ON HYPERGRAPHS WITHOUT LOOSE CYCLES

JIE HAN AND YOSHIHARU KOHAYAKAWA

ABSTRACT. Recently, Mubayi and Wang showed that for $r \ge 4$ and $\ell \ge 3$, the number of *n*-vertex *r*-graphs that do not contain any loose cycle of length ℓ is at most $2^{O(n^{r-1}(\log n)^{(r-3)/(r-2)})}$. We improve this bound to $2^{O(n^{r-1}\log\log n)}$.

§1. INTRODUCTION

Let two graphs G and H be given. The graph G is called H-free if it does not contain any copy of H as a subgraph. One of the central problems in graph theory is to determine the extremal and typical properties of H-free graphs on n vertices. For example, one of the first influential results of this type is the Erdős-Kleitman-Rothschild theorem [3], which, for instance, implies that the number of triangle-free graphs with vertex set $[n] = \{1, \ldots, n\}$ is $2^{n^2/4+o(n^2)}$. This has inspired a great deal of work on counting the number of H-free graphs. For an overview of this line of research, the reader is referred to, e.g., [2,9]. For a recent, exciting result in the area, see [7], which also contains a good discussion of the general area, with several pointers to the literature. These problems are closely related to the so-called Turán problem, which asks to determine the maximum possible number of edges in an H-free graph. More precisely, given an r-uniform hypergraph (or r-graph) H, the Turán number $\exp(n, H)$ is the maximum number of edges in an r-graph G on n vertices that is H-free. Let $\operatorname{Forb}_r(n, H)$ be the set of all H-free r-graphs with vertex set [n]. Noting that the subgraphs of an H-free r-graph G are also H-free, we trivially see that $|\operatorname{Forb}_r(n, H)| \ge 2^{\exp(n, H)}$, by considering an H-free r-graph G on [n] with the maximum number of edges and all its subgraphs. On the other hand for, fixed r and H,

$$|\operatorname{Forb}_{r}(n,H)| \leq \sum_{1 \leq i \leq \exp(n,H)} \binom{\binom{n}{r}}{i} = 2^{O(\exp(n,H)\log n)}.$$
(1)

Hence the above simple bounds differ by a factor of $\log n$ in the exponent, and all existing results support that this $\log n$ factor should be unnecessary, i.e., the trivial lower bound should be closer to the truth.

There are very few results in the case r > 2 and $ex_r(n, H) = o(n^r)$. The only known case is when H consists of two edges sharing t vertices [1,4]. Very recently, Mubayi and Wang [8] studied $|Forb_r(n, H)|$ when H is a loose cycle. Given $\ell \ge 3$, an *r*-uniform loose cycle C_{ℓ}^r is an $\ell(r-1)$ vertex r-graph whose vertices can be ordered cyclically in such a way that the edges are sets of

Date: 2018/07/10, 9:02pm

The first author is supported by FAPESP (2014/18641-5, 2013/03447-6). The second author is partially supported by FAPESP (2013/03447-6, 2013/07699-0), CNPq (310974/2013-5, 459335/2014-6) and NUMEC/USP (Project MaCLinC).

consecutive r vertices and every two consecutive edges share exactly one vertex. When r is clear from the context, we simply write C_{ℓ} .

Theorem 1. [8] For every $\ell \ge 3$ and $r \ge 4$, there exists $c = c(r, \ell)$ such that

$$|\operatorname{Forb}_{r}(n, C_{\ell})| < 2^{cn^{r-1}(\log n)^{(r-3)/(r-2)}}$$
(2)

for all n. For $\ell \ge 4$ even, there exists $c = c(\ell)$ such that $|\operatorname{Forb}_3(n, C_\ell)| < 2^{cn^2}$ for all n.

Since $\exp(n, C_{\ell}) = \Omega(n^{r-1})$ for all $r \ge 3$ [5, 6], Theorem 1 implies that $|\operatorname{Forb}_3(n, C_{\ell})| = 2^{\Theta(n^2)}$ for even $\ell \ge 4$. Mubayi and Wang also conjecture that similar results should hold for r = 3 and all $\ell \ge 3$ odd and for all $r \ge 4$ and $\ell \ge 3$, i.e., $|\operatorname{Forb}_r(n, C_{\ell})| = 2^{\Theta(n^{r-1})}$ for all such r and ℓ . In this note we give the following improvement of Theorem 1 for $r \ge 4$.

Theorem 2. For every $\ell \ge 3$ and $r \ge 4$, we have

$$|\operatorname{Forb}_{r}(n, C_{\ell})| < 2^{2r^{2}\ell n^{r-1}\log\log n}$$
(3)

for all sufficiently large n.

In what follows, logarithms have base 2.

