereum cryptocurrency)
were to multiply its value several order of magnitude in the near future, the
running costs of these protocols would still be affordable.

From this total cost, most of it is for storage of decryption keys during the
revelation phase. In general terms, the storage space in public blockchains is
specially expensive compared to computation, in order to discourage its abusive
use. For example, the prices of non-volatile storage in Ethereum can be found
in Table 3. For the sake of comparison, storing 1KB in a cloud service like AWS
or Google Cloud costs about $0.025 dollars per gigabyte, more than seven order
of magnitude cheaper than Ethereum.

Although, as we have seen, the costs are perfectly affordable, attackers could
use some techniques to reduce them even more. For example, by using the
transaction’s log, a special data structure in the blockchain. These logs were
designed to use significantly less gas than usual contract storage. Specifically,
logs basically cost 8 gas per byte, whereas contract storage costs 20,000 gas per
32 bytes.

On the other hand, the data is not accessible from within any smart contract
(not even the contract that created it), but that is not a problem in our scenario.
By using this technique, attackers could use these logs as a kind of public listing,
in which each user could later retrieve their decryption key.

In summary, our experiments show that cost would not be a limiting factor
and that, at least from this point of view, these schemes would be also viable.

5.2. Performance Analysis and Scalability Issues
Public blockchains are known to suffer from scalability problems. For ex-

ample, it is estimated that Ethereum can process a few dozen transactions per
second, although possible solutions are being actively worked on [47, 48].

23

In this section we analyse whether this limitation can have a significant im-
pact on the proposed schemes. To this end, the execution times of the operations
of each scheme have been measured, and the total time calculated. Times have
been measured performing each operation ten times, discarding the minimum
and maximum times, and calculating the average of the rest. It is important
to note that the tests have been carried out in the Ropsten testnet, where the
confirmation times are higher and have greater variability than in the mainnet.

Results shown in Table 2 demonstrate that proposals are also viable in terms
of execution time and performance. As can be seen, the execution time is
between 10 and 20 seconds for each operation, which would allow completing a
full protocol round (payment/decryption key realese) in less than one minute.
This speed of response, unlike the hours or days of traditional ransomware
schemes, along with the automation capability, could represent a great incentive
for the system to be adopted by attackers.

6. Countermeasures and Future Work

Unfortunately, the virtually immutable nature of public blockchains makes
finding any kind of countermeasures to this threat extremely difficult. Indeed,
smart contracts cannot be blocked, deactivated or removed if the author has
not explicitly included appropriate mechanisms designed to do so.

Therefore, there are hardly any references in the literature about this pos-
sibility. Marino and Juels analyze in [49] the different possibilites for altering
or undoing smart contracts, but always from a legal perspective, and with the
contract owner permission (which obviously doesn’t apply to our scenario).

As stated, unfortunately there exist very few realistic countermeasures, be-
yond causing an intentional hard-fork in the blockchain to eliminate the mali-
cious smart contracts. However, in practice this would be extremely difficult, if
not impossible. Similar previous situations, like the infamous DAO attack [50],
seriously put the whole system at risk, when a hard-fork was forced to refund the
theft of more than 3.6 million ETH, the equivalent of $70 million at the time.
However, this decision was strongly contested by many Ethereum users, who
argued that the hard-fork violated the basic tenets of blockchain technology.

For all these reasons, it seems clear that it is very unlikely that users not
affected by ransomware attack based on the schemes described in this work were
willing to repeat the history. As a result, this lack of effective countermeasures
makes these schemes potentially very dangerous.

6.1. Future work
As previously mentioned, one of the main goals of this work is to demonstrate

the viability of these schemes, so they have been deliberately designed as simple
as possible, in order to keep complexity and execution costs at a minimum.

They could therefore greatly improved from various points of view, which
could be the subject of future research. The following possibilities will be briefly
analyzed below: (i) use of public-key cryptography, (ii) zero knowledge proofs
and (iii) state channels.

24

Public-key cryptography and ZKPs. Existing ransomware schemes use public-
key cryptography to send back encryption keys to the attackers. However,
when trying to mimic this approach using smart contracts, a series of specific
drawbacks arise: (i) prove that the attacker has the corresponding private key,
and (ii) reveal it when necessary.

