ON HYPERGRAPHS WITHOUT LOOSE CYCLES

JIE HAN AND YOSHIHARU KOHAYAKAWA

ABSTRACT. Recently, Mubayi and Wang showed that for $r \geq 4$ and $\ell \geq 3$, the number of *n*-vertex *r*-graphs that do not contain any loose cycle of length ℓ is at most $2^{O(n^{r-1}(\log n)^{(r-3)/(r-2)})}$. We improve this bound to $2^{O(n^{r-1} \log \log n)}$.

§1. INTRODUCTION

Let two graphs *G* and *H* be given. The graph *G* is called *H-free* if it does not contain any copy of *H* as a subgraph. One of the central problems in graph theory is to determine the extremal and typical properties of *H*-free graphs on *n* vertices. For example, one of the first influential results of this type is the Erdős–Kleitman–Rothschild theorem [\[3\]](#page-4-0), which, for instance, implies that the number of triangle-free graphs with vertex set $[n] = \{1, \ldots, n\}$ is $2^{n^2/4 + o(n^2)}$. This has inspired a great deal of work on counting the number of *H*-free graphs. For an overview of this line of research, the reader is referred to, e.g., $[2,9]$ $[2,9]$. For a recent, exciting result in the area, see [\[7\]](#page-5-1), which also contains a good discussion of the general area, with several pointers to the literature. These problems are closely related to the so-called *Turán problem*, which asks to determine the maximum possible number of edges in an *H*-free graph. More precisely, given an *r*-uniform hypergraph (or *r*-graph) *H*, the *Turán number* $ex_r(n, H)$ is the maximum number of edges in an *r*-graph *G* on *n* vertices that is *H*-free. Let $\text{Forb}_r(n, H)$ be the set of all *H*-free *r*-graphs with vertex set $\lceil n \rceil$. Noting that the subgraphs of an *H*-free *r*-graph *G* are also *H*-free, we trivially see that $|\text{Forb}_r(n, H)| \geq 2^{\exp(r,n,H)}$, by considering an *H*-free *r*-graph *G* on [*n*] with the maximum number of edges and all its subgraphs. On the other hand for, fixed *r* and *H*,

$$
|\text{Forb}_r(n, H)| \leq \sum_{1 \leq i \leq \text{ex}_r(n, H)} \binom{\binom{n}{r}}{i} = 2^{O(\text{ex}_r(n, H) \log n)}.
$$
 (1)

Hence the above simple bounds differ by a factor of log *n* in the exponent, and all existing results support that this log *n* factor should be unnecessary, i.e., the trivial lower bound should be closer to the truth.

There are very few results in the case $r > 2$ and $ex_r(n, H) = o(n^r)$. The only known case is when *H* consists of two edges sharing *t* vertices [\[1,](#page-4-2)[4\]](#page-4-3). Very recently, Mubayi and Wang [\[8\]](#page-5-2) studied $|\text{Forb}_r(n, H)|$ when *H* is a loose cycle. Given $\ell \geq 3$, an *r-uniform loose cycle* C_{ℓ}^r is an $\ell(r-1)$ vertex *r*-graph whose vertices can be ordered cyclically in such a way that the edges are sets of

Date: 2018/07/10, 9:02pm

The first author is supported by FAPESP (2014/18641-5, 2013/03447-6). The second author is partially supported by FAPESP (2013/03447-6, 2013/07699-0), CNPq (310974/2013-5, 459335/2014-6) and NUMEC/USP (Project MaCLinC).

consecutive *r* vertices and every two consecutive edges share exactly one vertex. When *r* is clear from the context, we simply write C_{ℓ} .

Theorem 1. [\[8\]](#page-5-2) *For every* $\ell \geq 3$ *and* $r \geq 4$ *, there exists* $c = c(r, \ell)$ *such that*

$$
|\text{Forb}_r(n, C_\ell)| < 2^{cn^{r-1}(\log n)^{(r-3)/(r-2)}}\tag{2}
$$

for all n. For $\ell \geq 4$ *even, there exists* $c = c(\ell)$ *such that* $|\text{Forb}_3(n, C_{\ell})| < 2^{cn^2}$ *for all n.*

Since $ex_r(n, C_\ell) = \Omega(n^{r-1})$ $ex_r(n, C_\ell) = \Omega(n^{r-1})$ $ex_r(n, C_\ell) = \Omega(n^{r-1})$ for all $r \ge 3$ [\[5,](#page-5-3) [6\]](#page-5-4), Theorem 1 implies that $|\text{Forb}_3(n, C_\ell)| = 2^{\Theta(n^2)}$ for even $\ell \geq 4$. Mubayi and Wang also conjecture that similar results should hold for $r = 3$ and all $\ell \geq 3$ odd and for all $r \geq 4$ and $\ell \geq 3$, i.e., $|\text{Forb}_r(n, C_\ell)| = 2^{\Theta(n^{r-1})}$ for all such r and ℓ . In this note we give the following improvement of Theorem [1](#page-1-0) for $r \geq 4$.

