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Abstract
In this paper, we present a novel method for the classification of mammograms using a unique
weighted association rule based classifier. Images are preprocessed to reveal regions of interest.
Texture components are extracted from segmented parts of the image and discretized for rule
discovery. Association rules are derived between various texture components extracted from
segments of images, and employed for classification based on their intra- and inter-class
dependencies. These rules are then employed for the classification of a commonly used
mammography dataset, and rigorous experimentation is performed to evaluate the rules’ efficacy
under different classification scenarios. The experimental results show that this method works well
for such datasets, incurring accuracies as high as 89%, which surpasses the accuracy rates of other
rule based classification techniques.
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I. Introduction
The design, development, and distribution of computer-aided image classification methods for
enhanced clinical care and delivery by physicians has recently gained importance. This new
found importance can be attributed, to a large degree, to the healthcare bottleneck in the delivery
of services, which results when providers do not have adequate classification and delivery
methods to handle the large amount of data made available by advancements in imaging. Data
mining methods offer precise, accurate, and fast algorithms for such classification using
dimensionality reduction, feature extraction, and classification routines. Consequently,
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association rule mining [6] has gradually emerged as an effective way to develop supervised
classification frameworks for enhanced sensitivity and specificity in medical image
classification.

In this paper, we present a new association rule based technique for medical image
classification. We extract texture features from images to form association rules, which are
then employed for classifier building and validation. Rigorous experimentation is performed,
and we achieve superior classification accuracy on a previously studied mammogram dataset,
demonstrating the efficacy of our technique.

The following sections of the paper are organized as follows. In Section II, we provide a brief
introduction to related research in the field of medical image classification and to the use of
association rules for image classification. In Section III, we outline the methodology in detail;
in Section IV, we present the results of our experiments along with comparisons to existing
techniques. In Section V, we present our conclusion.

II. RESEARCH AND RELATED BACKGROUND
The classification of medical images is a difficult and often computationally overwhelming
task. Digitized medical images contain labels, noise, and irregularities that must be minimized
before computational methods can be used to analyze them. Moreover, these images contain
several correlated features (or embedded isomorphisms), often referring to indicators of a
pathological or diagnostic state, which, when mined and exploited, can lead to superior
classification.

Because automated methods can help physicians make better diagnostic decisions, much
research has focused on content-based image retrieval (CBIR) in the medical domain ([10]
presents an excellent survey of such methods). Medical image classification, often a prelude
to a successful CBIR framework, has only recently attracted independent attention [6].
Mammogram classification has gradually emerged as an appealing domain for the evaluation
of design and for the implementation of such classification framework, especially by those
employing association rules [3]. For example, Ferreira et al [6] use wavelets to classify
mammograms into different categories. Recently, Association Rules (ARs) have attracted
interest as a means to achieve multi-class classification of mammograms [5], [11], [13].
Antonie et al [5] use association rules to classify digital mammograms into normal, benign,
and malignant classes. However, their technique is time consuming, requires labeling of
quadrants with abnormalities, and relies on very low support and confidence values, resulting
in the generation of weak rules. Ribeiro et al. [11] use texture features and association rules to
classify mammogram images. The major problems with this technique are the ad hoc
segmentation of images, the time consuming discretization of segments, and the constraint of
keeping the class label on right side of the rule. In [13], Yun et al. use a combination of
association rules with a rough set theory for mammogram classification.

In addition to the above, Tseng et al. [12] apply multilevel association rules to hierarchically
clustered objects from various images and perform object based segmentation on the image.
This technique is not widely applicable for medical images because they usually contain few
objects and because the objects may contain different abnormalities, i.e. different stages of
cancer in breast mammograms. There are many other techniques present in literature, but, in
the interest of space limitations, we restrict our discussion to the ones that are closely related
to our area of research.

In this paper, we present a unique technique based on finding associations within an image and
then relating those associations with images of the same class, to exploit both intra- and inter-
image relationships for classifier building and testing. Our algorithm, Weighted Association
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Rule based Classification (WAR-BC), uses a new rule weighting scheme, which can handle
unbalanced class data easily. Unbalanced datasets are not an exception, but a norm in diagnostic
classes of medical images. Rigorous experimentation is done to evaluate the efficacy of the
methods, and the results are reported as measures of accuracy, sensitivity and precision, and
confusion matrices.

