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ON HYPERGRAPHS WITHOUT LOOSE CYCLES

JIE HAN AND YOSHIHARU KOHAYAKAWA

Abstract. Recently, Mubayi and Wang showed that for r ě 4 and ℓ ě 3, the number of n-vertex

r-graphs that do not contain any loose cycle of length ℓ is at most 2Opn
r´1plog nqpr´3q{pr´2q q. We

improve this bound to 2Opn
r´1 log log nq.

§1. Introduction

Let two graphs G and H be given. The graph G is called H-free if it does not contain any copy

of H as a subgraph. One of the central problems in graph theory is to determine the extremal and

typical properties of H-free graphs on n vertices. For example, one of the first influential results

of this type is the Erdős–Kleitman–Rothschild theorem [3], which, for instance, implies that the

number of triangle-free graphs with vertex set rns “ t1, . . . , nu is 2n2{4`opn2q. This has inspired

a great deal of work on counting the number of H-free graphs. For an overview of this line of

research, the reader is referred to, e.g., [2,9]. For a recent, exciting result in the area, see [7], which

also contains a good discussion of the general area, with several pointers to the literature. These

problems are closely related to the so-called Turán problem, which asks to determine the maximum

possible number of edges in an H-free graph. More precisely, given an r-uniform hypergraph

(or r-graph) H, the Turán number exrpn, Hq is the maximum number of edges in an r-graph G

on n vertices that is H-free. Let Forbrpn, Hq be the set of all H-free r-graphs with vertex set

rns. Noting that the subgraphs of an H-free r-graph G are also H-free, we trivially see that

|Forbrpn, Hq| ě 2exrpn,Hq, by considering an H-free r-graph G on rns with the maximum number

of edges and all its subgraphs. On the other hand for, fixed r and H,

|Forbrpn, Hq| ď
ÿ

1ďiďexrpn,Hq

ˆ
`

n
r

˘

i

˙

“ 2Opexrpn,Hq log nq. (1)

Hence the above simple bounds differ by a factor of log n in the exponent, and all existing results

support that this log n factor should be unnecessary, i.e., the trivial lower bound should be closer

to the truth.

There are very few results in the case r ą 2 and exrpn, Hq “ opnrq. The only known case is

when H consists of two edges sharing t vertices [1,4]. Very recently, Mubayi and Wang [8] studied

|Forbrpn, Hq| when H is a loose cycle. Given ℓ ě 3, an r-uniform loose cycle Cr
ℓ is an ℓpr ´ 1q-

vertex r-graph whose vertices can be ordered cyclically in such a way that the edges are sets of
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consecutive r vertices and every two consecutive edges share exactly one vertex. When r is clear

from the context, we simply write Cℓ.

Theorem 1. [8] For every ℓ ě 3 and r ě 4, there exists c “ cpr, ℓq such that

|Forbrpn, Cℓq| ă 2cnr´1plog nqpr´3q{pr´2q
(2)

for all n. For ℓ ě 4 even, there exists c “ cpℓq such that |Forb3pn, Cℓq| ă 2cn2

for all n.

Since exrpn, Cℓq “ Ωpnr´1q for all r ě 3 [5, 6], Theorem 1 implies that |Forb3pn, Cℓq| “ 2Θpn2q

for even ℓ ě 4. Mubayi and Wang also conjecture that similar results should hold for r “ 3 and

all ℓ ě 3 odd and for all r ě 4 and ℓ ě 3, i.e., |Forbrpn, Cℓq| “ 2Θpnr´1q for all such r and ℓ. In this

note we give the following improvement of Theorem 1 for r ě 4.

Theorem 2. For every ℓ ě 3 and r ě 4, we have

|Forbrpn, Cℓq| ă 22r2ℓnr´1 log log n (3)

for all sufficiently large n.

In what follows, logarithms have base 2.

§2. Edge-colored r-graphs

Let r ě 2 be an integer. An r-uniform hypergraph G (or r-graph) on a vertex set X is a collection

of r-element subsets of X, called hyperedges or simply edges. The vertex set X of G is denoted V pGq.

We write epGq for the number of edges in G. An r-partite r-graph G is an r-graph together with a

vertex partition V pGq “ V1 Y ¨ ¨ ¨ Y Vr, such that every edge of G contains exactly one vertex from

each Vi (i P rns). If all such edges are present in G, then we say that G is complete. We call an

r-partite r-graph balanced if all parts in its vertex partition have the same size. Let Krpsq denote

the complete r-partite r-graph with s vertices in each vertex class.

We now introduce some key definitions from [8], which are also essential for us. Given an

pr ´ 1q-graph G with V pGq Ď rns, a coloring function for G is a function χ : G Ñ rns such that

χpeq “ ze P rns r e for every e P G. We call ze the color of e. The pair pG, χq is an edge-colored

pr ´ 1q-graph.