Theorem 2. For every $\ell \geq 3$ and $r \geq 4$, we have

$$
|\text{Forb}_r(n, C_\ell)| < 2^{2r^2 \ell n^{r-1} \log \log n} \tag{3}
$$

for all sufficiently large n.

In what follows, logarithms have base 2.

§2. Edge-colored *r*-graphs

Let $r \geq 2$ be an integer. An *r-uniform hypergraph G* (or *r-graph*) on a *vertex set X* is a collection of *r*-element subsets of X, called *hyperedges* or simply *edges*. The vertex set X of G is denoted $V(G)$. We write $e(G)$ for the number of edges in *G*. An *r-partite r-graph G* is an *r*-graph together with a vertex partition $V(G) = V_1 \cup \cdots \cup V_r$, such that every edge of *G* contains exactly one vertex from each V_i ($i \in [n]$). If all such edges are present in *G*, then we say that *G* is *complete*. We call an *r*-partite *r*-graph *balanced* if all parts in its vertex partition have the same size. Let $K_r(s)$ denote the complete *r*-partite *r*-graph with *s* vertices in each vertex class.

We now introduce some key definitions from $[8]$, which are also essential for us. Given an $(r-1)$ -graph *G* with $V(G) \subseteq [n]$, a *coloring function* for *G* is a function $\chi: G \to [n]$ such that $\chi(e) = z_e \in [n] \setminus e$ for every $e \in G$. We call z_e the *color* of *e*. The pair (G, χ) is an *edge-colored* $(r-1)$ -graph.

Given *G*, each edge-coloring χ of *G* gives an *r*-graph $G^{\chi} = \{e \cup \{z_e\} : e \in G\}$, called the *extension of G by χ*. When there is only one coloring that has been defined, we write G^* for G^{χ} . Clearly any subgraph $G' \subseteq G$ also admits an extension by χ , namely, $(G')^{\chi} = \{e \cup \{z_e\} : e \in G'\} \subseteq G^*$. If $G' \subseteq G$ and $\chi \nvert_{G'}$ is one-to-one and $z_e \notin V(G')$ for all $e \in G'$, then G' is called *strongly rainbow colored*. We state the following simple remark explicitly for later reference.

Remark 3. A strongly rainbow colored copy of C_{ℓ}^{r-1} in G' gives rise to a copy of C_{ℓ}^{r} in G^* .

The following definition is crucial.

Definition 4 $(g_r(n,\ell), [8])$ $(g_r(n,\ell), [8])$ $(g_r(n,\ell), [8])$. For $r \ge 4$ and $\ell \ge 3$, let $g_r(n,\ell)$ be the number of edge-colored $(r-1)$ -graphs *G* with $V(G) \subseteq [n]$ such that the extension G^* is C_{ℓ}^r -free.

The function $g_r(n, \ell)$ above counts the number of pairs (G, χ) with $G^{\chi} \in \text{Forb}_r(n, C_{\ell}^r)$. Mubayi and Wang [\[8\]](#page-5-2) proved that $g_r(n, \ell)$ is non-negligible in comparison with $|\text{Forb}_r(n, C_{\ell})|$ and were thus able to deduce Theorem [1.](#page-1-0) The following estimate on $g_r(n, \ell)$ is proved in [\[8\]](#page-5-2).

Lemma 5 ([\[8\]](#page-5-2), Lemma 8). For every $r \geq 4$ and $\ell \geq 3$ there is $c = c(r, \ell)$ such that for all large *enough n we have* $\log g_r(n, \ell) \leq c n^{r-1} (\log n)^{(r-3)/(r-2)}$.

We improve Lemma [5](#page-2-0) as follows.

Lemma 6. *For every* $r \geq 4$ *and* $\ell \geq 3$ *we have*

$$
\log g_r(n,\ell) \leqslant 2rn^{r-1}\log\log n\tag{4}
$$

for all large enough n.