III. PROPOSED METHODOLOGY
Our methodology consists of five major parts: data preprocessing, segmentation and feature
extraction, data preparation, association rule mining, and classifier training and classification
(Figure 1).

A. Data Preprocessing
Medical images present in the mammogram database are noisy, often containing deliberately
inserted identifiable labels, which need to be eliminated prior to rule discovery and
classification. Such artifacts can often lead to redundant and non-informative rules.
Furthermore, the images are usually large in pixel-size (1024×1024), and most of the area
consists of homogeneously colored background that gives limited useful information. For our
studies, we have employed the breast mammogram database made available by the
Mammography Image Analysis Society (MIAS)[2]. This dataset is freely available and has
been widely used for mammography classification in previous studies (such as in [5]).

During the preprocessing stage, we present a method based on the connected component theory
[7] to remove the labels from the image and crop the image to a relevant reduced size. Every
intensity image (Figure 2(a)) is transformed into its binary format (Figure 2(b)). Once the image
is transformed, we find the connected components present in the image, referring to the labels
on the image, the breast part of the mammogram, the black background, and any scattered noise
present. The connected component with the largest area is chosen as the segment of the
mammogram image containing the breast and is then extracted from the original image (Figure
2(c)).

The segmented image does not have smooth boundaries since it is obtained from a binary image
which has abrupt changes in pixel values from 0 to 1 and vice versa. The next step is to smooth
the breast boundaries using the following pseudocode.

Algorithm—Border Smoothing and Image Cropping (BSI-Crop)

Input: Segmented part of the mammogram, starting pixel and ending pixel points on each line
of the segment, original image, number of rows N, intensity threshold α = 10, border threshold
β = 20

Output: Cropped segmented and border smoothened image called
New_cropped_segmented_image

Method
(1) For every line (row) j in the segmented image ∀j < N

(2)  Scan the line

(3)  Start_pixel ← starting pixel position of the segment

(4)  End_pixel ← ending pixel position of the segment

(5)  Scan the same line on original image

(6)  Read left from Start_pixel
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(7)  New_Start_point(j) ← pixel position when five

(8)  consecutive pixels have intensity < α

(9)  Read right from End_pixel

(10)  New_End_point(j) ← pixel position when five

(11)  consecutive pixels have intensity < α

(12)  Change every pixel value to the left of

(13)  New_Start_point(j) and to the right of

(14)  New_End_point(j) to zero

(15) End For

(16) Tip_Border_left ← minimum (New_Start_point (1-N))

(17) Tip_Border_Right ← maximum (New_End_point (1-N))

(18)

(19) Left_border ← Tip_Border_left −β

(20) Right_border ← Tip_Border_right + β

(21) New_cropped_segmented_image ← crop the border

(22) smoothened image into Left_border and Right_border

(23) limits

In this phase, the segmented image is scanned in a row-major format, and the starting and
ending points of the segment on each line (row) are recorded (Figure 2(c)). The tip of left arrow
shows the starting point and the tip of right arrow shows the ending point in each row. This
starting and ending point tells us that where exactly the segmented breast part begins and ends
in each row. The same points are recorded on the original unsegmented image, and this image
is read, left from the starting point and right from the ending point (Figure 2(d)). A new starting
point is marked on the image when five consecutive pixels have an intensity of less than a
threshold (α=10) on the left side of the old starting point. Similarly, a new ending point is
marked when five consecutive pixels have an intensity of less than the threshold on the right
side of the old ending point. The threshold is selected after careful evaluation of the pixel
intensities for the breast part and for the background. Every pixel to the left of the new starting
point and to the right of the new ending point on this line is changed to zero. This procedure
is applied to each of the following lines of the original unsegmented image, and a new-
segmented and label free image with smooth boundaries is formed (Figure 2(e)). The new
image formed will not always occupy the entire 1024×1024 image frame. Once the borders
have been smoothened, the image is cropped in both directions to within the border threshold
(β=20) pixels of the tip of the border (Figure 2(f)). As a final step of preprocessing we perform
histogram equalization on the cropped images to improve their contrast (Figure 2(g)).