Given G, each edge-coloring χ of G gives an r-graph Gχ “
 

eYtzeu : e P G
(

, called the extension

of G by χ. When there is only one coloring that has been defined, we write G˚ for Gχ. Clearly

any subgraph G1 Ď G also admits an extension by χ, namely, pG1qχ “
 

e Y tzeu : e P G1
(

Ď G˚.

If G1 Ď G and χæG1 is one-to-one and ze R V pG1q for all e P G1, then G1 is called strongly rainbow

colored. We state the following simple remark explicitly for later reference.

Remark 3. A strongly rainbow colored copy of Cr´1
ℓ in G1 gives rise to a copy of Cr

ℓ in G˚.

The following definition is crucial.

Definition 4 (grpn, ℓq, [8]). For r ě 4 and ℓ ě 3, let grpn, ℓq be the number of edge-colored

pr ´ 1q-graphs G with V pGq Ď rns such that the extension G˚ is Cr
ℓ -free.
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The function grpn, ℓq above counts the number of pairs pG, χq with Gχ P Forbrpn, Cr
ℓ q. Mubayi

and Wang [8] proved that grpn, ℓq is non-negligible in comparison with |Forbrpn, Cℓq| and were thus

able to deduce Theorem 1. The following estimate on grpn, ℓq is proved in [8].

Lemma 5 ([8], Lemma 8). For every r ě 4 and ℓ ě 3 there is c “ cpr, ℓq such that for all large

enough n we have log grpn, ℓq ď cnr´1plog nqpr´3q{pr´2q.

We improve Lemma 5 as follows.

Lemma 6. For every r ě 4 and ℓ ě 3 we have

log grpn, ℓq ď 2rnr´1 log log n (4)

for all large enough n.

Theorem 2 can be derived from Lemma 6 in the same way that Theorem 1 is derived from

Lemma 5 in [8]. It thus remains to prove Lemma 6.

§3. Proof of Lemma 6

To bound grpn, ℓq, we should consider all possible pr´1q-graphs G and their ‘valid’ edge-colorings.

Let an pr ´ 1q-graph G be fixed. The authors of [8] consider decompositions of G into balanced

complete pr ´ 1q-partite pr ´ 1q-graphs Gi, and obtain good estimates on the number of edge-

colorings of each Gi. In our proof of Lemma 6, we also decompose G into balanced pr ´ 1q-partite

pr ´ 1q-graphs Gi, but with each Gi not necessarily complete. We get our improvement because

certain quantitative aspects of our decomposition are better, and similar estimates can be shown

for the number of edge-colorings of each Gi.

Definition 7 (frpn, ℓ, Gq). Let r ě 3 and ℓ ě 3 be given and let G be a balanced pr ´ 1q-partite

pr ´ 1q-graph with V pGq Ď rns. Let frpn, ℓ, Gq be the number of edge-colorings χ : G Ñ rns such

that Gχ is Cr
ℓ -free.

Lemma 8. For every r ě 4 and ℓ ě 3 there is c “ cpr, ℓq such that, for any G as in Definition 7,

we have

frpn, ℓ, Gq ď ncsr´2

pcsr´2qepGq, (5)

where s “ |V pGq|{pr ´ 1q.

We use the following result in the proof of Lemma 8.

Lemma 9. [8] For every r ě 3 and ℓ ě 3 there is c “ cpr, ℓq for which the following holds. Let G

be an r-partite r-graph with vertex classes V1, . . . , Vr with |Vi| “ s for all i. If epGq ą csr´1, then G

contains a loose cycle of length ℓ.

Proof of Lemma 8. Let G be a balanced pr ´ 1q-partite pr ´ 1q-graph with each part of size s such

that V pGq Ď rns. For any edge-coloring χ : G Ñ rns, let Z “ im χ “ tze : e P Gu Ď rns be

the set of all used colors. We first argue that if G˚ is Cr
ℓ -free, then |Z| ă pc9 ` rqsr´2, where

c9 “ c9pr ´ 1, ℓq is the constant from Lemma 9. Indeed, if |Z| ě pc9 ` rqsr´2, then |Z r V pGq| ě
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pc9 ` rqsr´2 ´ spr ´ 1q ą c9sr´2. For each color v P Z r V pGq pick an edge in G with color v.

We get a subgraph G1 Ď G that is strongly rainbow colored with epG1q “ |Z r V pGq| ą c9sr´2.

By Lemma 9, there is a Cr´1
ℓ in G1 that is strongly rainbow, which contradicts the fact that G˚ is

Cr
ℓ -free (see Remark 3).