Theorem [2](#page-1-1) can be derived from Lemma [6](#page-2-1) in the same way that Theorem [1](#page-1-0) is derived from Lemma [5](#page-2-0) in [\[8\]](#page-5-2). It thus remains to prove Lemma [6.](#page-2-1)

§3. Proof of Lemma [6](#page-2-1)

To bound $g_r(n, \ell)$, we should consider all possible $(r-1)$ -graphs *G* and their 'valid' edge-colorings. Let an $(r-1)$ -graph *G* be fixed. The authors of $[8]$ consider decompositions of *G* into balanced complete $(r - 1)$ -partite $(r - 1)$ -graphs G_i , and obtain good estimates on the number of edgecolorings of each G_i . In our proof of Lemma [6,](#page-2-1) we also decompose G into balanced $(r-1)$ -partite $(r-1)$ -graphs G_i , but with each G_i not necessarily complete. We get our improvement because certain quantitative aspects of our decomposition are better, and similar estimates can be shown for the number of edge-colorings of each *Gⁱ* .

Definition 7 $(f_r(n, \ell, G))$. Let $r \geq 3$ and $\ell \geq 3$ be given and let *G* be a balanced $(r-1)$ -partite $p(r-1)$ -graph with $V(G) \subseteq [n]$. Let $f_r(n, \ell, G)$ be the number of edge-colorings $\chi: G \to [n]$ such that G^{χ} is C_{ℓ}^{r} -free.

Lemma 8. For every $r \geq 4$ and $\ell \geq 3$ there is $c = c(r, \ell)$ such that, for any G as in Definition [7,](#page-2-2) *we have*

> $f_r(n, \ell, G) \leqslant n^{cs^{r-2}} (cs^{r-2})^{e(G)}$ *,* (5)

where $s = |V(G)|/(r-1)$ *.*

We use the following result in the proof of Lemma [8.](#page-2-3)

Lemma 9. [\[8\]](#page-5-2) *For every* $r \geq 3$ *and* $\ell \geq 3$ *there is* $c = c(r, \ell)$ *for which the following holds. Let G* be an r-partite r-graph with vertex classes V_1, \ldots, V_r with $|V_i| = s$ for all i. If $e(G) > cs^{r-1}$, then G *contains a loose cycle of length ℓ.*

Proof of Lemma [8.](#page-2-3) Let *G* be a balanced $(r-1)$ -partite $(r-1)$ -graph with each part of size *s* such that $V(G) \subseteq [n]$. For any edge-coloring $\chi: G \to [n]$, let $Z = \text{im } \chi = \{z_e : e \in G\} \subseteq [n]$ be the set of all used colors. We first argue that if G^* is C_{ℓ}^r -free, then $|Z| < (c_9 + r)s^{r-2}$ $|Z| < (c_9 + r)s^{r-2}$ $|Z| < (c_9 + r)s^{r-2}$, where $c_9 = c_9(r-1, \ell)$ $c_9 = c_9(r-1, \ell)$ $c_9 = c_9(r-1, \ell)$ is the constant from Lemma [9.](#page-2-4) Indeed, if $|Z| \geqslant (c_9 + r)s^{r-2}$, then $|Z \setminus V(G)| \geqslant$

 $(cg + r)s^{r-2} - s(r-1) > cgs^{r-2}$. For each color $v \in Z \setminus V(G)$ pick an edge in *G* with color *v*. We get a subgraph $G' \subseteq G$ that is strongly rainbow colored with $e(G') = |Z \setminus V(G)| > c_9 s^{r-2}$ $e(G') = |Z \setminus V(G)| > c_9 s^{r-2}$ $e(G') = |Z \setminus V(G)| > c_9 s^{r-2}$. By Lemma [9,](#page-2-4) there is a C_{ℓ}^{r-1} in G' that is strongly rainbow, which contradicts the fact that G^* is C_{ℓ}^{r} -free (see Remark [3\)](#page-1-2).

Let $c = c(r, \ell) = c_0 + r$. We now estimate the number $f_r(n, \ell, G)$ of valid edge-colorings χ the graph *G* may have as follows: choose at most cs^{r-2} colors and then color each edge of *G* in all possible ways. We obtain

$$
f_r(n, \ell, G) \leqslant n^{cs^{r-2}} (cs^{r-2})^{e(G)},\tag{6}
$$

as required. \square

Our next result gives a decomposition of any *r*-graph *G* into balanced *r*-partite *r*-graphs that are not necessarily complete.