B. Segmentation and Feature Extraction
In the segmentation and feature extraction step, we first divide each image into several n × n,
non-overlapping segments. The size n is selected based on the expected granularity of the
feature base. For our experiments, we select 20 as size n. We then segment the images into
smaller blocks to capture the local relationships present in the image. Once the image has been
segmented into blocks, eight texture features (Table 1) are extracted from each segment. Hence,
each segment represents a feature vector length of eight. Each vector is given a unique Segment
ID, which, in our case, is the number of the segment from which the features were extracted,
e.g. TID 1 (f1, f2, f3…………………..f8) and TID 2 (f1, f2, f3…………………..f8). We use
eight of the fourteen Haralick [8] coefficients. The pseudocode for image segmentation and
feature extraction is provided below.
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Pseudocode for Segmentation and feature extraction
Algorithm: SEgmentation and Feature Extraction (SE-FEX) divides the image into different
non-overlapping segments, extracts features from these segments and arranges them in a
Transactional Database

Input: Preprocessed imagesI1, I2,…..…, IN, Segment size nxn, set of discrete values a feature
can take {ν1, ν2,……., νk}, number of Haralick texture features H

Output: Images I1, I2, ……., IN in transaction database format where each transaction is a
vector representing features extracted from each segment

Method
(1) For every Image Ij (1....r,1…c) ∀j ∈ (1..N), r shows

(2) number of rows and C number of columns

(3)  Number of segments (Ns) ← (r*c)/(n*n)

(4)  For every segment Sl ∀l ∈ (1..Ns)

(5)   Sl(Ij[Fh]) ← νt∀ t ≤ k, h ≤ H, j ≤ N, l ≤ Ns

(6)   extract features from the segment Sl

(7)  Endfor

(8) Endfor

For our experiment, we used the following notations: P(i,j) is an entry in the co-occurrence/
spatial dependence matrix with row number i and column number j; μx, and μy are the means
for rows and columns, respectively, and σx, and σy are the corresponding standard deviation.
Four possible angular nearest-neighbor distances can be used to calculate the co-occurrence
matrix: 0°,45°,90°,135°. The value of all the features is calculated in these four directions, and
the average value is represented as the actual value of a feature. We use the 1-nearest neighbor
distance approach to calculate the co-occurrence matrix.

C. Data Preparation
Once the features have been extracted, we need to preprocess the data so that it can be used
for association rule mining. During this phase, noise is removed by eliminating segments that
contain ‘NaN’ values, because this information comes from the image background and is
unemployable. Once this step is complete, we then perform Z-Score normalization on the data,
which normalizes attribute A based on mean and standard deviation.

Z-Score normalization maps a value ν of A to ν′ using the formula: -

where Ā is the mean, and σA is the standard deviation of the attribute.

Next, the continuous feature values are discretized into ten intervals using the equi-width
binning method. The training data for each feature fi over all the classes is combined to find
the minimum (min_fi) and maximum (max_fi) values for feature fi. These minimum and
maximum values are then used to discretize the continuous values for fi into ten equi-width
intervals. The length of each interval is calculated using the formula li = (max_fi−min_fi)/10.
The data in each bin is now uniquely labeled to substitute for this quantitative value.
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D. Association Rule Mining
We represent each image formally as a vector of features. Let I denote the set of all images of
a particular class, and let the feature take a set of k discrete values {ν1, ν2,......., νk}. We denote
the value of feature Fi for image Ij by Ij[Fi]. For each image (Ij) and feature (Fi) and for each
set X of images, X ⊆ I, p ∈ {l,2,....,k}, define the present sets of Ij |Fi Ij and X: present(Ij|
Fi,p):=φ if Ij[Fi] ≠ νp {i} if Ij[Fi] = νp, present(Ij,p):= {i|Ij[i] = νp} and