§2. Edge-colored r-graphs

Let $r \ge 2$ be an integer. An *r*-uniform hypergraph G (or *r*-graph) on a vertex set X is a collection of *r*-element subsets of X, called hyperedges or simply edges. The vertex set X of G is denoted V(G). We write e(G) for the number of edges in G. An *r*-partite *r*-graph G is an *r*-graph together with a vertex partition $V(G) = V_1 \cup \cdots \cup V_r$, such that every edge of G contains exactly one vertex from each V_i ($i \in [n]$). If all such edges are present in G, then we say that G is complete. We call an *r*-partite *r*-graph balanced if all parts in its vertex partition have the same size. Let $K_r(s)$ denote the complete *r*-partite *r*-graph with *s* vertices in each vertex class.

We now introduce some key definitions from [8], which are also essential for us. Given an (r-1)-graph G with $V(G) \subseteq [n]$, a coloring function for G is a function $\chi: G \to [n]$ such that $\chi(e) = z_e \in [n] \setminus e$ for every $e \in G$. We call z_e the color of e. The pair (G, χ) is an edge-colored (r-1)-graph.

Given G, each edge-coloring χ of G gives an r-graph $G^{\chi} = \{e \cup \{z_e\} : e \in G\}$, called the *extension* of G by χ . When there is only one coloring that has been defined, we write G^* for G^{χ} . Clearly any subgraph $G' \subseteq G$ also admits an extension by χ , namely, $(G')^{\chi} = \{e \cup \{z_e\} : e \in G'\} \subseteq G^*$. If $G' \subseteq G$ and $\chi \upharpoonright_{G'}$ is one-to-one and $z_e \notin V(G')$ for all $e \in G'$, then G' is called *strongly rainbow* colored. We state the following simple remark explicitly for later reference.

Remark 3. A strongly rainbow colored copy of C_{ℓ}^{r-1} in G' gives rise to a copy of C_{ℓ}^r in G^* .

The following definition is crucial.

Definition 4 $(g_r(n,\ell), [8])$. For $r \ge 4$ and $\ell \ge 3$, let $g_r(n,\ell)$ be the number of edge-colored (r-1)-graphs G with $V(G) \subseteq [n]$ such that the extension G^* is C^r_{ℓ} -free.

The function $g_r(n, \ell)$ above counts the number of pairs (G, χ) with $G^{\chi} \in \operatorname{Forb}_r(n, C_{\ell}^r)$. Mubayi and Wang [8] proved that $g_r(n, \ell)$ is non-negligible in comparison with $|\operatorname{Forb}_r(n, C_{\ell})|$ and were thus able to deduce Theorem 1. The following estimate on $g_r(n, \ell)$ is proved in [8].

Lemma 5 ([8], Lemma 8). For every $r \ge 4$ and $\ell \ge 3$ there is $c = c(r, \ell)$ such that for all large enough n we have $\log g_r(n, \ell) \le cn^{r-1}(\log n)^{(r-3)/(r-2)}$.

We improve Lemma 5 as follows.

Lemma 6. For every $r \ge 4$ and $\ell \ge 3$ we have

$$\log g_r(n,\ell) \leqslant 2rn^{r-1}\log\log n \tag{4}$$

for all large enough n.

Theorem 2 can be derived from Lemma 6 in the same way that Theorem 1 is derived from Lemma 5 in [8]. It thus remains to prove Lemma 6.

§3. Proof of Lemma 6

To bound $g_r(n, \ell)$, we should consider all possible (r-1)-graphs G and their 'valid' edge-colorings. Let an (r-1)-graph G be fixed. The authors of [8] consider decompositions of G into balanced complete (r-1)-partite (r-1)-graphs G_i , and obtain good estimates on the number of edgecolorings of each G_i . In our proof of Lemma 6, we also decompose G into balanced (r-1)-partite (r-1)-graphs G_i , but with each G_i not necessarily complete. We get our improvement because certain quantitative aspects of our decomposition are better, and similar estimates can be shown for the number of edge-colorings of each G_i .

Definition 7 $(f_r(n, \ell, G))$. Let $r \ge 3$ and $\ell \ge 3$ be given and let G be a balanced (r-1)-partite (r-1)-graph with $V(G) \subseteq [n]$. Let $f_r(n, \ell, G)$ be the number of edge-colorings $\chi \colon G \to [n]$ such that G^{χ} is C^r_{ℓ} -free.

Lemma 8. For every $r \ge 4$ and $\ell \ge 3$ there is $c = c(r, \ell)$ such that, for any G as in Definition 7, we have

 $f_r(n,\ell,G) \leqslant n^{cs^{r-2}} (cs^{r-2})^{e(G)},$ (5)

where s = |V(G)|/(r-1).

We use the following result in the proof of Lemma 8.