Lemma 10. *Suppose* $r \geq 2$ *and*

$$
1 \leqslant s \leqslant \left(1 - \frac{1}{r}\right)n. \tag{7}
$$

Then any n-vertex r-graph G can be decomposed into t balanced r-partite r-graphs $G_i \subseteq K_r(s)$ $(1 \leq i \leq t)$, where $t \leq (n/s)^{r} [c \log n]$ and

$$
c = c(r) = \frac{-r}{\log(1 - r!/r^r)}.
$$
\n(8)

Proof. Generate independently and uniformly $[c \log n]$ random *r*-partitions $\Pi_i = (V_j^i)_{1 \leq j \leq r}$ of $[n]$ $(1 \leq i \leq [c \log n])$. Thus, $v \in V_j^i$ happens with probability $1/r$ for each *v*, *i* and *j* independently. Note that each *r*-tuple is 'captured' by a given Π_i with probability $r!/r^r$. Thus the probability that a given *r*-tuple is *not* captured by *any r*-partition Π*ⁱ* is at most

$$
\left(1 - \frac{r!}{r^r}\right)^{\lceil c \log n \rceil} \leqslant 2^{-r \log n} = n^{-r}.
$$
\n(9)

The union bound implies that there is a collection $\Pi_i = (V_j^i)_{1 \leq j \leq r}$ $(1 \leq i \leq [c \log n])$ of *r*-partitions of $[n]$ capturing all *r*-tuples of $[n]$.

Let us now fix *i* and consider Π_i . We now produce, from Π_i , at most $(n/s)^r$ subgraphs *G'* of *G* with $G' \subseteq K_r(s)$, with the collection of such G' capturing every *r*-tuple captured by Π_i . Note that doing this for every *i* completes the proof of our lemma. To simplify notation, let $V_j = V_j^i$ $(1 \leq j \leq r).$

Partition each V_j into blocks W_k^j $\binom{d}{k}$ (1 $\leq k \leq \lfloor |V_j|/s \rfloor$) arbitrarily, but with $|W_k^j|$ $|k|\leq s$ for all *k*. We now consider all the vectors

$$
W(k_1, \ldots, k_r) = (W_{k_1}^1, \ldots, W_{k_r}^r), \tag{10}
$$

where $1 \le k_j \le [V_j]/s$ for all $1 \le j \le r$. Clearly, each such $W(k_1, \ldots, k_r)$ induces, in a natural way, an *r*-partite subgraph $G(k_1, \ldots, k_r)$ of *G* with $G(k_1, \ldots, k_r) \subseteq K_r(s)$. Moreover, those $G(k_1, \ldots, k_r)$ capture all the *r*-tuples captured by Π_i . It now suffices to prove that the number of such $G(k_1, \ldots, k_r)$ is at most $(n/s)^r$. The number of choices we have for $(k_j)_{1 \leq j \leq r}$ is

$$
\left\lceil \frac{|V_1|}{s} \right\rceil \dots \left\lceil \frac{|V_r|}{s} \right\rceil < \frac{1}{s^r} (|V_1| + s) \dots (|V_r| + s)
$$
\n
$$
\leq \frac{1}{s^r} \Big(\frac{1}{r} \sum_{1 \leq j \leq r} (|V_j| + s) \Big)^r \leq \left(\frac{1}{s^r} (n + s^r) \right)^r \leq \left(\frac{n}{s} \right)^r, \tag{11}
$$

where we used [\(7\)](#page-3-0) in the last inequality above. \square

Now we are ready to prove Lemma [6.](#page-2-1)

Proof of Lemma [6.](#page-2-1) Let G_0 be an $(r-1)$ -graph with $V(G_0) \subseteq [n]$. In what follows, we assume *n* is large enough for our inequalities to hold. We first count the number of edge-colored $(r-1)$ -graphs *G* such that its underlying $(r-1)$ -graph is G_0 and G^* is C_ℓ -free. By Lemma [10,](#page-3-1) we decompose G_0 into balanced $(r - 1)$ -partite $(r - 1)$ -graphs G_1, \ldots, G_t , such that, for all $i \in [t]$, each vertex class of G_i contains $s = \lfloor (\log n)^2 \rfloor$ vertices and $t \leq 2c_{10}(n/s)^{r-1} \log n$ $t \leq 2c_{10}(n/s)^{r-1} \log n$ $t \leq 2c_{10}(n/s)^{r-1} \log n$, where $c_{10} = c_{10}(r-1)$ is as given by Lemma [10.](#page-3-1) Note that $ts^{r-2} \leqslant 3c_{10}n^{r-1}/\log n$ $ts^{r-2} \leqslant 3c_{10}n^{r-1}/\log n$ $ts^{r-2} \leqslant 3c_{10}n^{r-1}/\log n$ and, since G_1, \ldots, G_t form a decomposition of G_0 , we have $\sum_{i=1}^t e(G_i) = e(G_0)$. Moreover, since G^* is C_{ℓ} -free, each G_i^* has to be C_{ℓ} -free. By Lemma [8,](#page-2-3) the number of valid edge-colorings of G_0 is at most