Let c “ cpr, ℓq “ c9 ` r. We now estimate the number frpn, ℓ, Gq of valid edge-colorings χ the

graph G may have as follows: choose at most csr´2 colors and then color each edge of G in all

possible ways. We obtain

frpn, ℓ, Gq ď ncsr´2

pcsr´2qepGq, (6)

as required. �

Our next result gives a decomposition of any r-graph G into balanced r-partite r-graphs that

are not necessarily complete.

Lemma 10. Suppose r ě 2 and

1 ď s ď

ˆ

1 ´
1

r

˙

n. (7)

Then any n-vertex r-graph G can be decomposed into t balanced r-partite r-graphs Gi Ď Krpsq

p1 ď i ď tq, where t ď pn{sqrrc log ns and

c “ cprq “
´r

log p1 ´ r!{rrq
. (8)

Proof. Generate independently and uniformly rc log ns random r-partitions Πi “ pV i
j q1ďjďr of rns

(1 ď i ď rc log ns). Thus, v P V i
j happens with probability 1{r for each v, i and j independently.

Note that each r-tuple is ‘captured’ by a given Πi with probability r!{rr. Thus the probability that

a given r-tuple is not captured by any r-partition Πi is at most
ˆ

1 ´
r!

rr

˙rc log ns

ď 2´r log n “ n´r. (9)

The union bound implies that there is a collection Πi “ pV i
j q1ďjďr (1 ď i ď rc log ns) of r-partitions

of rns capturing all r-tuples of rns.

Let us now fix i and consider Πi. We now produce, from Πi, at most pn{sqr subgraphs G1 of G

with G1 Ď Krpsq, with the collection of such G1 capturing every r-tuple captured by Πi. Note

that doing this for every i completes the proof of our lemma. To simplify notation, let Vj “ V i
j

(1 ď j ď r).

Partition each Vj into blocks W
j
k (1 ď k ď r|Vj |{ss) arbitrarily, but with |W j

k | ď s for all k. We

now consider all the vectors

W pk1, . . . , krq “ pW 1
k1

, . . . , W r
kr

q, (10)

where 1 ď kj ď r|Vj |{ss for all 1 ď j ď r. Clearly, each such W pk1, . . . , krq induces, in a

natural way, an r-partite subgraph Gpk1, . . . , krq of G with Gpk1, . . . , krq Ď Krpsq. Moreover,

those Gpk1, . . . , krq capture all the r-tuples captured by Πi. It now suffices to prove that the
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number of such Gpk1, . . . , krq is at most pn{sqr. The number of choices we have for pkjq1ďjďr is

R

|V1|

s

V

. . .

R

|Vr|

s

V

ă
1

sr
p|V1| ` sq . . . p|Vr| ` sq

ď
1

sr

´1

r

ÿ

1ďjďr

p|Vj | ` sq
¯r

ď

ˆ

1

sr
pn ` srq

˙r

ď
´n

s

¯r

, (11)

where we used (7) in the last inequality above. �

Now we are ready to prove Lemma 6.

Proof of Lemma 6. Let G0 be an pr ´ 1q-graph with V pG0q Ď rns. In what follows, we assume n is

large enough for our inequalities to hold. We first count the number of edge-colored pr´1q-graphs G

such that its underlying pr ´ 1q-graph is G0 and G˚ is Cℓ-free. By Lemma 10, we decompose G0

into balanced pr ´ 1q-partite pr ´ 1q-graphs G1, . . . , Gt, such that, for all i P rts, each vertex class

of Gi contains s “ tplog nq2u vertices and t ď 2c10pn{sqr´1 log n, where c10 “ c10pr ´ 1q is as

given by Lemma 10. Note that tsr´2 ď 3c10nr´1{ log n and, since G1, . . . , Gt form a decomposition

of G0, we have
řt

i“1 epGiq “ epG0q. Moreover, since G˚ is Cℓ-free, each G˚
i has to be Cℓ-free. By

Lemma 8, the number of valid edge-colorings of G0 is at most

t
ź

i“1

frpn, ℓ, Giq ď
t
ź

i“1

n
c8sr´2

pc8sr´2qepGiq “ n
c8tsr´2

pc8sr´2qepG0q

ď n
3c8c10nr´1{ log npc8sr´2qnr´1

. (12)

Since there are at most 2nr´1

graphs G0 as above and s “ tplog nq2u, summing over all G0 gives

log grpn, ℓq ď log
`

2nr´1

n
3c8c10nr´1{ log npc8sr´2qnr´1˘

ď p3c8c10 ` 1qnr´1 ` plog c8 ` pr ´ 2q log sqnr´1

ď p3c8c10 ` 1qnr´1 ` plog c8 ` 2pr ´ 2q log log nqnr´1

ď 2rnr´1 log log n, (13)

where the last inequality follows for all large enough n. �
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