. Here present(X,p) represent the frequent itemset X. We also
define for some index, set P, and for some features, {Fi|i∈P}., the present set of X given {Fi |

i ∈ P} as follows: . For X ⊆ I, p ∈ {1,2,...., k},
we define p-support of X to be, s(X,p):=#present(X | {Fi | i ∈ P}, p). For disjoint subsets X
and Y of I, p ∈ {1,2,....,k}, we write X(p) ⇒ Y(p) to indicate that X ∩ Y = ∅ and present
(X,p) ⊆ present(Y,p). We refer to X(p) ⇒ Y(p) as an association rule. An association rule has
a support s(X(p) ⇒ Y(p)), defined as, s(X(p) ⇒ Y(p)):= {i | present(X | {Fi | i ∈ P},p) ⊆ present
(Y | {Fi | i ∈ P}, p). Finally, we define the confidence of X(p) ⇒ Y(p) as follows:

These association rules are discovered for every image of every class using the apriori method
[3]. Figure 3 shows a representative example of some of these rules. The first rule in the figure
signifies that when value of 5th feature is 110, the value of 8th feature is 91, and the value of
6th feature is 92, then the value of the 1st feature is 94 with a support of 98 and a confidence
of 100%. In the training phase (as described in the next section), these rules will be used to
build an associative classifier, which is then used to classify the images in the test class.

E. Classifier Training and Classification
A fixed percentage of data is selected from each of the classes present in the training phase.
Once the association rules have been discovered for training images, we combine the rules for
the images in each class, based on the amount of training data employed. The rules for images
belonging to the same class are combined into a class-level association rule set. From this set,
we calculate the frequency of each rule for that class (the intra-class weight of a rule). The
frequency information refers to the percentage of training images in a particular class in which
the rule is present. It is possible that the same rule might be present in the images of other
classes; therefore, we assign another frequency weight to each rule based on its presence across
multiple classes (the inter-class weight of a rule). For this weight assignment, the class-level
rule sets from all the classes are combined to form a global set, which has only unique rules
present throughout different classes. Associated with each rule is the frequency of the rule in
each class.

The weighing approach is described in the following pseudocode.

Pseudocode for Rule weighting
Algorithm: Rule Weighting (R-Weight) is used to provide Horizontal and Vertical weights
to every rule present in the training database

Input: Number of classes C, combined list of training rules for each class LCi, Number of rules
in each class Cj, Total number of rules N

Output: Horizontal and Vertical weight matrices of rules
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Method
(1) For every rule RiCj ∀i ≤ N, j ≤ C

(2)  Frequency (RiCj) ← percentage of images in

(3)   Cj, having RiCj

(4)  Hrizontal_weight (RiCj) ←

(5)

  Frequency (RiCj)/ ∑
j=1

C
RiC j

(6) End For//Horizontal weighting complete

(7) For every class j ∀ j ≤ C

(8)  Rank_rulesj ← Sort rules according to confidence

(9)   and then support in each confidence

(10)  For every rule RiCj ∀ i ≤ Cj, j ≤ C

(11)  Vertical_weight (RiCj) ← (Cj – Rank_rules(RiCj))

(12)  End For

(13)  Normalized_weight(RiCj) ← normalize vertical

(14)  weights in the range 0–1

(15) End For

Two rule measures, horizontal weight and vertical weight, are assigned to each rule. Horizontal
weight is calculated based on the frequency of a rule across the different classes. Once the
frequency has been calculated for each class, it is divided by the sum of all the frequencies of
that rule over different classes to get a relative frequency. This relative frequency is defined
as the horizontal weight of a rule for that particular class. For example, suppose there are 100
unique rules present in total across all the classes. Say rule R1 is present in 30% of training
images in class 1, 70% in class 2, and 20% in class 3. Then the frequency of R1 is, in class 1,
0.30, in class 2, 0.70, and in class 3, 0.20. The relative frequency/horizontal weight of R1 for
class 1 is 0.30/(0.30+0.70+0.20)=0.25, for class 2 is 0.70/1.2=0.583, and for class 3 is
0.20/1.2=0.166.