$$
\prod_{i=1}^{t} f_r(n, \ell, G_i) \le \prod_{i=1}^{t} n^{c} 8^{s^{r-2}} (c_8 s^{r-2})^{e(G_i)} = n^{c} 8^{t s^{r-2}} (c_8 s^{r-2})^{e(G_0)}
$$

$$
\le n^{3c} 8^c 10^{n^{r-1}/\log n} (c_8 s^{r-2})^{n^{r-1}}.
$$
 (12)

Since there are at most $2^{n^{r-1}}$ graphs G_0 as above and $s = \lfloor (\log n)^2 \rfloor$, summing over all G_0 gives

$$
\log g_r(n,\ell) \le \log \left(2^{n^{r-1}} n^{3c} 8^c 10^{n^{r-1}/\log n} (c_8 s^{r-2})^{n^{r-1}}\right)
$$

\n
$$
\le (3c_8 c_{10} + 1)n^{r-1} + (\log c_8 + (r-2) \log s)n^{r-1}
$$

\n
$$
\le (3c_8 c_{10} + 1)n^{r-1} + (\log c_8 + 2(r-2) \log \log n)n^{r-1}
$$

\n
$$
\le 2rn^{r-1} \log \log n,
$$
 (13)

where the last inequality follows for all large enough n .

Acknowledgement

We thank Dhruv Mubayi and Lujia Wang for helpful discussions.

REFERENCES

- [1] J. Balogh, S. Das, M. Delcourt, H. Liu, and M. Sharifzadeh, *Intersecting families of discrete structures are typically trivial*, J. Combin. Theory Ser. A **132** (2015), 224–245. M[R3311345](http://www.ams.org/mathscinet-getitem?mr=3311345) Ò[1](#page-0-0)
- [2] B. Bollobás, *Hereditary properties of graphs: asymptotic enumeration, global structure, and colouring*, Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), 1998, pp. 333–342. M[R1648167](http://www.ams.org/mathscinet-getitem?mr=1648167) Ò[1](#page-0-0)
- [3] P. Erdős, D. J. Kleitman, and B. L. Rothschild, *Asymptotic enumeration of Kn-free graphs* (1976), 19–27. Atti dei Convegni Lincei, No. 17. M[R0463020](http://www.ams.org/mathscinet-getitem?mr=0463020) [1](#page-0-0)
- [4] P. Frankl and A. Kupavskii, *Counting intersecting and pairs of cross-intersecting families*, ArXiv e-prints (Jan. 2017), available at [arXiv:1701.04110.](http://arxiv.org/abs/1701.04110) \uparrow [1](#page-0-0)
- [5] Z. Füredi and T. Jiang, *Hypergraph Turán numbers of linear cycles*, J. Combin. Theory Ser. A **123** (2014), 252– 270. M[R3157810](http://www.ams.org/mathscinet-getitem?mr=3157810) ¹[2](#page-1-3)
- [6] A. Kostochka, D. Mubayi, and J. Verstraëte, *Turán problems and shadows I: Paths and cycles*, J. Combin. Theory Ser. A **1[2](#page-1-3)9** (2015), 57-79. M[R3275114](http://www.ams.org/mathscinet-getitem?mr=3275114) \uparrow 2
- [7] R. Morris and D. Saxton, *The number of C*2*^ℓ-free graphs*, Adv. Math. **298** (2016), 534–580. M[R3505750](http://www.ams.org/mathscinet-getitem?mr=3505750) Ò[1](#page-0-0)
- [8] D. Mubayi and L. Wang, *The number of triple systems without even cycles*, ArXiv e-prints (Jan. 2017), available at [arXiv:1701.00269.](http://arxiv.org/abs/1701.00269) \uparrow [1,](#page-0-0) [2,](#page-1-3) [3](#page-2-5)
- [9] H. J. Prömel, A. Steger, and A. Taraz, *Asymptotic enumeration, global structure, and constrained evolution*, Discrete Math. **229** (2001), no. 1-3, 213–233. Combinatorics, graph theory, algorithms and applications. M[R1815608](http://www.ams.org/mathscinet-getitem?mr=1815608) \uparrow ^{[1](#page-0-0)}

Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil *Email addresses*: {jhan|yoshi}@ime.usp.br