In principle, it might seem that both problems could be solved with the use of
zero knowledge proofs, which allow to demonstrate that a file was encrypted with
the private key corresponding to a given public key. Although these proofs exist,
they wouldn’t be very useful in the ransomware scenario. The reason is twofold.
Firstly, the additional level of indirection (the file is actually encrypted with a
symmetric key, encrypted in turn with a public key) would further complicate
the design and implementation of the proof. Secondly, in any case, as outlined in
section 3.3, this kind of proof does not help with the semantic verification of the
property of the encrypted file, but only with the verification of the encryption
keys.

State channels. On the other hand, it would be interesting to explore the pos-
sibilities that state channels could offer to this type of blockchain-assisted ran-
somware and to malware in general.

In addition, although the cost is not a limiting factor, these channels could
help to reduce the exchanged messages and, therefore, the final cost even more.
However, state channels require direct communication between parties, which
could imply a great risk for attackers. A privacy layer could be added to address
this issue.

7. Conclusions

In this work, we have shown how cybercriminals could benefit from the use of
smart contracts running in public blockchains for carrying out ransomware at-
tacks. We have foresee and presented several proposals for the semi-automation
of ransomware schemes, relying only on symmetric cryptographic primitives and
simple arithmetic operations.

These novel protocols have been implemented as a proof-of-concept in the
Ethereum Ropsten testnet, with the aim of demonstrating its viability. In ad-
dition, the use of smart contracts enables the inclusion of new capabilities for
ransomware, such as the pay-per-file paradigm, that would be difficult to imple-
ment in traditional schemes. To understand the potential risk of this threat, we
have also evaluated the most important challenges and limitations an attacker
would face in their implementation, along with their advantages and disadvan-
tages.

In addition, we have analyzed the costs associated to the execution of these
protocols in a real Ethereum environment. The results show that the costs are
very low, which supports the idea of the viability of this threat also from a
economic point of view.

25

Therefore, the conclusions are clear. This new kind of blockchain-assisted
malware seems totally feasible, both from a technical and economical perspec-
tive. In fact, the authors believe that it is only a matter of time till they are
found in the open, in the form presented here or in a similar variation.

Unfortunately, as stated before, there is currently no effective or realistic
measure against such schemes. It is urgent, therefore, for the blockchain com-
munity to recognize and analyze this problem, in order to work on new and
innovative solutions, which may counteract these threats.

References

[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system (2009).
URL "http://bitcoin.org/bitcoin.pdf"

[2] M. Pilkington, Blockchain technology: principles and applications, in: Re-
search Handbook on Digital Transformations, Edward Elgar Publishing,
2016. doi:https://doi.org/10.4337/9781784717766.00019.

[3] C. Dannen, Introducing Ethereum and Solidity: Foundations of Cryptocur-
rency and Blockchain Programming for Beginners, 1st Edition, Apress,
Berkely, CA, USA, 2017.

[4] A. Juels, A. E. Kosba, E. Shi, The ring of gyges: Investigating the future
of criminal smart contracts, IACR Cryptology ePrint Archive 2016 (2016)
358.

[5] I. Eyal, A. E. Gencer, E. G. Sirer, R. V. Renesse, Bitcoin-ng: A scalable
blockchain protocol, in: 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), USENIX Association, Santa Clara,
CA, 2016, pp. 45–59.
URL https://www.usenix.org/conference/nsdi16/
technical-sessions/presentation/eyal

[6] A. L. Franzoni, C. Cárdenas, A. Almazan, Using blockchain to store teach-
ers’ certification in basic education in mexico, in: 2019 IEEE 19th In-
ternational Conference on Advanced Learning Technologies (ICALT), Vol.
2161-377X, 2019, pp. 217–218. doi:10.1109/ICALT.2019.00070.

[7] J. Cheng, N. Lee, C. Chi, Y. Chen, Blockchain and smart contract for
digital certificate, in: 2018 IEEE International Conference on Applied Sys-
tem Invention (ICASI), 2018, pp. 1046–1051. doi:10.1109/ICASI.2018.
8394455.