For vertical weighing, rules are sorted in every class (in class-level rule set) according to the
decreasing order of the confidence value of a rule. It should be noted that more than one rule
may have the same confidence value. To reduce this occurrence, the rules are further sorted,
within each confidence, according to decreasing order of the support value. The rule with the
highest confidence/support pair gets the first rank and the highest weight. The highest weight
is the number of rules present in that class. For example, if 80 rules are present in a class, then
the rule with rank 1 is assigned a weight of 80. The second ranked rule is assigned a weight of
one less than the first ranked rule, which, in our example, is 79. The third ranked rule is assigned
a weight, of two less than the first ranked rule, and so on. The last ranked rule is assigned a
weight of 1. These weights are then normalized in the 0–1 range.

Finally, we take the number of items in a rule into account. The actual weight of the rule is the
sum of its horizontal and vertical weight multiplied by the cardinality of rule (the number of
items present in the rule). If C = Total No. of classes, N = Total global rules, CDi = Cardinality
of rule Ri, ∀ i ≤ N

Cj = Rules in class j, ∀ j ≤ C

HjRi = Horizontal weight of Rule Ri for class

j, ∀ (i ≤ N, j ≤ C)
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VjRi = Vertical weight of Rule Ri for class

j, ∀ (i ≤ Cj, j ≤ C)

Q = No. of rules from query Image which match with global set of rules (N)

Then the weight of a rule Ri for class Cj is defined by the formula: -

Classification: The first step in the classification of a query image is to generate association
rules for the image using the same confidence and support as the images in the training data.
Then, each rule from the query image is taken and matched with the global rule set to find its
horizontal weight. The rule is then matched with class-level rule sets to find its vertical weight
in each class. A match is defined as the matching of all the items in a rule body, both on the
left and right hand side of the rule. To mark a match, the horizontal and vertical weight of the
rule is added and then multiplied by the number of items present in the rule. The resultant is
called the score of the rule. The procedure is repeated for each rule in the query image. Finally,
the scores of the matching rules are added on a class-by-class basis and a cumulative sum is
calculated for each class. The image is classified to the class with the highest cumulative sum.
The formula for sum of all the rules for class Cj, is defined by the formula: -

Then the output label (predicted class) can be decided by the formula: -

Ni = No. of query images from class i

Qi = No. of images in class i which were correctly predicted by the classifier. Then accuracy
for class i can be defined by:

And the total accuracy is given by: -
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The classification mechanism is shown in Figure 4.

IV. EXPERIMENTS
We tested our methodology WAR-BC on the Mammography Image Analysis Society (MIAS)
[2] mammogram database. This database is commonly used for Mammography classification
[5]. A total of 322 images from three classes: normal, benign, and malign, are present in the
database [5],[2]. Among these images, 208 belong to the normal class, 63 belong to the benign
class, and 51 belong to the malign class.

We compare our results with those of [5], [4], and [13]. In [4] the authors use two techniques
to classify the mammograms. These are: a three layer (input, hidden, and output) back
propagation neural network (BPNN) and an association rule based classifier (ARC-AC). In
BPNN, the input layer has 69 nodes, the hidden layer has 10 nodes, and the output layer has 1
node. The node of the output layer classifies a query image. ARC-AC uses association rules
to classify images, with an initial support set at 10% and an initial confidence set at 0%. The
confidence is increased in the tuning phase, depending on the accuracy of the training data.
ARC-BC [4] is an improvement over ARC-AC, where the association rules are formed for
each class separately, rather than for the entire dataset, with one support and one confidence.
The results using ARC-BC are better than the results using ARC-AC, and hence, we only
compare our results with ARC-BC. In [13] an associative classifier is combined with a rough
set theory to build a hybrid classifier called JAC. For further information on the workings of
these classifiers, we recommend [5], [4], and [13]. The results of our comparison are presented
in Table 2. As shown in the table, our approach (WAR-BC) demonstrates better accuracy than
previous approaches.

A. Associative Classification
We illustrate our results using three percentage sets of training/testing data 70/30, 80/20, and
90/10. We keep the support value low (4%) and the confidence level high (90%). Then, we
mine all the classes for association rules with the same support and confidence.