Lemma 9. [8] For every $r \ge 3$ and $\ell \ge 3$ there is $c = c(r, \ell)$ for which the following holds. Let G be an r-partite r-graph with vertex classes V_1, \ldots, V_r with $|V_i| = s$ for all i. If $e(G) > cs^{r-1}$, then G contains a loose cycle of length ℓ .

Proof of Lemma 8. Let G be a balanced (r-1)-partite (r-1)-graph with each part of size s such that $V(G) \subseteq [n]$. For any edge-coloring $\chi: G \to [n]$, let $Z = \operatorname{im} \chi = \{z_e: e \in G\} \subseteq [n]$ be the set of all used colors. We first argue that if G^* is C_ℓ^r -free, then $|Z| < (c_9 + r)s^{r-2}$, where $c_9 = c_9(r-1,\ell)$ is the constant from Lemma 9. Indeed, if $|Z| \ge (c_9 + r)s^{r-2}$, then $|Z \setminus V(G)| \ge$

 $(c_9 + r)s^{r-2} - s(r-1) > c_9s^{r-2}$. For each color $v \in Z \smallsetminus V(G)$ pick an edge in G with color v. We get a subgraph $G' \subseteq G$ that is strongly rainbow colored with $e(G') = |Z \smallsetminus V(G)| > c_9s^{r-2}$. By Lemma 9, there is a C_{ℓ}^{r-1} in G' that is strongly rainbow, which contradicts the fact that G^* is C_{ℓ}^r -free (see Remark 3).

Let $c = c(r, \ell) = c_9 + r$. We now estimate the number $f_r(n, \ell, G)$ of valid edge-colorings χ the graph G may have as follows: choose at most cs^{r-2} colors and then color each edge of G in all possible ways. We obtain

$$f_r(n,\ell,G) \le n^{cs^{r-2}} (cs^{r-2})^{e(G)},$$
(6)

as required.

Our next result gives a decomposition of any r-graph G into balanced r-partite r-graphs that are not necessarily complete.

Lemma 10. Suppose $r \ge 2$ and

$$1 \leqslant s \leqslant \left(1 - \frac{1}{r}\right)n. \tag{7}$$

Then any n-vertex r-graph G can be decomposed into t balanced r-partite r-graphs $G_i \subseteq K_r(s)$ $(1 \leq i \leq t)$, where $t \leq (n/s)^r [c \log n]$ and

$$c = c(r) = \frac{-r}{\log(1 - r!/r^r)}.$$
(8)

Proof. Generate independently and uniformly $\lceil c \log n \rceil$ random r-partitions $\Pi_i = (V_j^i)_{1 \leq j \leq r}$ of [n] $(1 \leq i \leq \lceil c \log n \rceil)$. Thus, $v \in V_j^i$ happens with probability 1/r for each v, i and j independently. Note that each r-tuple is 'captured' by a given Π_i with probability $r!/r^r$. Thus the probability that a given r-tuple is not captured by any r-partition Π_i is at most

$$\left(1 - \frac{r!}{r^r}\right)^{\left[c\log n\right]} \leqslant 2^{-r\log n} = n^{-r}.$$
(9)

The union bound implies that there is a collection $\Pi_i = (V_j^i)_{1 \leq j \leq r}$ $(1 \leq i \leq \lfloor c \log n \rfloor)$ of r-partitions of [n] capturing all r-tuples of [n].

Let us now fix *i* and consider Π_i . We now produce, from Π_i , at most $(n/s)^r$ subgraphs G' of G with $G' \subseteq K_r(s)$, with the collection of such G' capturing every *r*-tuple captured by Π_i . Note that doing this for every *i* completes the proof of our lemma. To simplify notation, let $V_j = V_j^i$ $(1 \leq j \leq r)$.

Partition each V_j into blocks W_k^j $(1 \le k \le \lceil |V_j|/s \rceil)$ arbitrarily, but with $|W_k^j| \le s$ for all k. We now consider all the vectors

$$W(k_1, \dots, k_r) = (W_{k_1}^1, \dots, W_{k_r}^r),$$
(10)

where $1 \leq k_j \leq [|V_j|/s]$ for all $1 \leq j \leq r$. Clearly, each such $W(k_1, \ldots, k_r)$ induces, in a natural way, an *r*-partite subgraph $G(k_1, \ldots, k_r)$ of G with $G(k_1, \ldots, k_r) \subseteq K_r(s)$. Moreover, those $G(k_1, \ldots, k_r)$ capture all the *r*-tuples captured by Π_i . It now suffices to prove that the

number of such $G(k_1, \ldots, k_r)$ is at most $(n/s)^r$. The number of choices we have for $(k_j)_{1 \le j \le r}$ is

$$\left[\frac{|V_1|}{s}\right] \dots \left[\frac{|V_r|}{s}\right] < \frac{1}{s^r} (|V_1| + s) \dots (|V_r| + s)$$
$$\leq \frac{1}{s^r} \left(\frac{1}{r} \sum_{1 \le j \le r} (|V_j| + s)\right)^r \le \left(\frac{1}{sr} (n + sr)\right)^r \le \left(\frac{n}{s}\right)^r, \quad (11)$$

where we used (7) in the last inequality above.