[8] B. Notheisen, J. B. Cholewa, A. P. Shanmugam, Trading real-world assets
on blockchain, Business & Information Systems Engineering 59 (6) (2017)
425–440. doi:10.1007/s12599-017-0499-8.
URL https://doi.org/10.1007/s12599-017-0499-8

26

"http://bitcoin.org/bitcoin.pdf"
"http://bitcoin.org/bitcoin.pdf"
http://dx.doi.org/https://doi.org/10.4337/9781784717766.00019
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal
http://dx.doi.org/10.1109/ICALT.2019.00070
http://dx.doi.org/10.1109/ICASI.2018.8394455
http://dx.doi.org/10.1109/ICASI.2018.8394455
https://doi.org/10.1007/s12599-017-0499-8
https://doi.org/10.1007/s12599-017-0499-8
http://dx.doi.org/10.1007/s12599-017-0499-8
https://doi.org/10.1007/s12599-017-0499-8

[9] Y. Yuan, F. Wang, Towards blockchain-based intelligent transportation
systems, in: 2016 IEEE 19th International Conference on Intelligent Trans-
portation Systems (ITSC), 2016, pp. 2663–2668. doi:10.1109/ITSC.2016.
7795984.

[10] R. Khalil, A. Zamyatin, G. Felley, P. Moreno-Sanchez, A. Gervais, Commit-
chains: Secure, scalable off-chain payments, Cryptology ePrint Archive,
Report 2018/642, https://eprint.iacr.org/2018/642 (2018).

[11] K. M. Khan, J. Arshad, M. M. Khan, Secure digital voting system based
on blockchain technology, Int. J. Electron. Gov. Res. 14 (1) (2018) 53–62.
doi:10.4018/IJEGR.2018010103.
URL https://doi.org/10.4018/IJEGR.2018010103

[12] R. Hanifatunnisa, B. Rahardjo, Blockchain based e-voting recording sys-
tem design, in: 2017 11th International Conference on Telecommunica-
tion Systems Services and Applications (TSSA), 2017, pp. 1–6. doi:
10.1109/TSSA.2017.8272896.

[13] D. Tse, B. Zhang, Y. Yang, C. Cheng, H. Mu, Blockchain application in
food supply information security, in: 2017 IEEE International Conference
on Industrial Engineering and Engineering Management (IEEM), 2017, pp.
1357–1361. doi:10.1109/IEEM.2017.8290114.

[14] H. M. Kim, M. Laskowski, Toward an ontology-driven blockchain design
for supply-chain provenance, Intelligent Systems in Accounting, Finance
and Management 25 (1) (2018) 18–27. arXiv:https://onlinelibrary.
wiley.com/doi/pdf/10.1002/isaf.1424, doi:10.1002/isaf.1424.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/isaf.1424

[15] H. Kaur, M. A. Alam, R. Jameel, A. K. Mourya, V. Chang, A proposed
solution and future direction for blockchain-based heterogeneous medicare
data in cloud environment, Journal of Medical Systems 42 (8) (2018) 156.
doi:10.1007/s10916-018-1007-5.
URL https://doi.org/10.1007/s10916-018-1007-5

[16] A. Young, M. Yung, Cryptovirology: extortion-based security threats and
countermeasures, in: Proceedings 1996 IEEE Symposium on Security and
Privacy, 1996, pp. 129–140. doi:10.1109/SECPRI.1996.502676.

[17] R. Brewer, Ransomware attacks, Netw. Secur. 2016 (9) (2016) 5–9. doi:
10.1016/S1353-4858(16)30086-1.
URL https://doi.org/10.1016/S1353-4858(16)30086-1

[18] E. Kalita, WannaCry Ransomware Attack: Protect Yourself from Wan-
naCry Ransomware Cyber Risk and Cyber War, Independently published,
2017.