Our weighting schema can easily handle multiple classes with unbalanced data. This ability to
handle unbalanced data is an important improvement to existing association rule techniques
which are sensitive to unbalanced data (ARC-AC). Further, we use true association rules, rather
than class constrained rules, where the class is kept on the right-hand side of the rule like the
ones used by ARC-AC and ARC-EC. Consider a rule A,B,C,D ⇒ Ci. This rule could be present
in both C1 and C2, and hence, could cause confusion for the classifier. Looking at this rule
more carefully A, B, C, D is actually a frequent itemset which might be present in more then
one class. However, a rule A,B ⇒ C, D or A ⇒ B,C,D might be present in only one of the two
classes C1 and C2. Hence, this rule can be used as an important discriminator for classification
purposes. Using experimentation, we demonstrate this property and show that classification
accuracy with class-constrained rules is lower than non-class constrained rules.

We perform ten cross validations to compare to the results of [5], [4], and [13]. Table 2 shows
the comparison of the results obtained using our technique with the results obtained using other
methods.

Results for classification with class-constrained rules (WAR-CCBC) are presented in second
column of Figure 5(a). In BP NN, ARC-BC, and JAC, results for 90% training and 10% testing
data are shown (Table 2). The average accuracy of our technique for the same training/testing
data is almost 10% higher than ARC-BC, 8% higher than BP NN, and 12% higher than JAC.
Even with WAR-CCBC, our accuracy is higher than all the other techniques. In addition, we
experimented with less training data (70% and 80%) and obtained an average accuracy (over
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10 splits of data) higher than that of BP NN, ARC-BC, and JAC. Figure 5(b) shows these
results.

Further we also calculate the precision and sensitivity as follows.

In this case, TP = images which are normal and are labeled normal by the classifier; FP =
images which are abnormal, but are labeled normal; TN = images which are abnormal and are
labeled abnormal, and FN = images which are normal, but are labeled abnormal. Figure 6 shows
the graphs for the Precision and Sensitivity of three pairs (70/30, 80/20, and 90/10) over ten
splits of the data. The graphs show that the precision and sensitivity values are fairly high for
all pairs of classification. For 90% training data, the average precision is 91.83%, and the
average sensitivity is 96.36%.The graphs show that the precision and sensitivity values are
fairly high for all pairs of classification. For 90% training data, the average precision is 91.83%,
and the average sensitivity is 96.36%. Figure 7 shows the confusion matrix for the best-case
scenario. We can see that none of the normal image is misclassified into other classes, and only
one image each from the benign and malign classes are misclassified into the normal class.

From our experiments, we also note that the misclassification is an image issue, and not an
issue with the classifier. Regardless of the percentage of data taken for classifier training, some
images are repeatedly misclassified into the same class. This directed us to look for
classification separately in different density mammograms, such as fatty, glandular, and dense
tissue. Details about these experiments will be provided in Section IV E.

B. One vs. All classification
Additionally, we perform experimentation with a different classification model, a multiple
classification model vs. the all classifier model previously used. In this classifier, we build a
separate binary classifier for each of the three classes. While building the classifier for class
Normal, the rules for class Normal is kept as such, but the rules from class Benign and class
Malignant are combined to form the second class, named Other. The horizontal and vertical
rule weighting procedure is the same as described in Section III E, except that instead of three
classes, we now have two. For training the classifier for class Benign, the rules from class
Normal and Malignant are combined to form class Other. For training class Malignant, the
rules from class Normal and benign are combined to form class Other. Each Classifier is trained
to classify an incoming image only into its own class by giving it a certain score. When a new
image comes for classification, every classifier gives it a score, and the image is classified into
the class with the highest score. For example, classifier Normal gives the new image a score
of 0.8, classifier Benign gives it a score of .04, and classifier Malignant gives the image a score
of .99. Next, the image is classified to class Malignant as the classifier for this class gives it
the highest score for its class. The third column of Figure 5(a) shows these results.

C. Fuzzy-K Nearest Neighbor Classification
In our previous experiments, we employed the Harlick feature for the extraction of association
rules and then used those rules for classification purposes. While Harlick features possess
discriminative power when applied independently, the association rules are expected to boost
classification validity by introducing isomorphisms. Independent evaluation of the efficacy of
these features and comparison of the evaluation to our associative classification-based results
will provide us with an empirical measure of improvements that we have been able to achieve
with association rule discovery.
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As a preliminary step, the data representation is modified for use with FKNN based
classification. A new data matrix of Harlick features is extracted from segments formed where
each row represents an image and each column represents a set of features extracted from each
segment. If an image has n segments, then the total number of columns for that image would
be n × 8 (because we are experimenting with eight features). Class labels are included for
training and excluded for testing.