Now we are ready to prove Lemma 6.

Proof of Lemma 6. Let G_0 be an (r-1)-graph with $V(G_0) \subseteq [n]$. In what follows, we assume n is large enough for our inequalities to hold. We first count the number of edge-colored (r-1)-graphs Gsuch that its underlying (r-1)-graph is G_0 and G^* is C_ℓ -free. By Lemma 10, we decompose G_0 into balanced (r-1)-partite (r-1)-graphs G_1, \ldots, G_t , such that, for all $i \in [t]$, each vertex class of G_i contains $s = \lfloor (\log n)^2 \rfloor$ vertices and $t \leq 2c_{10}(n/s)^{r-1}\log n$, where $c_{10} = c_{10}(r-1)$ is as given by Lemma 10. Note that $ts^{r-2} \leq 3c_{10}n^{r-1}/\log n$ and, since G_1, \ldots, G_t form a decomposition of G_0 , we have $\sum_{i=1}^t e(G_i) = e(G_0)$. Moreover, since G^* is C_ℓ -free, each G_i^* has to be C_ℓ -free. By Lemma 8, the number of valid edge-colorings of G_0 is at most

$$\prod_{i=1}^{t} f_r(n,\ell,G_i) \leq \prod_{i=1}^{t} n^{c_8 s^{r-2}} (c_8 s^{r-2})^{e(G_i)} = n^{c_8 t s^{r-2}} (c_8 s^{r-2})^{e(G_0)} \leq n^{3c_8 c_1 0^{n^{r-1}/\log n}} (c_8 s^{r-2})^{n^{r-1}}.$$
 (12)

Since there are at most $2^{n^{r-1}}$ graphs G_0 as above and $s = \lfloor (\log n)^2 \rfloor$, summing over all G_0 gives

$$\log g_r(n,\ell) \leq \log \left(2^{n^{r-1}} n^{3c} 8^{c} 10^{n^{r-1}/\log n} (c_8 s^{r-2})^{n^{r-1}} \right)$$

$$\leq (3c_8 c_{10} + 1) n^{r-1} + (\log c_8 + (r-2) \log s) n^{r-1}$$

$$\leq (3c_8 c_{10} + 1) n^{r-1} + (\log c_8 + 2(r-2) \log \log n) n^{r-1}$$

$$\leq 2r n^{r-1} \log \log n,$$
(13)

where the last inequality follows for all large enough n.

Acknowledgement

We thank Dhruv Mubayi and Lujia Wang for helpful discussions.

References

- J. Balogh, S. Das, M. Delcourt, H. Liu, and M. Sharifzadeh, Intersecting families of discrete structures are typically trivial, J. Combin. Theory Ser. A 132 (2015), 224–245. MR3311345 [↑]1
- B. Bollobás, Hereditary properties of graphs: asymptotic enumeration, global structure, and colouring, Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), 1998, pp. 333–342. MR1648167 ↑1
- [3] P. Erdős, D. J. Kleitman, and B. L. Rothschild, Asymptotic enumeration of K_n -free graphs (1976), 19–27. Atti dei Convegni Lincei, No. 17. MR0463020 $\uparrow 1$
- [4] P. Frankl and A. Kupavskii, Counting intersecting and pairs of cross-intersecting families, ArXiv e-prints (Jan. 2017), available at arXiv:1701.04110. ↑1

- [5] Z. Füredi and T. Jiang, Hypergraph Turán numbers of linear cycles, J. Combin. Theory Ser. A 123 (2014), 252–270. MR3157810 [↑]2
- [6] A. Kostochka, D. Mubayi, and J. Verstraëte, Turán problems and shadows I: Paths and cycles, J. Combin. Theory Ser. A 129 (2015), 57–79. MR3275114 [↑]2
- [7] R. Morris and D. Saxton, The number of C_{2ℓ}-free graphs, Adv. Math. 298 (2016), 534–580. MR3505750 [↑]1
- [8] D. Mubayi and L. Wang, The number of triple systems without even cycles, ArXiv e-prints (Jan. 2017), available at arXiv:1701.00269. [↑]1, 2, 3
- [9] H. J. Prömel, A. Steger, and A. Taraz, Asymptotic enumeration, global structure, and constrained evolution, Discrete Math. 229 (2001), no. 1-3, 213–233. Combinatorics, graph theory, algorithms and applications. MR1815608
 ^{↑1}

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA, UNIVERSIDADE DE SÃO PAULO, SÃO PAULO, BRAZIL Email addresses: {jhan|yoshi}@ime.usp.br