27

http://dx.doi.org/10.1109/ITSC.2016.7795984
http://dx.doi.org/10.1109/ITSC.2016.7795984
https://eprint.iacr.org/2018/642
https://doi.org/10.4018/IJEGR.2018010103
https://doi.org/10.4018/IJEGR.2018010103
http://dx.doi.org/10.4018/IJEGR.2018010103
https://doi.org/10.4018/IJEGR.2018010103
http://dx.doi.org/10.1109/TSSA.2017.8272896
http://dx.doi.org/10.1109/TSSA.2017.8272896
http://dx.doi.org/10.1109/IEEM.2017.8290114
https://onlinelibrary.wiley.com/doi/abs/10.1002/isaf.1424
https://onlinelibrary.wiley.com/doi/abs/10.1002/isaf.1424
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/isaf.1424
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/isaf.1424
http://dx.doi.org/10.1002/isaf.1424
https://onlinelibrary.wiley.com/doi/abs/10.1002/isaf.1424
https://doi.org/10.1007/s10916-018-1007-5
https://doi.org/10.1007/s10916-018-1007-5
https://doi.org/10.1007/s10916-018-1007-5
http://dx.doi.org/10.1007/s10916-018-1007-5
https://doi.org/10.1007/s10916-018-1007-5
http://dx.doi.org/10.1109/SECPRI.1996.502676
https://doi.org/10.1016/S1353-4858(16)30086-1
http://dx.doi.org/10.1016/S1353-4858(16)30086-1
http://dx.doi.org/10.1016/S1353-4858(16)30086-1
https://doi.org/10.1016/S1353-4858(16)30086-1

[19] J. Berr, ‘WannaCry’ Ransomware Attack Losses Could Reach $4 Billion
[cited 07.01.2019].
URL cbsn.ws/2rluoXx

[20] J. Hernandez-Castro, E. Cartwright, A. Stepanova, Economic Analysis of
Ransomware, SSRN Electronic Journal.

[21] M. Conti, A. Gangwal, S. Ruj, On the economic significance of ransomware
campaigns: A bitcoin transactions perspective, CoRR abs/1804.01341.

[22] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, J. Hoffmann, Mobile-
sandbox: Having a deeper look into android applications, in: Proceedings
of the 28th Annual ACM Symposium on Applied Computing, SAC ’13,
ACM, New York, NY, USA, 2013, pp. 1808–1815. doi:10.1145/2480362.
2480701.
URL http://doi.acm.org/10.1145/2480362.2480701

[23] F. Mercaldo, V. Nardone, A. Santone, C. A. Visaggio, Ransomware steals
your phone. formal methods rescue it, in: 36th IFIP WG 6.1 International
Conference on Formal Techniques for Distributed Objects, Components,
and Systems - Volume 9688, Springer-Verlag, Berlin, Heidelberg, 2016, pp.
212–221. doi:10.1007/978-3-319-39570-8_14.
URL https://doi.org/10.1007/978-3-319-39570-8_14

[24] R. Shinde, P. V. der Veeken, S. V. Schooten, J. van den Berg, Ransomware:
Studying transfer and mitigation, in: 2016 International Conference on
Computing, Analytics and Security Trends (CAST), 2016, pp. 90–95. doi:
10.1109/CAST.2016.7914946.

[25] N. Kshetri, J. Voas, Do crypto-currencies fuel ransomware?, IT Professional
19 (5) (2017) 11–15. doi:10.1109/MITP.2017.3680961.

[26] K. Liao, Z. Zhao, A. Doupe, G. J. Ahn, Behind closed doors: measure-
ment and analysis of cryptolocker ransoms in bitcoin, in: 2016 APWG
Symposium on Electronic Crime Research (eCrime), 2016, pp. 1–13. doi:
10.1109/ECRIME.2016.7487938.

[27] D. Chaum, A. Fiat, M. Naor, Untraceable Electronic Cash, Springer New
York, New York, NY, 1990, pp. 319–327. doi:10.1007/0-387-34799-2_
25.
URL https://doi.org/10.1007/0-387-34799-2{_}25

[28] M. Jakobsson, A. Juels, Proofs of work and bread pudding protocols, in:
Proceedings of the IFIP TC6/TC11 Joint Working Conference on Secure
Information Networks: Communications and Multimedia Security, CMS
’99, Kluwer, B.V., Deventer, The Netherlands, The Netherlands, 1999, pp.
258–272.
URL http://dl.acm.org/citation.cfm?id=647800.757199