To make an accurate comparison, we take the same amount of data for training (90%) and
testing (10%) as we did for the previous experiments. The results are shown in Table 2.
Furthermore, to check the efficacy of the association rules extracted by our algorithm, we do
another set of experiments with F-KNN, in which we provide the association rules for an image
as input to F-KNN (named this experiment F-KNN2) instead of using raw Haralick features
as input.

Class-level association rule sets (see Section III E) were combined to form an aggregate rule
set (Figure 8) over a complete database. Unique rules from this aggregate rule set are selected
and arranged in a data matrix. Each row in the data matrix represents an image and two
consecutive columns represent the support and confidence of a single rule. Since not all the
training images have every unique rule, for an image (row) which did not have a particular rule
from the aggregate rule set, the corresponding columns were set to zero. The columns
containing the confidence and support for a rule Ri can be located by the function (i−1)*2+1.
So the rule R30 confidence and support for all the images is found in columns 59 and 60,
respectively. Figure 5(c) shows the results for these experiments.

D. Hierarchical Agglomerative Clustering using Induced Rules
The associative features that we have extracted in the previous steps have discriminative power
that can be evaluated by an independent feature and rule classification algorithm. In pursuit of
this evaluation, we have applied a hierarchical agglomerative cluster algorithm (PNC2) that
induces rules in the context of direct generation of “if-then” rules for classification tasks [1].
We have performed rigorous experimentation to evaluate the efficacy of the association rules
using this method. Initially, the same input data matrix as F-KNN is given as input to PNC2
for learning. The model training time with this data matrix is prohibitively large (25 hours on
a single processor AMD opteron 2.39 GHz Machine). However, the testing accuracy was only
53.13%. In an attempt to boost the model training runtime for the 10-fold cross validation, we
take four consecutive segments (in row-major format) for each image from original data matrix
and average the features to extract the derived aggregated value. This reduces the data size and
time for model learning significantly without compromising the training accuracy. The results
are shown in Table 2. For further information about the working of FKNN and PNC2 we
recommend [1] and [9].

E. Discriminative Classification of Domain Classes
In this set of experiments, we use association rule based classification to classify normal vs
benign vs malignant cases, based on the tissue densities. Of the 322 total images, 108 are fatty,
101 are glandular, and 112 are dense. Images in each density class are further divided according
to the abnormality present into: Normal, Benign, and Malignant classes. For the fatty dataset,
there are 67 Normal, 23 benign, and 18 malignant; for the glandular dataset, there are 65 normal,
20 benign, and 16 malignant; and for the dense dataset, there are 76 normal, 20 benign, and 16
malignant images. Classifier training/testing is performed separately for each density class.
Again, we run experiments with three different pairs of data (70/30, 80/20, and 90/10). Here,
we perform a 5-fold cross validation. The average accuracy for density in the class fatty over
5 runs (Figure 9) for 70/30 data pair is 77%, for 80/20 is 86.84%, and for 90/10 is 95%. Accuracy
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in the glandular class is 85%, 84.38%, and 88%. For the dense class, accuracy is 84.23%,
87.7%, and 86.6%.