28

cbsn.ws/2rluoXx
http://doi.acm.org/10.1145/2480362.2480701
http://doi.acm.org/10.1145/2480362.2480701
http://dx.doi.org/10.1145/2480362.2480701
http://dx.doi.org/10.1145/2480362.2480701
http://doi.acm.org/10.1145/2480362.2480701
https://doi.org/10.1007/978-3-319-39570-8_14
https://doi.org/10.1007/978-3-319-39570-8_14
http://dx.doi.org/10.1007/978-3-319-39570-8_14
https://doi.org/10.1007/978-3-319-39570-8_14
http://dx.doi.org/10.1109/CAST.2016.7914946
http://dx.doi.org/10.1109/CAST.2016.7914946
http://dx.doi.org/10.1109/MITP.2017.3680961
http://dx.doi.org/10.1109/ECRIME.2016.7487938
http://dx.doi.org/10.1109/ECRIME.2016.7487938
https://doi.org/10.1007/0-387-34799-2{_}25
http://dx.doi.org/10.1007/0-387-34799-2_25
http://dx.doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/0-387-34799-2{_}25
http://dl.acm.org/citation.cfm?id=647800.757199
http://dl.acm.org/citation.cfm?id=647800.757199

[29] I. Bentov, R. Kumaresan, How to Use Bitcoin to Design Fair Protocols,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 421–439. doi:
10.1007/978-3-662-44381-1_24.
URL https://doi.org/10.1007/978-3-662-44381-1{_}24

[30] R. Kumaresan, T. Moran, I. Bentov, How to use bitcoin to play decen-
tralized poker, in: Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15, ACM, New York, NY,
USA, 2015, pp. 195–206. doi:10.1145/2810103.2813712.
URL http://doi.acm.org/10.1145/2810103.2813712

[31] R. Kumaresan, I. Bentov, How to use bitcoin to incentivize correct com-
putations, in: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’14, ACM, New York, NY, USA,
2014, pp. 30–41. doi:10.1145/2660267.2660380.
URL http://doi.acm.org/10.1145/2660267.2660380

[32] V. Buterin, Ethereum white paper: A next generation smart contract &
decentralized application platform [cited 24.10.2017].
URL https://github.com/ethereum/wiki/wiki/White-Paper

[33] G. Wood, Ethereum: a secure decentralised generalised transaction ledger
[cited 24.10.2017].
URL http://gavwood.com/Paper.pdf

[34] N. Christin, Traveling the silk road: A measurement analysis of a large
anonymous online marketplace, in: Proceedings of the 22Nd International
Conference on World Wide Web, WWW ’13, ACM, New York, NY, USA,
2013, pp. 213–224. doi:10.1145/2488388.2488408.
URL http://doi.acm.org/10.1145/2488388.2488408

[35] S. T. Ali, D. Clarke, P. Mccorry, Bitcoin: Perils of an unregulated
global p2p currency, in: Revised Selected Papers of the 23rd Interna-
tional Workshop on Security Protocols XXIII - Volume 9379, Springer-
Verlag New York, Inc., New York, NY, USA, 2015, pp. 283–293. doi:
10.1007/978-3-319-26096-9_29.
URL http://dx.doi.org/10.1007/978-3-319-26096-9_29

[36] A. Küpçü, A. Lysyanskaya, Usable optimistic fair exchange, Comput. Netw.
56 (1) (2012) 50–63. doi:10.1016/j.comnet.2011.08.005.
URL http://dx.doi.org/10.1016/j.comnet.2011.08.005

[37] M. Prince, Empty ddos threats: Meet the armada collective [cited
24.10.2017].
URL https://blog.cloudflare.com/empty-ddos-threats-meet-the-armada-collective/

[38] I. Ray, I. Ray, Fair exchange in e-commerce, SIGecom Exch. 3 (2) (2002)
9–17. doi:10.1145/844340.844345.
URL http://doi.acm.org/10.1145/844340.844345