V. CONCLUSION
Mammogram classification is an overarching image classification problem. In this paper, we
have presented a novel framework for the improvement of mammogram classification, which
includes a new preprocessing methodology for segmenting, a unique associative rule discovery
based algorithm for classification and an evaluation of the efficacy of raw and derived features
using fuzzy K-nearest neighbor and agglomerative clustering of associative features. In
addition, we have presented a novel framework for the weighting of the rules based on rule
presence in different classes to employ intra-class and inter-class similarities. Our approach
eliminates the needs of using class constraining rules, which boosts the effectiveness of the
discovered rules employed as discriminatory features. Our detailed experimental results
demonstrate that our technique is superior to existing techniques for mammogram classification
using association rules. The expert classifier results demonstrate the robustness of the derived
feature vectors suggesting opportunities for future elucidation and refinement of this work.
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Fig. 1.
Proposed Methodology: This figure explains the overall computing framework followed in our
approach. The methodology is described in detail in the paper.
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Fig. 2.
(a) Original Image (b) Binary Representation (c) Segmented Breast Part (d) Unsegmented
Image with Starting and Ending Point Information (e) Segmented and Border Smoothed Image
(f) Cropped Image (g) Normalized Image: This figure presents a diagrammatic description of
the various image preprocessing and segmentation procedures employed to prepare the image
for the following feature extraction procedures.
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Fig. 3.
Representative Examples of Rules Extracted: The figure represents some sample rules that are
extracted using the proposed approach. The first column in each row is an assigned rule-id.
The antecedents of rules are before the right arrow and the descendents are following the arrow.
Note that some rules have one (level-1) antecedent and some have multiple antecedents
(level-2, level-3, etc.). The features participating in rules are represented by numerical labels
as a result of discretization of rules. The calculated support and confidence measures of rules
are indicated in brackets after the rule.
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Fig. 4.
Classification Mechanism of the System: The figure explains how a query image with an
unknown class label is assigned to a class by comparison with existing rule sets during
Associative Classification. Depending on the combined sum of weights for each class, the
image is assigned to a particular class.
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Fig. 5.
(a) Accuracies for Class Constrained Rules and Multiple One vs. All Classifiers (WAR-CCBC
and 1 Vs. All) respectively (b) Accuracies for 70% and 80% Training Data (c) Accuracies for
using Association Rules as Input Data: The figure explains the accuracy of our proposed
method when compared with other approaches for same selection of training and testing
datasets in (a) and (c) and different training and testing pairs in (b). A 10 cross validation is
performed to reduce any selection bias.
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Fig. 6.
(a) Precision over 10 Runs (b) Recall over 10 Runs: The figures explain the change of Precision
(a) and Recall (b) with different percentages of training versus testing data. The experiments
are repeated ten times each (10-cross validation) to remove any selection bias that might result
due to randomly selecting a fixed percentage of training images. Note the boost in accuracy
with a high percentage of training data. The fluctuation owing to different runs is reduced with
greater percentage for training.
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Fig. 7.
Confusion Matrix for the Best Case Scenario: The figure shows the confusion matrix for three
classes considered for classification. The number indicates the number of cases reported. The
horizontal rows are true classes, and the vertical columns are reported classes. The Benign and
Malign classes are accurately separated from each other, and class Normal causes most
misclassification.
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Fig. 8.
Combining Class Level Rule Sets into Aggregate Set Matrix: To evaluate the efficacy of
association rule descriptors as discriminatory features, the data is rearranged in a feature matrix
as shown in the figure. This feature set is given as an input to the classifier for classifier building
and testing.
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Fig. 9.
Domain Specific Classification of Mammograms for Different Training/Testing Percentage
Pairs (a) 70/30 (b) 80/20 (c) 90/10: To evaluate the impact of tissue density we ran experiments
separately for each density class of Fatty, Glandular, and Dense. Here X-axis represents the
five runs, while the Y-axis represents the accuracy rate.
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Table 1

Harlick Texture Features for Feature Representation

Feature Label. Feature Calculation

F1 Energy

∑
i=0

n
∑
j=0

n
{p(i, j)}2

F2 Contrast

∑
i=0

n
∑
j=0

n
(i − j)2p(i, j)

F3 Local Homogeneity

∑
i=0

n
∑
j=0

n p(i, j)

1 + (i − j)2

F4 Correlation

∑
i=0

n
∑
j=0

n
((ij)p(i, j) − μxμy) / σxσy

F5 Entropy

− ∑
i=0

n
∑
j=0

n
p(i, j) log p(i, j)

F6 Cluster Shade

∑
i=0

n
∑
j=0

n
(i − Mx + j − M y)3p(i, j)

F7 Information measure of correlation HXY-HXY1/max(HX,HY)

Ft Maximum Probability maxi,jP(i,j)

where,
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