29

https://doi.org/10.1007/978-3-662-44381-1{_}24
http://dx.doi.org/10.1007/978-3-662-44381-1_24
http://dx.doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-662-44381-1{_}24
http://doi.acm.org/10.1145/2810103.2813712
http://doi.acm.org/10.1145/2810103.2813712
http://dx.doi.org/10.1145/2810103.2813712
http://doi.acm.org/10.1145/2810103.2813712
http://doi.acm.org/10.1145/2660267.2660380
http://doi.acm.org/10.1145/2660267.2660380
http://dx.doi.org/10.1145/2660267.2660380
http://doi.acm.org/10.1145/2660267.2660380
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://gavwood.com/Paper.pdf
http://gavwood.com/Paper.pdf
http://doi.acm.org/10.1145/2488388.2488408
http://doi.acm.org/10.1145/2488388.2488408
http://dx.doi.org/10.1145/2488388.2488408
http://doi.acm.org/10.1145/2488388.2488408
http://dx.doi.org/10.1007/978-3-319-26096-9_29
http://dx.doi.org/10.1007/978-3-319-26096-9_29
http://dx.doi.org/10.1007/978-3-319-26096-9_29
http://dx.doi.org/10.1007/978-3-319-26096-9_29
http://dx.doi.org/10.1007/978-3-319-26096-9_29
http://dx.doi.org/10.1016/j.comnet.2011.08.005
http://dx.doi.org/10.1016/j.comnet.2011.08.005
http://dx.doi.org/10.1016/j.comnet.2011.08.005
https://blog.cloudflare.com/empty-ddos-threats-meet-the-armada-collective/
https://blog.cloudflare.com/empty-ddos-threats-meet-the-armada-collective/
http://doi.acm.org/10.1145/844340.844345
http://dx.doi.org/10.1145/844340.844345
http://doi.acm.org/10.1145/844340.844345

[39] H. Pagnia, F. C. Gärtner, On the impossibility of fair exchange without a
trusted third party, Tech. rep., TUD-BS-1999-02 (1999).

[40] G. Maxwell, The first successful zero-knowledge contingent payment [cited
24.10.2017].
URL https://bitcoincore.org/en/2016/02/26/
zero-knowledge-contingent-payments-announcement/

[41] S. Bowe, Demostranting zero-knowledge contingent payments [cited
07.01.2019].
URL https://z.cash/blog/science-roundup.html

[42] S. Bowe, Pay-to-sudoku [cited 07.01.2019].
URL https://github.com/zcash-hackworks/pay-to-sudoku

[43] G. Fuchsbauer, Subversion-zero-knowledge SNARKs, Cryptology ePrint
Archive, Report 2017/587, https://eprint.iacr.org/2017/587 (2017).

[44] B. Parno, J. Howell, C. Gentry, M. Raykova, Pinocchio: Nearly Practical
Verifiable Computation, in: Proceedings of the IEEE Symposium on
Security and Privacy, IEEE, 2013.
URL https://www.microsoft.com/en-us/research/publication/
pinocchio-nearly-practical-verifiable-computation/

[45] Etherscan [cited 07.01.2019].
URL https://etherscan.io/

[46] Cryptocompare [cited 07.01.2019].
URL https://www.cryptocompare.com/coins/eth/overview/BTC

[47] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, N. Zeldovich, Algorand: Scaling
byzantine agreements for cryptocurrencies, in: Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17, ACM, New York,
NY, USA, 2017, pp. 51–68. doi:10.1145/3132747.3132757.
URL http://doi.acm.org/10.1145/3132747.3132757

[48] V. B. Joseph Poon, Plasma : Scalable autonomous smart contracts, 2017.
URL https://plasma.io/plasma.pdf

[49] B. Marino, A. Juels, Setting standards for altering and undoing smart con-
tracts, in: J. J. Alferes, L. Bertossi, G. Governatori, P. Fodor, D. Roman
(Eds.), Rule Technologies. Research, Tools, and Applications, Springer In-
ternational Publishing, Cham, 2016, pp. 151–166.

[50] N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on ethereum
smart contracts sok, in: Proceedings of the 6th International Confer-
ence on Principles of Security and Trust - Volume 10204, Springer-Verlag
New York, Inc., New York, NY, USA, 2017, pp. 164–186. doi:10.1007/
978-3-662-54455-6_8.
URL https://doi.org/10.1007/978-3-662-54455-6_8

30

https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://z.cash/blog/science-roundup.html
https://z.cash/blog/science-roundup.html
https://github.com/zcash-hackworks/pay-to-sudoku
https://github.com/zcash-hackworks/pay-to-sudoku
https://eprint.iacr.org/2017/587
https://www.microsoft.com/en-us/research/publication/pinocchio-nearly-practical-verifiable-computation/
https://www.microsoft.com/en-us/research/publication/pinocchio-nearly-practical-verifiable-computation/
https://www.microsoft.com/en-us/research/publication/pinocchio-nearly-practical-verifiable-computation/
https://www.microsoft.com/en-us/research/publication/pinocchio-nearly-practical-verifiable-computation/
https://etherscan.io/
https://etherscan.io/
https://www.cryptocompare.com/coins/eth/overview/BTC
https://www.cryptocompare.com/coins/eth/overview/BTC
http://doi.acm.org/10.1145/3132747.3132757
http://doi.acm.org/10.1145/3132747.3132757
http://dx.doi.org/10.1145/3132747.3132757
http://doi.acm.org/10.1145/3132747.3132757
https://plasma.io/plasma.pdf
https://plasma.io/plasma.pdf
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8

8. Smart contracts code

NOTE FOR EDITOR AND REVIEWERS
We have doubts about whether or not to publish the source code, so we

would like to know the opinion of editor and reviewers. In any case, we could
make it available only on request.

8.1. Pay-and-pray

pragma solidity ^0.5.0;

contract PayAndPray {

// Minimum ransom amount to pay
uint public ransomAmount;
address public attacker;
enum State { Paid, KeyRevealed }
// Maximum time for the attacker to reveal keys (in hours)
uint dueTime = 24 * 3600;

// This is a type for a single proposal.
struct Victim {

address payable victimAddress; // Victim address
bytes32 keyCommitment; // Key commitment
bytes32 decryptionKey; // Decryption key for this victim
State state;
uint paymentDate;

}

mapping(uint256 => Victim) victimsMapping;
uint256[] victimIDs;

// Set the Attacker address
constructor () public {

attacker = msg.sender;
ransomAmount = 0;

}

modifier onlyAttacker() {
require(msg.sender == attacker,"Only attacker can call this function.");
_;

}

event KeyRevealed(string message);

//
// Functions called by victims
//
function payRansom(uint256 victimID, bytes32 commitment) public payable {

31

// Check that the paid amount is correct
require(msg.value >= ransomAmount, "Ransom amount insufficient.");

// Add a new victim to array
victimsMapping[victimID] = Victim({

victimAddress: msg.sender,
keyCommitment: commitment,
decryptionKey: "",
state: State.Paid,
paymentDate: now

});
victimIDs.push(victimID) -1;

}

function getDecryptionKey(uint256 victimID) public payable returns (bytes32){

// Recover victim data
Victim storage victim = victimsMapping[victimID];

// Must the ransom be refunded to victim?
if (victim.state == State.Paid && victim.paymentDate > now + dueTime)

// Refund the victim
//msg.sender.send(ransomAmount);
victim.victimAddress.transfer(ransomAmount);

if (victim.state == State.KeyRevealed)
// Return decryption key to victim
return victim.decryptionKey;

}

// This function returns all the victims request. Of course,
// it could be optimized by attackers to only return the list
// by chunks if this is very large
function getVictims()

public view
onlyAttacker
returns (uint256[] memory) {

// Look for victims with keys undisclosed
return victimIDs;

}

function revealKey(uint256 victimID, bytes32 decryptionKey)
public
onlyAttacker
returns (uint) {
// Check both arrays have same size
//require(victimIDs.length == decryptionKeys.length, "Both arrays lengths differ.");

32

// Recover victim data
Victim storage victim = victimsMapping[victimID];

// Check the commitment of the key
require(victim.keyCommitment == sha256(abi.encodePacked(decryptionKey)),

"Key commitment does not match");

// Store the victim’s decryption key
victim.decryptionKey = decryptionKey;
// Mark the key as revealed
victim.state = State.KeyRevealed;

// Launch an event that could be capture from JavaScript or
// an external oracle
emit KeyRevealed("Key for user revealed");

}

}

33

	plantilla_actualizada_ELSEVIER1.pdf
	Blockchain_based_Semi_Autonomous_Ransomware.pdf
	Introduction
	Background
	Blockchain basics
	Ransomware basics
	Ransomware spreading and infection
	Blockchains and smart contracts
	Blockchain and crime
	Threat Model and Security Guarantees
	Notational Conventions

	Exchange Fairness and Ransomware Automation
	Exchange fairness
	Zero Knowledge Contingent Payment (ZKCP)
	Application to malware

	Ransomware automation

	Semi-autonomous Blockchain-based Ransomware
	Pay-and-pray
	Pay-per-decrypt
	Proof-of-life
	Analysis of the C/R stage

	Experimental Results
	Storage and Execution Costs Analysis
	Performance Analysis and Scalability Issues

	Countermeasures and Future Work
	Future work

	Conclusions
	Smart contracts code
	Pay-and-pray

